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Abstract

Standard optimal portfolio choice models assume that investors maximise the expected
utility of their future outcomes. However, behaviour which is inconsistent with the expected
utility theory has often been observed.

In a discrete time setting, we provide a formal treatment of risk measures based on dis-
tortion functions that are consistent with Yaari’s dual (non-expected utility) theory of choice
(1987), and set out a general layout for portfolio optimisation in this non-expected utility
framework using the risk neutral computational approach.

As an application, we consider two particular risk measures. The first one is based on
the PH-transform and treats the upside and downside of the risk differently. The second
one, introduced by Wang (2000) uses a distortion operator based on the cumulative normal
distribution function.

1 Introduction
This paper considers the dynamic optimal consumption and portfolio selection problem, in a
discrete-time setting. In the literature, the optimal portfolio problem is very widely considered,
however, it is often treated in a continuous-time framework. Indeed, Merton (1971 [35]) proposed
an explicit solution to this problem when the underlying security prices follow a geometric Brown-
ian motion. The same problem was considered in general equilibrium asset pricing models, where
many investors act so as to maximise their expected utility over consumption (see Lucas (1978
[32], Breeden (1979 [4]) and Cox et al. (1985 [12])). To solve the optimisation problem, they used
stochastic dynamic programming that yields the Bellman-Dreyfus PDE which is in the general
case non-linear and difficult to solve.
Harrison and Kreps (1979 [22]) introduced the martingale method to price contingent claims.

This approach was applied by Karatzas et al. (1986 [27], 1987 [28]), Cox & Huang (1989 [10],
1991 [11]) and Pliska (1986 [38]) to provide a closed form solution for the optimal portfolio when
the underlying security prices follow a general diffusion process. For a detailed treatment, see

∗This is a work in progress based on part of the Ph.D thesis of the first author. The authors gratefully thank Rob
Womersley and Marek Rutkowski for helpful comments. Financial support under ARC Large Grant A79803988 is
acknowledged.

†Actuarial Studies, Faculty of Commerce & Economics, University of New South Wales, Sydney 2052, Australia.
E-mails: m.hamada@unsw.edu.au and m.sherris@unsw.edu.au.

‡Department of Applied Mathematics, University of Adelaide, Adelaide, Australia
§Draft working paper, please do not quote without author’s permission.

1



textbooks Merton [34], Duffie [13] and Karatzas and Shreve [29]. The basic idea is to use the
completeness and the arbitrage-free property of the market to separate the computation of opti-
mal consumption rules and that of a corresponding trading strategy. The optimal consumption is
obtained by solving the first-order conditions, essentially stating that the agent’s marginal utility
process at the optimum is proportional to an Arrow-Debreu state price density process. A repli-
cating financing strategy can then be constructed, just like in any option pricing technology. He
and Pearson (1991 [24]) have extended the Cox & Huang approach to settings with incomplete
markets.
In a discrete-time setting, Campbell and Viceira (1999 [8]) consider the problem when an

infinitely-lived investor has utility over consumption and find an approximate solution to the
discrete-time problem using an Euler approximation. Chamberlain and Wilson (2000 [9]) analyse
the optimal consumption rules for an infinitely-lived investor who receives a random income at
each period and saves for the future at a stochastic rate. Both approaches belong to the class
of stochastic dynamic programming methods. Pliska in his textbook [39] uses the martingale ap-
proach to derive an exact solution of the portfolio problem. His approach is elegant and analogous
to the continuous-time one, where the probability space is finite and the martingales are discrete.
The majority of portfolio choice models assume that preferences are represented by a von

Neuman-Morgenstern utility function and individuals choose among risky alternatives so as to
maximise the expectation of the utility of possible outcomes. Although the expected utility model
has long been the standard for choice under uncertainty, questions have been raised concerning
its validity, and behavior patterns which are systematic, yet inconsistent with expected utility
theory have often been observed as in the Allais paradox (1953 [1]) and Kahneman & Tversky
(1979 [26]). Machina (1982 [33]) considers expected utility without the “independence axiom”.
He shows that basic concepts and results of the expected utility framework do not depend on this
axiom, but may be derived from the much weaker assumption of smoothness of preferences over
alternative probability distributions. Fishburn (1988 [16]) surveys the reasons why the expected
utility hypothesis fails. Camerer (1989 [7]) carries out empirical tests of several generalized models
of utility theory. Yaari (1987 [50]) developed a dual theory of choice under risk where the roles
of probabilities and payments are interchanged, so the wealth utility function is replaced by a
probability distortion function. Some of the expected utility related paradoxes are resolved in the
dual theory.
It can be argued that even though some other alternative models could handle the problems

related to the expected utility model, this latter would still be appropriate for analyzing some
types of choice under risk (see Neilson 1993 [36]). Other types of decision problems, however,
would be modeled best using a non-expected utility framework. Therefore, expected utility theory
should not be abandoned, but rather applied with more caution.
In a non-expected utility framework, Wang (1995 [46], 1996 [45]) proposes calculating insur-

ance premiums by applying the proportional hazards transform to the decumulative distribution
function, thereby introducing a new risk measure. This new measure turns out to be consistent
with Yaari’s dual theory of choice. Wang (2000 [48]) also uses a different class of distortion oper-
ators to recover the Black-Scholes formula. Sherris and van der Hoek (2001 [44]) introduce a new
class of risk measures for asset allocation which is based on the distortion function approach to
insurance risk.
Bufman and Leiderman (1990 [6]) use Israeli data between 1978 and 1986 to test an intertem-

poral consumption-investment model introduced by Epstein and Zin (1989 [15]) that uses Kreps-
Porteus (1978 [31]) non-expected utility preferences. They find an evidence to reject the expected
utility model and accept the non-expected utility one. Their results differ from those of Epstein
and Zin (1989b [14]) and Giovannini and Jorion (1989 [17]) who took data from the tranquil
postwar US economy. This suggests that a non-expected utility model may perform better in a
volatile economy. The results of the empirical tests of the same model using French data from
1960 to 1994 conducted by Koskievic (1999 [30]) support those of Bufman and Leiderman (1990
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[6]).
Ang et al. (2000 [2]) consider the dynamic portfolio choice using the disappointment aversion of

Gul (1991 [18]). They find that moderately disappointment-averse investors, with low curvature
utility, hold reasonable portfolios, unlike the expected utility investors whose optimal holdings
include unreasonably large equity positions.
This paper is organised as follows. In section 2, we outline the risk neutral computational

approach to dynamic asset allocation, and briefly discuss its advantage over dynamic programming.
In section 3, we present the concept of risk aversion for non-expected utility and illustrate the
idea of using a distortion function to price risk. A formal treatment of risk measures based on
this concept follows the analysis. The new class of risk measures for portfolio selection based on
the proportional hazards transform, proposed by Sherris and van der Hoek (2001 [44]) is then
reviewed and extended to the multinomial case. This is the first step in setting out a general
scheme for dynamic asset allocation when the risk measure is based on a distortion function.
Some other properties, useful for the optimisation, are developed along the way. We then propose
to solve the optimal portfolio problem using the risk neutral computational approach when the
investor behaviour is modeled by this new class of risk measures. Some numerical examples for
asset allocation are provided. We finally provide a comparison of the asset allocation when using
the class of distortion operators proposed by Wang (2000 [48]). The conclusion highlights some
further developments.

2 Risk-Neutral Computational Approach (RNCA)
The optimal portfolio proportions of an investor with a long horizon compared to those of an
investor with a short horizon, such as what is typically assumed in ‘tactical asset allocation’ models,
are significantly different (see Brennan, Schwartz & Lagnado (1997 [5]). This is why a multiperiod
model is more realistic and extensively used. In the model presented here, the investor maximises
the expected sum of discounted utility of consumption through time by choosing investment and
consumption rules dynamically during the period of investment. This dynamic asset allocation is
based on the information available in the market up to the time of revision of the portfolio.
This paragraph explains the risk neutral computational approach (RNCA) and outlines the

main difference with dynamic programming. We follow Harrison and Pliska (1981 [21]) and Taqqu
and Willinger (1987 [43]). For a detailed treatment, see Pliska [39] and Bingham and Kiesel [3].
Briefly, we recall some basic definitions:

Definition 1 • A trading strategy H = (H0,H1, ...,HN ) is a vector of stochastic processes
H = {Hn(t); t = 1, 2, ..., T}, for n = 0, 1, ..., N. Hn(t) is the number of units of securities
that an investor carries forward from time t− 1 to time t (Hn(0) is not defined).

• The value process V = {Vt; t = 0, 1, ..., T} is a stochastic process defined by:

Vt =

(
H0(1).B0 +

PN
n=1Hn(1).Sn(0), t = 0

H0(t).B(t) +
PN
n=1Hn(t).Sn(t), t ≥ 1

Vt is the time-t value of the portfolio before any transactions are made at that same time.

• A consumption process C = {Ct, t = 0, ..., T} is a non-negative, adapted stochastic process
with Ct representing the amount of funds consumed by the investor at time t.

