Simulation Analysis for Evaluating Risk-sharing Pension Plans

Norio Hibiki Masaaki Ono
Keio University Mizuho Pension Research Institute

April 29, 2016

Abstract Recently, occupational pensions with new types of risk-sharing functions have been proposed as alternatives of existing pension plans. They are intermediate plans between DB (defined benefit) and DC (defined contribution) plans, and the associated risks are shared between a sponsoring company and participants. In this paper, we evaluate a risk-sharing pension plan using the quantitative approach. At first, we sort out the concept for risk-sharing, and develop a plan design to share risks among the sponsoring company, the active participants and the retirees. More specifically, we propose a risk-sharing design, which involves a mechanism of sharing the deficiencies and the surpluses in accordance with the funding ratios. Here, we incorporate five parameters to control the level of risk sharing. We evaluate the future uncertainties of the contributions for a sponsoring company, the accrued liabilities for participants, and the benefits for retirees. We employ the expected value and conditional value at risk (conditional tail expectation) as the evaluation measures. We evaluate a risk-sharing pension plan with numerical experiments using the Monte Carlo simulation approach, and compare its outcomes with those of three conventional pension plans; DB, DC, and CB (cash balance) plan. We also conduct the sensitivity analysis of the five parameters to control the level of risk-sharing, and highlight the characteristics. We implement the backtest using the historical data, and compare four plans.

We find the benefits and contribution payments of the risk-sharing plan are at the level intermediate between DB plan and DC plan because of the risk-sharing features. We also conduct the sensitivity analysis of the five parameters above, and highlight the characteristics of the risk-sharing functions through various simulation analyses. We examine the actual effect on four pension plans through the backtest for twenty years in Japan.

1. Introduction

The public pension supports the living expenses in retirement, but the role is expected to be gradually diminished in the future in Japan due to the graying population combined with the low fertility rate. Therefore, the occupational pensions become more important to complement the public pension. However, the traditional DB (defined benefit), DC (defined contribution) and CB (cash balance) plans have some weakness for their sustainability or stability of benefits. In the DB plan, a sponsoring company needs to increase the contribution for lack of the plan asset because of the worse investment condition. But it is forced to increase the contribution under the severe condition due to the decline in the corporate performance because the investment return is dependent on the stock market condition linked to the economic environment. This affects their sustainability, and it could lead to the problem of reducing benefits. There are some cases that the decrease in benefits is accepted actually. In the DC plan, a sponsoring company does not need to make additional payments because participants take investment risk, and accept the decrease in the benefit due to the worse investment condition. But we have a problem concerning stability of the pension which supports the living expenses in retirement. Recently, occupational pensions with new types of risk-sharing functions have been proposed as alternatives of existing pension plans. They are intermediate plans between DB and DC plans, and the associated risks are shared between a sponsoring company, active participants, and retirees.

We introduce some risk-sharing pension plans in several countries. In the U.K., the reformed law went into effect in 2015 in order to introduce the defined ambition pension system (DA plan). The obligation by a sponsoring company in the DA plan is reduced more than the DB plan, but the more guarantee to active participants is achieved than the DC plan. In Canada, the introduction of
“target benefit” plan is proposed in 2014, and the benefit and contribution are adjusted, based on the funding deficiency/surplus. In the Netherlands, the FTK (Financieel Toetsingskader, Financial Assessment Framework) was proposed in 2002, and introduced in 2007. After the global financial crisis, the FTK2 was also proposed in 2011. In Japan, Ministry of Health, Labour and Welfare[12] introduced a basic concept, named “risk-sharing DB plan” to provide a flexible benefit design in September, 2015.

Recently, there are some studies concerning risk-sharing pension plans. Turner[14] evaluates a number of hybrid pension plans. He describes in depth as case studies four different hybrids: the hybrid DB plans in the Netherlands, the nonfinancial DC plan in Sweden, cash balance plans in the United States, Canada and Japan, and the Riester plans in Germany. Hoevenaars and Ponds[7] value intergenerational transfers in collective pension plans. The pension fund is rewritten in generational accounts, and the value-based approach is applied to deal with uncertainty. Three types of policy changes are evaluated: pension plan design in funded collective scheme, investment policy and the setting of the contribution rate. The funding ratio, the contribution rate, and the indexation rate are employed to evaluate them. The combination of the hybrid plan, a 50-50 mix and the fair value approach in setting the contribution rate may be an acceptable midway position amongst the alternatives. Kocken[9] examines two kinds of valuation techniques for pension liabilities in risk-sharing pension plans; liability valuation techniques of state and local pension plans in the U.S.A. and those of the collective defined contribution pension plans in the Netherlands. The two case studies show that arbitrage-free valuation is key to sustainable pension plan design. Kortleve[10] describes a new Dutch pension contract generically labeled defined ambition (DA) plans. The primary advantages of the transition from DB to DA are: (1) shocks are gradually absorbed, and pensions become more stable, (2) plans and their strategies for investment and liability management is focused on indexation ambition, and (3) pension contract prevents shifting underfunding forward, which is good for young participants, and benefit adjustments are gradually balanced, which is good for retirees. Kamiyama and Tanaka[17] explore the collective defined benefit pension fund in the U.K.

There are different descriptions in risk-sharing plans of how risk is shared by a sponsoring company, active participants, and retirees. The plan design in practice is discussed mainly in a qualitative manner, but there is little research about the plan designs discussed specifically and quantitatively. In this paper, we evaluate a risk-sharing pension plan using the quantitative approach.

At first, we sort out the concept of risk-sharing, and develop a plan design to share risks among a sponsoring company, active participants and retirees. More specifically, we calculate adjusted contributions born by the sponsoring company, adjusted actuarial liability for active participants, and benefits received by retirees. We propose a risk-sharing design, which involves a mechanism of sharing the deficiency and surplus in accordance with the funding ratio.

Here, we incorporate the following five parameters to control the level of risk-sharing:

1) minimum funding ratio which triggers the deficiency-sharing
2) maximum funding ratio which triggers the surplus-sharing
3) fraction of the deficiency/surplus the sponsoring company will bear/receive
4) annual amortization/decumulation ratio of the deficiency/surplus allocated to the sponsoring company
5) fraction of deficiency/surplus the retirees will transfer to active participants

It is supposed that we invest a plan asset with a given portfolio. We evaluate a risk-sharing pension plan with numerical experiments using the Monte Carlo simulation approach, and compare its outcomes with those of three conventional pension plans: DB, DC, and CB plan. We also conduct the sensitivity analysis of the five parameters to control the level of risk-sharing, and highlight the characteristics. We implement the backtest using the historical data, and compare four plans. The contributions and characteristics of our paper are in what follows.
(1) Proposal of risk-sharing plan and quantitative evaluation
We formulate the simulation model with parameters of risk-sharing. We run a long-term simulation over a hundred years. For the evaluation, we use the outcomes of the latter sixty years during which the distribution of the plans' financial situations becomes relatively stable, employing the expected value and conditional value at risk (conditional tail expectation) as the evaluation measures. We find the benefits and the contribution payments of the risk-sharing plan are at the level intermediate between the DB and DC plans because of the risk-sharing features.

(2) Evaluation of design parameters of risk-sharing plan through sensitivity analysis
We conduct the sensitivity analysis of the five parameters to control the level of risk-sharing, and suggest how those parameters affect the plan design.

