Schnieper's method revisited

Esbjörn Ohlsson, PhD, Docent

Länsförsäkringar Alliance, Stockholm, Sweden

ASTIN Colloquium May 2021

Agenda

The reason for this presentation

Schnieper's method

An application

More on Schnieper's method (if time)

Agenda

The reason for this presentation

Schnieper's method

An application

More on Schnieper's method (if time)

ASTIN "WPNLReserving Survey" 2016 Report: Non-life reserving practices

Schnieper's method is not even mentioned in the report

The reason for this talk

- So Schnieper's method is (seemingly) not used to any extent
- This talk aims at showing that the method deserves a place in the actuarys toolbox, by looking at it from a (perhaps) somewhat new angle
- I will give a example from Länsförsäkringar that illustrates the kind of situation where it is superior to Chain Ladder

Agenda

The reason for this presentation

Schnieper's method

An application

More on Schnieper's method (if time)

The idea of Schnieper is to estimate IBNYR and IBNER separately

The method uses incurred claims

Accident	Development year						
year	0	1	2		J-2	J-1	
1	<i>C</i> _{1,0}	<i>C</i> _{1,1}	<i>C</i> _{1,2}	• • •	$C_{1,J-2}$	$C_{1,J-1}$	
2	<i>C</i> _{2,0}	$C_{2,1}$	<i>C</i> _{2,2}	• • •	$C_{2,J-2}$		
÷	:	÷	÷				
I-1	$C_{I-1,0}$	$C_{I-1,1}$					
1	$C_{I,0}$						

This is just the standard cumulative incurred claims triangle

Schnieper (1991) in ASTIN Bulletin: "Separating true IBNR and IBNER claims"

- The separation of IBNYR and IBNER calls for new data
- We first look at the cost for claims reported in different years:

For claims incurred in accident year i, and reported during development year j, we let N_{ij} be the incurred claim cost as recorded by the end of development year j

The New claims triangle (N triangle)

Accident	Development year						
year	0	1	2		J-2	J-1	
1	N _{1,0}	N _{1,1}	N _{1,2}	• • •	$N_{1,J-2}$	$N_{1,J-1}$	
2	N _{2,0}	N _{2,1}	N _{2,2}	• • •	$N_{2,J-2}$		
÷	:	÷	÷				
I-1	<i>N</i> _{1-1,0}	$N_{I-1,1}$					
Ι	N _{1,0}						

This is an incremental triangle. Note that $N_{i,0} = C_{i,0}$, for all *i*.

One more triangle

- Next we follow up the development of reported claims
- This is done by looking at a triangle of:
 D_{ij} = the incremental change in incurred claim cost for existing claims
- If we have two triangles, the third is given by

$$C_{ij} = C_{i,j-1} + D_{ij} + N_{ij}$$

The Development triangle triangle (D triangle)

Accident	Development year						
year	0	1	2	•••	J-2	J-1	
1	D _{1,0}	$D_{1,1}$	$D_{1,2}$	•••	$D_{1,J-2}$	$D_{1,J-1}$	
2	D _{2,0}	$D_{2,1}$	D _{2,2}	• • •	$D_{2,J-2}$		
÷	:	÷	÷				
I-1	$D_{I-1,0}$	$D_{I-1,1}$					
Ι	$D_{I,0}$						

This is an incremental triangle. Note that $D_{i,0} = 0$, for all *i*.

The ideas behind the methods

• The CL idea:
$$C_{ij} \approx C_{i,j-1} f_j$$

- Now let $E_i > 0$ be an exposure measure for IBNYR
- We may think of E_i as earned premium, but any known quantity is OK
- Schnieper's idea for new claims:

 $N_{ij} \approx E_i \lambda_j$

Development of previous claims:

$$C_{i,j-1} + D_{ij} \approx C_{i,j-1} \,\delta_j$$

Chain Ladder vs. Schnieper

So in the CL

$$C_{ij} = C_{i,j-1} + D_{ij} + N_{ij} \approx C_{i,j-1} f_j$$

- This means (implicitly) that both the run-off development D and the new reported claims N are proportional to the observed C
- Schnieper, on the other hand, allows us to use any available exposure measure for new reported claims

$$C_{i,j-1} + D_{ij} + N_{ij} \approx C_{i,j-1} \,\delta_j + E_i \lambda_j$$

While it is reasonable that the IBNER is proportional C_{i,j-1}, it is less obvious that the IBNYR should be so