• A consumption-investment plan (C,H) is said to be self-financing if:

Vt = Ct +H0(t+ 1).B(t) +
NX
n=1

Hn(t+ 1).Sn(t), t = 0, ..., T − 1
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An investor with a von Neuman-Morgenstern utility function u chooses the consumption-
investment plan that maximises the expected utility of consumption through time according to
the following problem:

max
(C,H)

E
hPT

t=0 β
t.u(Ct)

i
subject to v = initial wealth = V0

Vt = Ct +H0(t+ 1).B(t) +
PN
n=1Hn(t+ 1).Sn(t), t = 0, ..., T − 1

VT = CT

(1)

In problem (1), the investor seeks to maximise the objective function when facing the trade-off
between the consumption and investment strategy at the beginning of each time period [t, t+ 1],
t = 0...T − 1. Notice that the vector of trading strategies H, which is a control variable in the
optimisation problem, appears in the constraints but not in the objective function. The standard
way to solve this problem is to compute, working backward in time t in a recursive manner,
a value function called the indirect utility, which represents the maximum expected utility of
consumption through time T, starting with wealth Vt and consumption Ct given the history Ft.
This is the dynamic programming approach which carries out T optimisations to solve for the
optimal consumption and investment rules at each period [t, t+ 1], t = 0...T − 1.
The idea of the risk-neutral computational approach is to replace the constraints in problem

(1) by equivalent constraints that don’t involve the investment strategy vector H. The only control
variable being the vector of consumption C, the problem can be solved using the Lagrange method
for a standard static optimisation problem. The assumption of a complete arbitrage-free market
ensures the existence of a unique equivalent martingale probability Q, such that the initial wealth
is equal to the expectation under Q of the discounted consumption through time. Hence, as shown
in Pliska [39] the problem (1) is equivalent to:


max
C

E
hPT

t=0 β
t.u(Ct)

i
subject to EQ

hPT
t=0

Ct
Bt

i
= v

C is an adapted process

where the first expectation is taken under the original probability P and the second expectation

is taken under the equivalent martingale probability Q. Let L =
Q

P
denote the state price density,

and define the conditional discounted state price density

Nt(ω) =
E[L|Ft](ω)

Bt
∀ω ∈ Ω

The problem (1) is equivalent to:
max
C

E
hPT

t=0 β
t.u(Ct)

i
subject to E

hPT
t=0 CtNt

i
= v

C is an adapted process

Using Lagrange multipliers to solve the problem:

max
C
E

"
TX
t=0

βt.u(Ct)− λ
TX
t=0

CtNt

#
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The first order conditions are :

Ct(ω) = I

µ
λNt(ω)

βt

¶
∀ω ∈ Ω, ∀t = 0, 1, ...T (2)

Where I = [u0]−1 is the inverse of the marginal utility, and λ is a Lagrange multiplier determined
by substituting the optimal consumption policy into the appropriate static budget constraint:

E

"
TX
t=0

I

µ
λNt

βt

¶
Nt

#
= v

Once the optimal consumption rules are obtained, the self-financing condition is used to compute
the trading strategies generating Ct:

H0(t).B(t) +
NX
n=1

Hn(t).Sn(t) = Ct +H0(t+ 1).B(t) +
NX
n=1

Hn(t+ 1).Sn(t) (3)

To sum up, in the first step, the (RNCA) yields the optimal consumption at each period in a
straightforward optimisation. In the second step, the optimal trading strategies that finance this
consumption are computed step by step, working backward in time, by solving a system of linear
equations at each time step.
For a discussion of implementation in a binomial and trinomial lattice, with the HARA class

of utility, see Hamada (2001 [19]). The next paragraphs exploit this idea and solve the optimal
portfolio problem in a non-expected utility framework.

3 Asset allocation with a risk measure based on a distortion
function

3.1 Risk aversion in utility theory and its dual

Decision makers with a von Neumann-Morgenstern utility function are said to be risk averse
if they prefer to have the expected value of a gamble rather than facing the gamble itself, i.e.
U(W ) > EU(W + X) for a level of wealth W and all gambles with E(X) = 0 and positive
variance.
It can be proved (see Ingersoll [25]) that decision makers are risk averse if and only if their

von Neumann-Morgenstern utility function of wealth is strictly concave at the relevant wealth
level. Moreover, the intensity of risk aversion is measured by the degree of concavity of the utility
function. This is determined by Arrow-Pratt’s absolute risk aversion index1. The larger the index,
the more risk-averse the agent.
To induce a risk-averse individual to undertake a fair gamble, a compensatory risk premium

Πc(X) has to be offered. Or dually, to avoid a present gamble, a risk averse individual would be
willing to pay an insurance risk premium Πi(X) . These risk premiums are depicted as follows:

E[U(W +Πc(X) +X)] = U(W )

E[U(W +X)] = U(W −Πi(X))

The amount W −Πi(X) is the amount which, when received with certainty, is considered by the
investor as good as W +X. It is called the certainty equivalent of the gamble W +X

1Arrow-Pratt’s absolute risk aversion is defined as A(W ) = −u00(W )
u0(W )

5



In the expected utility theory, suppose that an individual must choose among lotteries with
at most n outcomes x1, x2, ..., xn, with respective probabilities p1, p2, ..., pn, then there exists a
utility function U such that this individual’s choice criterium is to maximise

E[U(X)] =
nX
i=1

piU(xi) =

Z
Ω

u(X(ω))dP (ω)

Note that this objective function is linear in probabilities and distorts the payoffs.
In the dual theory of choice introduced by Yaari [50], the certainty equivalent to X is defined

as2:

Π(X) =

Z
g(SX(t))dt

where g is a “dual utility” or a distortion function (continuous and non-decreasing) g : [0, 1]→ [0, 1]
with g(0) = 0 and g(1) = 1, applied to the probability decumulative distribution:

SX(t) = Pr[X > t]

If X is a positive random variable representing a loss amount then Π(X) is the certainty equivalent
of the risk X. In the dual theory, given a choice among risky prospects, the agent would prefer
risks having the greatest certainty equivalent.
It can be proved (see Yaari [50]) that the investor is risk averse if and only if g is convex. An

intuitive interpretation of this property follows in the case when g is differentiable:

Π(X) =

Z
g(SX(t))dt =

Z
tg0(SX(t))dFX(t)

Recall that:

E[X] =
Z
tdFX(t)

Comparing Π(X) to E[X], Π(X) can be thought of as a corrected mean ofX where the payment
t receives a weight g0(SX(t)) ≥ 0. Note that these weights sum up to 1, i.e.

R
g0(SX(t))dFX(t) = 1.3

If g is convex, then,

t1 > t2 ⇒ SX(t1) < SX(t2)⇒ g0(SX(t1)) < g0(SX(t2))

Therefore, the weight assigned to a high outcome is less than the weight assigned to a low outcome.
Hence, by distorting the probabilities with a convex function, the agents behave pessimistically, in
the sense that they assign high probability to bad outcomes and low probability to good outcomes.
The comparison of risk aversion in this framework is naturally based on the convexity of the

function g representing the agent’s preference function. The more convex the function g, the more
risk averse the agent.4

To sum up, while risk aversion in utility theory is measured by the utility function, in the dual
theory, it is measured by the probability distortion function. The choice of the distortion function
g determines the properties of the certainty equivalent.

2This general form of Π(X) is valid for continuous and discrete time cases, where the integral sign will be a
summation sign in a discrete case, and the appropriate formula is developed in a later paragraph.

3
R
g0(SX(t))dFX(t) =

R
d
dt
[−g(SX(t))]dt = g(1)− g(0) = 1

4The dual Arrow-Pratt risk aversion would be in this case g00(p)
g0(p) for 0 < p < 1, as defined in Yarri (1986 [49]).

In the sense of Ross (1981 [42]), agents are strongly more risk averse, if they require a larger compensation for any
mean preserving spread in their prospects, even if the initial situation is not one of perfect certainty. Risk aversion
measurement in the sense of Yaari (1986 [49]) and Ross (1981 [42]) are discussed in Röel (1985 [41])
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In the literature, Wang (1996 [46]) proposes a general class of distortion operators to use in
pricing insurance premiums. When the distortion function is a power function, i.e., g(x) = xr,
the mapping

SX(t)→ g(SX(t))

is called the PH-transform. Applications and implementation of the PH-transform in insurance is
discussed in Wang (1998 [47]). Although the PH-transform enjoys desirable properties in insurance
pricing, it cannot be applied to assets and liabilities simultaneously. Wang (2000 [48]) proposes
another class of distortion operators

gα(u) = Φ[Φ
−1(u) + α]

where Φ(u) =
R u
−∞

1√
2π
e−

x2

2 dx is the standard normal cumulative distribution function and shows
how the mean of the distorted decumulative distribution can be used as another alternative to the
risk-neutral valuation in asset pricing. Sherris and van der Hoek (2001 [44]) (hereafter VHS (2001)
introduced another framework for pricing asset and liabilities, based on distortion of the probability
distribution. They use two different distortion operators, g and h to allow a different pricing of
the upside and downside of the risk. The specification of g and h is not given, thereby allowing
for a general pricing framework. In the following, we shall consider the certainty equivalent in
discrete-time, then overview the risk measure introduced by VHS (2001), develop new properties
which are useful for optimisation, and use these results to solve the optimal portfolio problem.