(3) Comparison of pension plans through the backtest
We implement the backtest using the historical data, and examine the actual effect on four pension plans for twenty years in Japan.

This paper is organized as follows. In Section 2, we sort out the concept of risk-sharing in order to design the plan. We show the calculation of four plans to evaluate them quantitatively; DB, DC, CB plan, and risk-sharing plan which is called ‘RS plan’, hereafter. In addition, we explain how to calculate the evaluation measures. In Section 3, we conduct the numerical analysis using the Monte Carlo simulation approach. We compare the outcomes of the RS plan with those of conventional pension plans to clarify the characteristics of risk-sharing. We also conduct the sensitivity analysis of the five parameters above. In Section 4, we implement the backtest in order to examine the actual effect on the pension plan. We compare the four plans using the historical data. Section 5 provides our concluding remarks.

2. Models concerning Corporate Pension Plan
We explain specific models of four kinds of corporate pension plans; DC, DB, CB, and RS plans.

2.1. Overview: Plan Design

2.1.1. Basic Concept of Risk-sharing
We sort out the concept of risk-sharing to design the plan. We need to manage four kinds of risks shared by stakeholders; investment risk, longevity risk, interest rate risk, and inflation risk. Due to the historical background, many Japanese occupational pensions do not take longevity and inflation risks, and therefore we exclude them from shared risks. It is recognized that the interest rate risk is shared between a sponsoring company and participants/retirees through CB plan. We examine the effect of sharing interest rate risk by incorporating interest rate change in the plan design. Therefore, we design the structure where investment risk is only shared by each stakeholder based on CB plan, and examine the effect.

The stakeholders concerning risk-sharing are a sponsoring company, participants, and retirees. We assume we do not include nation (government), shareholders and so on. The utilities of three stakeholders are evaluated as follows.

- A sponsoring company: annual contributions
 A constant normal contribution is only paid by a sponsoring company in the DC plan. The contributions in the DB, CB and RS plans consist of the normal contribution and the amortization dependent on the funding situation. The amortization can be non-negative in the DB and CB plans, whereas it can be positive or negative in the RS plan.

- Active participants: annual accrued liabilities
 An accrued liability in the DC plan is an actuarial liability, and it varies with investment policy and performance. The amount of accrued liability is not adjusted in the specific DB plan. The benchmark of accrued liability in the RS plan is that of CB plan, and it is somehow adjusted so that the investment risk can be controlled as mentioned below.
Retirees: annual benefits

A certain amount of benefit is determined in the DB and CB plans, whereas the amount of benefit is dependent on the investment performance in the DC plan. It is somehow adjusted in the RS plan so that the investment risk can be controlled.

2.1.2. Assumption

The same amounts of salary are set in all plans. The amounts of salary of all participants are the same each other at the same point in time, and the real value is 1 for each participant. The salary increase rate over time is the same as the inflation rate. The benefit is received and the contribution is paid at the beginning of each year.

We need to match the size of all plans to compare them. At first we calculate the initial fund for paying benefit based on the DB plan so that each plan can pay a unit of defined benefit over payment periods from retirement age, and we set it as the unified target benefit level. However, the real value of assumed defined benefit at retirement age is one unit, and the nominal value of benefit paid after retirement is the same as the amount at retirement age. This reflects the standard design of occupational pensions in Japan.

The normal contributions need to be paid to accumulate funds for benefit at retirement age in all plans. The expected real yield of 10-year government bond is used as the discount rate for funding purpose and the contributions are constant on a real basis. We need to prepare the hypothetical account balances in CB and RS plans which consist of the pay credit and interest credit. The pay credit is the same as the normal contribution, and the interest credit is calculated using 10-year government bond yield. The fraction of deficiency/surplus is handled by adjusting the benefit, accrued liability and amortization. The plan asset is evaluated by the market value.

Next, we explain how to pay benefit. As mentioned above in the DB plan, the real benefit is 1 at retirement age, and the corresponding nominal defined benefit is fixed in the finite period. On the other hand, the fund at retirement is divided by beneficiary periods equally, and the adjusted amount of benefit by adding interest income is paid at each time. An interest rate used in the DC plan is an investment return after deduction of management fee. The interest rate used in the CB and RS plans is a government bond yield.

We suppose the determined fraction (ex. 20%) of the deficiency to the funding standard, or the actuarial liability minus the plan asset in the DB and CB plans is amortized at the beginning of period. The amortization of funding deficiency is reset annually. Even when the deficiency is recognized next year again, the same fraction of deficiency needs to be amortized. When the surplus is recognized, the amortization becomes zero, but the normal contribution is paid. However, the normal contribution is not paid when the funding ratio is over 150%, which is called ‘150% rule’ hereafter in this paper.

We evaluate the plan asset based on the market value. We adopt the constant rebalance strategies of asset allocation. We assume that the management fees deducted from the plan asset are 1.5% in the DC plan, and 0.5% in the DB, CB and RS plans in consideration of actual practice in Japan.

A pension benefit is paid annually, but not paid in the form of a lump-sum payment from a viewpoint of intergenerational risk adjustment. It should be noted that this assumption is not consistent with the actual practice of occupational pensions in Japan which is originated in the retirement allowance scheme, where a lump-sum payment is allowed instead of annual payment.

2.1.3. Method of risk-sharing

We build the structure of design and management of pension plan concerning risk-sharing based on the CB plan. The stakeholders concerning risk-sharing consist of a sponsoring company, active participants, and retirees. At first, we set two kinds of the funding ratios which trigger the risk-sharing; minimum funding ratio which triggers the deficiency-sharing, and maximum funding ratio

1 This situation of CB plan is different from the actual practice in Japan. However, this simplifies how to manage the hypothetical account balance using the benefit and interest credit at each time.
which triggers the surplus-sharing. The example of the former is 105%, and that of the latter is 130%. The deficiency is shared by stakeholders in accordance with the sharing rule when the funding ratio is under the minimum ratio, and the surplus is shared when the funding ratio is over the maximum ratio. We need to determine the fraction when the deficiency or surplus is shared. For example, we suppose the sponsoring company shares the fraction of the deficiency/surplus with the active participants and retirees, and amortize its portion annually. The participants and retirees share the rest in proportion with the actuarial liability, and we also build the structure of risk-sharing between participants and retirees. The benefit decreases/increases by the actuarial liability multiplied by the fraction of the deficiency/surplus shared to the retirees. On the other hand, the actuarial liabilities of participants decrease/increase by the fraction of the deficiency/surplus shared to the participants.

In the RS plan, we do not set the 150% rule applied in the DB and CB plans. The minimum and maximum funding ratios concerning risk-sharing and the parameters with respect to the rule sharing deficiency/surplus the stakeholders bear/receive are fixed through the simulation period. The deficiency from the minimum ratio and the surplus from the maximum ratio are calculated based on the actuarial liability of the CB plan. The benefit adjusted in the former year does not carry forward to the following year.

2.1.4. Setting

An age composition of the insured persons is time-homogeneous in the simulation period. For simplicity, the decrement rate and mortality rate are not considered. The number of persons of each age is assumed to be 1 from 20 to 79 years old. The working period is under 65 years old, and the payment period for pension benefit is over 65 years old. For convenience, we shift 20 years backward in the after-mentioned calculation, and the total period is from 0 to 59 years old.

