The Herd Behavior Index

Jan Dhaene

KU Leuven, Belgium

Introduction

Herd behavior in stock markets
Introduction
Herd behavior in stock markets

► Our goal: Define an index which:
 ► reflects market’s perception of degree of co-movement of stock prices,
 ► is forward looking,
 ► is based on observed option data,
 ► is model-independent.

► We will call this index the **Herd Behavior Index (HIX)**.
Introduction
Herd behavior in stock markets

Our goal: Define an index which:

- reflects market’s perception of degree of co-movement of stock prices,
- is forward looking,
- is based on observed option data,
- is model-independent.

We will call this index the Herd Behavior Index (HIX).
Introduction
Herd behavior in stock markets

Our goal: Define an index which:

- reflects market’s perception of degree of co-movement of stock prices,
- is forward looking,
- is based on observed option data,
- is model-independent.

We will call this index the Herd Behavior Index (HIX).
Introduction
Herd behavior in stock markets

Our goal: Define an index which:

- reflects market’s perception of degree of co-movement of stock prices,
- is forward looking,
- is based on observed option data,
- is model-independent.

We will call this index the Herd Behavior Index (HIX).
Introduction
Herd behavior in stock markets

Our goal: Define an index which:

- reflects market’s perception of degree of co-movement of stock prices,
- is forward looking,
- is based on observed option data,
- is model-independent.

We will call this index the Herd Behavior Index (HIX).
Introduction
Herd behavior in stock markets

Our goal: Define an index which:
- reflects market’s perception of degree of co-movement of stock prices,
- is forward looking,
- is based on observed option data,
- is model-independent.

We will call this index the **Herd Behavior Index** (HIX).
The financial market

- The usual set up:

\[(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\]

- Current time is denoted by 0. Time span is \(T\) years.

- The stock market:
 - \(n\) stocks.
 - \(X_i(T) \equiv X_i = \text{price of (dividend paying) stock } i \text{ at time } T\).

- Assumptions:
 - The market is arbitrage-free.
 - The time - 0 price of any traded contingent claim with pay-off \(A(T)\) at time \(T\) is given by

\[e^{-rT} \mathbb{E}[A(T)]\]

- \(r\) = risk-free interest rate (deterministic).
- Expectation is taken w.r.t. the (unknown) measure \(Q\).
The financial market

- The usual set up:

\((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P}) \)

- Current time is denoted by 0. Time span is \(T \) years.

- The stock market:
 - \(n \) stocks.
 - \(X_i(T) \equiv X_i = \) price of (dividend paying) stock \(i \) at time \(T \).

- Assumptions:
 - The market is arbitrage-free.
 - The time - 0 price of any traded contingent claim with pay-off \(A(T) \) at time \(T \) is given by

\[e^{-rT} \mathbb{E}_Q [A(T)] \]

- \(r \) = risk-free interest rate (deterministic).
- Expectation is taken w.r.t. the (unknown) measure \(Q \).
The financial market

- The usual set up:

\[(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P}) \]

- Current time is denoted by 0. Time span is \(T \) years.

- **The stock market:**
 - \(n \) stocks.
 - \(X_i(T) \equiv X_i = \text{price of (dividend paying) stock } i \text{ at time } T. \)

- **Assumptions:**
 - The market is arbitrage-free.
 - The time - 0 price of any traded contingent claim with pay-off \(A(T) \text{ at time } T \) is given by
 \[e^{-rT} \mathbb{E} [A(T)] \]
 - \(r = \text{risk-free interest rate (deterministic)} \).
 - Expectation is taken w.r.t. the (unknown) measure \(Q \).
The financial market

- The usual set up:

\[(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P}) \]

- Current time is denoted by 0. Time span is \(T \) years.

- The stock market:
 - \(n \) stocks.
 - \(X_i(T) \equiv X_i = \text{price of (dividend paying) stock } i \text{ at time } T \).

- Assumptions:
 - The market is arbitrage-free.
 - The time 0 price of any traded contingent claim with pay-off \(A(T) \) at time \(T \) is given by

\[e^{-rT} \mathbb{E}_Q [A(T)] \]

- \(r \) = risk-free interest rate (deterministic).
- Expectation is taken w.r.t. the (unknown) measure \(Q \).
The financial market

- The usual set up:

\[(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\]

- Current time is denoted by 0. Time span is \(T\) years.

- The stock market:
 - \(n\) stocks.
 - \(X_i(T) \equiv X_i = \text{price of (dividend paying) stock } i \text{ at time } T.\)

- Assumptions:
 - The market is arbitrage-free.
 - The time-0 price of any traded contingent claim with pay-off \(A(T)\) at time \(T\) is given by

\[e^{-rT} \mathbb{E}[A(T)]\]

- \(r\) = risk-free interest rate (deterministic).
- Expectation is taken w.r.t. the (unknown) measure \(Q\).
The financial market

- The usual set up:

\((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\)

- Current time is denoted by 0. Time span is \(T\) years.

- The stock market:
 - \(n\) stocks.
 - \(X_i(T) \equiv X_i = \text{price of (dividend paying) stock } i \text{ at time } T\).

- Assumptions:
 - The market is arbitrage-free.
 - The time-0 price of any traded contingent claim with pay-off \(A(T)\) at time \(T\) is given by
 \[e^{-rT} \mathbb{E}[A(T)] \]
 - \(r\) = risk-free interest rate (deterministic).
 - Expectation is taken w.r.t. the (unknown) measure \(Q\).
The financial market

- The usual set up:

 \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\)

- Current time is denoted by 0. Time span is \(T\) years.

- The stock market:

 - \(n\) stocks.
 - \(X_i(T) \equiv X_i = \) price of (dividend paying) stock \(i\) at time \(T\).

- Assumptions:

 - The market is arbitrage-free.
 - The time - 0 price of any traded contingent claim with pay-off \(A(T)\) at time \(T\) is given by

 \[e^{-rT} \mathbb{E}[A(T)] \]

 - \(r = \) risk-free interest rate (deterministic).
 - Expectation is taken w.r.t. the (unknown) measure \(Q\).
The financial market

- The usual set up:
 \[(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\]

- Current time is denoted by 0. Time span is \(T\) years.

- **The stock market:**
 - \(n\) stocks.
 - \(X_i(T) \equiv X_i = \text{price of (dividend paying) stock } i \text{ at time } T\).

- **Assumptions:**
 - The market is arbitrage-free.
 - The time - 0 price of any traded contingent claim with pay-off \(A(T)\) at time \(T\) is given by
 \[e^{-rT} \mathbb{E}[A(T)]\]

 - \(r = \text{risk-free interest rate (deterministic)}\).
 - Expectation is taken w.r.t. the (unknown) measure \(Q\).
The financial market

- The usual set up:
 \[(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\]

- Current time is denoted by 0. Time span is \(T\) years.

- The stock market:
 - \(n\) stocks.
 - \(X_i(T) \equiv X_i = \text{price of (dividend paying) stock } i \text{ at time } T\).

- Assumptions:
 - The market is arbitrage-free.
 - The time-0 price of any traded contingent claim with pay-off \(A(T)\) at time \(T\) is given by
 \[e^{-rT} \mathbb{E}[A(T)]\]
 - \(r = \text{risk-free interest rate (deterministic)}\).
 - Expectation is taken w.r.t. the (unknown) measure \(Q\).
The financial market

- The usual set up:

\[(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})\]

- Current time is denoted by 0. Time span is \(T\) years.

- The stock market:
 - \(n\) stocks.
 - \(X_i(T) \equiv X_i = \text{price of (dividend paying) stock } i\text{ at time } T\).

