A step forward with Kolmogorov

Kristian Buchardt
University of Copenhagen and PFA Pension
March 30, 2015

Abstract

We consider a doubly stochastic Markov chain, where the transition intensities are modelled as diffusion processes. Here we present a forward partial integro-differential equation for the transition probabilities. This is a generalisation of Kolmogorov’s forward differential equation. In this setup, we define forward transition rates, generalising the concept of forward rates, e.g. the forward mortality rate. These models are applicable in e.g. life insurance mathematics, which is treated in the paper. The results presented follow from the general forward partial integro-differential equation for stochastic processes, of which the Fokker-Planck differential equation and Kolmogorov’s forward differential equation are the two most known special cases. We end the paper by considering the semi-Markov case, which relates to our results.

Keywords: Kolmogorov’s differential equation; doubly stochastic Markov model; stochastic transition rate; forward transition rate; life insurance; semi-Markov

1 Introduction

We begin this paper by presenting a forward partial integro-differential equation for the transition probabilities of a general jump-diffusion, which is inspired by Chapter 3.4 in [6]. A forward partial differential equation exists for the case of a continuous diffusion, and this is known as the Fokker-Planck equation. For the case of a pure jump process, this is also known, and is called Kolmogorov’s forward differential equation or the master equation. The more general result presented here we refer to as Kolmogorov’s forward partial integro-differential equation, and this sets the basis for the rest of the results. We are interested in applying the result for a stochastic process $Z = (Z(t))_{t \geq 0}$ taking values
in a finite state space $\mathcal{J} = \{0, 1, \ldots, J\}$. A basic example is if \mathbf{Z} itself is a Markov chain. Then there exists deterministic transition rates for each transition between states in \mathcal{J}. This setup is widely used in e.g. life insurance to model the state of the policyholder, e.g. alive, disabled, dead etc. In this case, Kolmogorov’s forward differential equation is well known, and can be used to find the transition probabilities, that is, given we are in a state i at time t, what is the probability of being in a state j at a future time point s. The transition probabilities are essential for calculating expected cash flows in life insurance. For details about this setup in life insurance, see e.g. [9] or [14], and for cash flows, see [2].

A more general case is if we allow the transition rates to depend on some underlying diffusion process $\mathbf{X} = (X(t))_{t \geq 0}$. Then \mathbf{Z} is no longer Markov, but (\mathbf{Z}, \mathbf{X}) is a Markov chain, and we refer to \mathbf{Z} as a doubly stochastic Markov chain. A main result of this paper is that we present Kolmogorov’s forward differential equation for this setup, as a special case of the general equation. It is a partial integro-differential equation, and can be considered a generalisation of Kolmogorov’s forward differential equation. Various examples of this setup have been studied in the life insurance literature, see [11], [4], [1], and also in credit risk, see e.g. [10]. It is well known that a backward partial differential equation exists, but for calculating life insurance cash flows, a forward differential equation is more efficient in practice.

Another example of a stochastic process \mathbf{Z} on a finite state space is when \mathbf{Z} is a semi-Markov process. Let $\mathbf{U} = (U(t))_{t \geq 0}$ be the duration in the current state, then if (\mathbf{Z}, \mathbf{U}) is a Markov process, \mathbf{Z} is a semi-Markov process. In this case, the transition intensities may depend on the duration \mathbf{U}. It is already known that a version of Kolmogorov’s forward differential equation exists for this case, see e.g. [2] or [7]. In this paper, we show how Kolmogorov’s forward partial integro-differential equation specialises in the semi-Markov setup to Kolmogorov’s forward integro-differential equation.

For the doubly stochastic Markov chain we define so-called forward transition rates, and we show that these can be represented as a conditional expectation of the (stochastic) transition rates. With the forward transition rates, Kolmogorov’s classic forward differential equation holds, and can be used to calculate the transition probabilities of \mathbf{Z} directly. This generalises the concept of forward rates for doubly stochastic Markov chains, where the best known example is the forward mortality rate, treated in e.g. [12], [4], [3] and [5]. The concept also relates to the dependent forward rates from [1], and these relations are studied in the current paper. For more on forward rates, see [15] and references therein. In the special case where \mathbf{Z} is a Markov chain so the transition rates are deterministic, the forward transition rate simplifies to the transition rates. To the authors knowledge, a general definition for forward transition rates for doubly stochastic Markov chains has not been presented before.
The structure of the paper is as follows. In Section 2, we consider a jump-diffusion process and find a forward partial integro-differential equation for the transition probabilities, Kolmogorov’s forward partial integro-differential equation. In Section 3, we consider the case where Z is dependent on a continuous diffusion process X and present Kolmogorov’s forward partial integro-differential equation for this case. Following this, we define the forward transition rates in Section 4, and relate them to existing literature. In Section 5, we show how to apply the doubly stochastic setup and the forward transition rates in life insurance. Finally, in Section 6, we relate Kolmogorov’s forward partial integro-differential equation to the semi-Markov setup, and see that we obtain the same integro-differential equation as in [2].

2 The forward partial integro-differential equation

Let X be a d-dimensional stochastic jump-diffusion in a state space $X \subset \mathbb{R}^d$, defined on a probability space (Ω, \mathcal{F}, P). We assume that X is a solution to the stochastic differential equation,

$$dX(t) = \beta(t, X(t))dt + \sigma(t, X(t))dW(t) + dJ(t),$$

(2.1)

for all $t \in [0, T]$. Throughout the article, T is some finite time-horizon. Let $\beta : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$, $\beta \in C^{1,1}$ and $\sigma : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$, $\sigma \in C^{1,2}$, where $C^{n,m}$ is the set of functions that are n times continuously differentiable in the first argument, and m times continuously differentiable in the second argument. Let W be a d-dimensional standard Brownian motion, and J be a pure jump process. Define also $\rho(t, x) = \sigma(t, x)\sigma(t, x)^\top$.

The jump part of X is the pure jump process J. The jump intensity measure is denoted $\mu : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^+$. We assume it exists, that $\mu(\mathbb{R}^d; t, x)$ is bounded for all t, x, and that the compensated process

$$t \mapsto J(t) - \int_0^t \int (y - X(s-)) \mu(dy; s, X(s-)) ds$$

(2.2)

is a martingale. Thus, $\mu(dy; t, x)$ is the measure of the jump destinations of X, and not jump sizes. Here and in general, when we omit integration bounds we integrate over the whole domain of the integrand. We use the notation $f(x-) = \lim_{y \searrow x} f(y)$, and use τ_A as the counting measure on the set A.

The process X can be characterised by its infinitesimal generator A_t, which is given as,

$$A_t f(x) = \sum_i \beta_i(t, x) \frac{\partial}{\partial x_i} f(x) + \frac{1}{2} \sum_{i,j} \rho_{ij}(t, x) \frac{\partial^2}{\partial x_i \partial x_j} f(x) + \int (f(y) - f(x)) \mu(dy; t, x),$$
for suitable functions $f \in \mathcal{C}^2$. Last, we also define N as the process counting the number of jumps,

$$N(t) = \#\{s \in (0, t] \mid J(s-) \neq J(s)\}.$$

It follows that N has compensator $\int_0^t \mu(\mathbb{R}^d; s, X(s-))ds$.

The conditional distribution of X is denoted P, and for $t \geq t'$ and a Borel set $A \subset \mathbb{R}^d$ we write

$$P(X(t) \in A \mid X(t') = x') = P(t, A; t', x') = \int_A P(t, dx; t', x').$$

The transition probability can be described by a forward partial integro-differential equation (PIDE). This result sets the basis for this article.