3.2 Discrete version of the certainty equivalent in the dual theory

Let g be a continuous, non-decreasing function, g : [0, 1] → [0, 1] with g(0) = 0 and g(1) = 1,
and X be a positive random variable representing a risk. The risk X is measured by its certainty
equivalent defined as:

Π(X) =

Z ∞

0

g(SX(t))dt

In the discrete-time case, X takes n possible values (X(ω1),X(ω2), ...,X(ωn)) with probabilities
(p1, p2, ..., pn), where n ∈ N∗. In probabilistic notation, let Ω = {ω1,ω2, ...,ωn} be the probability
space where ωi , i ∈ {1, .., n} are the states of the world, then P [ωi] = pi ∀ i ∈ {1, .., n}.
This is typically the case of a tree model, where the number of states grows as time evolves.

The following theorem gives an expression of Π(X) in the discrete case.

Theorem 1 (Certainty equivalent) If X is a random variable taking n possible values (X(ω1),
X(ω2), ...,X(ωn)) with probabilities (p1, p2, ..., pn), such that X(ωi) 6= X(ωj) if i 6= j, then,

Π(X) = bEg[X]
where bEg[X] is a weighted average of possible values of X, such that the weight P g(ωi) assigned
to X(ωi) is given by:

P g(ωi) = g (P [X ≥ X(ωi)])− g (P [X > X(ωi)]) ∀ωi ∈ Ω
bEg[X] can be thought of as an expectation where the probability assigned to a possible value

of X depends also on all the other possible values.
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Proof. To simplify notation, let xi = X(ωi), i ∈ {1, .., n}.Without loss of generality, the possible
values of X can be ordered such that: x1 < x2 < ... < xn and we then have:

Pr [X > t] =



1 if x1 > tPn
k=2 pk if x2 > t ≥ x1Pn
k=3 pk if x3 > t ≥ x2

.... .....
pn if xn > t ≥ xn−1
0 if t ≥ xn

Therefore,

Π(X) =

Z x1

0

g(1)dt+

Z x2

x1

g(
nX
k=2

pk)dt+

Z x3

x2

g(
nX
k=3

pk)dt+ ...+

Z xn

xn−1
g(pn)dt

= x1 +
n−1X
i=1

gpi . [xi+1 − xi]

=
nX
i=1

£
gpi−1 − gpi

¤
xi

where

gpi = g

Ã
nX

k=i+1

pk

!
= g (P [X > xi])

Since g is an increasing function from [0, 1] to [0, 1] , and ∀i Pn
k=i pk >

Pn
k=i+1 pk then:

∀i ∈ {1..n}, P gi ≡ g
Ã

nX
k=i

pk

!
− g

Ã
nX

k=i+1

pk

!
∈ [0, 1]

Moreover,
Pn

i=1 P
g
i = g (

Pn
k=1 pk)− g (0) = g(1) = 1. Therefore {P g1 , P g2 , ..., P gn} define a proba-

bility measure on the probability space Ω = {ω1,ω2, ...,ωn}.
This theorem states that in the discrete-time case, the certainty equivalent of X is nothing but

an expectation under another probability measure. This has been shown when all the possible
values of X are distinct. The question that arises immediately is: what happens in the case when
some possible values of X coincide? The following example provides an insight into this question.

Example 1 Let X be a random variable taking the values (x1, x2, ..., x9) with probabilities (p1,
p2, ..., p9), such that:

x1 < x2 = x3 < x4 < x5 = x6 = x7 < x8 = x9

We have:

P [X > t] =



1 if x1 > tP9
k=2 pk if x2 > t ≥ x1P9
k=4 pk if x4 > t ≥ x2P9
k=5 pk if x5 > t ≥ x4P9
k=8 pk if x8 > t ≥ x5

0 if t ≥ x8
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So:

Π(X) =

Z x1

0

g(1)dt+

Z x2

x1

g(
9X

k=2

pk)dt+

Z x4

x2

g(
9X

k=4

pk)dt+

Z x5

x4

g(
9X

k=5

pk)dt+

Z x8

x5

g(
9X
k=8

pk)dt

=

Ã
g(1)− g(

9X
k=2

pk)

!
x1 +

Ã
g(

9X
k=2

pk)− g(
9X

k=4

pk)

!
x2 +

Ã
g(

9X
k=4

pk)− g(
9X
k=5

pk)

!
x4 +Ã

g(
9X
k=5

pk)− g(
9X

k=8

pk)

!
x5 + g(

9X
k=8

pk)x8

Define the new random variable Y taking the values (y1, y2, y3, y4, y5) = (x1, x2, x4, x5, x8) with
probabilities (p01, p02, p03, p04, p05) = (p1, p2+ p3, p4, p5+ p6+ p7, p8+ p9). The new elements yi satisfy
y1 < y2 < y3 < y4 < y5, so, applying the theorem above we have:

Π(Y ) =
nX
i=1

h
gp

0
i−1 − gp

0
i

i
yi

where

gp
0
i = g

Ã
nX

k=i+1

p0k

!

By expanding the expression Π(Y ), we have:

Π(X) = Π(Y )

Hence, the problem can be reduced to the case where the possible values are all distinct.

The example illustrates the following idea. In the general case when some values of X coincide,
order them in an increasing order, then from each set of equal values keep only one value and
assign the probability of the set to this value. Thus, a new variable Y is defined in such a way
that all the elements of Y are strictly increasing with adjusted probability weights such that the
identity Π(X) = Π(Y ) is satisfied.
Another approach consists of keeping the redundant values and dividing the probability weights

by the number of these values. This is the idea of the next corollary:

Corollary 1 If X is a random variable taking n possible values (X(ω1),X(ω2), ...,X(ωn)) with
probabilities (p1, p2, ..., pn), then,

Π(X) = eEg[X]
where the expectation is taken under the distorted probability measure eP g defined by:

eP g(ωi) = g (P [X ≥ X(ωi)])− g (P [X > X(ωi)])

#{X(ωj) : X(ωj) = X(ωi)} ∀ωi ∈ Ω

The notation #{X(ωj) : X(ωj) = X(ωi)} stands for the number of values X(ωj) equal to
X(ωi)
Proof. The idea of the proof is given in the previous example. In formal terms, let

Ψs = {i ∈ {1, ..., n} : X(ωi) = X(ωs)}, s ∈ {1, ..., n}
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and

P g(ωi) = g (P [X ≥ X(ωi)])− g (P [X > X(ωi)]) ∀ωi ∈ Ω
We have: ∀i ∈ Ψs, P g(ωi) = P g(ωs) and soX

i∈Ψs

P g(ωi)X(ωi) = |Ψs|P g(ωs)X(ωs)

where

|Ψs| = #{X(ωj) : X(ωj) = X(ωs)}
Define a new random variable Y and a subset of indices S ⊆ {1, ..., n}, such that:

Y (ωi) = X(ωi) ∀i ∈ S
Y (ωi) 6= Y (ωj) for i 6= j,∀(i, j) ∈ S2
Im(Y ) = Im(X)

where Im(X) is the set of all possible values taken by X.
By applying the theorem to Y whose values are all distinct, we have:

Π(Y ) =
X
s∈S

P g(ωs)Y (ωs)

=
X
s∈S

|Ψs|P g(ωs)X(ωs)
|Ψs|

=
X
s∈S

1

|Ψs|
X
i∈Ψs

P g(ωi)X(ωi)

=
nX
i=1

P g(ωi)X(ωi)

#{X(ωj) : X(ωj) = X(ωi)}
Since

Pr[X > t] = Pr[Y > t] ∀t ≥ 0
then,

Π(Y ) = Π(X)

With these ingredients, we propose to study some classes of risk measures based on distortion
functions and consider the application to asset allocation.

3.3 Van der Hoek and Sherris class of risk measures

In their paper, van der Hoek and Sherris define the certainty equivalent of a random variable X
by:

H(X) ≡ Hα,g,h(X) = α+Hh((X − α)+)−Hg((α−X)+)
= α+

Z ∞

0

h
©
Pr[(X − α)+ > t]ª dt− Z ∞

0

g
©
Pr[(α−X)+ > t]ª dt (4)

Where α is a real constant, and h is a convex and increasing function on [0, 1] with h(0) = 0
and h(1) = 1, and g is a concave and increasing function on [0, 1] with g(0) = 0 and g(1) = 1.
The convexity and concavity of h and g ensures the concavity of Hα,g,h(X) which is an appealing
property in portfolio optimisation.
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Definition 2 The functions g and h are said to be conjugate if and only if: h(x) = 1− g(1− x)
∀x ∈ [0, 1]

In what follows, we provide an expression of H(X) in the discrete-time case, but let us consider
some simple cases first.
If X is a binomial random variable taking two possible values a with probability p, and b with

probability q (with p+ q = 1), then H(X) takes two forms depending on whether a > b or a < b.

q

p

b

a

X

Binomial random variable

• If a > b, then:

H(X) = α+ (b− α)+ − (α− a)+ + h(p)[(a− α)+ − (b− α)+]− g(1− p)[(α− b)+ − (α− a)+]

When g and h are conjugate, then the above expression simplifies to:

H(X) = h(p)a+ [1− h(p)]b

H(X) does not depend on the parameter α anymore.