It is supposed that the initial actuarial liability is set in the simulation, using the guaranteed rate under the static population. The initial actuarial liability of active participants in the DB plan is the same as that in the CB plan due to no consideration of early retirement, whereas that of retirees in the DB plan is slightly smaller than that in the CB plan due to the different pension payments. We assume the initial plan assets in the DB, CB and RS plans are the same as the actuarial liabilities, respectively. Therefore, the statuses of the DB and CB plans are fully funding, and the deficit/surplus of each plan is zero. On the other hand, the risk-sharing mechanism is immediately triggered in the RS plan if the minimum funding ratio is over 1. The initial actuarial liability in the DC plan is the same as that in the CB plan. The plan asset and its allocation to each individual account are the same as the actuarial liability in the DC plan.

2.1.5. Notations

A working period (funding period) is from 0 to $T_L - 1$ years old, and a benefit period is from T_L to $T_L + T_R - 1$ years old, where T_L is the number of years of working period, and T_R is the number of years of benefit period. We suppose the number of participants/retirees of x years old at time n is $l_{x,n} = 1$. The nominal salary of worker is 1 at time 1, and it is calculated as $\exp\left(\sum_{k=1}^{n-1} \Delta_i^k\right)$ at time n, where Δ_i^k is the inflation rate at time k. This means that the real salary of worker is 1 at any time. Actuarial liability at retirement divided by T_R periods equally is assigned to the original amount of benefit, and the amount adjusted by interest income is paid at each time. The fund is invested with constant rebalance strategy where the portfolio weight is fixed.

We evaluate the benefits and contributions using Monte Carlo simulation approach. The notations are as follows. We put ‘(s)’ to the notations to express the discretized distribution using multiple random samples. The bar denotes the expected value. The dash denotes the nominal value, while the notations without the dash denote the real values which are adjusted by the inflation rate.

Q : Number of samples

T_L : Number of years of working period
we employ the rule that the deficiency can be amortized, and participants and retirees cannot receive it at a time.

The fraction of funding deficiency/surplus which can be amortized is constant, denoted by b. This means that it is paid back to the sponsoring company, participants and retirees in accordance with the risk-sharing rule. We suppose the risk transfer to participants fairly by employing the fraction b which is the same as the fraction in bearing deficiency.

We incorporate the following five parameters to control the level of risk-sharing, where $F_n^{(s)}$ is a plan asset.

1. $T^{(1)}$: minimum funding ratio which triggers the deficiency-sharing ($T^{(1)} \geq 1$). This means that it is paid back to a sponsoring company, participants and retirees in accordance with the risk-sharing rule. We suppose the risk transfer to participants fairly by employing the fraction $T^{(2)}$ which is the same as the fraction in bearing deficiency.

2. $T^{(2)}$: maximum funding ratio which triggers the surplus-sharing ($T^{(2)} \geq T^{(1)}$). This means that it is paid back to a sponsoring company, participants and retirees in accordance with the risk-sharing rule. We suppose the risk transfer to participants fairly by employing the fraction $K^{(1)}$ which is the same as the fraction in bearing deficiency.

3. $K^{(1)}$: annual amortization/decumulation ratio of the deficit/surplus allocated to the sponsoring company ($0 \leq K^{(1)} \leq 1$). The negative amortization is paid to a sponsoring company who receives the surplus or the upside deviation from $T^{(2)}L_n^{(s)}$. This means that it is paid back to a sponsoring company, participants and retirees in accordance with the risk-sharing rule. We suppose the risk transfer to participants fairly by employing the fraction $K^{(2)}$ which is the same as the fraction in bearing deficiency.

The negative amortization is paid to a sponsoring company who receives the surplus or the upside deviation from $T^{(2)}L_n^{(s)}$. This means that it is paid back to a sponsoring company, participants and retirees in accordance with the risk-sharing rule. We suppose the risk transfer to participants fairly by employing the fraction $K^{(2)}$ which is the same as the fraction in bearing deficiency.

Pension financing of the RS plan is evaluated based on normal contributions, actuarial liabilities, benefits of the CB plan. The deficiency/surplus is adjusted annually, and therefore the fraction of funding deficiency/surplus which can be amortized is constant, denoted by $K^{(1)}$.

We decide the sharing method depending on $U_n^{(s)}$ and $S_n^{(s)}$ at time n. The hat ($\hat{\;\;}$) is put to show the actual amount adjusted in sharing risk. We calculate the normal contribution in period n as
We introduce a new notation $Z_n^{(s)}$ in order to express $S_n^{(s)}$ and $U_n^{(s)}$ simultaneously as follows.

$$Z_n^{(s)} = \begin{cases}
-S_n^{(s)} & (S_n^{(s)} > 0, \ U_n^{(s)} = 0; \ F_n^{(s)} > T^{(2)} L_n^{(s)}) \\
U_n^{(s)} & (U_n^{(s)} > 0, S_n^{(s)} = 0; \ F_n^{(s)} < T^{(1)} L_n^{(s)}) \\
0 & (S_n^{(s)} = U_n^{(s)} = 0, T^{(1)} L_n^{(s)} \leq F_n^{(s)} \leq T^{(2)} L_n^{(s)})
\end{cases}$$

$Z_n^{(s)}$ is the deficiency of the plan asset from the funding target $T^{(1)} L_n^{(s)}$ for $Z_n^{(s)} > 0$, while $Z_n^{(s)}$ is the surplus from the funding target $T^{(2)} L_n^{(s)}$ for $Z_n^{(s)} < 0$. The amount of deficiency is born, or that of surplus is received by stakeholders. The amount is paid/born when $Z_n^{(s)} > 0$, and received when $Z_n^{(s)} < 0$. The amount paid/received by a sponsoring company is $K^{(0)} Z_n^{(s)}$. The amount born/received by participants and retirees is $(1 - K^{(0)}) Z_n^{(s)}$, and it is separated as follows:

$$Z_n^{(s)} = (1 - K^{(0)}) \left(1 - \frac{K^{(2)} L_n^{(s)}}{L_n^{(s)}} \right) Z_n^{(s)} \text{ for participants}, \quad (2.1)$$
$$Z_n^{(s)} = (1 - K^{(0)}) \left(\frac{K^{(2)} L_n^{(s)}}{L_n^{(s)}} \right) Z_n^{(s)} \text{ for retirees}.$$ \quad (2.2)

where $L_n^{(s)}$ is the sum of the actuarial liabilities of retirees at period n. The sponsoring company pays/receives the amortization as,

$$C_n^{(s)} = K^{(0)} K^{(1)} Z_n^{(s)}. \quad (2.3)$$

The contributions of the RS plan are dependent on the funding ratio, and calculated as,

$$C_n^{(s)} = \begin{cases}
T_L \cdot p^1 + \left(T^{(1)} L_n^{(s)} - F_n^{(s)} \right) K^{(0)} K^{(1)} & (F_n^{(s)} > T^{(1)} L_n^{(s)}) \\
T_L \cdot p^1 & (T^{(1)} L_n^{(s)} \leq F_n^{(s)} < T^{(2)} L_n^{(s)}) \\
T_L \cdot p^1 - \left(F_n^{(s)} - T^{(2)} L_n^{(s)} \right) K^{(0)} K^{(1)} & (F_n^{(s)} \geq T^{(2)} L_n^{(s)})
\end{cases} \quad (2.4)$$

The relationship is shown in Figure 1.

