Continuous partition-of-unity copulas
and their application
to risk management and other fields

Prof. Dr. Dietmar Pfeifer
Institut für Mathematik
Universität Oldenburg, Germany

Dr. Olena Ragulina
Dept. of Probability Theory, Statistics and Actuarial Mathematics
Taras Shevchenko National University of Kyiv, Ukraine

ASTIN Online Colloquium
Orlando, June 2022
Agenda

1. Introduction & formal framework
2. Construction from given data
3. Case studies
4. Extension to arbitrary dimensions
5. Bibliography / References
1. Introduction & formal framework

Motivation:

- Extension of discrete partition-of-unity copulas to the continuous case
- Construction of new multivariate copulas on the basis of a generalized infinite partition-of-unity approach (extendable to the uncountable infinite case)
- Construction allows for tail-dependence as well as for asymmetry
- Can be easily implemented for risk management purposes
- Particular interest: how to fit such copulas to highly asymmetric data?
1. Introduction & formal framework

Formal framework:

Let $\mathbb{Z}^+ = \{0,1,2,3,\cdots\}$ and suppose that $\{\varphi_i(u)\}_{i \in \mathbb{Z}^+}$ and $\{\psi_j(v)\}_{j \in \mathbb{Z}^+}$ are non-negative maps defined on $(0,1)$ such that:

$$\sum_{i=0}^{\infty} \varphi_i(u) = \sum_{j=0}^{\infty} \psi_j(v) = 1$$ \hspace{1cm} (1)

$$\alpha_i := \int_0^1 \! \varphi_i(u) \, du > 0, \quad \beta_j := \int_0^1 \! \psi_j(v) \, dv > 0, \quad i, j \in \mathbb{Z}^+. \hspace{1cm} (2)$$

- $\{\varphi_i(u)\}_{i \in \mathbb{Z}^+}$ and $\{\psi_j(v)\}_{j \in \mathbb{Z}^+}$ can be thought of representing discrete distributions over \mathbb{Z}^+ with parameters u and v, resp.
- The sequences $\{\alpha_i\}_{i \in \mathbb{Z}^+}$ and $\{\beta_j\}_{j \in \mathbb{Z}^+}$ represent the probabilities of the corresponding mixed distributions.

Continuous partition-of-unity copulas and their application to risk management and other fields
1. Introduction & formal framework

Formal framework:

Let \(\{p_{ij}\}_{i,j \in \mathbb{Z}^+} \) represent the probabilities of an arbitrary discrete bivariate distribution over \(\mathbb{Z}^+ \times \mathbb{Z}^+ \) with marginal distributions given by

\[
p_{i*} = \sum_{j=0}^{\infty} p_{ij} = \alpha_i \text{ and } p_{*j} = \sum_{i=0}^{\infty} p_{ij} = \beta_j \text{ for } i, j \in \mathbb{Z}^+. \tag{3}\]

Then

\[
c(u,v) := \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} p_{ij} \frac{\varphi_i(u)}{\alpha_i} \frac{\psi_j(v)}{\beta_j}, \quad u,v \in (0,1) \tag{4}\]

defines the density of a bivariate copula, called (infinite) partition-of-unity copula.
1. Introduction & formal framework

Formal framework:

From a "dual" point of view, we can rewrite (4) as

\[c(u,v) := \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} p_{ij} \frac{\varphi_i(u) \psi_j(v)}{\alpha_i \beta_j} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} p_{ij} f_i(u) g_j(v), \ u, v \in (0,1) \]

(5)

where

\[f_i(\cdot) = \frac{\varphi_i(\cdot)}{\alpha_i} \] and \[g_j(\cdot) = \frac{\psi_j(\cdot)}{\beta_j}, \ i, j \in \mathbb{Z}^+ \]

(6)

denote the densities induced by \(\{\varphi_i(u)\}_{i \in \mathbb{Z}^+} \) and \(\{\psi_j(v)\}_{j \in \mathbb{Z}^+} \). This means that the copula density \(c(u,v) \) can also be seen as a mixture of product densities.
1. Introduction & formal framework

Formal framework:

Example 1 (Binomial distributions – Bernstein copula):

For fixed integers $a, b \geq 2$, consider the family of binomial distributions given by their point masses

$$
\varphi_{a,j}(u) = \begin{cases}
\binom{a-1}{i} i^i (1-u)^{a-1-i}, & i = 0, \ldots, a-1 \\
0, & i \geq a
\end{cases}
$$

and $\psi_{b,j}(v) = \varphi_{b,j}(v)$ for $i, j \in \mathbb{Z}^+$ and $(u, v) \in (0,1)$.

