Stable Value Fund Guarantee

An Asset Liability Model

Behzad Alimoradian (Valerian Capital – ISFA)
Stéphane Loisel and Yahia Salhi (ISFA)
Stable Value Guarantees

Stabilizing Pension Fund Investment
How to lower the risk of a pension fund investment?

- **Business cycles and crisis.**
- If buy and hold ✔, but what about emergency fund withdrawals?
How to lower the risk of a pension fund investment?

- **Business cycles and crisis.**
- If buy and hold ✓, but what about emergency fund withdrawals?

Why not to synthesize an existing fund and make it less risky using structured finance?

![Chart showing financial events such as dot com, financial crisis, 2015 fire sale, 2018 vol crisis, and COVID-19.](chart.png)
How to lower the risk of a pension fund investment?

- **Business cycles and crisis.**
- If buy and hold ✓, but what about emergency fund withdrawals?

Why not to synthesize an existing fund and make it less risky using structured finance?
Stabilizing Pension Fund Investment

Problem Overview

Past Literature

Retain earnings in bull markets
Release past earnings in bear markets

(Miltersen and Persson, 2003) Optimal distribution schedule

\[\text{Distribute Earnings} \iff \text{Provision Earnings for Crisis} \]

(Kling et al., 2007) For fixed terms contracts.

\[\text{Crediting Rate} \iff \text{Reserves Surplus} \]

(Wang et al., 2005) investor’s Value-at-Risk-optimal policy.
(Cheng et al., 2019) Optimal stopping time for rational investor (dynamic lapse model)
(Døskeland and Nordahl, 2008) Merton type Asset-Liability model
Stabilizing Pension Fund Investment

Problem Overview

Past Literature

Retain earnings in bull markets
Release past earnings in bear markets

(Miltersen and Persson, 2003) Optimal distribution schedule

Distribute Earnings \iff Provision Earnings for Crisis

(Kling et al., 2007) For fixed terms contracts.

Crediting Rate \iff Reserves Surplus

(Wang et al., 2005) investor’s Value-at-Risk-optimal policy.
(Cheng et al., 2019) Optimal stopping time for rational investor (dynamic lapse model)
(Døskeland and Nordahl, 2008) Merton type Asset-Liability model

This presentation focus: Stable Value Guaranteed investment structure

- Study an existing structure with 800B$ of assets under management
- Provide practitioners a quantitative method to assess the risk of the guarantee
- Make recommendations to regulators if necessary
Stable Value Guarantees

Stable Value Product
Stable value is a retirement plan investment option regulated by US Employee Retirement Income Security Act (ERISA).

Market Growth Since 2000:

![Stable Value AUM: 2000 to 2019*](image)

This number is based on survey participation and does not always reflect industry movement
Stable Value Product

Stable Value Fund Mechanism

Participants

Company Plan Sponsor

Retirement Trust

- participant directed cash flows
- employer contribution

Stable Value Funds are a synthesized version of a more volatile fund investment:
1. Return stabilization by Book Value accounting
2. The insurance company guarantees

Valerian Capital – ISFA

Stable Value Fund Guarantee
Stable Value Product

Stable Value Fund Mechanism

Participants

Company Plan Sponsor

participant directed
cash flows
employer
contribution

Retirement
Trust

Manage assets
on behalf

Investment
Manager

Financial
Investment

Fixed Income Market

Stable Value Fund Guarantee

Valerian Capital – ISFA

Stable Value Fund Guarantee
Stable Value Product

Stable Value Fund Mechanism

- Participants: participant directed cash flows
- Company Plan Sponsor
- Retirement Trust
- Manage assets on behalf
- Insurer
- Guarantee Contract
- Financial Investment
- Fixed Income Market
- Stable Value Fund Guarantee

Stable value funds are synthesized versions of more volatile fund investments:

1. Return stabilization by Book Value accounting
2. The insurance company guarantees participant directed cash flows
3. Employer contribution

Valerian Capital – ISFA
Stable value funds are synthesized version of a more volatile fund investment:

1. Return stabilization by Book Value accounting
2. The insurance company guarantees
\[dB_t = B_t \gamma_t dt + dC_t \]

\(C_t \) aggregated in/out cashflows.
There is a market standard formula for crediting rate \(\gamma_t \).
The insurance covers asset liability mismatch at the last resort:

When the last participant requests its money back (M_t reaches 0)

\[
\text{Insurance Payoff} = (B_\tau - M_\tau)_+ \\
\tau = \inf_t \{M_t = 0\}
\]
Stable Value Guarantees

Asset Model
A simple model with yield as the primary risk factor

\[dM_t = M_t (y_t - \lambda) \, dt - M_t \theta \, dy_t + dC_t \]

\(\lambda \) is the default/impairement/credit quality migration rate of the fund’s portfolio. \(\theta \) is the duration.
A simple model with yield as the primary risk factor

\[dM_t = M_t (y_t - \lambda) dt - M_t \theta dy_t + dC_t \]

\(\lambda \) is the default/impairment/credit quality migration rate of the fund’s portfolio. \(\theta \) is the duration.