![Figure 1: The relationship between contributions and funding ratio(RS plan)](image)

The actual actuarial liability and benefit are calculated for each year as,

$$\tilde{L}_n^{(s)} = \frac{1 - Z_n^{(s)}}{L_n^{(s)}} L_n^{(s)} = L_n^{(s)} - Z_n^{(s)} \quad (2.5)$$
$$\tilde{B}_n^{(s)} = \frac{1 - Z_n^{(s)}}{L_n^{(s)}} B_n^{(s)} \quad (2.6)$$
where
\[1 - \frac{Z_n^{(s)}}{L_n^{(s)}} = 1 - (1 - K^{(0)}) K^{(2)} \times \frac{Z_n^{(s)}}{L_n^{(s)}} = \begin{cases} 1 - (1 - K^{(0)}) K^{(2)} \cdot \frac{T^{(1)} - F_n^{(s)}}{L_n^{(s)}} & (F_n^{(s)} < T^{(1)} L_n^{(s)}) \\ 1 & (T^{(1)} L_n^{(s)} \leq F_n^{(s)} \leq T^{(2)} L_n^{(s)}) \\ 1 + (1 - K^{(0)}) K^{(2)} \cdot \left(\frac{F_n^{(s)}}{L_n^{(s)}} - T^{(2)} \right) & (F_n^{(s)} > T^{(2)} L_n^{(s)}) \end{cases} \] (2.7)

The actual actuarial liability is calculated by adjusting the amounts to the actuarial liability of CB plan which are paid/received by a sponsoring company, participants, and retirees. The actual benefits are adjusted as well. The adjusted coefficient calculating the actual actuarial liability and benefit for the RS plan is shown in Figure 2.

The plan asset is calculated as follows.
\[F_1^{(s)} = L_1^{(s)} \]
\[F_n^{(s)} = \left(F_{n-1}^{(s)} + C_{n-1}^{(s)} - \hat{B}_{n-1}^{(s)} \right) \exp \left(r_{M,n-1}^{(s)} - m \right), \quad (n = 2, \ldots, N) \] (2.8)
(2.9)

We can express the adjusted fraction of amortization for a sponsoring company and benefit to funding deficiency/surplus for retirees by separating the paid/received fraction for a sponsoring company, participants and retirees as in Table 1.

<table>
<thead>
<tr>
<th>sponsoring company</th>
<th>participants</th>
<th>retirees</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^{(0)})</td>
<td>((1 - K^{(0)}) \times)</td>
<td>((1 - K^{(0)}) K^{(2)} \left(\frac{L_n^{(s)}}{L_{n-2}^{(s)}} \right))</td>
</tr>
<tr>
<td>(K^{(0)} K^{(1)})</td>
<td>(K^{(0)} \left(1 - K^{(1)} \right))</td>
<td>(\left(1 - K^{(0)} \right) K^{(2)} \left(\frac{L_n^{(s)} - B_n^{(s)}}{L_n^{(s)}} \right))</td>
</tr>
<tr>
<td>amortization</td>
<td>(1 - \frac{K^{(2)} L_n^{(s)}}{L_{n-1}^{(s)}})</td>
<td>(\left(1 - K^{(0)} \right) K^{(2)} \left(\frac{B_n^{(s)}}{L_n^{(s)}} \right))</td>
</tr>
<tr>
<td>(\hat{B}_n^{(s)})</td>
<td>(\left(\frac{Z_n^{(s)}}{L_n^{(s)}} \right) B_n^{(s)} = (1 - K^{(0)}) K^{(2)} \left(\frac{B_n^{(s)}}{L_n^{(s)}} \right) Z_n^{(s)}) (refer to Equations (2.2) and (2.6))</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Adjusted coefficient calculating the actual actuarial liability and benefit for the RS plan

2.3. Evaluation of utility

2.3.1. Methodology

We evaluate the utilities based on the following condition.

- We use \(N - N' \) years in the latter period to evaluate the utility under the steady-state condition, where \(N \)-year period is the simulation period and the former \(N' \)-year period is exempted. This is because the distributions in the former period are dependent on the initial deterministic value.

We set \(N = 100 \) and \(N' = 40 \) in the numerical analysis of Section 3.
A sponsoring company, participants, and retirees share investment risk. Participants and retirees evaluate pension plans using the mean and CVaR of benefits. A sponsoring company evaluates them using those of contribution which consists of the normal contribution and amortization.

We consider that it is more important to evaluate time-series state variability on each path than variability of states at specific time. It is better for the benefits not to fluctuate on the downside, and the larger expected benefit is better. On the other hand, it is better for the contributions not to fluctuate on the upside, and the smaller expected contribution is better.

2.3.2. Evaluation measures

At first, we define a random variable at period n as \tilde{x} which shows the amount of benefit or contribution. We define a random variable \tilde{u}_1 which shows the time-series mean and \tilde{u}_2 which shows the time-series CVaR using the above-mentioned random variable \tilde{x} as follows.

- Time-series mean:
 $$\tilde{u}_1 = \frac{1}{N - N'} \sum_{n=N'+1}^N \tilde{x}_n,$$

- Time-series CVaR:
 $$\tilde{u}_2 = \text{ts-CVaR}(\beta) = (1 - \beta) \frac{1}{N - N'} \sum_{n=N'+1}^N \mathbf{1}_{\{\tilde{x}_n < \text{ts-VaR}_x(\beta)\}} \tilde{x}_n,$$

where \tilde{x}_n is a random variable which is better for a larger value, and we define $\text{ts-VaR}_x(\beta) = \max \{X \mid \Pr(X \leq \tilde{x}_n) \leq 1 - \beta\}$. We adopt the mean of \tilde{u}_1 and CVaR of \tilde{u}_2 as evaluation measures. We can show the mean and CVaR as in Figure 3. The larger mean and CVaR of the benefit are better for retirees, whereas the smaller mean and CVaR of the contribution are better for a sponsoring company.

![Figure 3: Evaluation measures of benefit and contribution](image-url)

The graphs on the top of Figure 3 are time-series variation, and we have Q graphs in the Monte Carlo simulation. The middle graphs show the mean and the bottom graphs show the CVaR. The
CVaR of benefit is located in the downside of the distribution, and the CVaR of contribution is located in the upside.

3. Numerical Analysis
We examine the risk-sharing plan by the numerical analysis using the Monte Carlo simulation approach. We compare the outcomes of the risk-sharing plan with those of three pension plans; DC, DB and CB plans. We also conduct the sensitivity analysis of the five parameters of risk-sharing plan, and highlight the characteristics of the risk-sharing functions through various simulation analyses.