- Assumptions:
 - The market is arbitrage-free.
 - The time - 0 price of any traded contingent claim with pay-off \(A(T)\) at time \(T\) is given by
 \[e^{-rT} \mathbb{E}[A(T)]\]
 - \(r = \text{risk-free interest rate (deterministic)}\).
 - Expectation is taken w.r.t. the (unknown) measure \(Q\).
The financial market

Stock options

- **European options on stock** i:
 - Maturity T.
 - Arbitrage-free prices:
 \[
 C_i[K] = e^{-rT} \mathbb{E}[(X_i - K)_+] \\
 P_i[K] = e^{-rT} \mathbb{E}[(K - X_i)_+]
 \]

- **Traded strikes for stock** i:
 \[
 0 = K_{i,0} < K_{i,1} < \ldots < K_{i,m_i} < K_{i,m_i+1} = F_{X_i}^{-1}(1) < \infty
 \]

- **Option prices vs. risk-neutral distributions**:
 - $F_{X_i} = \text{risk-neutral cdf of } X_i$:
 \[
 F_{X_i}(x) = 1 + e^{rT} C_i'[x+] = e^{rT} P_i'[x+]
 \]
The financial market

Stock options

- **European options on stock i:**
 - Maturity T.
 - Arbitrage-free prices:
 \[
 C_i[K] = e^{-rT}E[(X_i - K)_+] \quad \text{and} \quad P_i[K] = e^{-rT}E[(K - X_i)_+]
 \]

- **Traded strikes for stock i:**
 \[
 0 = K_{i,0} < K_{i,1} < \ldots < K_{i,m_i} < K_{i,m_i+1} = F_{X_i}^{-1}(1) < \infty
 \]

- **Option prices vs. risk-neutral distributions:**
 - $F_{X_i} = \text{risk-neutral cdf of } X_i$:
 \[
 F_{X_i}(x) = 1 + e^{rT}C'_i[x+] = e^{rT}P'_i[x+]
 \]
The financial market
Stock options

- **European options on stock i:**
 - Maturity T.
 - Arbitrage-free prices:
 \[
 C_i[K] = e^{-rT} \mathbb{E}[(X_i - K)_+]
 \]
 \[
 P_i[K] = e^{-rT} \mathbb{E}[(K - X_i)_+]
 \]

- **Traded strikes for stock i:**
 \[
 0 = K_{i,0} < K_{i,1} < \ldots < K_{i,m_i} < K_{i,m_i+1} = F_{X_i}^{-1}(1) < \infty
 \]

- **Option prices vs. risk-neutral distributions:**
 - F_{X_i} = risk-neutral cdf of X_i:
 \[
 F_{X_i}(x) = 1 + e^{rT} C_i'[x+] = e^{rT} P_i'[x+]
 \]
The financial market

Stock options

- **European options on stock** i:
 - Maturity T.
 - Arbitrage-free prices:
 \[C_i[K] = e^{-rT} \mathbb{E}[(X_i - K)_+] \]
 \[P_i[K] = e^{-rT} \mathbb{E}[(K - X_i)_+] \]

- **Traded strikes for stock** i:
 \[0 = K_{i,0} < K_{i,1} < \ldots < K_{i,m_i} < K_{i,m_i+1} = F_{X_i}^{-1}(1) < \infty \]

- **Option prices vs. risk-neutral distributions**:
 - $F_{X_i} = \text{risk-neutral cdf of } X_i$:
 \[F_{X_i}(x) = 1 + e^{rT} C_i'[x+] = e^{rT} P_i'[x+] \]
The financial market

Stock options

- European options on stock i:
 - Maturity T.
 - Arbitrage-free prices:
 \[
 C_i[K] = e^{-rT} \mathbb{E}[(X_i - K)_+] \\
 P_i[K] = e^{-rT} \mathbb{E}[(K - X_i)_+]
 \]

- Traded strikes for stock i:
 \[
 0 = K_{i,0} < K_{i,1} < \ldots < K_{i,m_i} < K_{i,m_i+1} = F_{X_i}^{-1}(1) < \infty
 \]

- Option prices vs. risk-neutral distributions:
 - $F_{X_i} =$ risk-neutral cdf of X_i:
 \[
 F_{X_i}(x) = 1 + e^{rT} C_i'[x+] = e^{rT} P_i'[x+]
 \]
The financial market

Stock options

- **European options on stock** i:
 - Maturity T.
 - Arbitrage-free prices:

 $$
 C_i [K] = e^{-rT} \mathbb{E}[(X_i - K)_+] \\
 P_i [K] = e^{-rT} \mathbb{E}[(K - X_i)_+]
 $$

- **Traded strikes for stock** i:

 $$
 0 = K_{i,0} < K_{i,1} < \ldots < K_{i,m_i} < K_{i,m_i+1} = F_{X_i}^{-1}(1) < \infty
 $$

- **Option prices vs. risk-neutral distributions**:
 - $F_{X_i} = \text{risk-neutral cdf of } X_i$:

 $$
 F_{X_i}(x) = 1 + e^{rT} C_i'[x_] = e^{rT} P_i'[x_+]
 $$
The financial market

Stock options

Options on Walt Disney:

Walt Disney Co: 23/01/2012
Time to maturity: 25 days

Call Prices
Put Prices
The financial market
The stock market index and its options

- **The stock market index:**
 - $S(T) \equiv S = \text{value of stock market index at time } T$:
 $$S = w_1 X_1 + \cdots + w_n X_n$$
 - $w_i = \text{positive weight factors.}$

- **European options on the index:**
 - Maturity T.
 - Arbitrage-free prices:
 $$C[K] = e^{-rT} \mathbb{E}[(S - K)_+]$$
 $$P[K] = e^{-rT} \mathbb{E}[(K - S)_+]$$
 - Traded strikes:
 $$K_{-1} < K_{-1+1} < \cdots < K_{-1} < K_0 \leq \mathbb{E}[S] < K_1 < \cdots < K_{h-1} < K_h$$
The financial market
The stock market index and its options

★ The stock market index:
★ \(S(T) \equiv S = \) value of stock market index at time \(T \):

\[
S = w_1 X_1 + \cdots + w_n X_n
\]

★ \(w_i = \) positive weight factors.

★ European options on the index:
★ Maturity \(T \).
★ Arbitrage-free prices:

\[
C[K] = e^{-rT} \mathbb{E}[(S - K)^+]
\]
\[
P[K] = e^{-rT} \mathbb{E}[(K - S)^+]
\]

★ Traded strikes:

\[
K_{-l} < K_{-l+1} < \ldots < K_{-1} < K_0 \leq \mathbb{E}[S] < K_1 < \ldots < K_{h-1} < K_h
\]
The financial market

The stock market index and its options

- **The stock market index:**
 - $S(T) \equiv S = \text{value of stock market index at time } T$:
 \[
 S = w_1 X_1 + \cdots + w_n X_n
 \]
 - $w_i = \text{positive weight factors.}$

- **European options on the index:**
 - Maturity T.
 - Arbitrage-free prices:
 \[
 C[K] = e^{-rT} \mathbb{E}[(S - K)_+]
 \]
 \[
 P[K] = e^{-rT} \mathbb{E}[(K - S)_+]
 \]
 - Traded strikes:
 \[
 K_{-l} < K_{-l+1} < \cdots < K_{-1} < K_0 \leq \mathbb{E}[S] < K_1 < \cdots < K_{h-1} < K_h
 \]
The financial market

The stock market index and its options

- **The stock market index:**
 - \(S(T) \equiv S = \text{value of stock market index at time } T:\)
 \[
 S = w_1 X_1 + \cdots + w_n X_n
 \]
 - \(w_i = \text{positive weight factors.} \)

- **European options on the index:**
 - **Maturity** \(T. \)
 - **Arbitrage-free prices:**
 \[
 C[K] = e^{-rT} \mathbb{E}[(S - K)_+]
 \]
 \[
 P[K] = e^{-rT} \mathbb{E}[(K - S)_+]
 \]
 - **Traded strikes:**
 \[
 K_{-l} < K_{-l+1} < \cdots < K_{-1} < K_0 \leq \mathbb{E}[S] < K_1 < \cdots < K_{h-1} < K_h
 \]
The financial market
The stock market index and its options

- **The stock market index:**
 - $S(T) \equiv S = \text{value of stock market index at time } T$:
 $$S = w_1 X_1 + \cdots + w_n X_n$$
 - $w_i = \text{positive weight factors}$.

