Required Sample Size in Capital Modeling

Kevin Zhang, PhD, FCAS
The Cincinnati Insurance Company
Contents

• Description of a capital model
• Why is the sample size important?
• Mathematical preliminary: limit distribution of a sample statistic
• A realistic example: required sample size for estimating the following statistics
 o The mean
 o Value-at-Risk (VaR)
 o Tail-Value-at-Risk (TVaR)
 o Multiple measures
• Tail behavior of modeled surplus is dominated by catastrophe losses
• Unsolved problems
A capital model is used to determine the required capital

- A one-year stochastic model: we model the yearend surplus change, and compute the required capital as a VaR or TVaR of the surplus change distribution
- Investments and catastrophes contribute the greatest risk
 - Other risks are less volatile in one year
- To estimate VaR (TVaR), we run a simulation to get a sample, then find the corresponding sample VaR (TVaR)
- Question: How many paths should we simulate so that a sample VaR (TVaR) is a good estimate of the true VaR (TVaR)?
- Note: in this study our question is not whether a model is a good model, but whether a sample is a good sample
Sample size is a big problem in capital modeling

- Capital concerns the deep tail, e.g., 1-in-1000-year surplus loss
- A distribution of cat losses has a fat tail
- High degree of precision is needed, since risk metrics are reported to the BoD, rating agencies and regulators and are used in making business decisions
- In other fields involving random sampling, a sample size of 10,000 is considered large. In capital modeling, 100,000 is often not enough
To estimate a risk metric, we run a simulation and calculate the corresponding metric of the sample

• Intuition: When a sample is large, the empirical distribution of the sample is near the true distribution, and any sample statistic is near the true statistic

• Mathematics: Sample statistics, with varying seeds, form a normal distribution with a small variance and centered at the true statistic. Increasing the sample size will decrease the variance
We are all familiar with how sample means are distributed around the true mean

- Central Limit Theorem: Draw a random sample of size n from a distribution with mean μ and variance σ^2. If n is large, then the sample mean \bar{X} is (approximately) normally distributed with mean μ and variance $\frac{\sigma^2}{n}$
- If we desire \bar{X} to fall in the interval $(\mu - a, \mu + a)$ with 95% probability, then

$$n \geq \left(\frac{1.96\sigma}{a}\right)^2$$
There is a similar formula for VaR

• To estimate $\text{VaR}_p(X) \equiv x_p$, we draw a sample of size n and find the $[n(1 - p)]^{th}$ largest value \hat{x}_p

• If we desire \hat{x}_p to fall in the interval $(x_p - a, x_p + a)$ with 95% probability, then

$$n \geq \left(\frac{1.96}{af(x_p)} \right)^2 p(1 - p)$$

where $f(x)$ is the probability density function of X
... and for TVaR

- To estimate $TVaR_p(X) \equiv t_p$, we draw a sample of size n and calculate the sample TVaR

$$
\hat{t}_p = \frac{1}{n(1 - p)} \sum_{x_i > \hat{x}_p} x_i
$$

- If we desire \hat{t}_p to fall in the interval $(t_p - a, t_p + a)$ with 95% probability, then

$$
n \geq \left(\frac{1.96}{a(1 - p)} \right)^2 V \left((X - x_p)^+ \right)
$$

where V means the variance
The quantile function is useful for understanding sample-size formulas related to VaR and TVaR

- The quantile function for a CDF \(y = F(x) \) is \(x = F^{-1}(p) \equiv G(p) \)
- To use the formula in slide 7 we need to estimate \(\frac{1}{f(x_p)} \), which is the slope \(G'(p) \)
How to estimate the unknown parameters $\sigma, f(x_p), V((X - x_p)^+)$?

• Estimate parameters from an arbitrary sample
 o Okay to run fewer paths, since only need rough estimates
 o Slightly conservative estimates are desirable

• May use prior knowledge about the distribution
 o E.g., if a stock portfolio is 5% larger than previous year, then its σ is likely also 5% larger

• May simulate a component instead of the full model
 o E.g., surplus loss is dominated by cat loss at the tail, which means the CDF curves of surplus and cat have similar shape. Then $f(x_p)$ or $V((X - x_p)^+)$ of the former can be estimated with that of the latter (see slide 20)
A realistic example

• A midsized P&C company
 o $1B property premium; $160M mean cat loss
 o $5B stock & bond portfolio; 4% mean investment gain

• Modeled surplus loss SL is a sum of
 o Modeled cat loss CL
 o Modeled investment loss IL (negative investment gain)
 o Other items including reserve change, premium, expense and non-cat loss, which altogether vary modestly in one year

• It suffices to calculate required sample size for the “reduced” surplus loss
 \[SL = CL + IL \]
Purpose of solving the example

To demonstrate:

- What questions may be asked?
- What questions may be answered?
- What results may be expected?
- What problems are yet to be solved?
How big a sample is required for estimating the mean?