3.1. Setting
The parameters are as follows.
- Number of years of working period is \(T_L = 45 \).
- Number of years of payment period for pension benefit is \(T_R = 15 \).
- Number of years of simulation period is \(N = 100 \).
- Number of years of exemption period is \(N' = 40 \).
- Management fee of DC plan is \(m = 150 \text{bp} \) (1.5%), and that of other plans is \(m = 50 \text{bp} \) (0.5%).
- We generate random samples of the nominal rate of return of five assets (domestic stock and bond, foreign stock and bond, and cash), long-term bond yield, and inflation rate.
- We show the expected rate of return, standard deviation, and correlation in Table 2. Except the expected rate of return of domestic bond and 10-year government bond yield, those are parameters used in order to derive the new policy asset mix for the third medium-term plan published by Government Pension Investment Fund (GPIF)[6]. We use the wage growth rate as the inflation rate. We assume the expected rate of return of 10-year government bond yield is the same as that of domestic bond, and the correlations between 10-year government bond yield and other assets are the same as those between short-term asset and other assets. We assume that the coefficient of variation is the same as that of short-term asset, and therefore the standard deviation of 10-year government bond yield is set to 1.5%\((\approx 3.4 \times 0.5/1.1)\).

Table 2: Expected return, standard deviation and correlation

<table>
<thead>
<tr>
<th></th>
<th>DS</th>
<th>DB</th>
<th>FS</th>
<th>FB</th>
<th>SA</th>
<th>IR</th>
<th>10Y-GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected return</td>
<td>6.0%</td>
<td>3.4%</td>
<td>6.4%</td>
<td>3.7%</td>
<td>1.1%</td>
<td>2.8%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>25.1%</td>
<td>4.7%</td>
<td>27.3%</td>
<td>12.6%</td>
<td>0.5%</td>
<td>1.9%</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DS</th>
<th>DB</th>
<th>FS</th>
<th>FB</th>
<th>SA</th>
<th>IR</th>
<th>10Y-GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic stock (DS)</td>
<td>1.00</td>
<td>-0.16</td>
<td>0.64</td>
<td>0.04</td>
<td>-0.10</td>
<td>0.12</td>
<td>-0.10</td>
</tr>
<tr>
<td>Domestic bond (DB)</td>
<td>-0.16</td>
<td>1.00</td>
<td>0.09</td>
<td>0.25</td>
<td>0.12</td>
<td>0.18</td>
<td>0.12</td>
</tr>
<tr>
<td>Foreign stock (FS)</td>
<td>0.64</td>
<td>0.09</td>
<td>1.00</td>
<td>0.57</td>
<td>-0.14</td>
<td>0.10</td>
<td>-0.14</td>
</tr>
<tr>
<td>Foreign bond (FB)</td>
<td>0.04</td>
<td>0.25</td>
<td>0.57</td>
<td>1.00</td>
<td>-0.15</td>
<td>0.07</td>
<td>-0.15</td>
</tr>
<tr>
<td>Short-term asset (SA)</td>
<td>-0.10</td>
<td>0.12</td>
<td>-0.14</td>
<td>-0.15</td>
<td>1.00</td>
<td>0.35</td>
<td>1.00</td>
</tr>
<tr>
<td>Inflation rate (IR)</td>
<td>0.12</td>
<td>0.18</td>
<td>0.10</td>
<td>0.07</td>
<td>0.35</td>
<td>1.00</td>
<td>0.35</td>
</tr>
<tr>
<td>Government bond (10Y-GB)</td>
<td>-0.10</td>
<td>0.12</td>
<td>-0.14</td>
<td>-0.15</td>
<td>1.00</td>
<td>0.35</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- The time-series correlations of assets are zero. The random samples are generated based on the parameters of normal distribution in Table 2. The number of scenarios is 10,000 over a hundred years. \((Q = 10,000)\)
- Additional base parameters of risk-sharing plan are \(T^{(1)} = 1.05, \ T^{(2)} = 1.3, \ K^{(0)} = 0.5, \ K^{(1)} = 0.2, \) and \(K^{(2)} = 0.5. \)
- Additional base parameter of DB and CB plans is \(K^{(1)} = 0.2. \)
• We examine the combination of three kinds of expected rates of return (Return (A), (B), and (C)) and two kinds of portfolios (Portfolio [a] and [b]). For example, we call the combination of Return (A) and Portfolio [a] ‘Case Aa’.

Three kinds of expected rates of return for sensitivity analysis

<table>
<thead>
<tr>
<th></th>
<th>DS</th>
<th>DB</th>
<th>FS</th>
<th>FB</th>
<th>SA</th>
<th>IR</th>
<th>10Y-GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return (A)</td>
<td>6.0%</td>
<td>3.4%</td>
<td>6.4%</td>
<td>3.7%</td>
<td>1.1%</td>
<td>2.8%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Return (B)</td>
<td>3.0%</td>
<td>1.7%</td>
<td>3.2%</td>
<td>1.85%</td>
<td>0.55%</td>
<td>1.4%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Return (C)</td>
<td>0.0%</td>
<td>3.4%</td>
<td>0.0%</td>
<td>3.7%</td>
<td>1.1%</td>
<td>2.8%</td>
<td>3.4%</td>
</tr>
</tbody>
</table>

※ Return (A): Table 2, Return (B): 0.5 × Return (A), Return (C): 0% expected rate of return of stocks in Return (A)

Two kinds of portfolios for sensitivity analysis

<table>
<thead>
<tr>
<th></th>
<th>DS</th>
<th>DB</th>
<th>FS</th>
<th>FB</th>
<th>Stock:Bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolio [a]</td>
<td>25%</td>
<td>35%</td>
<td>25%</td>
<td>15%</td>
<td>5:5</td>
</tr>
<tr>
<td>Portfolio [b]</td>
<td>5%</td>
<td>55%</td>
<td>5%</td>
<td>35%</td>
<td>1:9</td>
</tr>
</tbody>
</table>

Expected real rate of return and standard deviation

<table>
<thead>
<tr>
<th></th>
<th>Expected real rate of return</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return (A)</td>
<td>Return (B)</td>
<td>Return (C)</td>
</tr>
<tr>
<td>Portfolio [a]</td>
<td>2.045%</td>
<td>1.0225%</td>
</tr>
<tr>
<td>Portfolio [b]</td>
<td>0.985%</td>
<td>0.4925%</td>
</tr>
</tbody>
</table>

3.2. Base analysis

It is assumed that four plans have almost the same initial actuarial liabilities for comparison. We observe the distributions of actuarial liabilities for a hundred years. Though we omit the graphs due to space limitation, we find they are dependent on the initial value in the early periods, but they are gradually close to being time-homogeneous as time passes.

We examine the results of Case Aa as a base case. We show the seven kinds of percentiles (1%, 5%, 25%, 50%, 75%, 95%, 99%) of the distributions of benefit and contribution in Figures 4 and 5.

![Figure 4: Benefit (Case Aa)](image)
At first, we examine the characteristic of the distribution of benefit in Figure 4. We find the variability of the DB plan is smaller than those of other plans. The reason is that the benefit of DB plan is affected by an inflation rate, but the amount of benefit is fixed to 1 at retirement, and the variability of the sum of benefits becomes small. The ascending order of the variabilities after a hundred years is as follows: DB, CB, RS, and DC plans. The variability of the benefit of the DC plan is larger than that of the CB plan because the standard deviation of the rate of return of the portfolio used calculating the benefit of the DC plan is larger than that of the government bond yield used calculating the benefit of the CB plan. The variability of benefit of DC plan is larger than that of the RS plan because the volatility of the rate of return of the portfolio is larger than the change of benefit based on the funding ratio. The variability of the benefit of the RS plan is larger than that of the CB plan because the benefit of the RS plan is basically the same as that of the CB plan, but is dependent on the adjustment determined by the funding ratio.