Choice of exposure for IBNYR

- If the amount of incurred claims is greatly influenced by background factors, such as wheather conditions, then we expect substantial correlation between last years incurred claims C_{i,j-1} and next years reported new claims N_{ij}
- ▶ In these circumstances, CL may be well motivated

Choice of exposure for IBNYR

- If the amount of incurred claims is greatly influenced by background factors, such as wheather conditions, then we expect substantial correlation between last years incurred claims C_{i,j-1} and next years reported new claims N_{ij}
- ► In these circumstances, CL may be well motivated
- If that is not the case, we expect the new reported claims to be more or less independent of last years incurred claims
- In this case, it seems more proper to use premium income, number of policies, or some other exposure measure in the Schnieper method, rather than use CL

Choice of exposure for IBNYR

- If the amount of incurred claims is greatly influenced by background factors, such as wheather conditions, then we expect substantial correlation between last years incurred claims C_{i,j-1} and next years reported new claims N_{ij}
- ► In these circumstances, CL may be well motivated
- If that is not the case, we expect the new reported claims to be more or less independent of last years incurred claims
- In this case, it seems more proper to use premium income, number of policies, or some other exposure measure in the Schnieper method, rather than use CL
- Typically, we have a mix of the two above cases, but often the background factors are less important

When to use Schnieper's method

In our experience, Schnieper should be considered:

- when data is readily available; and
- when there are no strong background factors affecting many claims; and
- when there is a large amount of IBNYR.

If the development is long-tailed, it is more likely that using Schnieper pays off, than in a short-tailed reserve

The estimators are simple CL look-alikes

The CL estimators:

$$\hat{f}_{j} = rac{\sum_{i} C_{ij}}{\sum_{i} C_{i,j-1}} = rac{\sum_{i} C_{i,j-1} f_{ij}}{\sum_{i} C_{i,j-1}} \qquad f_{ij} = rac{C_{ij}}{C_{i,j-1}}$$

The Schnieper estimators:

$$\hat{\delta}_{j} = \frac{\sum_{i} (C_{i,j-1} + D_{ij})}{\sum_{i} C_{i,j-1}} = \frac{\sum_{i} C_{i,j-1} \delta_{ij}}{\sum_{i} C_{i,j-1}} \qquad \delta_{ij} = \frac{C_{i,j-1} + D_{ij}}{C_{i,j-1}}$$

$$\hat{\lambda}_j = \frac{\sum_i N_{ij}}{\sum_i E_i} = \frac{\sum_i E_i \lambda_{ij}}{\sum_i E_i} \qquad \lambda_{ij} = \frac{N_{ij}}{E_i}$$

Agenda

The reason for this presentation

Schnieper's method

An application

More on Schnieper's method (if time)

Example: Personal accident insurance

From the master thesis Flodström (2013)¹(in Swedish)

- Limited details on the data is given, due to confidentiality reasons
- In case of disability, income protection is given in form of a limited (but sometimes large) lump-sum
- Accidents may cause disability later in life
- This results in a substantial amount of late reported claims, up to 20-30 years, unrelated to the claims reported earlier
- Schnieper's method seems taylor-made for this situation (though it was designed for XL reinsurance)

¹Anna Flodström has now changed her surname to Wettebrandt \flat (\equiv) \flat \equiv \neg \circ \circ

Chain Ladder development factors "Volume 7"

m is the last observed development year

It is hard to see any reasons for a tail beyond m

20 / 32

э

Schnieper development factors δ "Volume 7"

The case reserves underestimates at start and overestimate later

3

Schnieper new claims factors λ "Volume 7"

Very late IBNYR is seen here, but this is blurred by negative IBNER in the CL

A closer look at the tail of λ

A need for a tail was identified (last observations are volatile)