- **European options on the index:**
 - Maturity T.
 - Arbitrage-free prices:
 $$C[K] = e^{-rT} \mathbb{E}[(S - K)_+]$$
 $$P[K] = e^{-rT} \mathbb{E}[(K - S)_+]$$
 - Traded strikes:
 $$K_{-l} < K_{-l+1} < \ldots < K_{-1} < K_0 \leq \mathbb{E}[S] < K_1 < \ldots < K_{h-1} < K_h$$
The financial market
The stock market index and its options

- **The stock market index:**
 - \(S(T) \equiv S = \text{value of stock market index at time } T: \)
 \[
 S = w_1 X_1 + \cdots + w_n X_n
 \]
 - \(w_i = \text{positive weight factors.} \)

- **European options on the index:**
 - **Maturity** \(T. \)
 - **Arbitrage-free prices:**
 \[
 C[K] = e^{-rT} \mathbb{E}[(S - K)_+] \\
 P[K] = e^{-rT} \mathbb{E}[(K - S)_+]
 \]
 - **Traded strikes:**
 \[
 K_{-1} < K_{-1+1} < \ldots < K_{-1} < K_0 \leq \mathbb{E}[S] < K_1 < \ldots < K_{h-1} < K_h
 \]
The financial market

The stock market index and its options

- **The stock market index:**
 - \(S(T) \equiv S = \text{value of stock market index at time } T: \)
 \[
 S = w_1 X_1 + \cdots + w_n X_n
 \]
 - \(w_i = \text{positive weight factors.} \)

- **European options on the index:**
 - Maturity \(T. \)
 - Arbitrage-free prices:
 \[
 C[K] = e^{-rT} \mathbb{E}[(S - K)_+] \\
 P[K] = e^{-rT} \mathbb{E}[(K - S)_+]
 \]
 - Traded strikes:
 \[
 K_{-l} < K_{-l+1} < \cdots < K_{-1} < K_0 \leq \mathbb{E}[S] < K_1 < \cdots < K_{h-1} < K_h
 \]
The financial market
The stock market index and its options

- European options on the DJ index:

Dow Jones: 21/03/2012
Time to maturity = 30 days

- Call Prices
- Put Prices
Risk neutral stock price distributions

- Approximate the unknown option curve $C_i[K]$ of each stock i (dashed line) by the piecewise linear curve $\overline{C}_i[K]$ connecting the traded strikes (solid line).
Risk neutral stock price distributions

- The approximation \bar{F}_{X_i} of F_{X_i} follows from:

$$\bar{F}_{X_i}(x) = 1 + e^{rT} C'_i[x+]$$
Contingent claims on the stock market index

- \(S = \) value of stock market index at time \(T \).
- Consider the contingent claim with pay-off \(f(S) \) at \(T \).
- For any \(a \geq 0 \), this pay-off can be expressed as:

\[
\begin{align*}
 f(S) &= f(a) + f'(a) [(S - a)_+ - (a - S)_+] \\
 &+ \int_0^a f''(K) (K - S)_+ dK + \int_a^{+\infty} f''(K) (S - K)_+ dK
\end{align*}
\]

- Model-free static replication of \(f(S) \):
 - Buy \(f(a) \) bonds, each paying an amount 1 at maturity.
 - Buy \(f'(a) \) calls \(C[a] \).
 - Sell \(f'(a) \) puts \(P[a] \).
 - Buy \(f''(K) \) \(dK \) puts \(P[K] \), for \(K < a \).
 - Buy \(f''(K) \) \(dK \) calls \(C[K] \), for \(K > a \).

\(^2\) Carr & Madan (2001).
Contingent claims on the stock market index

- $S = \text{value of stock market index at time } T$.
- Consider the contingent claim with pay-off $f(S)$ at T.
- For any $a \geq 0$, this pay-off can be expressed as\(^2\):

\[
f(S) = f(a) + f'(a) \left[(S - a)_+ - (a - S)_+\right] \\
+ \int_0^a f''(K) (K - S)_+ dK + \int_a^{+\infty} f''(K) (S - K)_+ dK
\]

- Model-free static replication of $f(S)$:
 - Buy $f(a)$ bonds, each paying an amount 1 at maturity.
 - Buy $f'(a)$ calls $C[a]$.
 - Sell $f'(a)$ puts $P[a]$.
 - Buy $f''(K) dK$ puts $P[K]$, for $K < a$.
 - Buy $f''(K) dK$ calls $C[K]$, for $K > a$.

\(^2\)Carr & Madan (2001).
Contingent claims on the stock market index

- $S = \text{value of stock market index at time } T$.
- Consider the \underline{contingent claim} with pay-off $f(S)$ at T.
- For any $a \geq 0$, this pay-off can be expressed as\(^2:\)

$$f(S) = f(a) + f'(a) [(S - a)_+ - (a - S)_+]$$

$$+ \int_0^a f''(K) (K - S)_+ dK + \int_a^{+\infty} f''(K) (S - K)_+ dK$$

- Model-free static replication of $f(S)$:
 - Buy $f(a)$ bonds, each paying an amount 1 at maturity.
 - Buy $f'(a)$ calls $C[a]$.
 - Sell $f'(a)$ puts $P[a]$.
 - Buy $f''(K) dK$ puts $P[K]$, for $K < a$.
 - Buy $f''(K) dK$ calls $C[K]$, for $K > a$.

\(^2\)Carr & Madan (2001).
Contingent claims on the stock market index

- \(S = \) value of stock market index at time \(T \).
- Consider the contingent claim with pay-off \(f(S) \) at \(T \).
- For any \(a \geq 0 \), this pay-off can be expressed as\(^2\):

\[
\begin{align*}
f(S) &= f'(a) [(S - a)_+ - (a - S)_+] \\
&\quad + \int_0^a f''(K)(K - S)_+ \, dK + \int_{a}^{\infty} f''(K)(S - K)_+ \, dK
\end{align*}
\]

- Model-free static replication of \(f(S) \):
 - Buy \(f(a) \) bonds, each paying an amount 1 at maturity.
 - Buy \(f'(a) \) calls \(C[a] \).
 - Sell \(f'(a) \) puts \(P[a] \).
 - Buy \(f''(K) \, dK \) puts \(P[K] \), for \(K < a \).
 - Buy \(f''(K) \, dK \) calls \(C[K] \), for \(K > a \).

\(^2\)Carr & Madan (2001).
Contingent claims on the stock market index

- $S = \text{value of stock market index at time } T$.
- Consider the contingent claim with pay-off $f(S)$ at T.
- For any $a \geq 0$, this pay-off can be expressed as
 \[
 f(S) = f(a) + f'(a) \left[(S - a)_+ - (a - S)_+ \right]
 + \int_0^a f''(K) (K - S)_+ \, dK
 + \int_a^{+\infty} f''(K) (S - K)_+ \, dK
 \]

- Model-free static replication of $f(S)$:
 - Buy $f(a)$ bonds, each paying an amount 1 at maturity.
 - Buy $f'(a)$ calls $C[a]$.
 - Sell $f'(a)$ puts $P[a]$.
 - Buy $f''(K)$ dK puts $P[K]$, for $K < a$.
 - Buy $f''(K)$ dK calls $C[K]$, for $K > a$.

Contingent claims on the stock market index

- $S = \text{value of stock market index at time } T$.
- Consider the **contingent claim** with pay-off $f(S)$ at T.
- For any $a \geq 0$, this pay-off can be expressed as2:

$$f(S) = f(a) + f'(a) \left[(S - a)_+ - (a - S)_+ \right]$$

$$+ \int_0^a f''(K)(K - S)_+ \, dK + \int_a^{+\infty} f''(K)(S - K)_+ \, dK$$

- **Model-free static replication** of $f(S)$:
 - Buy $f(a)$ bonds, each paying an amount 1 at maturity.
 - Buy $f'(a)$ calls $C[a]$.
 - Sell $f'(a)$ puts $P[a]$.
 - Buy $f''(K) \, dK$ puts $P[K]$, for $K < a$.
 - Buy $f''(K) \, dK$ calls $C[K]$, for $K > a$.

Contingent claims on the stock market index

- $S =$ value of stock market index at time T.
- Consider the contingent claim with pay-off $f(S)$ at T.
- For any $a \geq 0$, this pay-off can be expressed as:

$$f(S) = f(a) + f'(a) [(S - a)_+ - (a - S)_+]$$

$$+ \int_0^a f''(K) (K - S)_+ dK + \int_a^{+\infty} f''(K) (S - K)_+ dK$$

- Model-free static replication of $f(S)$:
 - Buy $f(a)$ bonds, each paying an amount 1 at maturity.
 - Buy $f'(a)$ calls $C[a]$.
 - Sell $f'(a)$ puts $P[a]$.
 - Buy $f''(K) dK$ puts $P[K]$, for $K < a$.
 - Buy $f''(K) dK$ calls $C[K]$, for $K > a$.

Contingent claims on the stock market index

- \(S = \text{value of stock market index at time } T \).
- Consider the **contingent claim** with pay-off \(f(S) \) at \(T \).
- For any \(a \geq 0 \), this pay-off can be expressed as\(^2\):

\[
 f(S) = f(a) + f'(a) \left[(S - a)_+ - (a - S)_+ \right] \\
 + \int_0^a f''(K) (K - S)_+ \, dK + \int_a^{+\infty} f''(K) (S - K)_+ \, dK
\]

- **Model-free static replication of** \(f(S) \):
 - Buy \(f(a) \) bonds, each paying an amount 1 at maturity.
 - Buy \(f'(a) \) calls \(C[a] \).
 - Sell \(f'(a) \) puts \(P[a] \).
 - Buy \(f''(K) \, dK \) puts \(P[K] \), for \(K < a \).
 - Buy \(f''(K) \, dK \) calls \(C[K] \), for \(K > a \).