• If a < b, then

H(X) = α+ (a− α)+ − (α− b)+ + h(1− p)[(b− α)+ − (a− α)+]− g(p)[(α− a)+ − (α− b)+]

When h and g are conjugate, then:

H(X) = h(q)b+ [1− h(q)]a

Thus, in the case when g and h are conjugate, if a 6= b, then,

H(X) = h (P [X = max(a, b)]) .max(a, b) + g (P [X = min(a, b)]) .min(a, b)

3.3.1 Quadrinomial case

Before generalising the properties of H for the multinomial case, this paragraph treats the quadri-
nomial case in order to give an intuition for the more general case. If X is a Bernoulli random
variable X having four possible values (x1, x2, x3, x4) with probabilities ( p1, p2, p3, p4), such thatP4
i=1 pi = 1

p2

p1

a4

a3

a2

a1

a4 > a3 > a2 > a1

p3

X

p4

Quadrinomial random variable

11



H(X) = α+ (x1 − α)+ − (α− x4)+ + h(p2 + p3 + p4)[(x2 − α)+ − (x1 − α)+] +
h(p3 + p4) [(x3 − α)+ − (x2 − α)+] + h(p4)[(x4 − α)+ − (x3 − α)+]−
g(p1 + p2 + p3)[(α− x3)+ − (α− x4)+]− g(p1 + p2)[(α− x2)+ − (α− x3)+]
−g(p1)[(α− x1)+ − (α− x2)+]

When g and h are conjugate, then H(X) has a simpler form that does not depend on α :

H(X) = x1 + h(p4)[x4 − x3] + h(p3 + p4)[x3 − x2] + h(p2 + p3 + p4)[x2 − x1]

If we denote X(ωi) = xi, the values of the random variable X in the states {ωi, i ∈ {1, 2, 3, 4}},
then:

H(X) = ph(ω1)X(ω1) + p
h(ω2)X(ω2) + p

h(ω3)X(ω3) + p
h(ω4)X(ω4)

where:

ph(ω1) = 1− h(p2 + p3 + p4)
ph(ω2) = h(p2 + p3 + p4)− h(p3 + p4)
ph(ω3) = h(p3 + p4)− h(p4)
ph(ω4) = h(p4).

Since ∀x ∈ [0, 1], h(x) ∈ [0, 1] and h is increasing on [0, 1], then the weights ph(ωi) ∈ [0, 1]
for all i ∈ {1, 2, 3, 4}. Moreover, P4

i=1 p
h(ωi) = 1, so {ph(ωi)}i define a probability measure on

the probability space Ω = {ω1,ω2,ω3,ω4}. We can then write H(X) as an expectation under the
distorted probabilities {ph(ωi)}i :

H(X) = Eh[X]

3.3.2 Multinomial case

Proposition 1 (Order assumption) If X is a multinomial discrete random variable taking the
values (x1, x2, ..., xn) such that x1 < x2 < ... < xn , with probabilities (p1, p2, ..., pn), then,

H(X) = α+ (x1 − α)+ − (α− xn)+ +
n−1X
i=1

½
hpi . [(xi+1 − α)+ − (xi − α)+]
+gpi . [(α− xi+1)+ − (α− xi)+]

¾

= α+
nX
i=1

£
hpi−1 − hpi

¤
(xi − α)+ −

£
gpi − gpi−1

¤
(α− xi)+ (5)

where

hpi = h

Ã
1−

iX
k=1

pk

!
and gpi = g

Ã
iX

k=1

pk

!

Proof. The idea of the proof is the same as in the proof of Theorem (Certainty equivalent). A
detailed proof is provided in the appendix.
In its general form, H(X) is a piecewise linear function, so it is not differentiable. However,

when x1, x2, ..., xn and α can be ordered, then H(X) has a simple differentiable form given by the
following corollary:

12



Corollary 2 (Position of α) If X is a multinomial discrete random variable taking the values
(x1, x2, ..., xn) such that x1 < x2 < ... < xn , with probabilities (p1, p2, ..., pn), then,

• If α ≤ x1, then:

H(X) = x1 +
n−1X
i=1

hpi [xi+1 − xi]

=
nX
i=1

£
hpi−1 − hpi

¤
xi

• If α ≥ xn, then:

H(X) = xn +
n−1X
i=1

gpi [xi − xi+1]

=
nX
i=1

£
gpi − gpi−1

¤
xi

• If α ∈ [xr, xr+1) where r ∈ {1, ..., n− 1}, then:

H(X) = [1− hpr − gpr ]α+
rX
i=1

£
gpi − gpi−1

¤
xi +

nX
i=r+1

£
hpi−1 − hpi

¤
xi

where

hpi = h

Ã
1−

iX
k=1

pk

!
and gpi = g

Ã
iX

k=1

pk

!

This corollary illustrates the idea of pricing the upside and the downside of the risk differently.
In effect, for outcomes xi’s below the level α, the probability distribution is distorted by the
function g, and for outcomes xi’s above the level α, the probability distribution is distorted by
the function h. This is a flexible way to price risk around some benchmark return α. The choice of
the distortion functions g and h reflects the risk behaviour of the investor. Indeed, h is convex5,
so

h

Ã
1−

i−1X
k=1

pk

!
− h

Ã
1−

iX
k=1

pk

!
< h

Ã
1−

i−2X
k=1

pk

!
− h

Ã
1−

i−1X
k=1

pk

!
or

hpi < h
p
i−1

So the probability assigned to the outcome xi is less than the probability assigned to xi−1. In
other terms, the investor assigns lower probabilities to higher outcomes. The more risk averse the
investor, the more convex the distortion function h. The same argument applies to the concavity
of g.
Furthermore, the choice of h with respect to g reflects how the investor considers the risk with

respect to the benchmark α. For some choice of g and h, pricing risk does not depend on α. This
is the idea of the following proposition:

5 If h is a convex function, then 2h(p) ≤ h(p− 1) + h(p+ 1) wherever h is defined.
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Proposition 2 (Conjugate) Let X be a random variable taking n possible values (X(ω1),X(ω2),
...,X(ωn)) with probabilities (p1, p2, ..., pn), such that X(ωi) 6= X(ωj) if i 6= j. In the case when h
and g are conjugate, we have

H(X) = Eh[X] (6)

where the expectation is taken under the probability measure P g given by:

P g(ωi) = h (P [X ≥ X(ωi)])− h (P [X > X(ωi)]) ∀ωi ∈ Ω (7)

Proof. In the case when h and g are conjugate, i.e., h(1 − x) = 1 − g(x), in the appendix we
show that:

H(X) = H0,0,h(X) =

Z ∞

0

h(P [X > t])dt

Therefore, the proposition follows from Theorem (Certainty equivalent).

Remark 1 How do we compute H(X) if the order X(ω1) < X(ω2) < ... < X(ωn) changes?
Put X = [X(ω1),X(ω2), ...,X(ωi), ...,X(ωj), ...,X(ωn)]. X is the vector of the realizations of

X in an increasing order. Put P = [p1, p2, ...., pi, ..., pj , ..., pn] where P (i) = pi = P [X = X(ωi)].

Define P g = [P g(1), P g(2), ..., P g(n)] where P g(i) = g
³Pi

k=1 P (k)
´
− g

³Pi−1
k=1 P (k)

´
. We have

H(X) = hP g,Xi the inner product of the vectors P g and X.
If a permutation σ applies to X, then:
X := σ(X)
P := σ(P )

P g := [P g(1), P g(2), ..., P g(n)], where P g(i) = g
³Pi

k=1 P (k)
´
− g

³Pi−1
k=1 P (k)

´
H(X) := hP g,Xi

It is clear that the order of possible values (x1, x2, ..., xn) of the risk X plays a central role in
the evaluation of H(X). This is due to the fact that H(X) is based on a transformation of the
decumulative distribution function P [X > x]. In an optimisation problem, this is not an appealing
feature, since the possible values of X are in general the control variables, i.e. H(X) is optimised
by choosing x1, x2, ..., xn. Sorting these values at each step of the optimisation is costly in time.
In the following proposition, we do not get around this problem, however, the order is implicitly
taken care of in the coefficients of xi’s.

Proposition 3 (No order assumption) For a multinomial discrete random variable X taking
the values (x1, x2, ..., xn), with probabilities (p1, p2, ..., pn), xi 6= xj if i 6= j then,

H(X) = Const+
nX
i=1

³
gp,Xi I{xi≤α} + h

p,X
i I{xi>α}

´
xi

Where

gp,Xi = g

 X
{xk≤xi}

pk

− g
 X
{xk<xi}

pk


hp,Xi =

h
1− X

{xk<xi}
pk

− h
1− X

{xk≤xi}
pk


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Const =

1− h
1− X

{xk≤α}
pk

− g
 X
{xk≤α}

pk

α
and the notation X

{xk≤α}
pk =

nX
k=1

pkI{xk≤α}

where I{xk≤α} is the indicator function on the set {xk ≤ α}.