Next, we examine the characteristics of the distribution of contribution in Figure 5. The contribution of the DC plan is constant, and therefore we discuss other three plans. The shapes of distributions of amortizations of DB and CB plans are similar because they are dependent on the funding ratio. The contributions of the DB and CB plans do not become negative, but those of the RS plan become negative when the funding ratio is larger than the threshold, and it is possible to decrease cost of a sponsoring company. The ascending order of the variabilities of distributions except the DC plan is RS, CB, and DB plans, while that of the 99th percentile is CB, DB, and RS plans. The sensitivity of the contribution to the funding ratio in the DB and CB plans is 0.2 times actuarial liability when the funding ratio is less than 1. When the funding ratio is larger than 1.5, the contribution is equal to zero. Meanwhile, as shown in Figure 1, the sensitivities of the contribution to the funding ratio in the RS plan is 0.1 times actuarial liability when the funding ratio is less than 1.05, and −0.1 times actuarial liability when the funding ratio is larger than 1.3, respectively. The contributions of the RS plan are not likely to become larger than those of the DB and CB plans because the sensitivity of the RS plan is smaller when the funding ratio is less than 1.5.

The percentiles of benefit of the RS plan are larger than those of the CB plan after a hundred years. This means that the benefit of the RS plan stochastically increases more than those of the CB plan.

\[C_n^{(s)} = 10.379 \]
\[(C_n^{1(s)} = 10.379, C_n^{2(s)} = 0) \]
than the lower threshold. Meanwhile, they are likely to become smaller than those of the DB and CB plans when the funding ratio is more than the upper threshold. However, we note that we cannot compare them exactly because of different thresholds.

Based on the results shown in Figures 4 and 5, the distributions of benefits and contributions become stable when about forty years pass, and we determine that the exemption period is forty years \((N' = 40)\), and evaluate the means and CVaRs. We show the means and CVaRs of benefits and contributions of four plans for the six cases in Figure 6. The six cases are the combination of three kinds of expected return and two kinds of portfolios.

The benefits of the DB and CB plans on the upper graphs are the same as those on the lower graphs because they are independent of portfolios\(^5\). The contribution of the DC plan is deterministic, and therefore we apply the value to the mean and CVaR.

The benefit of the RS plan and the contributions of the DB, CB and RS plans are dependent on the funding ratio. When the portfolio return becomes large, the plan asset becomes large. Therefore the benefit becomes large and the contribution becomes small. We sort six cases in descending order of the expected rate of portfolio return, and we sort four plans in ascending order of the mean benefit and contribution in the respective case, and we show the relationship in Table 3. As the expected rate of return becomes small, the mean benefit of the DC plan becomes smaller, compared with other plans. This is because the DC plan is easily affected by the portfolio return. The relationship of \(DB < CB\) holds for all cases because the amounts of benefits in the CB plan are larger than those in the DB plan in the latter payment period, and therefore the total amounts in the CB plan are larger than those in the DB plan. The benefit of the RS plan is easily affected by the funding ratio, compared with the DB and CB plans, and it becomes small as the expected rate of return becomes small. The relationship of \(RS < DB < CB\) holds for the mean contributions. The mean contributions of the DC plan are the largest in the cases of Aa, Ba and Ab where the expected rates of return are relatively large, whereas those are the smallest in the cases of Bb, Cb and Ca where the expected rates of return are relatively small. The DC plan is relatively less advantageous under the better investment opportunity because the contribution of DC plan is deterministic, and those of other plans are dependent on the funding ratio. As above mentioned, the contribution of the RS plan becomes smaller than those of DB and CB plans.

\(^5\)The benefit of the DB plan is dependent on the inflation rate and government bond yield, and the benefit of the CB plan is dependent on the government bond yield.
Table 3: Relationship of mean benefits and mean contributions

<table>
<thead>
<tr>
<th>case</th>
<th>expected return</th>
<th>mean benefit</th>
<th>mean contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aa</td>
<td>2.0450%</td>
<td>DB < CB < RS < DC</td>
<td>RS < DB < CB < DC</td>
</tr>
<tr>
<td>Ba</td>
<td>1.0225%</td>
<td>DB < CB < DC < RS</td>
<td>RS < DB < CB < DC</td>
</tr>
<tr>
<td>Ab</td>
<td>0.9850%</td>
<td>DC < DB < CB < RS</td>
<td>DC < RS < DB < CB</td>
</tr>
<tr>
<td>Bb</td>
<td>0.4925%</td>
<td>DC < DB < RS < CB</td>
<td>DC < RS < DB < CB</td>
</tr>
<tr>
<td>Cb</td>
<td>0.3650%</td>
<td>DC < RS < DB < CB</td>
<td>DC < RS < DB < CB</td>
</tr>
<tr>
<td>Ca</td>
<td>-1.0550%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We examine the relationship of CVaRs among the four plans for the six cases. The CVaR of benefit of the RS plan is almost the same as that of the CB plan regardless of the expected rate of return, however the relationship of DC < (RS or CB) < DB holds. The relationship of DC < RS < DB < CB holds for the contributions. The reason is as follows. The CVaR of benefit is the smallest because the downside risk of the DC plan asset of is the largest. The benefit of the DB plan is the most stable, and therefore the downside risk is the smallest or the CVaR is the largest. Those of the RS and CB plans are in between. On the other hand, the CVaR of contribution of the DC plan is the smallest because of the deterministic contribution. The reason that the relationship of RS < DB < CB for the CVaRs of contributions holds is the same as the reason for the mean contribution.

3.3. Sensitivity analysis for the parameters of RS plan

We conduct the sensitivity analysis for the parameters of the RS plan. The values of parameters are as follows.

- Minimum funding ratio which triggers the deficiency-sharing: \(T^{(1)} = 1, 1.05, 1.1, 1.15, 1.2 \)
- Maximum funding ratio which triggers the surplus-sharing: \(T^{(2)} = 1.2, 1.3, 1.4, 1.5, 1.6 \)
- Fraction of the deficiency/surplus a sponsoring company will bear/receive: \(K^{(0)} = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1 \)
- Annual amortization/decumulation ratio of the deficiency/surplus allocated to a sponsoring company: \(K^{(1)} = 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6 \)
- Fraction of deficiency/surplus the retirees will transfer to active participants: \(K^{(2)} = 0, 0.25, 0.5, 0.75, 1 \)

We show the means and CVaRs for the five parameters in Case Aa in Figure 7.

The parameters \(T^{(1)} \) and \(T^{(2)} \) are related with the funding ratio which triggers the deficiency/surplus-sharing. The deficiency is easy to be recognized for a large \(T^{(1)} \), and the surplus is not easy to be recognized for a large \(T^{(2)} \). Therefore, the amortization is large and the benefit is small for a large \(T^{(1)} \) or \(T^{(2)} \). As the result, the plan asset is large, but it leads to the small amortization and large benefit. This means that the direction of the effect on the amortization and benefit are dependent on the parameter values. However, the result shows that the sensitivity is small and the parameter values make little effect on them. According to the result of Figure 7, the CVaR of the contribution becomes large as \(T^{(1)} \) is large or the difference between \(T^{(1)} \) and \(T^{(2)} \) is small. However, \(T^{(1)} \) make little effect on the mean and CVaR of benefit and the mean contribution. \(T^{(2)} \) make little effect on the means and CVaRs of benefit and contribution. The CVaR of contribution becomes slightly small as \(T^{(2)} \) or the difference between \(T^{(1)} \) and \(T^{(2)} \) is large.