\(^2\)Carr & Madan (2001).
Contingent claims on the stock market index

- $S = \text{value of stock market index at time } T$.
- Consider the **contingent claim** with pay-off $f(S)$ at T.
- For any $a \geq 0$, this pay-off can be expressed as\(^2\):

$$f(S) = f(a) + f'(a) \left[(S - a)_+ - (a - S)_+\right]$$

$$+ \int_0^a f''(K) (K - S)_+ dK + \int_{a}^{+\infty} f''(K) (S - K)_+ dK$$

- **Model-free static replication of** $f(S)$:
 - Buy $f(a)$ bonds, each paying an amount 1 at maturity.
 - Buy $f'(a)$ calls $C[a]$.
 - Sell $f'(a)$ puts $P[a]$.
 - Buy $f''(K) \, dK$ puts $P[K]$, for $K < a$.
 - Buy $f''(K) \, dK$ calls $C[K]$, for $K > a$.

\(^2\)Carr & Madan (2001).
Forward contracts

- Consider the swap contract, underwritten at time 0, with pay-offs at time T given by

$$P = \mathbb{E}[f(S)]$$

- The time-0 price of the forward contract is 0:

$$P = \mathbb{E}[f(S)]$$

- The time-0 forward price in terms of option prices:

$$\mathbb{E}[f(S)] = f(a) + e^{rT}f'(a)(C[a] - P[a])$$
$$+ e^{rT} \int_{0}^{a} f''(K) P[K] dK$$
$$+ e^{rT} \int_{a}^{+\infty} f''(K) C[K] dK$$
Forward contracts

- Consider the swap contract, underwritten at time 0, with pay-offs at time T given by

\[P = \mathbb{E}[f(S)] \]

- The time-0 price of the forward contract is 0:

\[P = \mathbb{E}[f(S)] \]

- The time-0 forward price in terms of option prices:

\[
\mathbb{E}[f(S)] = f(a) + e^{rT} f'(a) (C[a] - P[a]) + e^{rT} \int_0^a f''(K) P[K] dK + e^{rT} \int_a^{\infty} f''(K) C[K] dK
\]
Forward contracts

Consider the swap contract, underwritten at time 0, with pay-offs at time T given by

\[
P = \mathbb{E} [f(S)]
\]

The time-0 price of the forward contract is 0:

\[
P = \mathbb{E} [f(S)]
\]

The time-0 forward price in terms of option prices:

\[
\mathbb{E} [f(S)] = f(a) + e^{rT} f'(a) (C[a] - P[a]) + e^{rT} \int_{0}^{a} f''(K) P[K] dK + e^{rT} \int_{a}^{+\infty} f''(K) C[K] dK
\]
Forward contracts

- **Traded strikes**: \(K_{-l}, K_{-l+1}, \ldots, K_{-1}, K_0, K_1, \ldots, K_{h-1}, K_h \).
- **Approximation for \(\mathbb{E} [f(S)] \)**: (composite trapezoidal rule)

\[
\mathbb{E} [f(S)] \approx f(\mathbb{E}[S]) + e^{rT} \sum_{i=-l}^{h} f''(K_i) \Delta K_i Q[K_i] \\
- \frac{f''(K_0)}{2} (\mathbb{E}[S] - K_0)^2
\]

- \(\Delta K_i = \frac{K_{i+1} - K_{i-1}}{2} \) for \(i = -l + 1, \ldots, h - 1 \).
- \(\Delta K_{-l} = K_{-l+1} - K_{-l} \) and \(\Delta K_h = K_h - K_{h-1} \).
- \(Q[K_i] \) defined by

\[
Q[K_i] = \begin{cases}
P[K_i], & \text{if } K_i < K_0 \\
\frac{C[K_i] + P[K_i]}{2}, & \text{if } K_i = K_0 \\
C[K_i], & \text{if } K_i > K_0
\end{cases}
\]
Forward contracts

- **Traded strikes**: $K_{-l}, K_{-l+1}, \ldots, K_{-1}, K_0, K_1, \ldots, K_{h-1}, K_h$.
- **Approximation for $\mathbb{E}[f(S)]$**: (composite trapezoidal rule)

\[
\mathbb{E}[f(S)] \approx f(\mathbb{E}[S]) + e^{rT} \sum_{i=-l}^{h} f''(K_i) \Delta K_i Q[K_i] - \frac{f''(K_0)}{2} (\mathbb{E}[S] - K_0)^2
\]

- $\Delta K_i = \frac{K_{i+1} - K_{i-1}}{2}$ for $i = -l + 1, \ldots, h - 1$.
- $\Delta K_{-l} = K_{-l+1} - K_{-l}$ and $\Delta K_h = K_h - K_{h-1}$.
- $Q[K_i]$ defined by

\[
Q[K_i] = \begin{cases}
 P[K_i], & \text{if } K_i < K_0 \\
 \frac{C[K_i] + P[K_i]}{2}, & \text{if } K_i = K_0 \\
 C[K_i], & \text{if } K_i > K_0
\end{cases}
\]
Forward contracts

- **Traded strikes:** $K_{-l}, K_{-l+1}, \ldots, K_{-1}, K_0, K_1, \ldots, K_{h-1}, K_h$.

- **Approximation for $\mathbb{E} [f (S)]$:** (composite trapezoidal rule)

\[
\mathbb{E} [f (S)] \approx f (\mathbb{E} [S]) + e^{rT} \sum_{i=-l}^{h} f''(K_i) \Delta K_i Q[K_i] \\
- \frac{f''(K_0)}{2} (\mathbb{E}[S] - K_0)^2
\]

- $\Delta K_i = \frac{K_{i+1} - K_{i-1}}{2}$ for $i = -l + 1, \ldots, h - 1$.
- $\Delta K_{-l} = K_{-l+1} - K_{-l}$ and $\Delta K_h = K_h - K_{h-1}$.
- $Q[K_i]$ defined by

\[
Q[K_i] = \begin{cases}
P[K_i], & \text{if } K_i < K_0 \\
\frac{C[K_i] + P[K_i]}{2}, & \text{if } K_i = K_0 \\
C[K_i], & \text{if } K_i > K_0
\end{cases}
\]
Forward contracts

- **Traded strikes**: $K_{-l}, K_{-l+1}, \ldots, K_{-1}, K_0, K_1, \ldots, K_{h-1}, K_h$.
- **Approximation for $\mathbb{E}[f(S)]$**: (composite trapezoidal rule)

\[
\mathbb{E}[f(S)] \approx f(\mathbb{E}[S]) + e^{rT} \sum_{i=-l}^{h} f''(K_i) \Delta K_i Q[K_i] \\
- \frac{f''(K_0)}{2} (\mathbb{E}[S] - K_0)^2
\]

- $\Delta K_i = \frac{K_{i+1} - K_{i-1}}{2}$ for $i = -l + 1, \ldots, h - 1$.
- $\Delta K_{-l} = K_{-l+1} - K_{-l}$ and $\Delta K_h = K_h - K_{h-1}$.
- $Q[K_i]$ defined by

\[
Q[K_i] = \begin{cases}
P[K_i], & \text{if } K_i < K_0 \\
\frac{C[K_i] + P[K_i]}{2}, & \text{if } K_i = K_0 \\
C[K_i], & \text{if } K_i > K_0
\end{cases}
\]
Forward contracts

- **Traded strikes**: \(K_{-l}, K_{-l+1}, \ldots, K_{-1}, K_0, K_1, \ldots, K_{h-1}, K_h \).
- **Approximation for \(\mathbb{E}[f(S)] \):** (composite trapezoidal rule)

\[
\mathbb{E}[f(S)] \approx f(\mathbb{E}[S]) + e^{rT} \sum_{i=-l}^{h} f''(K_i) \Delta K_i Q[K_i] \\
- \frac{f''(K_0)}{2} (\mathbb{E}[S] - K_0)^2
\]

- \(\Delta K_i = \frac{K_{i+1} - K_{i-1}}{2} \) for \(i = -l + 1, \ldots, h - 1 \).
- \(\Delta K_{-l} = K_{-l+1} - K_{-l} \) and \(\Delta K_h = K_h - K_{h-1} \).
- \(Q[K_i] \) defined by

\[
Q[K_i] = \begin{cases}
P[K_i], & \text{if } K_i < K_0 \\
\frac{C[K_i] + P[K_i]}{2}, & \text{if } K_i = K_0 \\
C[K_i], & \text{if } K_i > K_0
\end{cases}
\]
Perfect herd behavior

- Perfect herd behavior = comonotonicity:
Perfect herd behavior

- Perfect herd behavior = comonotonicity\(^3\):
 \[
 (X_1, \ldots, X_n) \overset{d}{=} \left(F_{X_1}^{-1}(U), \ldots, F_{X_n}^{-1}(U) \right)
 \]

 - \(U\) is a uniform \((0, 1)\) r.v.