We have
1. Introduction & formal framework

Formal framework:

Example 1 (Binomial distributions – Bernstein copula):

\[f_{a,i} = \int_0^1 \varphi_{a,i}(u) du = \frac{1}{a}, \quad \beta_{b,j} = \int_0^1 \psi_{b,j}(v) dv = \frac{1}{b}, \]

where \(f_{a,i} \) and \(g_{b,j} \) are densities of a beta distribution with parameters \((i, a+1-i) \) and \((j, b+1-j) \) resp., \(p_{i*} = \frac{1}{a} \) and \(p_{j*} = \frac{1}{b} \), so

\[c_{a,b}(u,v) = ab \sum_{i=0}^{a} \sum_{j=0}^{b} p_{i,j} \binom{a-1}{i} \binom{b-1}{j} u^{i-1}(1-u)^{a-i} v^{j-1}(1-v)^{b-j}, \quad u, v \in (0,1) \]

which is the density of a bivariate Bernstein copula.
1. Introduction & formal framework

Formal framework:

Example 2 (Negative binomial distributions):

For fixed integers $a, b \geq 2$, consider the family of negative binomial distributions given by their point masses

$$\varphi_{a,i}(u) = \binom{a+i-1}{i} u^i (1-u)^a, \quad (10)$$

and $\psi_{b,j}(v) = \varphi_{b,j}(v)$ for $i, j \in \mathbb{Z}^+$ and $(u,v) \in (0,1)$.

We have
1. Introduction & formal framework

Formal framework:

Example 2 (Negative binomial distributions):

\[
\alpha_{a,j} = \int_0^1 \varphi_{a,j}(u) du = \frac{a}{(a+i)(a+i+1)} \quad \beta_{b,j} = \frac{b}{(b+j)(b+j+1)},
\]

(11)

\(f_{a,i}\) and \(g_{b,j}\) are densities of a beta distribution with parameters \((i+1,a+1)\) and \((j+1,b+1)\), \(p_{i} = \frac{a}{(a+i)(a+1+i)}\), \(p_{j} = \frac{b}{(b+j)(b+1+j)}\), so

\[
c_{a,b}(u,v) = (a+1)(b+1) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} p_{ij} \binom{a+i+1}{i} \binom{b+j+1}{j} u^i (1-u)^v v^j (1-v)^b, u, v \in (0,1).
\]

(12)
1. Introduction & formal framework

Formal framework:

Example 2 (Negative binomial distributions):

Negative binomial copulas typically show a tail dependence:

<table>
<thead>
<tr>
<th>β</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_\nu(\beta)$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{5}{8}$</td>
<td>$\frac{11}{16}$</td>
<td>$\frac{93}{256}$</td>
<td>$\frac{193}{1024}$</td>
<td>$\frac{793}{2048}$</td>
<td>$\frac{1619}{4096}$</td>
<td>$\frac{26333}{262144}$</td>
<td>$\frac{53381}{5368704}$</td>
<td>$\frac{215955}{268435456}$</td>
</tr>
</tbody>
</table>

with $\lambda_\nu(\beta) = \lim_{\nu \to 1} \frac{1}{1-t} \int_0^1 \int_0^1 c_\nu(u,v) \, du \, dv = \frac{2\Gamma(2,\beta)}{\Gamma^2(\beta)} \int_0^1 \int_0^1 \frac{x^\beta}{(x+y)^{2\beta+1}} \, dx \, dy = 1 - \frac{\left(\frac{2}{\beta}\right)}{4^\beta} - \frac{1}{\sqrt{\pi\beta}}$

for large β.