3.3.3 Optimal portfolio choice in a multiperiod model

In the dual theory of choice under uncertainty, investors evaluate a risk X by calculating its
certainty equivalent H(X) as defined in equation (4), using the distortion functions g and h
representing their preference order. Given a choice among many risks, an investor would then
pick the one having the greatest certainty equivalent.
In a multiperiod asset allocation, investors are faced with a series of decisions where at the

beginning of each investment period, they have to choose the optimal amount of consumption,
and the rest is invested in the market. The optimal consumption level Ct at the beginning of the
period [t, t+1] is a risky prospect. Formally, Ct, t = 0, ..., T is a non-negative and bounded random
variable defined on some probability space. By virtue of Theorem 2 in Yaari ([49]), the scheme
(C0, C1, ..., CT ) is preferred to (C00, C01, ..., C0T ) if and only if there exists an increasing continuous
function U : Rn+ → R+ such that:

U(H(C0),H(C1), ...,H(CT )) ≥ U(H(C00),H(C 01), ...,H(C 0T ))
In words, the investor chooses the consumption stream that maximises an increasing function of
the certainty equivalents of consumption at each period. In what follows, we choose

U : Rn+ → R+

(x1, x2, ..., xn) 7→
X

βixi

where 0 < β ≤ 1 is the time preference factor. The consumption-investment problem (1) becomes:
Max

C0,C1,...,CT

PT
t=0 β

tH(Ct)

s.t v =
PT
t=0 EQ

·
Ct

(1 + r)t

¸
Ct ≥ 0 ∀t ∈ [0, T ]

(8)

Where v is the initial wealth and r is a constant interest rate.
Problem (8) is set up in the discrete-time case. However, it can be solved numerically either

with a finite number or a continuum range of states at each time period.
Let us consider the case when at each time t, Ct takes (2t + 1) possible values (recombining

trinomial tree), then Ct is a vector of 2t+ 1 control variables, i.e.

Ct = [Ct,−t, ..., Ct,0, ..., Ct,t] ∈ R2t+1+

For each vector Ct, there exists a corresponding vector

pt = [pt,−t, ..., pt,0, ..., pt,t] ∈ [0, 1]2t+1

where pt,i = P [Ct = Ct,i].
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From Proposition (No order assumption), one way to write the term H(Ct) in the objective
function is:

H(Ct) =
tX

i=−t
FCt,i(pt).Ct,i

Where the function

FCt,i : [0, 1]
2t+1 −→ R+

pt = [pt,−t, ..., pt,0, ..., pt,t] 7−→


h
g
³P

{Ct,k≤Ct,i} pk
´
− g

³P
{Ct,k<Ct,i} pk

´i
I{Ct,i≤α}

+
h
h
³
1−P{Ct,k<Ct,i} pk

´
− h

³
1−P{Ct,k≤Ct,i} pk

´i
I{Ct,i>α}


(9)

Remark 2 Another formulation is also possible using Proposition (Order assumption), where the
control variables are ordered explicitly.

The general expression (9) can be drastically simplified in the case when g and h are conjugate
functions and the consumption at each time is distributed with the same probability over the
states, i.e.

g(x) = 1− h(1− x) ∀x ∈ [0, 1]

and

P [Ct = Ct,i] = qt =
1

2t+ 1
∀t ∈ [1, T ],∀i ∈ [−t, t]

Then, using Proposition (conjugate), we have

FCt,i(pt) = g

µ
1

2t+ 1
#{Ct,k ≤ Ct,i}

¶
− g

µ
1

2t+ 1
#{Ct,k < Ct,i}

¶
where #{Ct,k ≤ Ct,i} denotes the number of variables Ct,k, k ∈ {−t, ..., t}, such that Ct,k ≤ Ct,i.
In this case, the problem (8) can be solved using one of the simplicial algorithms used in

rank regression problems. Osborne (2001 [37]) is an excellent reference for solving such types of
problems.

3.3.4 Optimal portfolio choice in a one-period binomial model

One risky security and one riskless asset In the case of a one-period model with 2 assets,
there are 5 unknown variables: C0, the consumption at time 0, Cu1 and C

d
1 , the consumption at

time 1 for the up and down states and H0 and H1 the investment positions in the safe and the
risky asset respectively. To solve this problem, we start from the budget constraints that involve
both consumption and investment strategies and express all the variables in terms of Cu1 and C

d
1 .

We then show how this is equivalent to using the risk-neutral computational approach directly,
which from the start determines the constraints in terms of Cu1 and C

d
1 .

The consumption-investment problem is:

max
(C,H)

H(C0) + β.H(C1)

subject to: C0, C1 ≥ 0
and Budget constraints,

(10)
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where the budget constraints are:

W0 − C0 = H0.B0 +H1.S0 (11)

W1 = C1 = H0.B1 +H1.S1 (12)

We can rewrite all the variables in terms of Cu1 and C
d
1 , which become the control variables in

problem (10).

p C1
u

C0

q C1
d

Figure 1: Consumption nodes in one period binomial model

Equation (12) yields two equations:

Cu1 = H0.B1 +H1.S
u
1

Cd1 = H0.B1 +H1.S
d
1

Solving then for H0 and H1 :

H0 = − Sd1
B1(Su1−Sd1 )

Cu1 +
Su1

B1(Su1−Sd1 )
Cd1

H1 =
1

Su1−Sd1
Cu1 − 1

Su1−Sd1
Cd1

(13)

Using equations (11) and (13), C0 can be expressed in terms of Cu1 and C
d
1 :

C0 =W0 − b1Cu1 − b2Cd1 (14)

where:

b1 =
B1S0 − Sd1
B1(Su1 − Sd1 )

and b2 =
Su1 −B1S0
B1(Su1 − Sd1 )

Interpretation of b1 and b2 :

For the choice of Sd1 < B1S0 < S
u
1 , it is easy to check that Q{ω1} =

B1S0 − Sd1
(Su1 − Sd1 )

and Q{ω2} =
Su1 −B1S0
(Su1 − Sd1 )

define a martingale measure for the discounted price
S1
B1
. Therefore.

b1C
u
1 + b2C

d
1 = EQ

·
C1
B1

¸
And equation (14) can be written as:

W0 = C0 + EQ
·
C1
B1

¸
The absence of arbitrage condition is equivalent to Q{ωi} ∈ (0, 1) for i ∈ {1, 2}. Provided that

B1 = (1 + r) ≥ 1, we also have bi ≡ Q{ωi}
B1

∈ (0, 1).
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The problem (10) is then equivalent to:

max
(C,H)

H(C0) + β.H(C1)

subject to: C0, C1 ≥ 0
W0 = C0 +

1
1+rEQ [C1]

(15)

This would be the starting point if the optimal portfolio problem (10) was formulated within
the risk-neutral computational approach.
The constraints of Problem (10) are:

1. Cu1 ≥ 0 and Cd1 ≥ 0
2. W0 − C0 ≥ 0 ⇒ b1C

u
1 + b2C

d
1 ≥ 0 (using (14))

3. C0 ≥ 0 ⇒ b1C
u
1 + b2C

d
1 ≤W0 (using (14))

Solving the problem - Feasible region In this paragraph, we consider the special case when
the distortion functions g and h are conjugate, and we solve the problem analytically. The general
case of non-conjugate distortion functions is left to the next paragraph dealing with the case of 2
risky assets and 1 riskless security.
Let us write all the variables in terms of Cu1 and C

d
1 :

• H(C0) = C0 =W0 − b1Cu1 − b2Cd1

• H(C1) =
½
h(p)Cu1 + [1− h(p)]Cd1 if Cu1 ≥ Cd1
h(q)Cd1 + [1− h(q)]Cu1 if Cu1 ≤ Cd1

Therefore, the objective function in the problem (15) is equal to:

H(C0) + βH(C1) =

(
W0 + {βh(p)− b1}Cu1 + {β(1− h(p))− b2}Cd1 if Cu1 ≥ Cd1
W0 + {β(1− h(q))− b1}Cu1 + {βh(q)− b2}Cd1 if Cu1 ≤ Cd1

We consider then the two maximization problems:

P1 =


max
Cu
1 ,C

d
1

{βh(p)− b1}Cu1 + {β(1− h(p))− b2}Cd1
subject to: Cu1 ≥ 0, Cd1 ≥ 0

Cu1 ≥ Cd1
b1C

u
1 + b2C

d
1 ≤W0

(16)

and

P2 =


max
Cu
1 ,C

d
1

{β(1− h(q))− b1}Cu1 + {βh(q)− b2}Cd1
subject to: Cu1 ≥ 0, Cd1 ≥ 0

Cu1 ≤ Cd1
b1C

u
1 + b2C

d
1 ≤W0

(17)

Maximizing (10) is equivalent to solving P1 and P2 and choosing the solution that corresponds
to the higher objective value function. The two maximization problems are linear programs that
can be solved numerically using any optimisation software package. However, since there are only
two choice variables, an analytical solution can be given explicitly.