- Comonotonicity gap\(^4\):
 - Distance between observed market situation and comonotonic situation.
 - Problem: how to capture this gap in a single number?

\(^3\)D, Denuit, Goovaerts, Kaas & Vyncke (2002a,b)

\(^4\)Laurence (2008).
Perfect herd behavior

- **Perfect herd behavior** $=$ comonotonicity\(^3\):

\[
(X_1, \ldots, X_n) \overset{d}{=} \left(F_{X_1}^{-1}(U), \ldots, F_{X_n}^{-1}(U) \right)
\]

- U is a uniform $(0, 1)$ r.v.

- **Comonotonicity gap**\(^4\):
 - Distance between observed market situation and comonotonic situation.
 - Problem: how to capture this gap in a single number?

\(^3\)D, Denuit, Goovaerts, Kaas & Vyncke (2002a,b)

\(^4\)Laurence (2008).
Perfect herd behavior

- Perfect herd behavior = comonotonicity:

\[(X_1, \ldots, X_n) \overset{d}{=} \left(F_{X_1}^{-1}(U), \ldots, F_{X_n}^{-1}(U) \right) \]

- \(U \) is a uniform \((0,1)\) r.v.

- Comonotonicity gap:
 - Distance between observed market situation and comonotonic situation.
 - Problem: how to capture this gap in a single number?

3 D, Denuit, Goovaerts, Kaas & Vyncke (2002a,b)
Perfect herd behavior

- **Perfect herd behavior** = comonotonicity\(^3\):
 \[
 (X_1, \ldots, X_n) \overset{d}{=} \left(F_{X_1}^{-1}(U), \ldots, F_{X_n}^{-1}(U) \right)
 \]
 - \(U \) is a uniform \((0,1)\) r.v.

- **Comonotonicity gap**\(^4\):
 - Distance between observed market situation and comonotonic situation.
 - **Problem**: how to capture this gap in a single number?

\(^3\)D, Denuit, Goovaerts, Kaas & Vyncke (2002a,b)

\(^4\)Laurence (2008).
Perfect herd behavior

- **Perfect herd behavior** = comonotonicity³:

 \[(X_1, \ldots, X_n) \overset{d}{=} \left(F_{X_1}^{-1}(U), \ldots, F_{X_n}^{-1}(U) \right) \]

 - \(U \) is a uniform \((0, 1)\) r.v.

- **Comonotonicity gap⁴:**
 - Distance between observed market situation and comonotonic situation.
 - **Problem:** how to capture this gap in a single number?

³D, Denuit, Goovaerts, Kaas & Vyncke (2002a,b)
⁴Laurence (2008).
The comonotonic stock market index

- The stock market index:

\[S = \sum_{i=1}^{n} w_i X_i \]

- The comonotonic stock market index:

\[S^c = \sum_{i=1}^{n} w_i F_{X_i}^{-1} (U) \]

- The (approximated) comonotonic stock market index\(^5\):

\[\bar{S}^c = \sum_{i=1}^{n} w_i \bar{F}_{X_i}^{-1} (U) \]

The comonotonic stock market index

- The stock market index:

\[S = \sum_{i=1}^{n} w_i X_i \]

- The comonotonic stock market index:

\[S^c = \sum_{i=1}^{n} w_i F_{X_i}^{-1} (U) \]

- The (approximated) comonotonic stock market index\(^5\):

\[\bar{S}^c = \sum_{i=1}^{n} w_i \bar{F}_{X_i}^{-1} (U) \]

The comonotonic stock market index

The stock market index:

\[S = \sum_{i=1}^{n} w_i X_i \]

The comonotonic stock market index:

\[S^c = \sum_{i=1}^{n} w_i F_{X_i}^{-1} (U) \]

The (approximated) comonotonic stock market index\(^5\):

\[\overline{S}^c = \sum_{i=1}^{n} w_i \overline{F}_{X_i}^{-1} (U) \]

Comonotonic index option prices

- Comonotonic index call option prices:
 - Definition:
 \[\overline{C}^c[K] = e^{-rT} E[(\overline{S}^c - K)_+] \]
 - \(\overline{C}^c[K] \) can be determined from observed stock option prices\(^6\):
 \[\overline{C}^c[K] = \sum_{i=1}^{n} w_i \overline{C}_i[K_i^*] \]
 for appropriately chosen strikes \(K_i^* \).

- Comonotonic index put option prices: \(\overline{P}^c[K] \), similar\(^7\).

\(^7\)Linders, D., Hounnon, Vanmaele (2012).
Comonotonic index option prices

- **Comonotonic index call option prices:**
 - **Definition:**
 \[\overline{C}^c[K] = e^{-rT}E[(\overline{S}^c - K)_+] \]
 - \(\overline{C}^c[K] \) can be determined from observed stock option prices\(^6\):
 \[\overline{C}^c[K] = \sum_{i=1}^{n} w_i \overline{C}_i[K_i^*] \]

 for appropriately chosen strikes \(K_i^* \).

- **Comonotonic index put option prices:** \(\overline{P}^c[K] \), similar\(^7\).

\(^7\) Linders, D., Hounnon, Vanmaele (2012).
Comonotonic index option prices

- **Comonotonic index call option prices:**
 - Definition:
 \[
 \overline{C}^c [K] = e^{-rT} \mathbb{E}[(\overline{S}^c - K)_+] \]
 - \(\overline{C}^c [K] \) can be determined from observed stock option prices\(^6\):
 \[
 \overline{C}^c [K] = \sum_{i=1}^{n} w_i \overline{C}_i [K_i^*]
 \]
 for appropriately chosen strikes \(K_i^* \).

- **Comonotonic index put option prices:** \(\overline{P}^c [K] \), similar\(^7\).

\(^7\) Linders, D., Hounnon, Vanmaele (2012).
Comonotonic index option prices

Comonotonic index call option prices:

Definition:
\[
\overline{C}^c[K] = e^{-rT} \mathbb{E}[(\overline{S}^c - K)_+]
\]

\(\overline{C}^c[K]\) can be determined from observed stock option prices\(^6\):

\[
\overline{C}^c[K] = \sum_{i=1}^{n} w_i \overline{C}_i[K_i^*]
\]

for appropriately chosen strikes \(K_i^*\).

Comonotonic index put option prices: \(\overline{P}^c[K]\), similar\(^7\).

\(^7\) Linders, D., Hounnon, Vanmaele (2012).
Observed and comonotonic DJ - index option prices

Index Option Prices: June 23, 2000

- DJ Calls
- DJ Puts
- DJ Comonotonic Calls
- DJ Comonotonic Puts

- $S(0) = 103.76$, $T = 30$ days
- $HIX[T] = 0.28579$, $CIX[T] = 0.28375$
Observed and comonotonic DJ - index option prices

Index Option Prices: June 23, 2000

- DJ Calls
- DJ Puts
- DJ Comonotonic Calls
- DJ Comonotonic Puts

- \(S(0) = 103.76, \ T = 30 \text{ days} \)
- \(\text{HIX}[T] = 0.28579, \ \text{CIX}[T] = 0.28375 \)
Observed and comonotonic DJ - index option prices

$S(0) = 126, \ T = 30 \text{ days}$

$HIX[T] = 0.36946, \ CIX[T] = 0.36528$
Observed and comonotonic DJ - index option prices

\[S(0) = 126, \ T = 30 \text{ days} \]

\[\text{HIX}[T] = 0.36946, \ \text{CIX}[T] = 0.36528 \]
$S(0) = 86.91, \quad T = 30 \text{ days}$

$\text{HIX}[T] = 0.74353, \quad \text{CIX}[T] = 0.72836$
- $S(0) = 86.91$, $T = 30$ days
- $HIX[T] = 0.74353$, $CIX[T] = 0.72836$
Comonotonic forward prices