More figures from the thesis

- The CL gave 25% less reserv than Schnieper with tail and 14% without
- ▶ In the case without tail, the one-year risk was estimated to $\sigma = 11,5\%$ for Schnieper and $\sigma = 14,0\%$ for the Chain Ladder
- So in this case, Schnieper's method is both more efficient and more informative than CL
- The (rather low) price is having to gather the data and do two triangulations

Agenda

The reason for this presentation

Schnieper's method

An application

More on Schnieper's method (if time)

Schnieper's paper in the literature

- Mack (1993) acknowledges that for his famous result on the MSE of the Chain Ladder: "The decisive step towards this formula was made by Schnieper (1991)"
- Liu and Verrall (2009) gave a bootstrap method for Schnieper's method
- For a good exposition of the theory on the method, see Ch. 10.2 in *Stochastic claims reserving methods in insurance* by Wüthrich and Merz (2008). In particular, they derive formulas for the MSEP.
- So Schnieper's method is not forgotten, but as we have seen it its not widespread among practicioners

Separation of IBNYR and IBNER

- We believe that Schnieper's method does not give a strict separation of the two parts
- That would require an additional assumption (A4) that the incurred claims of accident year *i* that are reported in development year *j*, N_{ij}, have the same expected further development from *j* + 1 and onward as the incurred claims reported earlier, C_{i,j-1}, have.
- In most cases, it is not likely that late reported claims have the same development as those reported much earlier

Separation...contd.

- However, the overall unbiasedness of the IBNR is not conditional on (A4)
- It is only the separation of IBNR into IBNYR and IBNER that is not *strictly* achieved when (A4) is not fulfilled – but we still get an indication of the impact of these two parts
- To get a strict separation, we would need 3D-reserving (accident year, reporting year, development year)
 As explained by Neuhaus (2004), this is quite complicated and at risk of giving over-parameterised models
- In our opinion, the great advantage of Schnieper's method is not this separation, but the possibility to use a more relevant exposure for the unknown claims
 - This is, of course, not affected by the above discussion

Schnieper and Bornheutter-Ferguson

- Note that Bornheutter-Ferguson (BF) assumes that the entire claim cost is proportional to the premium (or other exposure measure)
- Schnieper offers a middle way
 - CL: entire IBNR proportional to reported claim cost
 - Schnieper: IBNER proportional to reported claim cost, IBNYR proportional to the premium
 - BF: entire IBNR proportional to the premium

Conclusion

- Schnieper's method is a powerful reserving tool, due to the possibility to choose a more relevant exposure for unknown claims than is used in the Chain Ladder
- Schnieper's method offers a middle way between CL (all proportional to reported), and Bornheutter-Ferguson (all proportional to the premium)
- The separation into IBNYR and IBNER is not strict (not unbiased) but still informative and the IBNR is nevertheless unbiased
- In our experience, Schnieper's method deserves a prominent place in the actuary's toolbox

References

- ► ASTIN WPNL (2016). Report: Non-Life Reserving Practices.
- Bornhuetter, R.L. & Ferguson, R.E. (1972). The actuary and IBNR. Proc. CAS, Vol. LIX, 181-195.
- Flodström (2013). Separation av IBNYR och IBNER i resrevsättningen för sjuk- och olycksfallsförsäkring. Master thesis, Dept. of Mathematics, Stockholm University.
- Liu, H. & Verrall, R. (2009). A bootstrap estimate of the predictive distribution of outstanding claims for the Schnieper model. ASTIN Bulletin, 39 (2), 677-689.
- Neuhaus (2004). On the estimation of outstanding claims. Australian Actuarial Journal, 10 (3), pp. 485-518.
- Schnieper, R. (1991). Separating true IBNR and IBNER claims. ASTIN Bulletin 21 (1), 111-127.
- Wüthrich, M. and Merz, M. (2008). Stochastic Claims Reserving Methods in Insurance. Wiley.

The end!

<ロト < 回 > < 直 > < 直 > < 直 > < 亘 > < 亘 > 32 / 32