Theorem 2.1. (Kolmogorov’s forward PIDE) Assume that

$$\int_0^t \beta_i(s, X(s))f(X(s)) dW(s)$$

is a martingale for all $f \in \mathcal{C}^1$ with compact support. Assume there exists a set $\tilde{X} \subset X$ such that $\frac{\partial}{\partial t} P(t, dx; t', x')$, $\frac{\partial}{\partial x_i} P(t, dx; t', x')$ and $\frac{\partial^2}{\partial x_i \partial x_j} P(t, dx; t', x')$ exist for all $i, j = 1, \ldots, d$, all $x \in \tilde{X}$ and $t \in (t', T]$. Then the transition probability P of X satisfies, for $t \in (t', T]$, the PIDE,

$$\frac{\partial}{\partial t} P(t, A; t', x') = - \sum_i \int_A \frac{\partial}{\partial x_i} \left(\beta_i(t, x) P(t, dx; t', x') \right)$$

$$+ \frac{1}{2} \sum_{i,j} \int_A \frac{\partial^2}{\partial x_i \partial x_j} \left(\rho_{ij}(t, x) P(t, dx; t', x') \right)$$

$$+ \int_A \int_{A^c} \left(\int_A \mu(dx; t, y) \right) P(t, dy; t', x')$$

$$- \int_A \left(\int_{A^c} \mu(dy; t, x) \right) P(t, dx; t', x'),$$

for any compact Borel set $A \subset \tilde{X}$.

The notation A^c is the complement of the set A.

Remark 2.2. The transition probability trivially satisfies the boundary condition

$$P(t', A; t', x) = 1_A(x).$$

\[\Diamond\]
This differential equation does not seem to have any agreed name in the literature. If X is a continuous diffusion process, it is called the Fokker-Planck equation, and if X is a pure jump process it is often called Kolmogorov’s forward differential equation, and also the master equation. Since we usually work with Kolmogorov’s forward differential equation, and consider this a generalisation, we refer to it as *Kolmogorov’s forward PIDE*. For more about Kolmogorov’s differential equations and applications in life insurance, see e.g. [14]. For more on the Fokker-Planck and the master equation, see e.g. [6]. The following proof is inspired by the calculations in [6].

Proof. Let $f \in C^2$, and assume that f has support on a compact set $A \subset \tilde{X}$. An application of Itô’s formula yields,

$$f(X(t)) - f(X(t')) = \int_{t'}^t \left\{ \sum_i \beta_i(s, X(s)) \frac{\partial f(X(s))}{\partial x_i} + \frac{1}{2} \sum_{i,j} \rho_{ij}(s, X(s)) \frac{\partial^2 f(X(s))}{\partial x_i \partial x_j} \right\} \, ds$$

$$+ \int_{t'}^t \left(f(y) - f(X(s-)) \right) \mu(dy; s, X(s-)) \, ds$$

$$+ \int_{t'}^t \sum_i \beta_i(s, X(s)) \frac{\partial f(X(s))}{\partial x_i} \, dW(s) + \tilde{J}(t) - \tilde{J}(t'),$$

where $\tilde{J}(t) = \int_0^t (f(X(s)) - f(X(s-))) \, dN(s) - \int_0^t (f(y) - f(X(s-))) \mu(dy; s, X(s-)) \, ds$. We know that $\tilde{J}(t)$ is a martingale. We also have,

$$\int_A f(x) P(t, dx; t', x') - f(x') = E \left[f(X(t)) - f(X(t')) \mid X(t') = x' \right].$$

By insertion of (2.4), and using that the last line of (2.4) is a martingale, we obtain

$$\int_A f(x) P(t, dx; t', x') = f(x')$$

$$= E \left[\int_{t'}^t \left\{ \sum_i \beta_i(s, X(s)) \frac{\partial f(X(s))}{\partial x_i} + \frac{1}{2} \sum_{i,j} \rho_{ij}(s, X(s)) \frac{\partial^2 f(X(s))}{\partial x_i \partial x_j} \right\} ds \right.$$

$$+ \left. \int_{t'}^t \int (f(y) - f(X(s-))) \mu(dy; s, X(s-)) ds \right| X(t') = x' \right]$$

$$= \int_{t'}^t \int_A \left\{ \sum_i \beta_i(s, x) \frac{\partial f(x)}{\partial x_i} + \frac{1}{2} \sum_{i,j} \rho_{ij}(s, x) \frac{\partial^2 f(x)}{\partial x_i \partial x_j} \right\} P(s, dx; t', x') ds$$

$$+ \int_{t'}^t \int (f(y) - f(x)) \mu(dy; s, x) P(s, dx; t', x') ds.$$
We differentiate with respect to \(t \), and then apply partial integration to the two first terms,

\[
\frac{\partial}{\partial t} \int_A f(x) P(t, dx; t', x') = \sum_i \int_A \beta_i(t, x) \frac{\partial f(x)}{\partial x_i} P(t, dx; t', x') \\
+ \frac{1}{2} \sum_{i,j} \int_A \rho_{ij}(t, x) \frac{\partial^2 f(x)}{\partial x_i \partial x_j} P(t, dx; t', x') \\
+ \int \int (f(y) - f(x)) \mu(dy; t, x) P(t, dx; t', x') \\
= - \sum_i \int_A f(x) \frac{\partial}{\partial x_i} (\beta_i(t, x) P(t, dx; t', x')) \\
+ \frac{1}{2} \sum_{i,j} \int_A f(x) \frac{\partial^2}{\partial x_i \partial x_j} (\rho_{ij}(t, x) P(t, dx; t', x')) \\
+ \int \int (f(y) - f(x)) \mu(dy; t, x) P(t, dx; t', x').
\]

The boundary terms from the partial integration vanishes due to the fact that \(f(x) = 0 \) and \(\frac{\partial}{\partial x_i} f(x) = 0 \) on the boundary of \(A \), since \(f \) is \(C^2 \).

Let \(f_n \in C^2 \) be a series of uniformly bounded functions with compact support in \(\tilde{X} \), such that \(f_n \to 1_A \) for \(n \to \infty \). This yields the result. \(\square \)

If \(\mu(\mathbb{R}^d; t, x) = 0 \) for all \(t, x \), the process \(X \) is continuous. In that case, (2.3) reduces to an integral version of the well-known Fokker-Planck equation.

\[
\frac{\partial}{\partial t} P(t, A; t', x') = - \sum_i \int_A \frac{\partial}{\partial x_i} (\beta_i(t, x) P(t, dx; t', x')) \\
+ \frac{1}{2} \sum_{i,j} \int_A \frac{\partial^2}{\partial x_i \partial x_j} (\rho_{ij}(t, x) P(t, dx; t', x')).
\]

In the opposite case, where \(\beta(t, x) = 0 \) and \(\sigma(t, x) = 0 \) for all \(t, x \), the process \(X \) is a pure jump process. In that case, (2.3) reduces to an integral version of Kolmogorov’s forward differential equation, also known as the master equation,

\[
\frac{\partial}{\partial t} P(t, A; t', x') = \int_A \left(\int_A \mu(dx; t, y) \right) P(t, dy; t', x') \\
- \int_A \left(\int_A \mu(dy; t, x) \right) P(t, dx; t', x'),
\]

Assuming that a density exists with respect to some measure, one can differentiate and obtain the Fokker-Planck respectively Kolmogorov’s forward differential equation.
In particular the jump part of (2.3) is easily interpreted. The positive term leads to an increasing probability, and it is the probability of being somewhere in the complement of A and making a jump inside A. The negative term leads to a decreasing probability, and it is the probability of being somewhere in A, and making a jump to the complement of A. Jumps solely inside A or A^c does not affect the probability.

3 The doubly stochastic Markov chain setup

In this section we consider the doubly stochastic Markov chain setup, which can be considered a special case of the stochastic process X from (2.1). We let a set of stochastic intensities be modelled as a continuous diffusion process. Conditional on these, we create a Markov chain with these intensities. For simplicity we restrict to the case of continuous intensities.