Continuous partition-of-unity copulas and their application to risk management and other fields
1. Introduction & formal framework

Formal framework:

Example 3 (Poisson distributions):

For fixed $a, b > 0$ consider the family of Poisson distributions given by their point masses

$$\varphi_{a,j}(u) = (1-u)^a \frac{a^j L(u)^j}{j!},$$

(13)

$$L(u) := -\ln(1-u), \quad \psi_{b,j}(v) = \varphi_{b,j}(v), \quad i, j \in \mathbb{Z}^+, \quad (u, v) \in (0,1).$$

We have
1. Introduction & formal framework

Formal framework:

Example 3 (Poisson distributions):

\[
\alpha_{i,j} = \int_0^1 \varphi_{i,j}(u) du = \left(\frac{a}{a+1} \right) \left(1 - \frac{a}{a+1} \right), \quad \beta_{i,j} = \left(\frac{b}{b+1} \right) \left(1 - \frac{b}{b+1} \right)
\]

which correspond to geometric distributions over \(\mathbb{Z}^+ \) with means \(a \) and \(b \),

\[
p_i = \left(\frac{a}{a+1} \right) \left(1 - \frac{a}{a+1} \right), \quad p_j = \left(\frac{b}{b+1} \right) \left(1 - \frac{b}{b+1} \right), \quad i, j \in \mathbb{Z}^+
\]

\[
c_{u,v} = (a+1)(b+1) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} p_i \frac{(a+1)^i (b+1)^j}{i! j!} L(u)(1-u)^i L(v)(1-v)^j, \quad u, v \in (0,1).
\]
1. Introduction & formal framework

Formal framework:

- Bernstein copula, $m = 3$; no tail dependence
- Negative binomial copula, $\beta = 3$; $\lambda_0(\beta) = 0.6875$
- Poisson copula, $\gamma = 5$; no tail dependence
1. Introduction & formal framework

Formal framework:

Remark: Sklar’s theorem provides a general method to construct pairs of discrete r.v.’s \((X,Y)\) with joint probabilities \(p_{ij} = P(X = i, Y = j)\) and marginal probabilities \(\{\alpha_i\}_{i \in \mathbb{Z}^+}\) and \(\{\beta_j\}_{j \in \mathbb{Z}^+}\):

Assume quantile functions \(Q_X, Q_Y\) of \(X, Y\) and a pair of r.v’s \((U,V)\) with a given copula \(\tilde{C}\). Then \((X,Y) = (Q_X(U), Q_Y(V))\) has joint probabilities

\[
p_{ij} = P(X = i, Y = j) = P\left(\sum_{k=0}^{i-1} \alpha_k < U \leq \sum_{k=0}^{i-1} \alpha_k, \sum_{k=0}^{j-1} \beta_k < V \leq \sum_{k=0}^{j-1} \beta_k\right)
= \tilde{C}\left(\sum_{k=0}^{i-1} \alpha_k, \sum_{k=0}^{j-1} \beta_k\right) + \tilde{C}\left(\sum_{k=0}^{i-1} \alpha_k, \sum_{k=0}^{j-1} \beta_k\right) - \tilde{C}\left(\sum_{k=0}^{i-1} \alpha_k, \sum_{k=0}^{j-1} \beta_k\right) - \tilde{C}\left(\sum_{k=0}^{i-1} \alpha_k, \sum_{k=0}^{j-1} \beta_k\right).
\] (17)
1. Introduction & formal framework

Formal framework:

Idea: use appropriate continuous extensions \tilde{C} of the empirical copula for modeling the $\{p_{i,j}\}_{i,j \in \mathbb{Z}^+}$ (cf. Bernstein approach).

Lemma 1: Let (U,V) be a pair of rv’s with given copula \tilde{C}. Then the (X,Y) with $\{p_{i,j}\}_{i,j \in \mathbb{Z}^+}$ as joint probabilities from Examples 1, 2 and 3 can be constructed as follows (note: $|z| = \min\{x \in \mathbb{R} | x \geq z\}, |z| = \max\{x \in \mathbb{R} | x \leq z\}$):

Example 1: $X = \lfloor aU \rfloor, \ Y = \lfloor bV \rfloor$,

Example 2: $X = \frac{aU}{1-U}, \ Y = \frac{bV}{1-V}$,

Example 3: $X = \frac{-\ln(1-U)}{\ln(a+1)-\ln a}, \ Y = \frac{-\ln(1-V)}{\ln(b+1)-\ln b}$.