Remark 3 If the probability distribution is such that P{ω1} = P{ω2} = 1
2 , then P1 and P2 have

the same solution and therefore, it suffices to solve either the problem P1 or P2.
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C1d

C1u

b1.C1u + b2.C1d = Wo

Feasible set of (C1u,C1d) in P2

Feasible set of (C1u,C1d) in P1

C1u
  - 

C1d
 = 0

b1.C1u + b2.C1d = 0

Figure 2: Feasible regions for consumption in one-period model

Given the constraints, feasible sets of the solution to P1 and P2 are illustrated in figure (2).
The objective function in the problem (16) is linear in Cu1 and C

d
1 . The equation of the line

representing the level curve of the objective function at a possible value z1 is given by:

Cd1 =
z1

β(1− h(p))− b2 −
βh(p)− b1

β(1− h(p))− b2C
u
1 (18)

There are four possible solutions of the problem corresponding to the summits of the feasible
region:

(0, 0), (0,
W0

b2
), (

W0

b1 + b2
,
W0

b1 + b2
) and (

W0

b1
, 0). (19)

Relation between the solution and the risk-averse index (ρ) The solution takes one of
the four possible values given in (19). For the choice of the function h(p) = 1 − (1 − p)ρ, where
ρ is a risk aversion parameter, the intercept and the slope of (18) depend on ρ. The level curve
equation (18) can be written as:

Cd1 =
z1
A(ρ)

− B(ρ)
A(ρ)

Cu1 (20)

where A(ρ) = β(1− h(p))− b2 and B(ρ) = βh(p)− b1

A(ρ) ≥ 0 ⇔ ρ ≤ ln(b2/β)

ln(1− p) and B(ρ) ≥ 0 ⇔ ρ ≥ ln(1− b1/β)
ln(1− p)
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Put ρ1 =
ln(1− b1/β)
ln(1− p) and ρ2 =

ln(b2/β)

ln(1− p) , we have: ρ1 < ρ2 if and only if β > b1 + b2 =
1
1+r .

Case 1 β > 1
1+r , then ρ1 < ρ2, the following table summarizes the signs of A(ρ) and B(ρ), given

the position of ρ in relation to ρ1 and ρ2 :

ρ 0 ρ1 ρ2 ∞
A(ρ) + + + 0 -
B(ρ) - 0 + + +
−B(ρ)
A(ρ) + 0 - ∞ +

• On (0, ρ1) the slope is positive and A(ρ) is positive. Maximizing z1 is equivalent to increasing
the intercept in (20) (shifting the curve up). The solution is then (W0(1 + r),W0(1 + r))

6 .

• On (ρ1, ρ2) the slope is negative and A(ρ) is positive. Maximizing z1 is equivalent to increas-
ing the intercept in (20) (shifting the curve up). The solution is then½

(W0

b1
, 0) if ρ ∈ (ρ1, ρ3)

(W0(1 + r),W0(1 + r)) if ρ ∈ (ρ3, ρ2)

where ρ3 =
ln(1− b1(1 + r))

ln(1− p)
• On (ρ2,∞) the slope is positive and A(ρ) is negative. Maximizing z1 is equivalent to reducing
the intercept in (20) (shifting the curve down). The solution is then (W0

b1
, 0).

Case 2 β < 1
1+r , then ρ1 > ρ2, the following table summarizes the signs of A(ρ) and B(ρ), given

the position of ρ in relation to ρ1 and ρ2 :

ρ 0 ρ2 ρ1 ∞
A(ρ) + 0 - - -
B(ρ) - - - 0 +
−B(ρ)
A(ρ) + ∞ - 0 +

• On (0, ρ2) the slope is positive and A(ρ) is positive. Maximizing z1 is equivalent to increasing
the intercept in (20) (shifting the curve up). The solution is then (0, 0)7 .

• On (ρ2, ρ1) the slope is negative and A(ρ) is negative. Maximizing z1 is equivalent to reducing
the intercept in (20) (shifting the curve down). The solution is then (0, 0).

• On (ρ1,∞) the slope is positive and A(ρ) is negative. Maximizing z1 is equivalent to reducing
the intercept in (20) (shifting the curve down). The solution is then (W0

b1
, 0).

In sum, the possible values for optimal consumption (Cu1 , C
d
1 ) are (0, 0), (

W0

b1
, 0) and ( W0

b1+b2
, W0

b1+b2
).

The solution depends on the risky security distribution (values of (ρ1, ρ2)) and the sign of (β− 1
1+r ).

The same analysis applies to the problem P2 (17). Put ρ01 =
ln(b1/β)

ln(p)
and ρ02 =

ln(1− b2/β)
ln(p)

,

we have: ρ01 < ρ02 if and only if β < b1 + b2 =
1
1+r .

Case 1 β > 1
1+r , then ρ

0
1 > ρ

0
2,

6 Since the slope −B(ρ)
A(ρ)

≤ 1, then the solution (0, 0) is eliminated
7Since the slope −B(ρ)

A(ρ)
≥ 1, then the solution (W0(1+ r),W0(1+ r)) is eliminated
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• On (0, ρ02) the solution is (0, 0)
• On (ρ02, ρ01) the solution is½

(W0(1 + r),W0(1 + r)) if ρ ∈ (ρ02, ρ03)
(0, W0

b2
) if ρ ∈ (ρ03, ρ01)

where ρ03 =
ln(b1(1 + r))

ln(p)

• On (ρ2,∞) the slope is positive and A(ρ) is negative. Maximizing z1 is equivalent to reducing
the intercept in (20) (shifting the curve down). The solution is then (0, W0

b2
).

Case 2 β < 1
1+r , then ρ

0
1 < ρ

0
2,

• On (0, ρ01) the solution is (W0(1 + r),W0(1 + r)).

• On (ρ01, ρ02) the solution is (0, 0).
• On (ρ02,∞) the solution is (0, W0

b2
).

Figure 3 plots the solution for the case where β = 0.95, r = 10% and ρ = 0.8.

Optimal investment strategies Once the optimal consumption rules are obtained, the optimal
investment strategies follow from the budget equations (13).

• When (Cu1 , Cd1 ) = (0, 0), then (H0,H1) = (0, 0)
• When (Cu1 , Cd1 ) = (W0

b1
, 0) , then (H0,H1) = (−W0

Sd1
B1S0−Sd1

,W0
B1

B1S0−Sd1
).

• When (Cu1 , Cd1 ) = ( W0

b1+b2
, W0

b1+b2
), then (H0,H1) = (W0, 0). This situation is referred to as

“plunging”.

• When (Cu1 , Cd1 ) = (0, W0

b2
) , then (H0,H1) = (W0

Su1
Su1−B1S0 ,−W0

B1

Su1−B1S0
).

Two correlated risky securities and one riskless asset

Discretising the process Consider two risky securities, which are log-normally distributed and
one riskless asset. In order to obtain completeness of the market, we consider a trinomial lattice,
where the bivariate log-normal process is described by:

dSt,1 = µ1St,1dt+ σ1St,1dWt,1

dSt,2 = µ2St,2dt+ σ2St,2

³
ρdWt,1 +

p
1− ρ2dWt,2

´
whereW1 andW2 are two independent Brownian motions, σi is the volatility of the instantaneous
return on stock i, and ρ is the correlation coefficient between the instantaneous returns of the two
stocks. Following He (1990, [23]), we approximate the increments of (Wt,1 ,Wt,2) by two random
variables (ε1, ε2) such that:

Pr

"
ε1 =

√
3√
2
, ε2 =

1√
2

#
=
1

3

Pr

·
ε1 = 0, ε2 =

−2√
2

¸
=
1

3

Pr

"
ε1 =

−√3√
2
, ε2 =

1√
2

#
=
1

3
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So,

Sk+1,1 =


Sk,1

³
1 + µ1

n + σ1
√
3√
2n

´
Sk,1

¡
1 + µ1

n

¢
Sk,1

³
1 + µ1

n − σ1
√
3√
2n

´

Sk+1,2 =


Sk,2

³
1 + µ2

n + σ2ρ
√
3√
2n
+ σ2

p
1− ρ2 1√

2n

´
Sk,2

³
1 + µ2

n − σ2
p
1− ρ2 2√

2n

´
Sk,2

³
1 + µ2

n − σ2ρ
√
3√
2n
+ σ2

p
1− ρ2 1√

2n

´
where n is the number of time steps. Note that the choice of (ε1, ε2) approximating the increments
of (Wt,1 ,Wt,2) is not unique.
The trinomial lattice with two securities is a complete market model. It is arbitrage-free if and

only if there exists a unique risk-neutral measure Q. That is:

EQ[∆S
∗
1 ] = 0 (21)

EQ[∆S
∗
2 ] = 0

The model has 5 degrees of freedom (µ1, µ2,σ1,σ2, ρ). With the conditions (21), there remains
3 degrees of freedom. We can let (σ1,σ2, ρ) be free and choose (µ1, µ2) so that the system (21)
has a solution (Q(ω1), Q(ω2), Q(ω3)) ∈ (0, 1)3.