Let a finite state space $J = \{0, \ldots, J\}$ be given. For each $k, \ell \in J$, where $k \neq \ell$, we associate a transition rate $t \mapsto \mu_{k\ell}(t, X(t))$. Here, X is a d-dimensional diffusion process satisfying the stochastic differential equation
\[dX(t) = \beta(t, X(t))dt + \sigma(t, X(t))dW(t), \]
where W is a d-dimensional diffusion process and β and σ are as in Section 2. Thus, the transition intensities $\mu_{k\ell}$ are stochastic.

Define now the stochastic process Z on J, and assume it is càdlàg. Conditional on X, we let Z be a Markov chain, with transition rates $\mu_{k\ell}(t, X(t))$. Define the filtrations generated by X respectively Z as $\mathcal{F}_X(t) = \sigma(X(s)|s \leq t)$ and $\mathcal{F}_Z(t) = \sigma(Z(s)|s \leq t)$. Define also the larger filtration $\mathcal{F}(t) = \mathcal{F}_X(t) \vee \mathcal{F}_Z(t)$. Let $N_{k\ell}$ be a counting process that counts the number of jumps from state k to state ℓ,
\[N_{k\ell}(t) = \#\{s \leq t|Z(s-) = k, Z(s) = \ell\}. \quad (3.1) \]

The assumption that Z is a Markov chain with stochastic transition rates $\mu_{k\ell}(t, X(t))$ means, that conditional on X, the compensated process
\[N_{k\ell}(t) - \int_0^t 1_{(Z(s-) = k)}\mu_{k\ell}(s, X(s))ds \quad (3.2) \]
is a martingale. That is, it is a martingale with respect to the filtration $\mathcal{F}_X(T) \vee \mathcal{F}_Z(t)$. In particular, it is straightforward to verify that (3.2) is also a martingale unconditionally on X, that is, with respect to the filtration $\mathcal{F}(t)$.

We are interested in finding transition probabilities for the doubly stochastic Markov chain $Z(t)$,
\[p_{k\ell}(t'; x) = P(Z(t) = \ell | Z(t') = k, X(t') = x). \quad (3.3) \]
These are dependent on $X(t')$; we think of time t' as now, and thus $X(t')$ is known. We find this transition probability by first finding the transition probability for the combined process $(Z(t), X(t))$. Thus, let $P(t, k, A; t', k', x')$ denote the transition probability of $(Z(t), X(t))$ conditional on $(Z(t'), X(t')) = (k', x')$. Considering the $(d + 1)$-dimensional process $(Z(t), X(t))$ as a special case of (2.1), we obtain the following result.

Theorem 3.1. (Kolmogorov’s forward PIDE for the doubly stochastic setup) Assume that

$$
\int_0^t \beta_i(s, X(s))f(X(s)) \, dW(s)
$$

is a martingale for all $f \in C^1$ with compact support, and that $\frac{\partial}{\partial t}P(t, k, dx; t', k', x')$, $\frac{\partial}{\partial x_i}P(t, k, dx; t', k', x')$ and $\frac{\partial^2}{\partial x_i \partial x_j}P(t, k, dx; t', k', x')$ exist. Then the transition probability $P(t, k, A; t', k', x')$ for $k \in J$ and a compact Borel-set $A \subset \mathbb{R}^d$ satisfy the forward PIDE

$$
\frac{\partial}{\partial t}P(t, k, A; t', k', x') = -\sum_i \int_A \frac{\partial}{\partial x_i} (\beta_i(t, x)) P(t, k, dx; t', k', x')
$$

$$
+ \frac{1}{2} \sum_{i,j} \int_A \frac{\partial^2}{\partial x_i \partial x_j} (\rho_{ij}(t, x)) P(t, k, dx; t', k', x')
$$

$$
+ \sum_{\ell \neq k} \int_A \mu_{\ell k}(t, x) P(t, \ell, dx; t', k', x')
$$

$$
- \int_A \sum_{\ell \neq k} \mu_{k \ell}(t, x) P(t, k, dx; t', k', x'),
$$

subject to the boundary condition $P(t', k, A; t', k', x) = 1_{(k=k')}1_A(x)$.

Proof. We have the dynamics

$$
\frac{d}{dt}
\begin{bmatrix}
Z(t) \\
X(t)
\end{bmatrix} =

\begin{bmatrix}
0 & 0 \\
\beta(t, X(t)) & 0
\end{bmatrix}
\begin{bmatrix}
0 \\
\sigma(t, X(t))
\end{bmatrix}
\frac{d}{dt}
\begin{bmatrix}
\tilde{W}(t) \\
J(t)
\end{bmatrix},
$$

for $\tilde{W}(t) = (\tilde{W}(t), W(t))$, where $\tilde{W}(t)$ is an adapted standard Brownian motion. In particular, the jump measure $\tilde{\mu}(d(\ell, y); t, (k, x))$ of this process is,

$$
\tilde{\mu}(d(\ell, y); t, (k, x)) = \mu_{k \ell}(t, x) \cdot d \left(\tau_J \setminus \{k \} \otimes \tau_x \{y \} \right).
$$

Now the result follows from Theorem 2.1 applied to the process $(Z(t), X(t))$. \hfill \Box

Corollary 3.2. Assume Theorem 3.1 holds and that a density with respect to the Lebesgue measure exists,

$$
P(t, k, dx; t', k', x') = p(t, k, x; t', k', x') \, dx.
$$
Then the density satisfies, for \(t > t' \), the PDE

\[
\frac{\partial}{\partial t} p(t, k, x; t', k', x') = -\sum_{i=1}^{d} \frac{\partial}{\partial x_i} \left(\beta_k(t, x) p(t, k, x; t', k', x') \right) \\
+ \frac{1}{2} \sum_{i,j=1}^{d} \frac{\partial^2}{\partial x_i \partial x_j} \left(\rho_{ij}(t, x) p(t, k, x; t', k', x') \right) \\
+ \sum_{\ell \neq k} \mu_{k\ell}(t, x) p(t, \ell, x; t', k', x') \\
- \sum_{\ell \neq k} \mu_{k\ell}(t, k, x; t', k', x'),
\]

subject to the boundary condition \(p(t', k, x; t', k', x') = 1 \), \(k = k' \) \(x = x' \).

Assuming we have solved the PIDE (3.4) or the PDE (3.6), we have the transition probability for the process \((Z(t), X(t))\). If we are interested in the transition probabilities of \(Z(t)\) only, (3.3), we can integrate over the underlying state \(X(t)\),

\[
p_{k'k}(t; t', x') = P(t, k, \mathbb{R}^d; t', k', x') = \int p(t, k, x; t', k', x') dx.
\]

Corollary 3.2 is a generalisation of Kolmogorov’s forward differential equation. If the transition rates are deterministic, which without loss of generality can be characterised as \(X\) being constant, we have that \(\beta(t, x) = 0 \) and \(\sigma(t, x) = 0 \). In that case, (3.6) simplifies to Kolmogorov’s forward differential equation,

\[
\frac{\partial}{\partial t} p(t, k; t', k') = \sum_{\ell \in J \setminus \{k\}} \left(\mu_{\ell k}(t) p(t, \ell; t', k') - \mu_{k\ell}(t) p(t, k; t', k') \right)
\]

Here we removed \(x, y\) from the notation in \(p(s, j, y; t, i, x)\) and \(\mu_{k\ell}(t, x)\).