Expected value of functions of the comonotonic index price:

\[
\mathbb{E} \left[f \left(\bar{S}^c \right) \right] = f \left(\mathbb{E} \left[S \right] \right) + e^{rT} \int_{0}^{\mathbb{E}[S]} f''(K) \, \bar{P}^c \left[K \right] \, dK \\
+ e^{rT} \int_{\mathbb{E}[S]}^{+\infty} f''(K) \, \bar{C}^c \left[K \right] \, dK
\]

Approximation:

\[
\mathbb{E} \left[f \left(\bar{S}^c \right) \right] \approx f \left(\mathbb{E} \left[S \right] \right) + e^{rT} \sum_{i=-l}^{h} f''(K_i) \, \Delta K_i \, \bar{Q}^c \left[K_i \right] \\
- \frac{f''(K_0)}{2} \left(\mathbb{E} \left[S \right] - K_0 \right)^2
\]

- \(\Delta K_i \) defined as above.
- \(\bar{Q}^c \left[K_i \right] \) defined by

\[
\bar{Q}^c \left[K_i \right] = \begin{cases}
\bar{P}^c \left[K_i \right], & \text{if } K_i < K_0, \\
\frac{\bar{C}^c \left[K_i \right] + \bar{P}^c \left[K_i \right]}{2}, & \text{if } K_i = K_0, \\
\bar{C}^c \left[K_i \right], & \text{if } K_i > K_0.
\end{cases}
\]
Comonotonic forward prices

- Expected value of functions of the comonotonic index price:

\[
\mathbb{E} \left[f \left(S^c \right) \right] = f(\mathbb{E}[S]) + e^{rT} \int_{0}^{\mathbb{E}[S]} f''(K) \bar{P}^c[K] \, dK \\
+ e^{rT} \int_{\mathbb{E}[S]}^{+\infty} f''(K) \bar{C}^c[K] \, dK
\]

- Approximation:

\[
\mathbb{E} \left[f \left(S^c \right) \right] \approx f(\mathbb{E}[S]) + e^{rT} \sum_{i=-l}^{h} f''(K_i) \Delta K_i \bar{Q}^c[K_i] \\
- \frac{f''(K_0)}{2} (\mathbb{E}[S] - K_0)^2
\]

- \(\Delta K_i\) defined as above.
- \(\bar{Q}^c[K_i]\) defined by

\[
\bar{Q}^c[K_i] = \begin{cases}
\bar{P}^c[K_i] & \text{if } K_i < K_0, \\
\frac{\bar{C}^c[K_i] + \bar{P}^c[K_i]}{2} & \text{if } K_i = K_0, \\
\bar{C}^c[K_i] & \text{if } K_i > K_0.
\end{cases}
\]
Comonotonic forward prices

- Expected value of functions of the comonotonic index price:

\[
\mathbb{E} \left[f \left(\bar{S}^c \right) \right] = f \left(\mathbb{E} \left[S \right] \right) + e^{rT} \int_0^{\mathbb{E}[S]} f''(K) \bar{P}^c[K] \, dK \\
+ e^{rT} \int_{\mathbb{E}[S]}^{+\infty} f''(K) \bar{C}^c[K] \, dK
\]

- Approximation:

\[
\mathbb{E} \left[f \left(\bar{S}^c \right) \right] \approx f \left(\mathbb{E} \left[S \right] \right) + e^{rT} \sum_{i=-l}^{h} f''(K_i) \Delta K_i \bar{Q}^c[K_i] \\
- \frac{f''(K_0)}{2} \left(\mathbb{E}[S] - K_0 \right)^2
\]

- \(\Delta K_i \) defined as above.
- \(\bar{Q}^c[K_i] \) defined by

\[
\bar{Q}^c[K_i] = \begin{cases}
\bar{P}^c[K_i], & \text{if } K_i < K_0, \\
\frac{\bar{C}^c[K_i] + \bar{P}^c[K_i]}{2}, & \text{if } K_i = K_0, \\
\bar{C}^c[K_i], & \text{if } K_i > K_0.
\end{cases}
\]
Comonotonic forward prices

- Expected value of functions of the comonotonic index price:

\[
\mathbb{E} \left[f \left(S^c \right) \right] = f \left(\mathbb{E} \left[S \right] \right) + e^{rT} \int_0^{\mathbb{E}[S]} f'' \left(K \right) \overline{P}^c \left[K \right] dK \\
+ e^{rT} \int_{\mathbb{E}[S]}^{+\infty} f'' \left(K \right) \overline{C}^c \left[K \right] dK
\]

- Approximation:

\[
\mathbb{E} \left[f \left(S^c \right) \right] \approx f \left(\mathbb{E} \left[S \right] \right) + e^{rT} \sum_{i=-l}^{h} f'' \left(K_i \right) \Delta K_i \overline{Q}^c \left[K_i \right] \\
- \frac{f'' \left(K_0 \right)}{2} \left(\mathbb{E} \left[S \right] - K_0 \right)^2
\]

- \(\Delta K_i \) defined as above.
- \(\overline{Q}^c \left[K_i \right] \) defined by

\[
\overline{Q}^c \left[K_i \right] = \begin{cases}
\overline{P}^c \left[K_i \right], & \text{if } K_i < K_0, \\
\frac{\overline{C}^c \left[K_i \right] + \overline{P}^c \left[K_i \right]}{2}, & \text{if } K_i = K_0, \\
\overline{C}^c \left[K_i \right], & \text{if } K_i > K_0.
\end{cases}
\]
The implied degree of herd behavior

- Measuring the degree of herd behavior: \(f \) convex

\[
\text{Degree of Herd Behavior} = \frac{\mathbb{E}[f(S)]}{\mathbb{E}[f(S^c)]}
\]

- Definition of the Herd Behavior Index\(^8\):

\[
\text{HIX}_f[T] = \frac{\text{approximation for } \mathbb{E}[f(S)]}{\text{approximation for } \mathbb{E}[f(S^c)]}
\]

- **Nominator:**
 - Captures real market situation.
 - Follows from observed index option prices.

- **Denominator:**
 - Captures comonotonic market situation.
 - Follows from observed stock option prices.

\(^8\) Linders, D., Kukush (2012).
The implied degree of herd behavior

- **Measuring the degree of herd behavior:** \(f \) convex

\[
\text{Degree of Herd Behavior} = \frac{\mathbb{E}[f(S)]}{\mathbb{E}[f(S^c)]}
\]

- **Definition of the Herd Behavior Index\(^8\):**

\[
\text{HIX}_f[T] = \frac{\text{approximation for } \mathbb{E}[f(S)]}{\text{approximation for } \mathbb{E}[f(S^c)]}
\]

- **Nominator:**
 - Captures real market situation.
 - Follows from observed index option prices.

- **Denominator:**
 - Captures comonotonic market situation.
 - Follows from observed stock option prices.

\(^8\)Linders, D., Kukush (2012).
The implied degree of herd behavior

- **Measuring the degree of herd behavior:** \((f\text{ convex})\)

 \[
 \text{Degree of Herd Behavior} = \frac{\mathbb{E}[f(S)]}{\mathbb{E}[f(S^c)]}
 \]

- **Definition of the Herd Behavior Index\(^8\):**

 \[
 \text{HIX}_f[T] = \frac{\text{approximation for } \mathbb{E}[f(S)]}{\text{approximation for } \mathbb{E}[f(S^c)]}
 \]

 - **Nominator:**
 - Captures real market situation.
 - Follows from observed index option prices.

 - **Denominator:**
 - Captures comonotonic market situation.
 - Follows from observed stock option prices.

\(^8\text{Linders, D., Kukush (2012).}\)
The implied degree of herd behavior

- Measuring the degree of herd behavior: \((f\text{ convex})\)

\[
\text{Degree of Herd Behavior} = \frac{\mathbb{E}[f(S)]}{\mathbb{E}[f(S^c)]}
\]

- Definition of the Herd Behavior Index\(^8\):

\[
\text{HIX}_f[T] = \frac{\text{approximation for } \mathbb{E}[f(S)]}{\text{approximation for } \mathbb{E}[f(S^c)]}
\]

- **Nominator:**
 - Captures real market situation.
 - Follows from observed index option prices.

- **Denominator:**
 - Captures comonotonic market situation.
 - Follows from observed stock option prices.