Yield - Duration - Market Value relationship

The yield \(y_t \) is the single valuation rate \(r \), that is solution to the duration formula:

\[
\left. \frac{\partial M_t(r)}{\partial r} \right|_y = M_t(y) \times \theta,
\]

where \(M(r) \) is the market value of the fund, \(r \) is the valuation rate.
Stable Value Guarantees

Liability Cash Flow Model
Liability Cash Flow Model

Cash Flow (ζ_t) Properties

<table>
<thead>
<tr>
<th>Historical data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
</tr>
<tr>
<td>U.S.</td>
</tr>
<tr>
<td># funds</td>
</tr>
<tr>
<td># data</td>
</tr>
</tbody>
</table>

Cash Flows exhibit trends:
- Each trend represents a regime.
- Trends are due to:
 - Systemic / financial market
 - Back to safety (increase of influx) during crisis and decrease after
 - Employer's / financial health
 - Reputational / bankruptcy issues
Liability Cash Flow Model

Cash Flow (ζ_t) Properties

Historical data:
- Period: 1997 - Mar20
- U.S. funds: $198 B$
- # funds: 288
- # data: 35,850

Cash Flows Exhibit Trends
Each trend represents a regime. Trends are due to:
- Systemic / financial market
- Back to safety (increase in influx) during crisis and decrease after
- Employer's financial health
- Reputational / bankruptcy issues

Valerian Capital – ISFA
Stable Value Fund Guarantee
Liability Cash Flow Model

Cash Flow \((\zeta_t) \) Properties

Historical data:
- **Period**: 1997 - Mar20
- **U.S.**: $198 B$
- **# funds**: 288
- **# data**: 35,850

- Cash Flows Exhibit trends
- Each trend represents a regime

Trends are because of:
- Systemic financial market
- Back to safety (increase of influx) during crisis and decrease after
- Employer’s financial health
- Reputational/bankruptcy issues
Let’s call β_i as the i-th trend and θ_i itd duration:

New regimes (β_{i+1}) vs past regimes (β_i)
New regimes duration (τ_{i+1}) vs past regimes (β_i)

New regimes size and duration seems to be independent from the past regimes:

$$P[\beta_{i+1} \leq b, \tau_{i+1} \leq t | \beta_i, \tau_i] = P[\beta_{i+1} \leq b, \tau_{i+1} \leq t]$$
Data observation

Regime duration is shorter for larger or smaller regime trends
Data observation

Regime duration is shorter for larger or smaller regime trends

Modelling

Hump shape copula, inspired by Nelsen (2007) geometric method.

\[
P[\beta_i \leq b, \tau_i \leq t] = C(\Phi(b), \Lambda(t))
\]

\[
C(u, v) = \begin{cases}
\Psi \times C_L \left(\frac{u}{\Psi}, v \right) & u < \Psi \\
(1 - \Psi) \times \left(v - C_R \left(\frac{1-u}{1-\Psi}, v \right) \right) & u > \Psi
\end{cases}
\]
Data observation
Regime duration is shorter for larger or smaller regime trends

Modelling
Hump shape copula, inspired by Nelsen (2007) geometric method.

\[P[\beta_i \leq b, \tau_i \leq t] = C(\Phi(b), \Lambda(t)) \]

\[C'(u, v) = \begin{cases}
\Psi \times C_L \left(\frac{u}{\Psi}, v \right) & u < \Psi \\
(1 - \Psi) \times \left(v - C_R \left(\frac{1-u}{1-\Psi}, v \right) \right) & u > \Psi
\end{cases} \]

\(C_L \) and \(C_R \) (left and right) assumed as Clayton:
Liability Cash Flow Model

Cash Flows (ζ_t) Modelling

\[dC_t = B_t d\zeta_t \]

\[d\zeta_t = g(\gamma_t) dt + \beta_t dt + \epsilon_t + dE_t \]

\(g(\cdot) \) the crediting rate competitiveness to other alternative investment options.

Model assumption

New regimes size and duration are independent from the past regimes:

\[P[\beta_{i+1} \leq b, \tau_{i+1} \leq t | \beta_i, \tau_i] = P[\beta_{i+1} \leq b, \tau_{i+1} \leq t] \]

The joint distribution of the regime and their trends follow a hump shape copula function

\[P[\beta_i \leq b, \tau_i \leq t] = C(\Phi(b), \Lambda(t)) \]
Stable Value Guarantees

Results and conclusions
The Risk is deep in the Tail

Loss frequency is $< 0.5\%$. But the risk also depends on the assumption of the rate competitiveness components

<table>
<thead>
<tr>
<th>NAIC capital C3 formulaic</th>
<th>90% CTE of loss</th>
<th>99% CTE of loss</th>
<th>99.5% VaR of loss</th>
<th>Loss frequency</th>
<th>Avg. loss size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0.070%</td>
<td>0.70%</td>
<td>0%</td>
<td>0.49%</td>
<td>1.40%</td>
</tr>
</tbody>
</table>
Results and conclusions
Tail Risk Estimation