3.1 Backward partial differential equation

It is well known that a backward PDE exists for the transition probability; since \(t \mapsto \mathbb{E} \left[1_{(Z(s)=k)} | F(t) \right] = \sum_{\ell} 1_{(Z(t)=\ell)} p_{k\ell}(s; t, X(t)) \),

is a martingale, we can apply Itô’s lemma and set the drift equal to zero. This yields a PDE in \(t, x, \ell\) for \(p_{k\ell}(s; t, x)\), together with the boundary conditions \(p_{k\ell}(s; s, x) = 1_{(\ell=k)}\).
Proposition 3.3. (Kolmogorov’s backward PDE) For $\ell \in \mathcal{J}$, the transition probabilities $p_{\ell k}(s; t, x)$ satisfy the backward PDE

$$
\frac{\partial}{\partial t} p_{\ell k}(s; t, x) = -\sum_{i=1}^{d} \beta_i(t, x) \frac{\partial}{\partial x_i} p_{\ell k}(s; t, x) - \frac{1}{2} \sum_{i,j=1}^{d} \rho_{ij}(t, x) \frac{\partial^2}{\partial x_i \partial x_j} p_{\ell k}(s; t, x)
$$

subject to the boundary condition $p_{\ell k}(s; s, x) = 1_{(\ell=\ell)}$.

If the transition intensities are deterministic, which can be modelled by setting $\beta(t, x) = 0$ and $\rho(t, x) = 0$, the first two terms of (3.8) disappear, and we are left with Kolmogorov’s well known backward differential equation.

With the results presented, we have two ways of calculating $p_{\ell k}(s; t, x)$. Either, we solve the backward PDE in Proposition 3.3, or we solve the forward PDE from Corollary 3.2 and integrate over the intensities as in (3.7). In Section 5 about life insurance cash flows, we see that we need to find $p_{\ell k}(s; t, x)$ for fixed ℓ, t, x and varying k, s. In that case, the forward PDE seems preferable, as we only need to solve it once. If we use the backward PDE, we need to solve it for every fixed pair of k, s.

4 Forward transition rates

In the doubly stochastic setup, one is often mainly interested in the transition probabilities of Z from (3.3),

$$
p_{k'k}(t; t', x') = \int p(t, k, x; t', k', x') \, dx.
$$

By the definition of so-called forward transition rates, we are able to present a differential equation for this transition probability directly. The differential equation is identical to Kolmogorov’s forward differential equation which is used when the transition rates are deterministic. We define the forward transition rate as the instantaneous probability of a transition from k to ℓ at time t. This is dependent on the state of (Z, X) at the present time t'.

Definition 4.1. The forward transition rate $f_{k\ell}(t; t')$ at time t' is defined as

$$
f_{k\ell}(t; t') = \lim_{h \to 0} \frac{1}{h} \mathbb{P} \left(Z(t+h) = \ell \mid Z(t) = k, (Z, X)(t') \right).
$$

10
Remark 4.2. The forward transition rate at time t' is $(Z,X)(t')$-measurable. We may condition on the exact values of $(Z,X)(t')$ and write

$$f_{k\ell}(t; t', k', x') = \lim_{h \searrow 0} \frac{1}{h} P \left(Z(t + h) = \ell | Z(t) = k, (Z,X)(t') = (k', x') \right).$$

Then $f_{k\ell}(t; t', Z(t'), X(t')) = f_{k\ell}(t, t')$.

The classic setup, where Z is itself Markov and independent of X, is a special case of the doubly stochastic setup considered here. In that case, by independence, we see that X disappears from the conditioning in Definition 4.1, and that $Z(t')$ disappears as well, due to the Markov property. This is exactly the definition of the transition rate in the classic setup, and Definition 4.1 is a generalisation of the transition rates to the doubly stochastic setup.

Assuming that the transition rates exist, we can represent the forward transition rates as an expectation of the transition rates.

Lemma 4.3. If the transition rates $\mu_{k\ell}(t, X(t))$ exist, then

$$f_{k\ell}(t; t', k', x') = E \left[\mu_{k\ell}(t, X(t)) | Z(t) = k, (Z,X)(t') = (k', x') \right].$$

Proof. From Definition 4.1 and Remark 4.2, we condition on X and interchange expectation and limits,

$$f_{k\ell}(t; t') = \lim_{h \searrow 0} \frac{1}{h} P \left(Z(t + h) = \ell | Z(t) = k, (Z,X)(t') \right)$$

$$= E \left[\lim_{h \searrow 0} \frac{1}{h} P \left(Z(t + h) = \ell | X, Z(t) = k, (Z,X)(t') \right) | Z(t) = k, (Z,X)(t') \right]$$

$$= E \left[\lim_{h \searrow 0} \frac{1}{h} P \left(Z(t + h) = \ell | X, Z(t) = k \right) P \left(Z(t) = k, (Z,X)(t') \right) \right]$$

$$= E \left[\mu_{k\ell}(t, X(t)) | Z(t) = k, (Z,X)(t') \right].$$

where we at third line used that conditional on X, Z is a Markov chain, and at the fourth line we used the definition of the transition rate of a Markov chain.

The transition rates $\mu_{k\ell}(t, X(t))$ determine the behaviour of $Z(t)$ in the next infinitesimal timespan, and this is dependent on $X(t)$. If we at present time t' are interested in the behaviour of $Z(t)$ at the future time point t, we can average out the dependence on $X(t)$, and then we obtain the forward transition rate $f_{k\ell}(t; t')$. These forward rates determine the expected behaviour of $Z(t)$ conditional on the present state at time t', and with this we can write Kolmogorov’s forward differential equation on the usual form, with the forward transition rates in place of the transition rates.
Theorem 4.4. Assume the conditions of Corollary 3.2 are satisfied, and Assumption 4.5 below holds. The transition probabilities \(p_{k'k}(t; t', x') \) for \(Z \) satisfy the differential equation

\[
\frac{d}{dt} p_{k'k}(t; t', x') = \sum_{\ell \neq k} f_{\ell k}(t; t', k', x') p_{k'\ell}(t; t', x') - \sum_{\ell \neq k} f_{k\ell}(t; t', k', x') p_{k'k}(t; t', x'),
\]

(4.1)

with boundary conditions \(p_{k'k}(t'; t', x') = 1_{\{k' = k\}} \).

Assumption 4.5. For all \(i, j \) and \(k \), assume that \(E \{ \| X_i(t) \| (Z, X)(t' = (k', x')) < \infty \), and that \(\beta_i(t, x) \in \mathcal{O}(x_i) \), \(\rho_{ij}(t, x) \in \mathcal{O}(x_i) \), \(\frac{\partial}{\partial x_i} \rho_{ij}(t, x) \in \mathcal{O}(x_i) \), for \(x_i \to \pm \infty \). Furthermore, assume there exists \(K > 0 \), such that for \(x_i \leq -K \) and \(x_i \geq K \), \(p(t, k, x; t', k', x') \) is convex in \(x_i \) and

\[
x_i \mapsto \frac{\partial}{\partial x_i} p(t, k, x; t', k', x') \in \mathcal{O} \left(x_i^{-1} \right),
\]

for \(x_i \to \pm \infty \).

Some brief comments on Assumption 4.5: The three asymptotic assumptions on \(\beta(t, x) \), \(\rho(t, x) \) and \(\frac{\partial}{\partial x_i} \rho(t, x) \) can with a few calculations be seen to follow from the usual Lipschitz conditions on \(\beta(t, x) \) and \(\sigma(t, x) \), that ensure the existence of the stochastic process \(X \). We further assume that the density is convex for large \(|x_i| \), which is satisfied for all the usual distributions. The last assumption, that \(\frac{\partial}{\partial x_i} p(t, k, x; t', 0, x') \in \mathcal{O} \left(x_i^{-1} \right) \), does not restrict us in practice; see for example from the proof below that we without this assumption obtain that

\[
\int_K^\infty x_i^2 \frac{\partial}{\partial x_i} p(t, k, x; t', 0, x') \, dx_i < \infty.
\]

Thus, if e.g. \(\frac{\partial}{\partial x_i} p(t, k, x; t', 0, x') = x_i^{-1} \), the integral would be far from finite, so intuitively, \(\frac{\partial}{\partial x_i} p(t, k, x; t', 0, x') \) is small compared to \(x_i^{-1} \); the assumption simply safeguards us from erratic behaviour.

