Modelling COVID-19

Stuart McDonald

@actuarybyday

1 June 2020
IAA Disclaimer

The views and opinions expressed, and conclusions reached by the authors are their own and do not represent any official position or opinion of the IAA, the IAALS Section of the IAA, or their members. The IAA and IAALS Section do not endorse any of the views or opinions stated, nor any claims made or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this presentation. The information and expressions of opinion contained in this document are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situation

On no account may any part of this presentation be reproduced or translated without the express written permission of the IAALS Section and the IAA. As a user, you are granted a limited license to display or print the information provided for personal, non-commercial use only provided the information is not modified and all copyright and other proprietary notices are retained.
Total confirmed COVID-19 deaths

Shown is the rolling 7-day average. Limited testing and challenges in the attribution of the cause of death means that the number of confirmed deaths may not be an accurate count of the true number of deaths from COVID-19.

Source: European CDC – Situation Update Worldwide - Data last updated 30th May, 10:38 (GMT+01:00), European CDC – Situation Update Worldwide
Latest Mortality Monitor estimates 64,000 excess deaths to date in the UK.
Early on, modelling COVID-19 infections was easy!

- This forecast was made with a modified S/I/R model
- $S =$ Susceptible
- $I =$ Infectious
- $R =$ Removed
- $R_t = 2.6;$ Infectious Period 6 days.
- Daily infection rate = $\frac{2.6}{6} = 43.3\%$
- Daily recovery rate = $\frac{1}{6} = 16.7\%$
- Growth in infections = 26.7%
How to solve the issue of such heterogeneity within the Wilkie “I” state?

Novel solution – introduce time dependency.

Table: Description of State

<table>
<thead>
<tr>
<th>Epidemiologist Models</th>
<th>Description of state</th>
<th>Wilkie Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptible (S)</td>
<td>No exposure to the virus</td>
<td>Healthy (H)</td>
</tr>
<tr>
<td>Exposed (E) or Infectious (I)</td>
<td>Exposed but not yet infectious</td>
<td>Infected (I)</td>
</tr>
<tr>
<td>Infectious (I)</td>
<td>Infectious but unaware</td>
<td>Infected (I)</td>
</tr>
<tr>
<td>Infectious (I) or Removed (R)</td>
<td>Infectious and isolated</td>
<td>Infected (I)</td>
</tr>
<tr>
<td>Removed (R)</td>
<td>No longer infectious</td>
<td>Infected (I)</td>
</tr>
<tr>
<td>Removed (R)</td>
<td>Deceased</td>
<td>Dead (D)</td>
</tr>
</tbody>
</table>
Other Models

Example: ICL – Imperial College London
Comparing Data Sources

Example: England

DHSC figures announced daily by UK Gov. Now include deaths in all settings where there has been a positive COVID-19 test. Date of notification basis.

NHS hospital deaths released daily, showing actual date of death. Now includes those with no positive test, but where COVID-19 documented on the death certificate.

ONS figures released weekly and reflect all registered deaths (hospital, care homes and community) with COVID-19 indicated on the death certificate.
Risk varies geographically
Heterogeneity of Exposure and Mortality Risks

#OpenSafely
What next?

Living with Uncertainty

COVID-19 Infectious Population - UK

- R=1.2; Seasonal
- R=1.2; Non-seasonal
- R=1.1; Non-seasonal
- R=1.1; Seasonal
Thank you! Questions?

Stuart McDonald

@actuarybyday