\(^8\)Linders, D., Kukush (2012).
The implied degree of herd behavior

- Measuring the degree of herd behavior: \(f \) convex

\[
\text{Degree of Herd Behavior} = \frac{\mathbb{E}[f(S)]}{\mathbb{E}[f(S^c)]}
\]

- Definition of the Herd Behavior Index\(^8\):

\[
HIX_f [T] = \frac{\text{approximation for } \mathbb{E}[f(S)]}{\text{approximation for } \mathbb{E}[f(S^c)]}
\]

- **Nominator:**
 - Captures real market situation.
 - Follows from observed index option prices.

- **Denominator:**
 - Captures comonotonic market situation.
 - Follows from observed stock option prices.

\(^8\) Linders, D., Kukush (2012).
The implied degree of herd behavior

- Measuring the degree of herd behavior: \(f \) convex

 \[
 \text{Degree of Herd Behavior} = \frac{\mathbb{E}[f(S)]}{\mathbb{E}[f(S^c)]}
 \]

- Definition of the Herd Behavior Index\(^8\):

 \[
 \text{HIX}_f[T] = \frac{\text{approximation for } \mathbb{E}[f(S)]}{\text{approximation for } \mathbb{E}[f(\overline{S}^c)]}
 \]

 - **Nominator:**
 - Captures real market situation.
 - Follows from observed \textit{index option prices}.

 - **Denominator:**
 - Captures comonotonic market situation.
 - Follows from observed \textit{stock option prices}.

\(^{8}\text{Linders, D., Kukush (2012).}\)
The implied degree of herd behavior

- Measuring the degree of herd behavior: \(f \) convex

\[
\text{Degree of Herd Behavior} = \frac{\mathbb{E}[f(S)]}{\mathbb{E}[f(S^c)]}
\]

- Definition of the Herd Behavior Index\(^8\):

\[
\text{HIX}_f \left[T \right] = \frac{\text{approximation for } \mathbb{E}[f(S)]}{\text{approximation for } \mathbb{E}[f(S^c)]}
\]

- **Nominator:**
 - Captures real market situation.
 - Follows from observed index option prices.

- **Denominator:**
 - Captures comonotonic market situation.
 - Follows from observed stock option prices.

\(^8\)Linders, D., Kukush (2012).
The implied degree of herd behavior

- Measuring the degree of herd behavior: \((f\text{ convex})\)

\[
\text{Degree of Herd Behavior } = \frac{\mathbb{E}[f(S)\big]}{\mathbb{E}[f(S^c)\big]}
\]

- Definition of the Herd Behavior Index\(^8\):

\[
\text{HIX}_f[T] = \frac{\text{approximation for } \mathbb{E}[f(S)]}{\text{approximation for } \mathbb{E}[f(S^c)]}
\]

- **Nominator:**
 - Captures real market situation.
 - Follows from observed index option prices.

- **Denominator:**
 - Captures comonotonic market situation.
 - Follows from observed stock option prices.

\(^8\)Linders, D., Kukush (2012).
The implied degree of herd behavior

Example

► The function \(f \):

\[
f (s) = (s - \mathbb{E}[S])^2
\]

► Measuring the degree of herd behavior:

Degree of Herd Behavior = \(\frac{\text{Var} [S]}{\text{Var} [S^c]} \)

► Definition of the HIX:

\[
\text{HIX} [T] = \frac{\text{approximation for Var} [S]}{\text{approximation for Var} [\bar{S}^c]}
\]

\[
= \frac{2e^{rT} \sum_{i=-I}^{h} \Delta K_i \ Q[K_i] - (\mathbb{E}[S] - K_0)^2}{2e^{rT} \sum_{i=-I}^{h} \Delta K_i \ \bar{Q}^c [K_i] - (\mathbb{E}[S] - K_0)^2}
\]
The implied degree of herd behavior

Example

- **The function** f:
 \[
 f(s) = (s - \mathbb{E}[S])^2
 \]

- **Measuring the degree of herd behavior**:
 \[
 \text{Degree of Herd Behavior} = \frac{\text{Var}[S]}{\text{Var}[S^c]}
 \]

- **Definition of the HIX**:

 \[
 \text{HIX}[T] = \frac{\text{approximation for Var}[S]}{\text{approximation for Var}[\overline{S}^c]}
 \]

 \[
 = \frac{2e^{rT} \sum_{i=-l}^{h} \Delta K_i \ Q[K_i] - (\mathbb{E}[S] - K_0)^2}{2e^{rT} \sum_{i=-l}^{h} \Delta K_i \ \overline{Q^c}[K_i] - (\mathbb{E}[S] - K_0)^2}
 \]
The implied degree of herd behavior

Example

- **The function** f:
 \[
 f(s) = (s - \mathbb{E}[S])^2
 \]

- **Measuring the degree of herd behavior**:
 \[
 \text{Degree of Herd Behavior} = \frac{\text{Var}[S]}{\text{Var}[S^c]}
 \]

- **Definition of the HIX**:
 \[
 \text{HIX}[T] = \frac{\text{approximation for Var}[S]}{\text{approximation for Var}[S^c]}
 \]
 \[
 = \frac{2e^{rT} \sum_{i=-l}^{h} Q[K_i] \mathbb{E}[S] - (\mathbb{E}[S] - K_0)^2}{2e^{rT} \sum_{i=-l}^{h} Q^c[K_i] - (\mathbb{E}[S] - K_0)^2}
 \]
Implementation considerations

- Suppose we want to calculate daily values of DJ - HIX\([T]\) for \(T = 30\) calendar days.
- In general, options with maturity \(T\) are not available:
 - Consider near term \(T_1\) and next term \(T_2\) options.
 - HIX\([T]\) is a weighted average:

\[
HIX\,[T] = HIX\,[T_1] \times \left(\frac{T_2 - T}{T_2 - T_1}\right) + HIX\,[T_2] \times \left(\frac{T - T_1}{T_2 - T_1}\right)
\]

- Roll to 2\(^{nd}\) and 3\(^{th}\) expiry dates if \(T_1\) is less than 7 days.
- European index options and American stock options:
 - Replace (non-observed) \(C_i\,[K_{i,j}]\) and \(P_i\,[K_{i,j}]\) by corresponding observed American option prices.
Implementation considerations

- Suppose we want to calculate daily values of $\text{DJ - HIX}[T]$ for $T = 30$ calendar days.

- In general, options with maturity T are not available:
 - Consider near term T_1 and next term T_2 options.
 - $\text{HIX}[T]$ is a weighted average:

$$
\text{HIX}[T] = \text{HIX}[T_1] \times \left[\frac{T_2 - T}{T_2 - T_1} \right] + \text{HIX}[T_2] \times \left[\frac{T - T_1}{T_2 - T_1} \right]
$$

 - Roll to 2^{nd} and 3^{th} expiry dates if T_1 is less than 7 days.

- European index options and American stock options:
 - Replace (non-observed) $C_i[K_{i,j}]$ and $P_i[K_{i,j}]$ by corresponding observed American option prices.
Implementation considerations

- Suppose we want to calculate daily values of DJ - HIX[T] for \(T = 30 \) calendar days.
- In general, options with maturity \(T \) are not available:
 - Consider near term \(T_1 \) and next term \(T_2 \) options.
 - HIX[T] is a weighted average:
 \[
 HIX[T] = HIX[T_1] \times \left(\frac{T_2 - T}{T_2 - T_1} \right) + HIX[T_2] \times \left(\frac{T - T_1}{T_2 - T_1} \right)
 \]
 - Roll to 2nd and 3th expiry dates if \(T_1 \) is less than 7 days.
- European index options and American stock options:
 - Replace (non-observed) \(C_i[K_{ij}] \) and \(P_i[K_{ij}] \) by corresponding observed American option prices.
Implementation considerations

- Suppose we want to calculate daily values of DJ-HIX\([T]\) for \(T = 30\) calendar days.

- In general, options with maturity \(T\) are not available:
 - Consider near term \(T_1\) and next term \(T_2\) options.
 - \(\text{HIX}[T]\) is a weighted average:

\[
\text{HIX}[T] = \text{HIX}[T_1] \times \left[\frac{T_2 - T}{T_2 - T_1} \right] + \text{HIX}[T_2] \times \left[\frac{T - T_1}{T_2 - T_1} \right]
\]

- Roll to 2\(^{nd}\) and 3\(^{th}\) expiry dates if \(T_1\) is less than 7 days.