Proof. (Proof of Theorem 4.4) Integrate over \(\mathbb{R}^d \) in (3.6) to obtain

\[
\frac{\partial}{\partial t} p_{k'k}(t; t', x') = -\sum_i \int \frac{\partial}{\partial x_i} \left(\beta_i(t, x)p(t, k, x; t', k', x') \right) \, dx \tag{4.2}
\]

\[
+ \frac{1}{2} \sum_{ij} \int \frac{\partial^2}{\partial x_i \partial x_j} \left(\rho_{ij}(t, x)p(t, k, x; t', k', x') \right) \, dx \tag{4.3}
\]

\[
+ \sum_{\ell \neq k} \int \mu_{\ell k}(t, x)p(t, k, x; t', k', x') \, dx \tag{4.4}
\]

\[
- \int \sum_{\ell \neq k} \mu_{k\ell}(t, x)p(t, k, x; t', k', x') \, dx. \tag{4.5}
\]
Assume first that (4.2) and (4.3) equal zero. Then (4.4) and (4.5) are the only non-zero terms. Using that \((k, x) \mapsto p(t, k, x; t', k', x')\) is the density of \((Z, X)(t)\) conditional on \((Z, X)(t') = (k', x')\), and that \(k \mapsto p_{k'|k}(t; t', x')\) is the corresponding marginal density of \(Z(t)\), we have that

\[
x \mapsto \frac{p(t, k, x; t', k', x')}{p_{k'|k}(t; t', x')}
\]

is the conditional density of \(X(t)\) given both \(Z(t) = k\) and \((Z, X)(t') = (k', x')\). Thus, we obtain

\[
\frac{\partial}{\partial t} p_{k'|k}(t; t', x') = \sum_{\ell: \ell \neq k} E \left[\mu_{k|\ell}(t, X(t)) | Z(t) = \ell, (Z, X)(t') = (k', x') \right] p_{k'|k}(t; t', x') - \sum_{t: t \neq k} E \left[\mu_{k|k}(t, X(t)) | Z(t) = k, (Z, X)(t') = (k', x') \right] p_{k|k}(t; t', x').
\]

By Lemma 4.3 the result is obtained.

For the rest of the proof, which is to show that (4.2) and (4.3) equal zero, see the appendix.

We can interpret the forward transition rate \(f_{k|\ell}(t; t')\) and the differential equation (4.1). At present time \(t'\), use the forward transition rates \(f_{k|\ell}(t; t')\) to define a new Markov chain \(\tilde{Z}\), with \(f_{k|\ell}(t; t')\) as its deterministic transition rates. With this construction, we know from Theorem 4.4 that \(Z(t)\) and \(\tilde{Z}(t)\) equals in distribution, as long as we only know the state of \(X\) at time \(t'\). To be precise,

\[
P(\tilde{Z}(t) = k | \tilde{Z}(t') = k') = P(Z(t) = k | (Z, X)(t') = (k', x'))
\]

for all \(k \in J\). This can for example be utilised to calculate expectations of functions of \(Z(t)\), by replacing with \(\tilde{Z}(t)\), conditionally on the present state at time \(t'\). This significantly simplifies the calculation, as long as we know the forward transition rates.

The definition of the forward rates is useful beyond Theorem 4.4, as we see in Corollary 5.4 in Section 5 about life insurance.

4.1 Forward rates in the literature

Forward rates for doubly stochastic Markov chains have been discussed and treated in the literature since [12] introduced the concept of a forward mortality rate, and the forward mortality rate is the primary example of a forward transition rate. To the authors knowledge, a general definition for doubly stochastic Markov chains has not before been introduced. In this section, we briefly relate Definition 4.1 above to existing literature on forward rates.
The forward mortality rate is defined in the following setup of a 2-state survival model with state space $\mathcal{J} = \{0, 1\}$, where the only non-zero transition rate is from state 0 to 1, which is simply denoted $\mu(t, X(t))$. State 0 corresponds to being alive, and state 1 corresponds to being dead, and we refer to $\mu(t, X(t))$ as the mortality rate. The forward mortality rate is defined as the function $g(t; t', x')$ that satisfies

$$
p_{00}(t; t', x') = E \left[e^{-\int_t^{t'} \mu(s, X(s)) \, ds} \, X(t') = x', Z(t') = 0 \right] = e^{-\int_t^{t'} g(s,t',x') \, ds}. \quad (4.6)
$$

This definition originates from [12], and has since been used in e.g. [4], [3] and [5]. The forward transition rate from Definition 4.1 is identical to the forward mortality rate in this setup. The quantity (4.6) can be differentiated on both sides to obtain

$$
\frac{d}{dt} p_{00}(t; t', x') = -g(t; t', x') p_{00}(t; t', x').
$$

By a comparison with (4.1), which simplifies in the simple 2-state setup, we can recognize the forward mortality rate as the forward transition rate in our setup, $g(t; t', x') = f_{01}(t; t', x')$. Further, using Lemma 4.3, we can represent the forward mortality rate as the expected mortality rate conditionally on being alive,

$$
g(t; t', x') = E \left[\mu(t, X(t)) \, | \, Z(t) = 0, X(t') = x' \right].
$$

There has been attempts at generalising the forward rates to more complex models than the 2-state survival model, for example if there are several dependent transition rates, or if the transition rate is dependent on some other stochastic process, e.g. a stochastic interest rate. In this paper, only transition rates are considered, so any dependence on an interest rate is out of the scope of this treatment and postponed for further research. In [1], so-called dependent forward rates are defined. Consider the survival model with multiple causes of death. The state space is $\mathcal{J} = \{0, \ldots, J\}$, where state 0 is alive, and state $k > 0$ is interpreted as dead by cause k. Thus, the only non-zero transition rates are those out of state 0, thus all other states are absorbing. In this setup, the dependent forward rates are defined as the quantities $g_{0k}(t; t', x')$ satisfying

$$
p_{00}(t; t', x') = E \left[e^{-\int_t^{t'} \sum_{l=1}^{J} \mu_{0l}(s, X(s)) \, ds} \, X(t') = x', Z(t') = 0 \right]
= e^{-\int_t^{t'} \sum_{l=1}^{J} g_{0l}(s,t',x') \, ds}, \quad (4.7)
$$

$$
p_{0k}(t; t', x') = E \left[\int_t^{t'} e^{-\int_{u}^{t'} \sum_{l=1}^{J} \mu_{0l}(u, X(u)) \, du} \mu_{0k}(s, X(s)) \, ds \, | \, X(t') = x', Z(t') = 0 \right]
= \int_t^{t'} e^{-\int_{u}^{t'} \sum_{l=1}^{J} g_{0l}(u,t',x') \, du} g_{0k}(s; t', x') \, ds. \quad (4.8)
$$

Similar to the forward mortality rate, the dependent forward rates are defined by a replacement argument: It is the quantities that allow us to write the transition probabilities with the usual formulae as in the deterministic setup, and thereby get rid of
the expectation. Analogously to above, one can differentiate $p_{00}(t; t', x')$ and $p_{0k}(t; t', x')$ and obtain differential equations for these transition probabilities. Then, one sees from (4.1) that the forward rates from Definition 4.1 specialises to the dependent forward rates in this setup. In particular, we can also represent the dependent forward rates as the conditional expectation of the transition rates, conditional on being alive,

$$g_{0k}(t; t', x') = \mathbb{E}\left[\mu_{0k}(t, X(t)) \mid Z(t) = 0, X(t') = x' \right].$$

In [15], the concept of forward transition rates is examined and discussed. An overview is given, and related to the forward interest rate, from which the definition of the forward mortality rate is motivated, and a sceptical view is taken on the usefulness of forward rates. It is argued that in the general doubly stochastic setup, it does not seem possible to obtain forward transition rates that is defined in a meaningful way. It is the belief of the author that Definition 4.1 exactly does this, which is further supported by Lemma 4.3 and Theorem 4.4. It shall be noted, that the forward transition rates presented in this paper do not encompass dependence on e.g. the interest rate, which can be of interest within e.g. life insurance or credit risk.

