Lessons from Recent and Historical Epidemics: Bugs, Behavior, and Beyond!

DAVE RENGACHARY, MD, DBIM, FALU, FLMI
SVP and Chief Medical Director, US Mortality Markets
RGA Reinsurance Company

04 September 2019
The views and opinions expressed, and conclusions reached by the authors are their own and do not represent any official position or opinion of the IAA, the IAALS Section of the IAA or their members. The IAA and IAALS Section do not endorse any of the views or opinions stated, nor any claims made or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this presentation. The information and expressions of opinion contained in this document are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situation.

On no account may any part of this presentation be reproduced or translated without the express written permission of the IAALS Section and the IAA. As a user, you are granted a limited license to display or print the information provided for personal, non-commercial use only, provided the information is not modified and all copyright and other proprietary notices are retained.
Outline

I. Basic Definitions
II. Historical Pandemics
III. Influenza and Other Contemporary Epidemics
IV. RGA approach to Epidemics, Pandemics and Infectious Disease monitoring
Disease X

- How do we gauge likelihood and impact of Disease X spread?
- To what extent does Disease X present a foreign travel risk?
- Which product lines will be impacted by Disease X?
- What will be our message to investors?
- Are there any risks to business continuity?

Definitions
endemic
Definitions

endemic

- “native”, “steady”, “permanent”
- Insurance implications – example pricing and underwriting hepatitis B

Habitual presence of disease within a geographic areas
Endemic Hepatitis B

http://gamapserver.who.int/mapLibrary/Files/Maps/Global_HepB_IHRiskMap.png

Lessons from Recent and Historical Epidemics: Bugs, Behavior, and Beyond - 04 September 2019
epidemic
Definitions

epidemic

- The occurrence of more cases of disease than expected in a given area or among a specific group of people over a particular period of time
- Generally implies *relatively* rapid spread
- Not limited to infectious diseases
pandemic
Definitions

pandemic

When an infectious disease crosses international boundaries and affects a large number of individuals
Criteria for Pandemic
Morens et al.¹

- Wide Geographic Extension
- Infectiousness
- Contagiousness

- Disease Movement
- Novelty
- Severity

- High Attack Rate and Explosiveness
- Minimal Population Immunity
- Pandemic
Influence of Human Behavior
CDC – Factors in the Emergence of Infectious Diseases

Population Migration and Growth

War
Sexual Behaviors
IV Drug Use
Urban Decay
High Density Facilities
Elimination vs eradication
Elimination versus Eradication

WHO Definitions

**Elimination**
- reduction to zero (or a very low rate) of new cases in a defined geographical area.

**Eradication**
- complete and permanent worldwide reduction to zero new cases of the disease through deliberate efforts.
Historical Pandemics
Yersinia Pestis

Bubonic Plague/Black Death

- Began in China around 1334 and spread via new trade routes to Europe (Silk road)\(^3\)
- Generally considered to be deadliest pandemic by proportion of population killed
- Estimated 60% of Europe’s population decimated, and 75-200 million overall\(^3\)
- 80% case fatality rate
- 3 basic clinical sequelae – lymphadenopathy (buboes), (gangrenous) septicemia, and pneumonia

Lessons from Recent and Historical Epidemics: Bugs, Behavior, and Beyond - 04 September 2019
Yersinia Pestis

Why so deadly?¹

- Climate Change (prosperity, warmth, rain, and movement into cities)
- Broad temperature range of organism (less seasonal) with multiple hosts
- New transportation and trade routes
- New relation to animals
  - Tarbagan and black rats
  - *Most emerging infectious diseases are epi-zoonotic*
- Contagious (droplet spread)
- Importance of quarantine

https://en.wikipedia.org/wiki/Tarbagan_marmot#/media/File:Marmota_sibirica_-_Russi_.._Mongolia_-_Rochers-de-Naye___Switzerland__2009.jpg Creative Commons BY SA 3.0
Spanish Influenza (1918)
“The Mother of All Pandemics”

- Mortality estimates vary widely between 30-100 million
- 2.5% case fatality rate but infected 28% of all Americans
- Caused by H1N1 family of viruses
- Especially high relative virulence among those 15-34, enhanced by WWI living conditions

Reference: [Image](https://commons.wikimedia.org/wiki/File:CampFunstonKS-InfluenzaHospital.jpg) Public Domain
Spanish Influenza

- Occurred in three waves the first of which was fairly mild
- By the end of the third wave, life expectancy decreased by estimated 10-12 years
- The mortality rate was 2.5% compared to 0.1% average for prior influenza strains. Virus was reconstructed in 2005 and found to be an entirely novel variant (for humans). Avian mutation propagated in pigs (genetic variants still exist).