- European index options and American stock options:
 - Replace (non-observed) \(C_{ij}[K_{ij}]\) and \(P_{ij}[K_{ij}]\) by corresponding observed American option prices.
Implementation considerations

- Suppose we want to calculate daily values of DJ - HIX[T] for $T = 30$ calendar days.
- In general, options with maturity T are not available:
 - Consider near term T_1 and next term T_2 options.
 - HIX[T] is a weighted average:

$$\text{HIX}[T] = \text{HIX}[T_1] \times \left[\frac{T_2 - T}{T_2 - T_1} \right] + \text{HIX}[T_2] \times \left[\frac{T - T_1}{T_2 - T_1} \right]$$

- Roll to 2nd and 3th expiry dates if T_1 is less than 7 days.

- European index options and American stock options:
 - Replace (non-observed) $C_i[K_{i,j}]$ and $P_i[K_{i,j}]$ by corresponding observed American option prices.
Implementation considerations

- Suppose we want to calculate daily values of DJ - HIX\([T] \) for \(T = 30 \) calendar days.
- In general, options with maturity \(T \) are not available:
 - Consider near term \(T_1 \) and next term \(T_2 \) options.
 - HIX\([T] \) is a weighted average:

\[
HIX [T] = HIX [T_1] \times \left[\frac{T_2 - T}{T_2 - T_1} \right] + HIX [T_2] \times \left[\frac{T - T_1}{T_2 - T_1} \right]
\]

- Roll to 2\(^{nd}\) and 3\(^{th}\) expiry dates if \(T_1 \) is less than 7 days.
- European index options and American stock options:
 - Replace (non-observed) \(C_i [K_{i,j}] \) and \(P_i [K_{i,j}] \) by corresponding observed American option prices.
Implementation considerations

- Suppose we want to calculate daily values of DJ - HIX[T] for T = 30 calendar days.
- In general, options with maturity T are not available:
 - Consider near term T_1 and next term T_2 options.
 - HIX[T] is a weighted average:

\[
HIX[T] = HIX[T_1] \times \left[\frac{T - T_1}{T_2 - T_1} \right] + HIX[T_2] \times \left[\frac{T - T_1}{T_2 - T_1} \right]
\]

- Roll to 2^{nd} and 3^{th} expiry dates if T_1 is less than 7 days.
- European index options and American stock options:
 - Replace (non-observed) C_i[K_{i,j}] and P_i[K_{i,j}] by corresponding observed American option prices.
The DJ-HIX

Historical herd behavior over time

- Values of DJ-HIX for $T = 30$ calendar days.
The DJ-HIX

Historical herd behavior over time

- Values of **DJ-HIX** for \(T = 30 \) calendar days.
The DJ-HIX
Recent herd behavior over time

- Recent herd behavior: www.kuleuven.be/insurance.
The DJ-HIX

Recent herd behavior over time

- **Time period:** October 24, 2011 - September 27, 2012.

![Dow Jones Industrial Average](image1)

![Market implied degree of herd behavior](image2)

- **Recent herd behavior:** www.kuleuven.be/insurance.
Implied herd behavior and the VIX methodology

- **Variance swap contract** (set up at 0, pay-offs at T):

 Fixed leg

 Floating leg

 \[SR[T] \]

 \[RV[T] \]

- **The Realized Variance**:

 \[RV[T] = \frac{1}{T} \sum_{j=1}^{365} \left(\ln S \left(\frac{j}{365} \right) - \ln S \left(\frac{j-1}{365} \right) \right)^2 \]

- **The Swap Rate**:

 \[SR[T] = \mathbb{E}[RV[T]] \]
Implied herd behavior and the VIX methodology

- **Variance swap contract** (set up at 0, pay-offs at T):

 $\text{Fixed leg} \quad \begin{array}{c} SR[T] \quad \text{Floating leg} \\ RV[T] \end{array}$

- **The Realized Variance**:

 $\text{RV} [T] = \frac{1}{T} \sum_{j=1}^{365 \times T} \left(\ln S \left(\frac{j}{365} \right) - \ln S \left(\frac{j - 1}{365} \right) \right)^2$

- **The Swap Rate**:

 $\text{SR} [T] = \mathbb{E} [\text{RV} [T]]$
Implied herd behavior and the VIX methodology

- **Variance swap contract** (set up at 0, pay-offs at T):

 Fixed leg \hspace{2cm} Floating leg

 - $SR[T]$
 - $RV[T]$

- **The Realized Variance**:

 $$RV[T] = \frac{1}{T} \sum_{j=1}^{365 \times T} \left(\ln S \left(\frac{j}{365} \right) - \ln S \left(\frac{j-1}{365} \right) \right)^2$$

- **The Swap Rate**:

 $$SR[T] = \mathbb{E}[RV[T]]$$
Implied herd behavior and the VIX methodology

- **Measuring the degree of herd behavior:**

 \[
 \text{Degree of Herd Behavior} = \frac{SR[T]}{SR^c[T]}
 \]

- **The Comonotonicity Index (CIX)\(^9\):**

 \[
 \text{CIX}[T] = \frac{\text{approximation of } SR[T]}{\text{approximation of } SR^c[T]}
 \]

Measuring the degree of herd behavior:

\[
\text{Degree of Herd Behavior} = \frac{\text{SR}[T]}{\text{SR}^c[T]}
\]

The Comonotonicity Index (CIX)\(^9\):

\[
\text{CIX}[T] = \frac{\text{approximation of SR}[T]}{\text{approximation of SR}^c[T]}
\]

DJ-HIX vs. DJ-CIX

- Values of **DJ-HIX** and **DJ-CIX** for $T = 30$ calendar days.
DJ-HIX vs. DJ-CIX

- Values of **DJ-HIX** and **DJ-CIX** for $T = 30$ calendar days.
- **Time period:** January, 2006 - October, 2009.
DJ-HIX vs. DJ-Volatility Index vs. DJ-Implied Correlation
Conclusions

- The HIX:
 - reflects market’s perception of future co-movement behavior of stock prices,
 - is forward looking,
 - is based on observed option data,
 - HIX is model-independent.

- High levels of the HIX are a sign of a bearish market.

- The HIX may give information about the degree of diversification that is possible by investing in a portfolio of stocks.

- Trading the comonotonicity gap.
Conclusions

- The HIX:
 - reflects market’s perception of future co-movement behavior of stock prices,
 - is forward looking,
 - is based on observed option data,
 - HIX is model-independent.

- High levels of the HIX are a sign of a bearish market.

- The HIX may give information about the degree of diversification that is possible by investing in a portfolio of stocks.

- Trading the comonotonicity gap.
Conclusions

- The HIX:
 - reflects market’s perception of future co-movement behavior of stock prices,
 - is forward looking,
 - is based on observed option data,
 - HIX is model-independent.

- High levels of the HIX are a sign of a bearish market.

- The HIX may give information about the degree of diversification that is possible by investing in a portfolio of stocks.

- Trading the comonotonicity gap.
Conclusions

- The HIX:
 - reflects market’s perception of future co-movement behavior of stock prices,
 - is forward looking,
 - is based on observed option data,
 - HIX is model-independent.

- High levels of the HIX are a sign of a bearish market.
- The HIX may give information about the degree of diversification that is possible by investing in a portfolio of stocks.
- Trading the comonotonicity gap.
Conclusions

- The HIX:
 - reflects market’s perception of future co-movement behavior of stock prices,
 - is forward looking,
 - is based on observed option data,
 - HIX is model-independent.

- High levels of the HIX are a sign of a bearish market.
- The HIX may give information about the degree of diversification that is possible by investing in a portfolio of stocks.
- Trading the comonotonicity gap.
Conclusions

- The HIX:
 - reflects market’s perception of future co-movement behavior of stock prices,
 - is forward looking,
 - is based on observed option data,
 - HIX is model-independent.

- High levels of the HIX are a sign of a bearish market.
 - The HIX may give information about the degree of diversification that is possible by investing in a portfolio of stocks.
 - Trading the comonotonicity gap.
Conclusions

- The HIX:
 - reflects market’s perception of future co-movement behavior of stock prices,
 - is forward looking,
 - is based on observed option data,
 - HIX is model-independent.

- High levels of the HIX are a sign of a bearish market.

- The HIX may give information about the degree of diversification that is possible by investing in a portfolio of stocks.

- Trading the comonotonicity gap.
Conclusions

- The HIX:
 - reflects market’s perception of future co-movement behavior of stock prices,
 - is forward looking,
 - is based on observed option data,
 - HIX is model-independent.

- High levels of the HIX are a sign of a bearish market.
- The HIX may give information about the degree of diversification that is possible by investing in a portfolio of stocks.
- Trading the comonotonicity gap.
References

References II