4.2 Calculation of the forward rates

The forward differential equation presented in Theorem 4.4 does seem appealing for calculation of the transition probabilities, when compared with Corollary 3.2. However, to solve it one must first find the forward transition rates, which is not an easy task in practice. In certain simple models, it is however possible to find the forward transition rates. If an affine setup is considered, that is, where X is an affine process, the forward mortality rate from (4.6) can be found as a solution to certain ordinary differential equations, see e.g. [4] or [1]. Also, as is shown in [1], this result generalises to the case of the dependent forward rates from (4.7) and (4.8). The definition of the dependent forward rates indeed originate from the affine setup, where it is possible to calculate these.

In more complicated setups, it is not obvious how to calculate the forward transition rates and thereby gain a computational advantage from Theorem 4.4. Thus, Corollary 3.2 so far seems like the better choice for an actual calculation. It shall be noted, that if one solves (3.6) from Corollary 3.2, it is straightforward though to calculate the forward transition rates, since the distribution obtained from solving this is sufficient for calculating the forward rates by Lemma 4.3. This can be useful, for example for calculation of the cash flow in life insurance mathematics, using Corollary 5.4 below.

Even if the computational advantages of using the forward transition rates are not obvious in general models, the author believes that the forward transition rates are an interesting contribution towards understanding the structure of doubly stochastic Markov
chains, as they provide a generalisation of the forward transition rates seen in the literature.

5 Life insurance cash flows

Let a finite state space J be given, where the states could be alive, disabled, dead, or similar. Then, let the doubly stochastic Markov chain Z from Section 3 describe the state of an insured in this state space. To each state k we associate a continuously paid payment rate $b_k(t)$, and to each transition we associate a payment, $b_{k\ell}(t)$. We assume both are continuous functions. The payments of the contract, accumulated until time t, is then described by the payment process $B(t)$, satisfying

$$dB(t) = \sum_{k \in J} 1_{\{Z(t) = k\}} b_k(t) \, dt + \sum_{k, \ell \in J, k \neq \ell} b_{k\ell}(t) \, dN_{k\ell}(t).$$

We assume that all payments occur before the finite time horizon T, i.e. that $b_k(s) = b_{k\ell}(s) = 0$ for all k, ℓ and $s \geq T$. This setup constitutes our modelling of the life insurance contract. Here we let b_k and $b_{k\ell}$ be deterministic functions, but we later discuss the straightforward extension to dependence on the underlying stochastic process X.

We define the cash flow associated with this contract, as the expected payments.

Definition 5.1. The accumulated cash flow at time t' conditional on $Z(t') = k'$ and $X(t') = x'$ is the function,

$$A_{k'}(t; t', x') = \mathbb{E}[B(t) - B(t') \mid Z(t') = k', X(t') = x'].$$

Furthermore, if $A_{k'}(t; t', x')$ has a density with respect to the Lebesgue measure,

$$A_{k'}(dt; t', x') = a_{k'}(t; t', x') \, dt,$$

we refer to $a_{k'}(t; t', x')$ as the cash flow.

Remark 5.2. In the traditional life insurance setup, single payments can also happen at deterministic time points. In that case, one allows the cash flow to have a density with respect to a mixture between the Lebesgue measure and a counting measure. An extension to this more general case is straightforward, but complicates the notation and is thus omitted from the present article.

One can now show the following result; a proof in the semi-Markov setup is given in [2], and the proof in the present setup is essentially identical.
Proposition 5.3. The cash flow exists and is given by,

\[a_{k'}(t'; t, x') = \sum_{k \in J} \int_X P(t, k, dx; t', k', x') \left(b_k(t) + \sum_{\ell \in J, \ell \neq k} \mu_{k\ell}(t, x) b_{k\ell}(t) \right). \]

(5.1)

The cash flow can also be represented as a function of the transition probabilities for \(Z \) and the forward transition rates.

Corollary 5.4. The cash flow has representation

\[a_{k'}(t'; t, x') = \sum_{k \in J} p_{k'k}(t; t', x') \left(b_k(t) + \sum_{\ell \in J, \ell \neq k} f_{k\ell}(t; t', k', x') b_{k\ell}(t) \right). \]

(5.2)

In the Corollary, the integral from formula (5.1) disappears, and we recognise formula (5.2) as the cash flow formula from the classic setup with deterministic transition rates. Indeed, if the transition rates are deterministic, \(\mu_{k\ell}(t, x) \) does not depend on \(x \) and the integral disappears from (5.1), while also the transition rates equal the forward transition rates. Thus, in this case (5.1) and (5.2) equal.

Given some continuously compounded interest rate \(r(t) \), which we assume to be deterministic, we can calculate the expected present value at time \(t \), conditional on \(Z(t) = k \). This is defined as,

\[V_k(t, x) = E \left[\int_t^T e^{-\int_s^t r(w) dw} dB(s) \middle| Z(t) = k, X(t) = x \right]. \]

One can show that the expected present value is simply the sum of the discounted cash flow, which we state in the following proposition.

Proposition 5.5. If \(r \) is deterministic, the expected present value at time \(t \), conditional on \(Z(t) = k \) and \(X(t) = x \) is given as

\[V_k(t, x) = \int_t^T e^{-\int_t^s r(w) dw} a_k(s; t, x) ds. \]

The main objective of the actuary is to calculate the expected present value, and this can be done e.g. by calculating the cash flow first, and then discounting it, as described above. Another possibility is to calculate it directly, since one can show that \(V_k(t, x) \) is the solution of a backward PDE, similar in structure to the backward PDE for the transition probability, (3.8), see e.g. [5]. However, one is often interested in the cash flow, since it is convenient for an analysis of the interest rate risk in practice. For example, if one wants to calculate the expected present value with different interest rates, it
is advantageous to first calculate the cash flows, which are independent of the interest rate. In particular, if a large portfolio of insurance contracts is considered, the cash flows can be accumulated to a single cash flow for the portfolio, which are easily discounted. For calculation of the cash flow, one needs the transition probabilities, which can be calculated with Corollary 3.2.

Remark 5.6. Mathematically it is straightforward to extend the current setup such that the payment functions b_k and $b_{k\ell}$ may depend on the value of the underlying process X, and we can write $b_k(t,x)$ and $b_{k\ell}(t,x)$. In that case, the cash flow (5.1) would be

$$a_{k'}(t';x') = \sum_{k \in J} \int_X P(t,k, dx; t', k', x') \left(b_k(t,x) + \sum_{\ell \in J, \ell \neq k} \mu_{k\ell}(t,x) b_{k\ell}(t,x) \right).$$

Note that it is not possible write the cash flow as a function of the forward transition rates as in Corollary 5.4.

Remark 5.7. In this section, we assumed a deterministic interest rate $r(t)$, however a stochastic interest rate is easily handled if it is independent of the underlying stochastic process X and Z. For more on stochastic interest rates in life insurance, see e.g. [13] and references therein.

6 Semi-Markov models in life insurance

If we in the classic life insurance setup, where the transition intensities are deterministic, extend the setup and allow the transition intensities and the payment functions to depend on the time spent in the current state, we have introduced duration dependence in the setup. In this case, Z is a semi-Markov process, and this class of models are popular in e.g. life insurance. An example of such a model is a disability model with recovery, where the recovery rate and the mortality as disabled might decrease as a function of the time spent as disabled. For a treatment of this model, see [2] and references therein.

We construct the semi-Markov model and show that the semi-Markov process is a special case of the process in Section 2. This can be used to present Theorem 2.1 for the semi-Markov process, and in this case it becomes an integro-differential equation. This result also presented in [2], but the proof of the result is different.