µ1 = n(B1 − 1− σ1
r
3

2n
(Q(ω1)−Q(ω3))

µ2 = n(B1 − 1− σ2ρ
r
3

2n
(Q(ω1)−Q(ω3)) + σ2

p
1− ρ2

r
1

2n
(−Q(ω1) + 2Q(ω2)−Q(ω3))

For Q(ω1) = Q(ω2) = Q(ω3) = 1
3 , we obtain µ1 = µ2 = (B1 − 1) = r.

One can choose suitable values for (Q(ω1), Q(ω2), Q(ω3)) so as to obtain sensible values for
(µ1, µ2,σ1,σ2). For example, (µ1,σ1) = (10%, 20%) for a share and (µ2,σ2) = (5%, 8%) for a
Treasury bill.
When the lattice is recombining, we lose 2 degrees of freedom because of the conditions:

u1 · d1 = m2
1

u2 · d2 = m2
2

However, the existence of the risk neutral measure Q still holds.

Solving the problem There is not a great deal of difference between the case of one risky and
one riskless asset and the case of two risky and one riskless asset. In effect, the mathematical
form of the optimisation problem is exactly the same, however, the number of states increases by
one to ensure the completeness of the market model. This added dimension is translated by the
addition of a new control variable Cm1 which represents the value of the consumption at time 1 in
the middle state. The problem is:

max
C0,C1

H(C0) + β.H(C1)

subject to: v = C0 +
1

1 + r
EQ[C1]

and C0, C1 ≥ 0
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It can be shown that for the choice of the risk neutral probabilities qu ≤ qm ≤ qd, the order
Cu1 ≥ Cm1 ≥ Cd1 is optimal. An application of Proposition (Order assumption) in the case of a
trinomial random variable gives:

H(C1) = α+ (C
u
1 − α)+

+
£
(Cm1 − α)+ − (Cu1 − α)+

¤
.h(1− pu)

+
£
(Cd1 − α)+ − (Cm1 − α)+

¤
.h(1− pu − pm)

− (α− Cd1 )+
− £(α− Cm1 )+ − (α− Cd1 )+¤ .g(1− pd)
− £(α− Cu1 )+ − (α− Cm1 )+¤ .g(1− pd − pm)

This is a piecewise linear function with control variables Cu1 , C
m
1 and Cd1 . Using the corollary

(Position of α), we transform it to four linear functions depending on the value of α with respect
to the control variables.

H(C1) =


(h0 − h1)Cu1 + (h1 − h2)Cm1 + (h2 − h3)Cd1 if α < Cd1
α(1− h1 − g1) + (g1 − g0)Cu1 + (h1 − h2)Cm1 + (h2 − h3)Cd1 if Cd1 ≤ α < Cm1
α(1− h2 − g2) + (g1 − g0)Cu1 + (g2 − g1)Cm1 + (h2 − h3)Cd1 if Cm1 ≤ α < Cu1
(g1 − g0)Cu1 + (g2 − g1)Cm1 + (g3 − g2)Cd1 if Cu1 ≤ α

where

hi = h

Ã
1−

iX
k=1

pk

!
and gi = g

Ã
iX

k=1

pk

!
We then solve four linear programs (Li) for i = 1, .., 4.

(Li) =



max
C=(Cu

1 ,C
m
1 ,C

d
1 )

v − 1
1+rEQ[C1] + β.H(C1)

subject to: EQ[C1] ≤ v(1 + r)
0 ≤ Ci1 ≤ v(1+r)

qi
i = d,m, u

Cd1 ≤ Cm1 ≤ Cu1
α ∈ [Ci1, Ci+11 )

(22)

The optimal consumption is the one that corresponds to the maximum of the four optimal objec-
tives resulting from solving the four linear programs defined above.

3.4 Wang’s class of distortion operators

Now consider another class of distortion operators introduced by Wang (2000 [48]). Wang shows
that applying this distortion operator to a stock price distribution, the risk neutral valuation
of stock prices can be recovered in the normal and the lognormal cases. Further investigations,
however, should be carried out to check whether this statement is true for any contingent claim,
and also when there is no normality assumption on the underlying asset prices. Hamada & Sherris
(2001 [20]) provide some insight into this question.

3.4.1 The operator

Let X be a random variable with a decumulative distribution function SX(x) = P [X > x]. The
expectation of X is alternatively given by:

E[X] =
Z 0

−∞
[SX(x)− 1]dx+

Z ∞

0

SX(x)dx
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Let Φ(u) =
R u
−∞

1√
2π
e−

x2

2 dx be the standard normal cumulative function and α ∈ R, the distor-
tion operator is defined as:

gα(u) = Φ[Φ
−1(u) + α]

for u in [0, 1]. The risk-adjusted premium of X, as defined by Wang (2000) admits the following
Choquet representation

H[X,α] =

Z 0

−∞
{gα[SX(x)]− 1}dx+

Z ∞

0

gα[SX(x)]dx

When X is positive, we have:

H[X,α] =

Z ∞

0

gα[SX(t)]dt

The risk-adjusted premium is evaluated as in Yaari’s dual theory of choice under uncertainty. The
tail distribution SX(t) is distorted by the function gα(p) = Φ[Φ−1(p) + α]. This operator shifts
the pth quantile of X by a positive or negative value α and reevaluates the normal cumulative
probability of the shifted quantile.
If α > 0, then gα(p) > p, if α < 0, then gα(p) < p. Since gα is continuous and gα(p) ∈ [0, 1],

then:

gα is convex if α < 0

gα is concave if α > 0

The investor behaves pessimistically by shifting the quantiles to the left, thereby assigning high
probabilities to low outcomes, and behaves optimistically by shifting the quantiles to the right
thereby assigning high probabilities to high outcomes. Typically, an insurer has a lower α than a
reinsurer when pricing the same risk.

3.4.2 The portfolio problem

In asset allocation, at each time period, the consumption Ct is a positive random variable. The
investor seeks to maximise the discounted sum of the certainty equivalents of consumption through
time, as described by the problem:

max
C

PT
t=0 β

t ·H[Ct,α]
subject to

PT
t=0B

−1
t · EQ [Ct] = v

C is an adapted process

(23)

where

H[Ct,α] =

Z ∞

0

gα (P [Ct > x]) dx

If the model consists of a finite number of states at each time period, then Ct takes nt possible
values ct,1, ct,2, ..., ct,nt with respective probabilities pt,1, pt,2, ..., pt,nt , where nt is the number of
states at time t. Using Corollary (Certainty equivalent),

H[Ct,α] =

ntX
i=1

[gα (P [Ct ≥ ct,i])− g (P [Ct > ct,i])]
#{ct,j : ct,j = ct,i} ct,i
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The probability that Ct ≥ ct,i is equal to the sum of the probability weights pk, such that
ct,k ≥ ct,i, i.e.

P [Ct ≥ ct,i] =
X

{k:ct,k≥ct,i}
pt,k

Hence,

H[Ct,α] =

ntX
i=1

h
gα

³P
{k:ct,k≥ct,i} pt,k

´
− g

³P
{k:ct,k>ct,i} pt,k

´i
#{ct,j : ct,j = ct,i} ct,i

By defining the risk-neutral probability and using the expression above, the description of the
problem is complete. This is not a linear program, however it can be solved using an optimisation
package. The next paragraph shows how to solve it on a trinomial lattice and provides some
results in two periods.

3.4.3 How to compute H[C,α] over a lattice?

2

3

4

t = 0 t = 1

1

-4

-3

-2

-1

0

t = 2

(0,0)

(3,-1)

(3,-3)

(1,1)

(1,0)

(1,-1)

(3,0)

t = 3 t = 4

(2,2)

(2,0)

(2,-1)

(3,2)

Fix a time t, and consider the distribution of the consumption represented by the vertical
nodes (t, i)−t≤i≤t. At time t, the consumption Ct takes 2t+1 possible values ct,i with probabilities
pt,i = P [S = St,i]. Hence,

H[Ct,α] =
tX

i=−t

h
gα

³P
{k:ct,k≥ct,i} pt,k

´
− g

³P
{k:ct,k>ct,i} pt,k

´i
#{ct,j : ct,j = ct,i} ct,i

The probabilities pt,i, t ∈ {1, ..., T}, i ∈ {−t, ..., 0, ..., t} can be specified as follows:
pt,i = P [S = St,i]

=
X

max(0,i)≤k≤[ t+i2 ]

µ
t

k

¶µ
t− k
k − i

¶
· pku · pk−id · (1− pu − pd)t−2k+i (24)
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where pu and pd are respectively the probabilities of up and down jumps and [x] is the integer part
of x. The expression (24) is a generalisation of the probabilities in a binomial model. Likewise,
the expression EQ [Ct] in the constraints can be computed. In effect,

EQ [Ct] =
tX

i=−t
Qt,i · ct,i

where:

Qt,i = Q [S = St,i]

=
X

max(0,i)≤k≤[ t+i2 ]

µ
t

k

¶µ
t− k
k − i

¶
· qku · qk−id · (1− qu − qd)t−2k+i

where qu and qd are respectively the risk-neutral probabilities of up and down jumps. For a
detailed discussion of the implementation, see Hamada (2001 [19])

3.4.4 Numerical examples

This paragraph provides two numerical examples of portfolio allocation using the classes of dis-
tortion operators introduced earlier.
The first example considers Wang’s distortion operator. Suppose that there are three dates

t = 0, 1, 2 and five states of the world. This corresponds to a recombining trinomial lattice. We
numerically solve the problem (23) for T = 2. For a loading parameter α = 0.5, Figure (4) shows
the consumption and investment strategies as well as the wealth process for a two period example.
The discount factor β = 0.9, the risk-free interest rate r = 10% and initial wealth v = $10.
The jump probabilities are pu = pm = pd =

1
3 and qu =

2
15 , qm = 1

3 and qd =
8
15 . For

this choice of risk neutral probabilities, and a correlation coefficient ρ = 0.75, the means and
volatilities of the two risky securities are respectively : mean1 = 13.46%, volatility1 = 07.07%,
and mean2 = 15.20%, volatility2 = 10.61%.