Influenza and Other Contemporary Epidemics and Pandemics

By Jpatokal - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7127535
• Influenza are single-stranded RNA viruses in the Orthomyxoviridae family
• Influenza A and B strains cause the great majority of human infections
• The two major surface proteins for Influenza A are hemagglutinin (H) and neuraminidase (N)
  – These key determinants in
    • Antigenic Typing
    • Virulence
    • Vaccination Targets
    • Antiviral drugs inhibit neuraminidase
• 2009 – a new strain for humans emerged: a subtype of H1N1 (“swine flu”)
Influenza

Why so deadly?

• High levels of “antigenic drift” – The virus lacks adequate error checking capabilities
  – Mutation rates 300 x similar viruses
  – Allows to escape environmental pressures through rapid evolutionary selection
  – Allows evasion from host immunity
• Antigenic “shift” – exchange of genetic material between two different strains of influenza (during coinfection of a host)
  – While these occur less often they can be quite virulent (responsible for the three major pandemic outbreaks)
• Infects as a population of viruses with minor variants (not a single virus)
• “If you have seen one influenza season, you have seen one influenza season”
Influenza

H3N2 virus

- 78% of positive influenza tests in US last flu season were H3N2 strain
- Higher mortality rates in young children and elderly
- Severe Australian season was a warning signal

SARS
Just the (bad) Facts

- Over 750 deaths (44 in Canada)
- 9% fatality rate if infected (but low $R_0$ of 4)
- Spread to five countries within 24 hours(!)$^7$
- 6 continents, 30 countries with 6 months
SARS
The Canada Experience

Date: 10 Feb 2003
From: Stephen O. Cunnion, MD,

This morning I received this e-mail and then searched your archives and found nothing that pertained to it. Does anyone know anything about this problem?
"Have you heard of an epidemic in Guangzhou? An acquaintance of mine from a teacher's chat room lives there and reports that the hospitals there have been closed and people are dying."

--
Stephen O. Cunnion, MD, PhD, MPH

ProMED-mail. Pneumonia–China (Guangdong): RFI. ProMED-mail archive 20030210.0357. Brookline, MA, USA: International Society for Infectious Diseases; 2003 Feb 10. http://www.promedmail.org

Lessons from Recent and Historical Epidemics: Bugs, Behavior, and Beyond - 04 September 2019 29
Global Public Health Intelligence Network (GPHIN)
Identification of Severe Acute Respiratory Syndrome in Canada

Susan M. Poutanen, M.D., M.P.H., Donald E. Low, M.D., Bonnie Henry, M.D., Sandy Finkelstein, M.D., David Rose, M.D., Karen Green, R.N., Raymond Teller, M.D., Ryan Draker, B.Sc., Dena Adachi, M.Sc., Melissa Ayers, B.Sc., Adrienne K. Chan, M.D., Danuta M. Skowronski, M.D., M.H.Sc., Irving Salit, M.D., Andrew E. Simor, M.D., Arthur S. Slutsky, M.D., Patrick W. Doyle, M.D., M.H.Sc., Mel Krajden, M.D., Martin Petric, Ph.D., Robert C. Brunham, M.D., and Allison J. McGeer, M.D., for the National Microbiology Laboratory, Canada, and the Canadian Severe Acute Respiratory Syndrome Study Team


Share: Facebook, Twitter, LinkedIn, Pinterest, Mail, Copy Link
Middle East Respiratory Syndrome (MERS- CoV)

- Caused by coronavirus (similar to SARS)
- First case identified in 2012
- Mostly limited to the Arabian Peninsula
- Symptoms: fever, cough, shortness of breath, pneumonia
- Mortality rate 35+% 
- Can be transmitted from person-to-person (not sustained)

www.cdc.gov/coronavirus/mers/about/index.html
R naught revisited

MERS CoV = 0.69

Influenza, Ebola = 2-3

SARS = 2-5

Measles = 18!
Zika Virus – The New Kid on the Block (or not)