Let Z be a stochastic process on a finite state space J. Define U as the duration in the current state,

$$U(t) = \sup \{ s \in [0, t] \mid Z(w) = Z(t), w \in [t - s, t] \}.$$
We assume that \((Z, U)\) is a Markov process. The process \((Z, U)\) may jump, and the pure jump part can be written as

\[
J(t) = \sum_{s \leq t} \left[\frac{\Delta Z(s)}{\Delta U(s)} \right].
\]

We denote the jump measure of \(J(t)\), as defined in (2.2), by \(\tilde{\mu}(\ell, v; t, u)\), and it has a density with respect to a counting measure,

\[
\tilde{\mu}(\ell, v; t, u) = \mu_{k\ell}(t, u) \cdot d(\tau_{J\setminus\{k\}}(\ell) \otimes \tau_{\{0\}}(v)).
\]

Here, \(J(t)\) is the jump sizes, and \(\tilde{\mu}(\ell, v; t, u)\) is interpreted as the instantaneous probability that if we are in state \(k\) with duration \(u\), we make a jump to state \(\ell\) and have duration \(v\). By the definition of \(U\) we always jump to duration 0, so if \(v \neq 0\) the density is zero. We interpret \(\mu_{k\ell}(t, u)\) as the transition rate of \(Z\), and it can be shown to satisfy the relation

\[
\mu_{k\ell}(t, u) = \lim_{\delta \downarrow 0} \frac{1}{\delta} P(Z(t + \delta) = \ell | Z(t) = k, U(t) = u),
\]

for \(k \neq \ell\). We interpret this as the instantaneous probability of a jump of \(Z\) from state \(k\) to state \(\ell\), if we are at time \(t\) with duration \(u\).

With \(N_{k\ell}(t)\) given by (3.1), we can characterise \(U(t)\) as

\[
dU(t) = 1dt - U(t-) \sum_{k, \ell \in J, k \neq \ell} dN_{k\ell}(t).
\]

The first term on the right hand side is the constant increase of \(U(t)\) with slope 1, and the second term states that whenever \(Z\) jumps, \(U\) jumps to zero. We remark that the state space of \(U(s)\) is \([0, s]\), and, conditional on \(U(t) = u\), the state space for \(U(s), s \geq t\) is \([0, u + s - t]\).

We define the transition probability

\[
P(t, k; u; t', k', u') = P(Z(t) = k, U(t) \leq u | Z(t') = k', U(t') = u').
\]

We specialise Theorem 2.1 to this semi-Markov setup. Because of the structure of the process, in particular the fact that the duration process increases identically as time almost everywhere and possess no diffusion term, we can write it as an integro-differential equation (IDE). We note, that since \(\frac{\partial}{\partial u} P(t, k, u; t', k', u')\) does not exist for all \(u\), the result is not a direct special case of Theorem 2.1.
Theorem 6.1. The transition probability $P(t, k, u; t', k', u')$, for $t \geq t'$, $k \in \mathcal{J}$ and $u \in [0, u' + t - t']$ satisfies the forward IDE

$$
\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial u} \right) P(t, k, u; t', k', u') = \sum_{\ell \in \mathcal{J}} \int_{0}^{u' + t - t'} \mu_{\ell k}(t, v) P(t, \ell, dv; t', k', u') \\
- \int_{0}^{u} \sum_{\ell \in \mathcal{J}} \sum_{\ell \neq k} \mu_{k \ell}(t, v) P(t, k, dv; t', k', u'),
$$

subject to the boundary conditions $P(t', k, u; t', k', u') = 1$ if $(k = k')(u' \leq u)$ and, for $t > t'$, $P(t, k, 0; t', k', u') = 0$.

The differential equation can be interpreted both as a partial integro-differential equation, and as an ordinary integro-differential equation. The latter interpretation makes it easy to solve in practice, and for details on this see [2], where an algorithm is explained. The theorem is proven in [2], however, we give an outline of how to prove it with the tools presented in Section 2. Theorem 2.1 yields the IDE on the interior of the domain, so what is left is to make sure the IDE also holds on the boundary.

For the proof and subsequent results, we introduce the following notation,

$$
p_{kk}(t; t', u') = P(Z(t) = k, U(t) = u' + t - t' \mid Z(t') = k, U(t') = u')
$$

$$
= \exp \left\{ - \int_{0}^{t - t'} \sum_{\ell \in \mathcal{J}} \sum_{\ell \neq k} \mu_{k \ell}(t', w, u' + w) dw \right\}.
$$

This quantity is the probability of staying in state k from time t' with duration u' until time t. It is well known that it has the above expression, see e.g. [8].

Proof. (Outline) The first boundary condition follows directly from the definition of the transition probability. Since, for any t, the probability that a jump occurs exactly at time t can be shown to equal 0, the probability that the duration is equal to zero is zero, for all t. This yields the second boundary condition.

We first claim that one can show, that on the open set

$$
\{(t, u) \mid t \in (t', T), u \in (0, u' + t - t')\},
$$

the partial derivatives $\frac{\partial}{\partial t} P(t, k, u; t', k', u')$ and $\frac{\partial}{\partial u} P(t, k, u; t', k', u')$ exist. This holds, since probability mass on that set originates from jumps. Thus, from Theorem 2.1, the result holds on this set.

Since $P(t, k, u; t', k', u')$ is right-continuous in u by definition, the result holds for $u = 0$. 20
For \(u = u' + t - t' \), note that
\[
P(t, k, u' + t - t'; t', k', u') = P(t, k, u' + t - t'; t', k', u') - P(t, k, u' + t - t' - \delta; t', k', u')
+ P(t, k, u' + t - t' - \delta; t', k', u'),
\]
and let \(\delta \downarrow 0 \) to obtain
\[
P(t, k, u' + t - t'; t', k', u') = P(Z(t) = k, U(t) = u' + t - t' \mid Z(t') = k', U(t') = u')
+ P(t, k, (u' + t - t') - \delta; t', k', u').
\]
(6.3)
The second term on the right hand side of (6.3) satisfies (6.1). The first term on the right hand side is, for \(k = k' \), the probability of staying in state \(k' \) from time \(t' \) to \(t \), and from (6.2) we know that this probability is of the form
\[
P(Z(t) = k, U(t) = u' + t - t' \mid Z(t') = k', U(t') = u') = 1_{k=k'}(t; t', u').
\]
Applying \(\frac{\partial}{\partial t} + \frac{\partial}{\partial u} \) to both sides, we find that this functions satisfies a linear partial differential equation of the form (6.1).

Since both terms on the right hand side of (6.3) satisfy (6.1), which is linear, we use the fact that if two functions satisfy the same linear IDE, each with their own boundary condition, the sum of of these functions satisfy the same linear IDE, with the boundary condition being the sum of the two boundary conditions. From this we conclude that the whole of (6.3) satisfy (6.1). Thus, the result holds for all \(u \in [0, u' + t - t'] \) and \(t \geq t' \).

We can partly solve the forward IDE, and obtain the following integral equation, which is essentially a differentiated version of equation (4.7) in [8].

Proposition 6.2. The transition density \(p(t, k, u; t', k', u') \), for \(k \in J, u \in [0, u' + t - t'] \) exists with respect to a mixture of the Lebesgue measure and a point measure. For fixed \(t \),
\[
P(t, A, B; t', k', u') = \sum_{k \in A} \int_{B} p(t, k, u; t', k', u') \left(du + d\tau_{\{u' + t - t'\}}(u) \right).
\]
The density is given by

- for \(t - t' > u \), the integral equation
\[
p(t, k, u; t', k', u') = \sum_{\ell \in J, \ell \neq k} \int_{0}^{u' + t - t'} p(t - u, \ell, v; t', k', u') \mu_{\ell k}(t - u, v)
\times p_{kk}(t; t - u, 0) \left(dv + d\tau_{\{u' + t - u - v\}}(v) \right),
\]

21
• else,

\[p(t, k, u; t', k', u') = 1_{(k=k')}1_{(t-t'=u-u')}p^{kk}(t, t', u'). \]

Proof. (Outline) For \(t - t' > u \), a jump must have occurred between time \(t' \) and time \(t \), and we argued in the proof of Theorem 6.1 that a density with respect to the Lebesgue measure exists. That the proposed density satisfies the IDE (6.1) can be seen by applying \((\frac{\partial}{\partial t} + \frac{\partial}{\partial u})\) to

\[P(t, k, u; t', k', u') = \int_0^u p(t, k, v; t', k', u') \left(dv + d\tau_{(u'+t-u)}(v) \right), \]

and where the proposed density is inserted.