Continuous partition-of-unity copulas and their application to risk management and other fields
2. Construction from given data

Assumptions:

- rv's \((X_i, Y_i), i = 1, \ldots, n\) iid pairs with pairwise copula \(C\)
- continuous marginal distributions (no ties!)
- \(\mathbf{R}_X = (R_{x1}, \ldots, R_{xn})^T\) and \(\mathbf{R}_Y = (R_{y1}, \ldots, R_{yn})^T\) being the ranks of the vectors \(X = (X_1, \ldots, X_n)\) and \(Y = (Y_1, \ldots, Y_n)\), resp.

The empirical copula is usually identified with the point set of relative ranks, i.e. \(\left\{ \frac{r_{11}}{n+1}, \frac{r_{21}}{n+1}, \ldots, \frac{r_{in}}{n+1}, \frac{r_{jn}}{n+1} \right\}\).

For the construction of appropriate \(\{p_{ij}\}_{i,j \in \mathbb{Z}^+}\) we need . . .
2. Construction from given data

Lemma 2: Let \(C_1, \ldots, C_n \) be arbitrary bivariate copulas with densities \(c_1, \ldots, c_n \) and \((U_i, V_i)\) independent random vectors with the copula \(C_i \) for each pair \((U_i, V_i), i = 1, \ldots, n\). Let further \(r_1 = (r_{11}, \ldots, r_{1n})^\top \) and \(r_2 = (r_{21}, \ldots, r_{2n})^\top \) be arbitrary permutations of \((1,2,\ldots,n)^\top\) and the random variable \(I \) follow a discrete uniform distribution over the set \(\{1,2,\ldots,n\} \), independent of the \((U_i, V_i)\) for \(i = 1, \ldots, n \). Then the random vector \((U, V)\) defined by

\[
U := \frac{r_1 - 1}{n} + \frac{U_i}{n}, \quad V := \frac{r_2 - 1}{n} + \frac{V_i}{n}
\]

(18)

has continuous marginal uniform distributions over \((0,1)\) and density

\[
c(u,v) = n \sum_{k=1}^{n} \left[\left| \frac{r_{1k} - 1}{n} \right| \right] \left[\left| \frac{r_{2k} - 1}{n} \right| \right] (u) \cdot 1_{\left[\frac{r_{1k} - 1}{n}, \frac{r_{1k}}{n} \right]} (u) \cdot 1_{\left[\frac{r_{2k} - 1}{n}, \frac{r_{2k}}{n} \right]} (v) \cdot c_k (nu - r_{1k} + 1, nv - r_{2k} + 1), \quad u, v \in (0,1).
\]

(19)
2. Construction from given data

To obtain a realization of (U,V) first select a pair (r_{yi}, r_{zi}) from the set of all permutation pairs by a discrete uniform distribution over \{1,2,...,n\} and then draw a sample from C_i rescaled to the interval $\left[\frac{r_{yi} - 1}{n}, \frac{r_{yi}}{n} \right] \times \left[\frac{r_{zi} - 1}{n}, \frac{r_{zi}}{n} \right]$. This corresponds to a particular patchwork copula construction, see e.g. Durante et al. (2013).

The following graphs show different realizations of such a construction for $n = 10$ and $r_1 = (3,1,4,2,8,6,5,7,9,10)^T$ and $r_2 = (8,5,7,2,4,6,1,3,9,10)^T$, with local Gaussian copulas for given fixed pairwise correlation ρ.
2. Construction from given data

\[\rho = 0.75 \quad \rho = 0.90 \quad \rho = -0.75 \quad \rho = -0.90 \]
2. Construction from given data

Models of particular interest:

For the rook copula see Cottin and Pfeifer (2014); for the so-called shuffles of M (Fréchet shuffles) see e.g. Nelsen (2007), chapter 3.2.3.

\[\rho = 0 \quad \text{rook copula} \]

\[\rho = 1 \quad \text{upper Fréchet shuffle} \]

\[\rho = -1 \quad \text{lower Fréchet shuffle} \]
3. Case studies

- Data set treated in Cottin and Pfeifer (2014), Example 4.2 and Pfeifer et al. (2019), Section 6.