- Flavivirus first identified in Africa in 1947
- Transmitted by *Aedes* mosquitoes
- Sporadic outbreaks for 50 years
- Epidemics: 2007 in Micronesia and 2013 in French Polynesia
- Introduced to Brazil in 2014
- Only 20% of people with symptoms: fever, rash, fatigue
- Essentially a non-fatal disease in adults
- No specific treatment or vaccine available
- Mosquito control measures

Zika Virus – Areas with Active Transmission

Zika Virus – Areas with Active Transmission

Cumulative Number of Countries, Territories and Areas Worldwide Reporting Local Zika Virus Transmission, January 2015 – March 2016

Sources: Kaiser Family Foundation
Zika Virus – What’s the Risk?

Zika and Microcephaly Risk

<table>
<thead>
<tr>
<th>Overall ZIKV infection rate</th>
<th>Estimated microcephaly risk (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>10%</td>
<td>0.021</td>
</tr>
<tr>
<td>20%</td>
<td>0.021</td>
</tr>
<tr>
<td>30%</td>
<td>0.021</td>
</tr>
<tr>
<td>40%</td>
<td>0.021</td>
</tr>
<tr>
<td>50%</td>
<td>0.021</td>
</tr>
<tr>
<td>60%</td>
<td>0.021</td>
</tr>
<tr>
<td>70%</td>
<td>0.021</td>
</tr>
<tr>
<td>80%</td>
<td>0.021</td>
</tr>
</tbody>
</table>
• 20 significant outbreaks since 1976, previous largest was in 2000 in Uganda with 425 cases

• The recent outbreak is Zaire Ebola virus (deadliest type); started in Guinea, December 2013 and is the largest in history

Ebola

- Natural reservoirs remain unknown – endemic in West Africa
- Spread by direct contact with blood or body fluids
- Average incubation period 11.4 days (2-21 days)
- Mean time to death after admission to hospital $4.2 \pm 6.4$ days
- Mean time to discharge $11.8 \pm 6.1$ days
- Case fatality rate $40+\%$
- No vaccine – multiple trials are underway

Source: WHO
Dengue Fever

- Flavivirus – 4 types – transmitted by *Aedes* mosquito
- Occurs in tropical and sub-tropical parts of the world
- 390 million + cases/year globally
- Pan American Health Organization: 2003 -> 2013 cases increased by a factor of 5
- Symptoms: asymptomatic infection -> hemorrhagic fever and shock
- 500,000 hospitalizations/year
- Overall mortality < 1%, but hemorrhagic fever mortality up to 50%

Source: http://www.who.int/mediacentre/factsheets/fs117/en/
Dengue – Vaccine Progress

Phase 3 trial in 5 Latin American countries
Children 9 – 16 years, 3 injections
Followed for 25 months
Results:
  • Overall vaccine efficacy: 64.7%
  • Efficacy against hospitalization: 80.3%
  • Efficacy against severe disease: 95.5%
  • Safety profile same as placebo

Chikungunya

- Alphavirus causing an acute dengue-like disease – first identified in Africa in 1952
- Introduced to Caribbean and the Americas in 2013
- Transmitted by *Aedes* mosquitoes
- High fever, joint and muscle pain, headache (7 – 10 days)
- Usually not fatal
- No specific treatment or vaccine available
- Mosquito control measures
- Up to 60% have joint pain at 3 years and some have cognitive impairment

Sources: N ENGL J MED 2015;372;1231-9 / PLoS Negl Trop Dis 7(3): e2137
Chikungunya

Countries and territories where chikungunya cases have been reported* (as of April 22, 2016)

*Does not include countries or territories where only imported cases have been documented. This map is updated weekly if there are new countries or territories that report local chikungunya virus transmission.

Source: CDC
Anti-microbial Resistance (AMR)

- **Anti-microbial**: a compound (naturally occurring or modified) with an ability to inhibit or kill micro-organisms which is made into medication for humans or animals to treat infections

- **Anti-biotic**: an antimicrobial specifically directed against bacterial infections

- Penicillin discovered by Fleming in 1928

- 20th century notable for discovery of many anti-microbials and significant success in clinical medicine

- **The Problem**: Micro-organisms have an ability to mutate and become resistant to anti-microbials
“The emergence of MCR-1 heralds the breach of the last group of antibiotics, polymyxins, by plasmid-mediated resistance.”