The parameters \(K^{(0)} \), \(K^{(1)} \), and \(K^{(2)} \) are related with the deficiency/surplus a sponsoring company, active participants, and retirees bear/receive. The CVaR of the contribution becomes large as \(K^{(0)} \) or \(K^{(1)} \) is large, or \(K^{(2)} \) is small. We examine the numerical results.

The lower left graph of Figure 7 shows that the means of both benefit and contribution become small when \(K^{(0)} \) is large. As shown in Figures 1 and 2, the benefit and the contribution are smaller.
for a larger \(K^{(0)} \) when the funding ratio is large. The reason is that these situations are likely to occur in Case Aa where the expected rate of return of the portfolio is large. Due to space limitation, we omit a result, but when \(K^{(0)} \) is large, the means of both benefit and contribution become large in Case Ca where the expected return is small. This shows that the effects on the means are dependent on the expected return of the portfolio.

The graph also shows that the CVaR of the benefit becomes slightly large, and the CVaR of contribution becomes large when \(K^{(0)} \) is large. The reason is that the sensitivities of amortization and benefit to the funding ratio are dependent on \(K^{(0)} \), and the CVaRs of benefit and contribution become large when \(K^{(0)} \) is large.

The parameter \(K^{(1)} \) makes the same effect on the contribution as the parameter \(K^{(0)} \) as shown in Figures 1. Therefore, the lower middle graph of Figure 7 are similar to the lower left graph for the contribution. On the other hand, \(K^{(1)} \) does not make an effect on the benefit. However, the result shows the CVaR of benefit is insensitive to \(K^{(1)} \), and the mean of benefit is smaller for a larger \(K^{(1)} \). The reason is as follows. When \(K^{(1)} \) is large, the contribution becomes small for the large plan asset. This leads to the result that the plan asset becomes small, and the mean of benefit becomes small\(^6\).

The parameter \(K^{(2)} \) makes the same effect on the benefit as \(1 - K^{(0)} \) as shown in Figures 2. The lower right graph of Figure 7 are opposite to the lower left graph for the benefit. Therefore, the mean of benefit is large and the CVaR is small when \(K^{(2)} \) is large. On the other hand, \(K^{(2)} \) does not make an effect on the contribution. However, the result shows the mean of contribution becomes larger and the CVaR becomes smaller for a larger \(K^{(2)} \). The reason is as follows. When \(K^{(2)} \) is large, the benefit becomes large for the large plan asset. This leads to the result that the plan asset becomes small, and the mean of contribution becomes large. On the other hand, the benefit becomes small for the small plan asset when \(K^{(2)} \) is large. This leads to the result that the plan asset becomes large, and the CVaR of contribution becomes small.

\(^6\) As well as \(K^{(0)} \), the mean of benefit is larger for a larger \(K^{(1)} \) in Case Ca.
3.4. Sensitivity analysis of management fee

A management fee of the DC plan is 150bp (basis point), and those of other plans are 50bp. The fee affects the benefit and contribution. We conduct the sensitivity analysis of the four kinds of fee: \(m = 0, 50, 100, 150 \)bp. We show the results in Figure 8.

The benefits of the DB and CB plans are not dependent on the fee, and the contribution of the DC plan is deterministic. Except those values, the benefits become small, and the contributions become large as the fee becomes large. The sensitivity of the mean to the fee is larger than that of the CVaR. We show the sensitivity coefficients per 100bp (1%) fee in Table 4 to compare those of four plans. In the RS plan, the contribution is more sensitive to the fee than the benefit, and the average sensitivity of contribution is about eleven to twelve times as large as that of benefit.

![Figure 8: Sensitivity analysis of management fee for four plans](image)

Table 4: Sensitivity of the benefits and contributions to the management fee

<table>
<thead>
<tr>
<th>portfolio</th>
<th>benefit case (A) mean CVaR</th>
<th>contribution case (A) mean CVaR</th>
<th>benefit case (B) mean CVaR</th>
<th>contribution case (B) mean CVaR</th>
<th>benefit case (C) mean CVaR</th>
<th>contribution case (C) mean CVaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>-6.95 -0.85</td>
<td></td>
<td>-5.61 -0.73</td>
<td></td>
<td>-2.19 -0.33</td>
<td></td>
</tr>
<tr>
<td>[a]</td>
<td>DB</td>
<td>3.14 3.19</td>
<td>3.99 2.79</td>
<td></td>
<td>2.99 1.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CB</td>
<td>3.17 3.53</td>
<td>4.01 3.18</td>
<td></td>
<td>3.06 1.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS</td>
<td>-0.51 -0.22</td>
<td>-0.45 -0.22</td>
<td>5.21 1.79</td>
<td>-0.25 -0.15</td>
<td>2.78 1.12</td>
</tr>
<tr>
<td></td>
<td>[b]</td>
<td>DC</td>
<td>-3.71 -1.31</td>
<td></td>
<td>-3.72 -1.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DB</td>
<td>3.95 3.31</td>
<td></td>
<td>4.14 3.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CB</td>
<td>4.04 3.69</td>
<td></td>
<td>4.21 3.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS</td>
<td>-0.34 -0.23</td>
<td></td>
<td>-0.34 -0.23</td>
<td></td>
</tr>
</tbody>
</table>

Next, we compare the sensitivity of the RS plan to other plans. The mean benefit of the DC plan
is about ten times as sensitive as that of the RS plan, and the CVaR of the benefit is about five times. We find the DC plan is much sensitive to the fee. The CVaRs of contributions of the DB and CB plans are about twice as sensitive as that of RS plan. The sensitivity of the DB plan is slightly smaller than that of the CB plan.

4. Backtesting
We implement the backtest in order to examine the actual impact on the pension plans. We compare four plans using the historical data of twenty years.

4.1. Setting
The data and parameters for backtesting are as follows.

- Backtest period: From March 1995 to March 2015 (twenty years)
- Historical data
 - Domestic stock (DS): TOPIX (Tokyo Stock Price Index)
 - Domestic bond (DB): JPGBI (Citigroup Japan Government Bond Index)
 - Foreign stock (FS): S&P500 (Standard & Poor’s 500 Stock Index)
 - Foreign bond (FB): USGBI (Citigroup USA Government Bond Index)
 - Wage growth rates, which are calculated using monthly labor survey (Seasonally adjusted wage indices, total cash earnings, establishments with thirty employees or more)
 - 10-year government bond yield, which are available from a website of interest rate of government bond, Ministry of Finance
 - Dollar-yen exchange rate (center value of interbank spot rate)
 - Japanese yen interest rate: one-year Euroyen TIBOR
 - Dollar interest rate: one-year Eurodollar interest rate

Table 5: Statistics (local currency basis)