1. Run a simulation and compute the sample standard deviation (in million)
 \[\hat{\sigma}_{CL} = 97.6 \quad \hat{\sigma}_{IL} = 278.9 \]

2. Set error tolerance to be about 1% of mean
 \[a_{CL} = 2 \quad a_{IL} = 2 \]

3. Use the formula in slide 6 to compute the required sample size
 \[N_{CL} = 9,100 \quad N_{IL} = 74,700 \]

4. Some conclusions
 - The investment loss has a larger SD than the cat loss, although the latter has greater tail risk
 - It requires more paths to estimate the mean for the investment loss than for the cat loss
We need the slope of $G(p)$ to calculate sample sizes for VaR. It is easy to visualize slopes on a sample plot.

1. Run an arbitrary simulation to estimate slopes @ 99.9% and 99.95%.
How big a sample is required for estimating VaR?

2. Select an error tolerance $\alpha = 100$ for both CL and IL at both 99.9% and 99.95%

3. Use the formula in slide 7 to compute the required sample size

$$N_{CL}(99.9\%) = 149,700 \quad N_{IL}(99.9\%) = 3,200$$
$$N_{CL}(99.95\%) = 309,800 \quad N_{IL}(99.95\%) = 4,300$$

4. Some conclusions
 - The cat loss has much greater slopes (on the quantile function) than the investment loss
 - It requires many more paths to estimate VaRs for the cat loss than for the investment loss
 - Sample size of 100,000 is not enough for accurately estimating cat VaRs, but more than enough for investment VaRs
What is the error range for a 100k-path simulation

• Given sample size 100,000 we can compute error size a (with 95% confidence) using the same formula

$$a_{CL}(99.9\%) = 122 \quad a_{IL}(99.9\%) = 18$$

$$a_{CL}(99.95\%) = 176 \quad a_{IL}(99.95\%) = 21$$

• For the cat loss, the error ranges are about 10% of the VaRs – not acceptable
We usually use TVaR at lower return periods than we do VaR. We will estimate TVaR at 99.8% and 99.9%

1. Run a simulations of cat and investment and compute from the samples the variance $V\left((X - \text{VaR}_p(X))^+\right)$ at $p = 99.8\%$ and $p = 99.9\%$

2. Select error bound $a = 100$

3. Use the formula in slide 8 to compute the required number of paths

\[
N_{CL}(99.8\%) = 172,300 \quad N_{IL}(99.8\%) = 2,500 \\
N_{CL}(99.9\%) = 456,600 \quad N_{IL}(99.9\%) = 4,200
\]

At the same point (99.9%), required sample size is larger for TVaR than for VaR

4. If we only run 100,000 paths, error sizes (at 95% confidence) are

\[
a_{CL}(99.8\%) = 131 \quad a_{IL}(99.8\%) = 16 \\
a_{CL}(99.9\%) = 214 \quad a_{IL}(99.9\%) = 20
\]
What other questions can we answer?

• What is the required sample size for simultaneously estimating two or more metrics?
 o Means of CL and IL
 o VaRs of CL at 99.5%, 99.9%, 99.95%
 o VaR and TVaR of CL at 99.9%

• Mathematically, these are derived by using a multivariate normal distribution to approximate a joint distribution of several samples
Among the components of the surplus loss, cats dominate the tail behavior, while investments determine the overall variability.

We graph shifted cat loss CL-E(CL), investment loss IL-E(IL) and surplus loss SL-E(SL) in the same window.
The relationship helps determine a sample size for estimating VaRs and TVaRs of the surplus loss

- To estimate the mean of SL
 - From $\hat{\sigma}_{CL} = 97.6$ and $\hat{\sigma}_{IL} = 278.9$ we get $\hat{\sigma}_{SL} = 295$, assuming CL and IL are independent
 - $\hat{\sigma}_{SL}$ is slightly larger than $\hat{\sigma}_{IL}$, so the sample size required for approximating $E(SL)$ is slightly larger than that for approximating $E(IL)$

- To estimate VaR and TVaR of SL
 - A slope on the CL curve is larger than that on the SL curve at the same p. So, a sample size large enough for $\text{VaR}_p(CL)$ is also large enough for $\text{VaR}_p(SL)$
 - The same can be said for TVaR
Questions for future research

• What to do if the sample size is limited by hardware or software constraints?
 o If we are allowed to choose seeds, then we may run many simulations with different seeds, and average out the sample statistic from all simulations

• What is a required sample size for accurately estimating co-TVaRs?
 o Very important. But I have not seen any research
Appendix: terminologies regrading sampling

• Drawing a sample with n sample points \iff running a simulation with n paths
 o n is called the sample size

• Drawing k independent samples (each of size n) \iff running k simulations (each of n paths) with independent seeds
 o $k \times n$ sample points (or paths) in total