- Effects of the kind of dependence modeling (w/ or w/o upper tail dependence) on the VaR for the aggregated portfolio with various risk levels; similarly to Maciag et al. (2016)
3. Case studies

scatterplot of original data
scatterplot of ranks
3. Case studies

5,000 simulated pairs of the data-driven copulas and empirical copula (large points):

- upper Fréchet shuffle
- rook copula
- lower Fréchet shuffle

binomial copula, $a = 22$, $b = 27$
3. Case studies

5,000 simulated pairs of the data-driven copulas and empirical copula (large points):

- upper Fréchet shuffle
- rook copula
- lower Fréchet shuffle
- negative binomial copula, $a = 17$, $b = 22$
3. Case studies

5,000 simulated pairs of the data-driven copulas and empirical copula (large points):

- upper Fréchet shuffle
- rook copula
- lower Fréchet shuffle

Poisson copula, \(a = 17, b = 22 \)
3. Case studies

Q^(u) for aggregated risk based on the largest 100,000 observations from a total of 10^6 simulations, with estimated marginal distributions:
Q^(u) for aggregated risk based on the largest 100,000 observations from a total of 10^6 simulations, with estimated marginal distributions:

empirical quantile functions Q^(u), negative binomial copula
3. Case studies

$Q^\wedge(u)$ for aggregated risk based on the largest 100,000 observations from a total of 10^6 simulations, with estimated marginal distributions:

![Empirical quantile functions $Q^\wedge(u)$ for Poisson and Fréchet copulas.](image)

Empirical quantile functions $Q^\wedge(u)$, Poisson copula.
4. Extension to arbitrary dimensions

Assumptions:

- \(\{ \varphi_{ki}(u) \}_{i \in \mathbb{Z}^+} \) for \(k = 1, \ldots, d' \) discrete probabilities with
 \[
 \sum_{i=0}^{\infty} \varphi_{ki}(u) = 1 \text{ for } u \in (0, 1) \tag{20}
 \]
 \[
 \int_{0}^{1} \varphi_{ki}(u) du = \alpha_{ki} > 0 \text{ for } i \in \mathbb{Z}^+. \tag{21}
 \]

- \(\{ p_i \}_{i \in \mathbb{Z}^+} \) is a distribution of an arbitrary discrete \(d \)-dimensional random vector \(Z \) over \(\mathbb{Z}^{+d} \) where, with \(i = (i_1, \ldots, i_d) \),
 \[
 P(Z = i) = p_i, \ i \in \mathbb{Z}^{+d}. \tag{22}
 \]

- marginal distributions with
 \[
 P(Z_k = i) = \alpha_{ki}, \ i \in \mathbb{Z}^+, k = 1, \ldots, d. \tag{23}
 \]
4. Extension to arbitrary dimensions

Then

\[c(u) := \sum_{i \in \mathbb{Z}^+} \rho_i \prod_{k=1}^{d} \varphi_{k, i}(u_k), \quad u = (u_1, \ldots, u_d) \in (0,1)^d \]

(24)

defines the density of a \(d \)-variate copula, which is again called generalized partition-of-unity copula. Alternatively, we can rewrite (24) again as

\[c(u) = \sum_{i \in \mathbb{Z}^+} \rho_i \prod_{k=1}^{d} f_{k, i}(u_k), \quad u = (u_1, \ldots, u_d) \in (0,1)^d \]

(25)

where the \(f_{k, i}(\cdot) = \frac{\varphi_{k,i}(\cdot)}{\alpha_{ki}} \), \(i \in \mathbb{Z}^+, k = 1, \ldots, d \) denote the Lebesgue densities induced by the \(\{\varphi_{k,i}(u)\}_{i \in \mathbb{Z}^+} \).
5. Bibliography / References