<table>
<thead>
<tr>
<th></th>
<th>DS</th>
<th>DB</th>
<th>FS</th>
<th>FB</th>
<th>IR wage growth rate</th>
<th>10Y-GB bond yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>TOPIX</td>
<td>JPGBI</td>
<td>S&P500</td>
<td>USGBI</td>
<td>wage growth rate</td>
<td>bond yield</td>
</tr>
<tr>
<td>mean</td>
<td>3.87%</td>
<td>2.73%</td>
<td>12.07%</td>
<td>8.01%</td>
<td>-0.36%</td>
<td>1.59%</td>
</tr>
<tr>
<td>st. dev.</td>
<td>25.71%</td>
<td>2.37%</td>
<td>25.73%</td>
<td>12.86%</td>
<td>1.72%</td>
<td>0.80%</td>
</tr>
</tbody>
</table>

- Parameters used in calculating initial actuarial liabilities
 - annual mean government bond yield from March 1990 to March 1994 (nominal: 5.52%, real: 2.94%)
 - annual mean wage growth rate from March 1990 to March 1994 (2.53%)
- Parameters for risk-sharing plan: $T^{(1)} = 1.05$, $T^{(2)} = 1.3$, $K^{(0)} = 0.5$, $K^{(1)} = 0.2$, $K^{(2)} = 0.5$ (which are the same as the parameters in Section 3.1.)
- The results are evaluated on a yen basis. Two kinds of foreign exchange hedging strategies are evaluated; no hedge and perfect hedge.
- Constant rebalance strategy with the following three kinds of weights (rebalance at the end of every March)

7The perfect hedge is implemented using the theoretical future price based on the difference of interest rates between Japanese yen and US dollar.
Management fees: 150bp for the DC plan, and 50bp for other plans (which are the same as the parameters in Section 3.1)

4.2. Results

We show the cumulative return in Figure 9 when we invest four assets using the constant rebalance strategy. The left graph shows the real cumulative return with no hedging, the middle graph shows them with perfect hedging, and the right graph shows the mean and standard deviation of the real rate of return. Portfolio [b] which bond weight is the largest has the lowest risk and return, whereas portfolio [c] which stock weight is the largest has the highest risk and return. We find we get the largest return actually by investing the high-risk portfolio. Moreover, no hedging is a riskier strategy than the perfect hedging, but the actual standard deviations of no hedging strategy are almost the same as those of the perfect hedging. However, the actual mean returns of no hedging strategy are larger than those of perfect hedging.

We observe the outcomes of benefits and contributions of four plans for twenty years. We show the combinations of three kinds of portfolios and two kinds of hedging strategies in Figure 10 and Figure 11.

At first, we examine the benefits in Figure 10. The benefits of the DB and CB plans in the six graphs are the same outcomes, respectively, because they are independent of the portfolios and hedging strategies. Specifically, the benefit of the DB plan is affected by the inflation rate, and the benefit of the CB plan is affected by the real government bond yield. The descending orders of the mean and standard deviation of cumulative return are portfolio [c], [a], [b], and no hedging, perfect hedging, respectively, as shown in the right-hand side of Figure 9. This is reflected to the benefits of the DC and RS plans. The benefits with no hedging are larger than those of perfect hedging, respectively. The variability of benefits is similar to the cumulative return in the backtest period, however the variability of the DC plan is larger than that of the RS plan. The benefits of the DB plan are stably increasing, whereas those of the CB plan are stably decreasing. As the result, the benefits of the DB plan are larger than those of the CB plan. The reason is as follows. The government bond yield is on the decrease in the backtest period, while the wage growth rate is increasing in the former part of backtest period, but decreasing in the latter part. The benefits of the CB plan are decreasing because of the decrease in the real government bond yield, but those of the DB plan are increasing because the effect of being discounted by the expected nominal government bond yield is larger than the effect of decreasing due to the inflation rate.
Next, we examine the contributions in Figure 11. The contribution of the DC plan is deterministic. The maximum contributions of other plans are the same values for three portfolios with no hedging strategy. The reason is that the surpluses are not below zero, and we do not need the amortizations for all portfolios. The contributions of the DB and CB plans are zero in almost years because the normal contributions are zero when the funding ratio is beyond 150%. The contributions of the RS plan become negative in many years because the amortizations are negative when the funding ratio is beyond 130%. We can check the reason by examining the funding ratio in Figure 12.
We examine the mean and CVaR diagrams of benefits and contributions derived using no hedging strategy in Figure 13. The benefit becomes better toward upper right side in the diagram, and the contribution becomes better toward lower left side. The benefits of the DB and CB plans are not dependent on portfolios.

The relationship of the mean benefit among four plans are DC > DB > RS > CB. The cumulative return is 2.5 to 3 times the initial value regardless of the portfolios, and therefore the market condition in the backtest period is favorable for the DC plan. The relationship of CVaRs of benefits is DC(b) > DB > DC(a) > RS > CB > DC(c), and it is DB > RS > CB except the DC plan as well as that of the mean. The CVaR of the DC plan differs depending on portfolios, and the CVaR becomes large as portfolio risk is low.

The relationship of mean contribution is RS < CB < DB < DC for each portfolio. The contribution of the DC plan which is deterministic is larger than those of other plans. Especially, the contribution of the RS plan is the smallest because it can be negative for the funding ratio beyond the threshold. On the other hand, the CVaRs of contributions are the same for four plans. The reason is that the surpluses are not below zero, and we do not need the amortizations as stated above. Therefore, the normal contribution is equal to the maximum contribution which becomes
95% CVaR for twenty samples.

Next, we examine the results derived using the perfect hedging strategy in Figure 14.

The relationship of mean benefits is DB > DC(a) > RS > CB > DC(b) > DC(c), the benefits of the DC plan differ depending on the portfolios. The cumulative return of perfect hedging is worse than that of no hedging, and therefore the market condition is not favorable for the DC plan, compared with no hedging. The relationship of mean benefits is DB > RS > CB except the DC plan. The relationship of CVaRs of benefits is DB > RS > CB > DC for the same reason as the mean.

The relationship of mean contributions is RS < CB < DC < DB for each portfolio. The ranking of DC and DB plans reverses whereas the relationship is DB < DC for no hedging strategy. The CVaRs of contributions differ depending on the portfolios. We find the fact that the CVaR of the DB plan is the largest, and that of the DC plan is the smallest for all portfolios.

The benefits and contributions of the RS plan can be improved more than those of CB plan which is the base of the RS plan in both strategies of no hedging and perfect hedging.

5. Conclusion
In this paper, we design the risk-sharing pension plan using the five parameters which control the level of risk sharing. We implement the Monte Carlo simulation for a long-term period, and evaluate the uncertainty of benefits and contributions. We can offer some suggestions about the parameters. Moreover, we compare the RS plan with the existing DC, DB, and CB plans, and we find the benefit and contribution of the RS plan are between the DB and DC plans. In the future research, we compare the risk-sharing plan proposed in this paper with the intermediate plan proposed in 1995.

8The amortization in 1995 is positive in the RS plan because of $T^{(1)} = 1.05$. The amortization in 1995 is an initial value, and therefore we remove it to evaluate the CVaR.
which consists of the weighted plan of the DB and DC plans. In addition, we need to formulate the optimization model, which solve the problem to find the optimal parameter values of controlling the risk-sharing.

Acknowledgment
This paper is based on the research of corporate pension plan in the Institute of Strategic Solutions for Pension Management.

References
Norio Hibiki
Department of Administration Engineering
Faculty of Science and Technology
Keio University
3-14-1 Hiyoshi, Kohoku-ku
Yokohama, 223-8522, Japan
E-mail: hibiki@ae.keio.ac.jp