10
Anti-microbial Resistance (AMR)

Antibiotic-resistant infections

Source: Centers for Disease Control and Prevention

New antibiotics approved by the US Food and Drug Administration

Source: Infectious Diseases Society of America

Lessons from Recent and Historical Epidemics: Bugs, Behavior, and Beyond - 04 September 2019
Anti-microbial Resistance (AMR)

Lessons from Recent and Historical Epidemics: Bugs, Behavior, and Beyond - 04 September 2019
Anti-microbial Resistance (AMR): Solutions

- International cooperation – governments and researchers
- Track anti-microbial resistance patterns, speed diagnosis
- Ensure appropriate use of anti-microbials by doctors and patients
- Increase development of new anti-microbials and streamline process
- Leverage technology to develop speed diagnosis, alternative treatments
  - Genetics, genomics, vaccines, and “big data”
RGA approach to Epidemics, Pandemic and Infectious Disease Monitoring
RGA Epidemic/Pandemic Approach

- Pandemic Risk Governance Team
  - Ebola Guidance and update
  - First industry Zika white paper
- Longer Life Foundation
- Infectious Disease Consultation – CIDRAP, Bluedot
  - Flu Vaccine Effectiveness study
Identification of Human Genetic Variants for High Risk of Severe Influenza Disease

Adrianus Boon, Ph.D.

Project Overview:
Influenza virus kills nearly 500,000 individuals each year and this number can increase dramatically during a pandemic with a novel strain of influenza virus. Infections with influenza virus can be prevented by antiviral drugs like oseltamivir or vaccinations. However, antiviral drugs are not prescribed prophylactically and vaccination is not monitored for efficacy providing ample opportunity for influenza to infect and cause disease. If we can identify individuals that are at increased risk of severe influenza virus we can tailor our care to provide drugs prophylactically to improve health and longevity. The goal of our research is to define genetic biomarkers that predict susceptibility to influenza disease. The interferon pathway is very important for restricting influenza virus replication and therefore disease. Individuals with unique or rare polymorphisms in essential genes in this pathway are more susceptible to influenza virus and more likely to require hospital care or succumb to infection. Because of the importance of this pathway we want to study polymorphisms in two interferon pathway genes that have previously been shown to effect viral diseases and antiviral immunity. These polymorphisms are relatively common in the population with about 5-10% of all people carrying two copies of the minor allele. To test if these genetic differences between individuals predispose to more severe disease we will use cultured primary human airway epithelial cells as a model to look at the role of these polymorphisms on disease parameters. Airway epithelial cells are the primary target cell of influenza virus and we know that increased virus replication and attenuated antiviral immunity correlate with severe disease. We will determine virus replication and antiviral gene-expression in cells obtained from individuals with different IFN genotypes. Analysis of the data between cells containing the two alleles will reveal if this genetic marker can be used to identify individuals that are genetically susceptible to influenza virus. The identification of prognosticators of influenza disease and survival is of special interest to the Foundation and leads to fewer influenza associated deaths and hospitalizations.
Influenza Modeling

Early Results (15 years of data)

Influenza Test Positivity

- For every one percentage point increase in the proportion of positive tests for influenza globally in June, excess mortality in the upcoming influenza season increased by 3%.

Dominant influenza subtype

- An H3 strain was dominant globally in June, a 52% increase in excess mortality due to influenza would have been expected in the upcoming influenza season.
- If an H3 strain was dominant in November, it would be associated with a 130% increase in excess mortality due to influenza.

Vaccine match

- The antigenic match over the summer reported by the CDC in September/October was not found to be statistically significantly predictive of reduced rates of excess mortality.
- If greater than 90% of the H3 isolates by the end of November matched the vaccine strain, mortality decreased by 45% compared to years where it did not match.
• Led by Michael T. Osterholm, PhD, MPH, an international authority on emerging infectious diseases
• Emerging Situation Intelligence Calls
• Infectious Disease Briefings
• Decision-Point Dialogues
• Daily News Service
• Virtual Table Top Pandemic Simulation exercises
Questions?


Thank you