For the second part where \(t - t' \leq u \), a jump cannot have occurred after time \(t' \), and we must have stayed in the initial state. Then the result is known from (6.2).

We interpret the terms of the density. As was argued in the proof, the last part is the probability mass originating from the initial state, and is simply the probability of having made no jumps. The probability mass in the first part is all jumps into state \(k \) happening at time \(t - u \). Inside the integral, we see the probability of being in a state \(\ell \) at time \(t - u \) with a duration \(v \), multiplied with the probability of a jump to state \(k \), which is again multiplied with the probability of then staying in state \(k \) from time \(t - u \) to time \(t \). Then we simply sum over all states \(\ell \) and all durations \(v \).

Acknowledgements

I would like to thank Martin Jacobsen, Rasmus Hedegaard Kristiansen, Thomas Møller and Mogens Steffensen for fruitful discussions during this work.

References

A Completion of the proof of Theorem 4.4

Here we complete the proof of Theorem 4.4, and we recall that we use Assumption 4.5.

Proof. (Last part of the proof of Theorem 4.4) We show that (4.2) and (4.3),
\[\sum_i \int \frac{\partial}{\partial x_i} (\beta_i(t,x)p(t,k,x; t', k', x')) \, dx, \]
\[\frac{1}{2} \sum_{i,j} \int \frac{\partial^2}{\partial x_i \partial x_j} (\rho_{ij}(t,x)p(t,k,x; t', k', x')) \, dx, \]
are equal zero.

For (4.2), consider the inner integral over \(x_i \), and integrate
\[\int_R \frac{\partial}{\partial x_i} (\beta_i(t,x)p(t,k,x; t', k', x')) \, dx_i = \left[\beta_i(t,x)p(t,k,x; t', k', x') \right]_{x_i=-\infty}^{\infty}. \] (A.1)

See now, that for \(x_i \) large there exists \(b > 0 \) such that,
\[0 \leq |\beta_i(t,x)|p(t,k,x; t', k', x') \leq b|x_i|p(t,k,x; t', k', x') \to 0, \]
for \(x_i \to \infty \). For the limit, we used the assumption \(\int |x_i|p(t,k,x; t', k', x') \, dx < \infty \) with Lemma A.1 to conclude that \(x_i p(t,k,x; t', k', x') \to 0 \) for \(x_i \to \infty \). The same argument for \(x_i \to -\infty \) and the fact that \(i \) was arbitrary allow us to conclude that (4.2) equals zero.

For (4.3), consider the inner integral over \(x_j \),
\[\int_R \frac{\partial^2}{\partial x_i \partial x_j} (\rho_{ij}(t,x)p(t,k,x; t', k', x')) \, dx_j \]
\[= \left[\rho_{ij}(t,x) \frac{\partial}{\partial x_i} p(t,k,x; t', k', x') \right]_{x_j=-\infty}^{\infty} \] (A.2)
\[+ \left[p(t,k,x; t', k', x') \frac{\partial}{\partial x_i} \rho_{ij}(t,x) \right]_{x_j=-\infty}^{\infty} \] (A.3)

Since \(\frac{\partial}{\partial x_i} \rho_{ij}(t,x) \) is bounded similarly to \(\beta_i(t,x) \), we use the same argument as for (A.1) above to conclude that (A.3) equals zero.

Now, apply integration by parts to see that
\[\int_{K}^{\infty} x_i p(t,k,x; t', 0, x') \, dx_i \]
\[= \left[\frac{1}{2} x_i^2 p(t,k,x; t', 0, x') \right]_{x_i=K}^{\infty} + \frac{1}{2} \int_{K}^{\infty} x_i^2 \left(-\frac{\partial}{\partial x_i} p(t,k,x; t', 0, x') \right) \, dx_i. \]
Since both terms are positive, we conclude that the latter is finite. Again, by Lemma A.1, we conclude that
\[
x_i^2 \frac{\partial}{\partial x_i} p(t, k, x; t', 0, x') \to 0,
\]
for \(x_i \to \infty \). Using this and that there for large \(x_i \) exists \(b > 0 \) such that \(\rho(t, x) < bx_i^2 \), we obtain
\[
0 \leq \left| \rho(t, x) \frac{\partial}{\partial x_i} p(t, k, x; t', 0, x') \right| \leq bx_i^2 \left| \frac{\partial}{\partial x_i} p(t, k, x; t', 0, x') \right| \to 0,
\]
for \(x \to \infty \). By the same argument for \(x \to -\infty \), we conclude that (A.2) equals zero. \(\square \)

The following lemma was used for the proof.

Lemma A.1. Let \(f : \mathbb{R} \to \mathbb{R} \) and \(K > 0 \). Assume that for all \(x \geq K \), \(f'(x) \) exists, \(f'(x) \leq 0 \) and \(f(x) \geq 0 \). Let \(k \in \mathbb{N} \). If \(\int_K^\infty x^k f(x) \, dx < \infty \) and \(f(x) \in O(x^{-k+1}) \), then \(x^k f(x) \to 0 \) for \(x \to \infty \).

Proof. We prove the contrapositive statement, so assume that \(x^k f(x) \not\to 0 \) for \(x \to \infty \). Then we can choose an \(\varepsilon > 0 \) such that
\[
\forall N \geq 0 \exists x > N : x^k f(x) \geq \varepsilon. \tag{A.4}
\]
The idea of the proof is to use that \(x^k f(x) \) infinitely many times becomes larger than \(\varepsilon \) to show that \(\int_K^\infty x^k f(x) \, dx = \infty \). Since \(f(x) \in O(x^{-k+1}) \), we can choose \(L > K \) and \(c > 0 \) such that \(f(x) \leq cx^{-k+1} \) for \(x \geq L \). Then,
\[
\frac{d}{dx} \left(x^k f(x) \right) = \left(kx^{k-1} f(x) + x^k f'(x) \right) \leq kx^{k-1} f(x) \leq kc.
\]
Define now \(\delta = \frac{\varepsilon}{kc} \), \(x_0 = \inf \{ x > L \mid x^k f(x) \geq \varepsilon \} \), and then recursively
\[
x_n = \inf \{ x > x_{n-1} + \delta \mid x^k f(x) \geq \varepsilon \},
\]
for all \(n \geq 1 \). By (A.4), \(x_n \) is an infinite sequence. Now see, that for \(n \geq 1 \),
\[
\int_{x_n-\delta}^{x_n} x^k f(x) \, dx = \int_{x_n-\delta}^{x_n} \left(\varepsilon - \int_x^{x_n} \left(k y^{k-1} f(y) + y^k f'(y) \right) \, dy \right) \, dx \\
\geq \int_{x_n-\delta}^{x_n} \left(\varepsilon - \int_x^{x_n} k c \, dy \right) \, dx = \delta \varepsilon - \frac{1}{2} \delta^2 k c = \frac{1}{2} \varepsilon \delta.
\]
Since the intervals \((x_n - \delta, x_n] \) are disjoint, we obtain
\[
\int_K^\infty x^k f(x) \, dx \geq \sum_{n=1}^{\infty} \int_{x_n-\delta}^{x_n} x^k f(x) \, dx \geq \sum_{n=1}^{\infty} \frac{1}{2} \varepsilon \delta = \infty.
\] \(\square \)