The Risk is deep in the Tail

Loss frequency is < 0.5%. But the risk also depends on the assumption of the rate competitiveness components

<table>
<thead>
<tr>
<th>NAIC capital</th>
<th>90% CTE of loss</th>
<th>99% CTE of loss</th>
<th>99.5% VaR of loss</th>
<th>Loss frequency</th>
<th>Avg. loss size</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3 formulaic</td>
<td>0%</td>
<td>0.070%</td>
<td>0.70%</td>
<td>0%</td>
<td>0.49%</td>
</tr>
<tr>
<td></td>
<td>0.070%</td>
<td>0.70%</td>
<td></td>
<td>0%</td>
<td>1.40%</td>
</tr>
</tbody>
</table>

NAIC formulaic approach does not capture the tail risk

1. The NAIC formulaic approach gives almost always 0, which may infer an incomplete picture of U.S. insurers actuarial risk.
2. C3 Phase III principal based methodology is using the 90%CTE, but not compulsory for Stable Values

Valerian Capital – ISFA
Stable Value Fund Guarantee
Results and conclusions

Asset’s Credit Risk

S&P Methodology

S&P Methodology

Standard & Poors (2007) paper on C3 (Asset Liability Mismatch): different C3 if the insurance guarantee covers for asset defaults. Their methodology is too simplistic: it fails to consider the fact that managers can sell the assets before any default occurs.
Results and conclusions

Asset’s Credit Risk

S&P Methodology

Standard & Poors (2007) paper on C3 (Asset Liability Mismatch): different C3 if the insurance guarantee covers for asset defaults. Their methodology is too simplistic: it fails to consider the fact that managers can sell the assets before any default occurs.

Better methodology: consider the crediting migration risk

Using Caouette et al. (1998) Naranayan’s transition table and assets to be sold when migrated to a lower bucket.

<table>
<thead>
<tr>
<th>Avg OAS</th>
<th>Assets avg. S&P grading</th>
<th>Migration haircut λ</th>
<th>99% CTE of loss</th>
<th>99.5% VaR of loss</th>
<th>NAIC capital C3 formulaic</th>
<th>Loss frequency</th>
<th>Avg. loss size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5%</td>
<td>AA</td>
<td>0.05%</td>
<td>0.70%</td>
<td>0%</td>
<td>0%</td>
<td>0.49%</td>
<td>1.58%</td>
</tr>
<tr>
<td>2.5%</td>
<td>A</td>
<td>0.20%</td>
<td>2.18%</td>
<td>0.39%</td>
<td>0%</td>
<td>0.61%</td>
<td>3.57%</td>
</tr>
<tr>
<td>3.5%</td>
<td>BBB</td>
<td>0.50%</td>
<td>4.00%</td>
<td>1.96%</td>
<td>0%</td>
<td>0.70%</td>
<td>5.71%</td>
</tr>
</tbody>
</table>
S&P Methodology

Standard & Poors (2007) paper on C3 (Asset Liability Mismatch): different C3 if the insurance guarantee covers for asset defaults. Their methodology is too simplistic: it fails to consider the fact that managers can sell the assets before any default occurs.

Better methodology: consider the crediting migration risk

Using Caouette et al. (1998) Naranayan’s transition table and assets to be sold when migrated to a lower bucket.

<table>
<thead>
<tr>
<th>Avg OAS</th>
<th>Assets avg. S&P grading</th>
<th>Migration haircut λ</th>
<th>99% CTE of loss</th>
<th>99.5% VaR of loss</th>
<th>NAIC capital C3 formulaic</th>
<th>Loss frequency</th>
<th>Avg. loss size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5%</td>
<td>AA</td>
<td>0.05%</td>
<td>0.70%</td>
<td>0%</td>
<td>0%</td>
<td>0.49%</td>
<td>1.58%</td>
</tr>
<tr>
<td>2.5%</td>
<td>A</td>
<td>0.20%</td>
<td>2.18%</td>
<td>0.39%</td>
<td>0%</td>
<td>0.61%</td>
<td>3.57%</td>
</tr>
<tr>
<td>3.5%</td>
<td>BBB</td>
<td>0.50%</td>
<td>4.00%</td>
<td>1.96%</td>
<td>0%</td>
<td>0.70%</td>
<td>5.71%</td>
</tr>
</tbody>
</table>

To consider credit migration risk rather than default
Results and conclusions

Conclusions

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A simple and novel model for fixed income funds with yield as the primary risk.</td>
<td>Analyzed 200B$ of fund’s data and developed a cash flow model fitting to the observations</td>
</tr>
</tbody>
</table>
Results and conclusions

Conclusions

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A simple and novel model for fixed income funds with yield as the primary risk.</td>
<td>Analyzed 200B$ of fund’s data and developed a cash flow model fitting to the observations</td>
</tr>
</tbody>
</table>

Discussion and Conclusions

- An asset-liability model for a 800 B$ structure
- The risk is deep in the tail but NAIC RBC formulaic approach cannot capture the tail risk
- The rating agencies to consider the asset migration risk instead of the default risk.