The intermediate consumption C is null and the consumption is strictly positive at the highest
state of the world. However, intermediate positions nr, r1 and r2 in the riskless asset, the first
security and the second security respectively are nonzero.
To see the impact of the loading parameter α on the consumption stream, Figure (5) plots the

optimal consumption for different values of α.
Around the value α = −0.8, there is a switch in consumption from the lowest state, where it

is nonzero and null elsewhere, to the highest state.
A closer look at the consumption process around α = −0.8, is represented in Figure (6). This

figure shows that in the transitory passage across the level α = 0.8, the intermediate consumption
becomes nonzero.
From the examples above, it is clear that the linearity of the dual utility in consumption results

in a corner solution in the optimisation problem. This is not a desirable feature in portfolio
selection, although, as shown in the example, with 3 assets, diversification is possible. On the
other hand, within the expected utility framework, a risk averse investor is always diversifying
provided that the expected return of the risky asset is positive.
The second example is a numerical solution to the problem (22) where the risk measure is

the one introduced by Van der Hoek and Sherris. Figure (7) shows the optimal consumption and
trading strategies for the parameters values indicated in the figure.
This numerical example shows that consumption at the end of the investment period is positive

in all the states. This is due to the asymmetry resulting from pricing the downside of the risk

27



a lp h a  =  0 .5
c o r re la t io n  =  0 .7 5
b e ta  =  0 .9
r  =  0 .1

C  =  0
W  =  1 0
n r  =  7 ,8 9 6  
r1  =  -2 ,4 6 1
r2  =  1 ,1 1 4 .9 0

C  =  0
W  =  0
n r  =  0  
r1  =  0
r2  =  0

C  =  0
W  =  0

C  =  0
W  =  8 2 .5 0
n r  =   5 9 ,2 1 8  
r1  =  -1 ,6 6 1  
r2  =   7 ,1 6 2  

C  =  0
W  =  0
n r  =  0
r1  =  0
r2  =  0

C  =  0
W  =  0

C  =  0
W  =  0

C  =  0
W  =  0

C  =   6 8 0 .6 2 5 0
W  =   6 8 0 .6 2 5 0  

Figure 4: Consumption and investment strategies using Wang’s distortion operator
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r  =  0 .1 ; in te r e s t  r a te
a lp h a  =  5 ; b e n c h m a r k  c o n s u m p t io n
r h  =  0 .9 ; d is to r t io n  c o e f f ic ie n t  in  h  fu n c t io n
r g  =  0 .2 ; d is to r t io n  c o e f f ic ie n t  in  g  fu n c t io n
v  =  1 0 ; in i t ia l  w e a l th
b e ta  =  0 .9 ; d is c o u n t  fa c to r
q d  =  0 .4 ;  q m  =  0 .3 5 ;  q u  =  0 .2 5 ; r is k  n e u t r a l  p r o b a b i l i t ie s
P d  =  1 /3 ;  P m  =  1 /3 ;  P u  =  1 /3 ; r e a l  w o r ld  p r o b a b i l i t ie s
c o r r e la t io n  =  0 .9  ;

C  =  0
W  =  1 0
n r  =  8 8 .3
r 1  =  - 9 .5
r 2  =  6 .5

C  =   5
W  =  5

C  =   5
W  =  5

C  =   2 9
W  =  2 9

Figure 7: Optimal consumption and trading strategies using PH risk measure

29



using the distortion function g(x) = x0.2 and the upside of the risk using h(x) = 1 − (1 − x)0.9.
It is worth noting that the consumption in the middle and the down state equals the benchmark
consumption α = 5. This is consequence of the linearity in Problem (22) where C = α is a corner
solution.

4 Conclusion
In this paper we have provided a formal treatment of risk measures based on distortion functions
in discrete-time setting. We have also shown that the risk neutral computational approach is well
adapted to portfolio optimisation with such measures that don’t lie within the expected utility
framework.
The application to two different distortion operators shows that the portfolio consumption

and investment rules are different from the expected utility results since the optimisation leads to
corner solutions resulting from the linearity of the objective in the control variables. This is an
undesirable feature and an important area that needs to be addressed before these non-expected
utility risk measures can be confidently applied to asset allocation. This is an area for future
research. One possibility is to consider combining expected and non-expected utility measures as
in Quiggin (1982 [40]).
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A Proof of Proposition (Order assumption)
Proof. For x1 < x2 < ... < xn we have:
(x1 − α)+ ≤ (x2 − α)+ ≤ ... ≤ (xn − α)+ and (α− x1)+ ≥ (α− x2)+ ≥ ... ≥ (α− xn)+, so

Pr
£
(X − α)+ > t¤ =



1 if (x1 − α)+ > tPn
k=2 pk if (x2 − α)+ > t ≥ (x1 − α)+Pn
k=3 pk if (x3 − α)+ > t ≥ (x2 − α)+

.... .....
pn if (xn − α)+ > t ≥ (xn−1 − α)+
0 if t ≥ (xn − α)+

and

Pr
£
(α−X)+ > t¤ =



1 if (α− xn)+ > tPn−1
k=1 pk if (α− xn−1)+ > t ≥ (α− xn)+Pn−2
k=1 pk if (α− xn−2)+ > t ≥ (α− xn−1)+

.... .....
p1 if (α− x1)+ > t ≥ (α− x2)+
0 if t ≥ (α− x1)+

Therefore,

H(X) = α+

Z (x1−α)+

0

h(1)dt+

Z (x2−α)+

(x1−α)+
h(

nX
k=2

pk)dt+

Z (x3−α)+

(x2−α)+
h(

nX
k=3

pk)dt+ ...+

Z (xn−α)+

(xn−1−α)+
h(pn)dt−

Z (xn−α)+

0

g(1)dt−
Z (α−xn−1)+

(α−xn)+
g(
n−1X
k=1

pk)dt−
Z (α−xn−2)+

(α−xn−1)+
g(
n−2X
k=1

pk)dt− ...−
Z (α−x1)+

(α−x2)+
g(p1)dt

By using Z (xi+1−α)+

(xi−α)+
h(

nX
k=i+1

pk)dt = h

Ã
1−

iX
k=1

pk

!£
(xi+1 − α)+ − (xi − α)+

¤
and Z (α−xi)+

(α−xi+1)+
g(

iX
k=1

pk)dt = −g
Ã

iX
k=1

pk

!£
(α− xi+1)+ − (α− xi)+

¤
we get the desired result.

B The case when g and h are conjugate
We propose to show that

H(X) = H0,0,h(X) =

Z ∞

0

h(P [X > t])dt

First, it is easy to check that, for t ≥ 0,
S(X−α)+(t) = SX(α+ t)

S(α−X)+(t) = 1− SX(α− t)
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and since h and g are conjugate, we have:

h0(x) = g0(1− x)

H(X) = α+

Z ∞

0

h
¡
S(X−α)+(t)

¢
.dt−

Z ∞

0

g
¡
S(α−X)+(t)

¢
.dt

= α+

Z ∞

0

h (SX(α+ t)) .dt+

Z ∞

0

g (1− SX(α− t)) .dt

= α−
Z ∞

0

th0 (SX(α+ t)) .dSX(α+ t)−
Z ∞

0

tg0 (1− SX(α− t)) .dSX(α− t)

= α−
Z ∞

α

(u− α)h0 (SX(u)) .dSX(u)−
Z −∞

α

(α− v)g0 (1− SX(v)) .dSX(v)

= α+ α

Z ∞

α

h0 (SX(u)) .dSX(u)−
Z ∞

α

uh0 (SX(u)) .dSX(u)

−α
Z −∞

α

h0 (SX(v)) .dSX(v) +
Z −∞

α

vh0 (SX(v)) .dSX(v)

= α+ α

Z ∞

−∞
h0 (SX(u)) .dSX(u)−

Z ∞

−∞
vh0 (SX(v)) .dSX(v)

= α− α
Z ∞

−∞
h0 (SX(u)) .dFX(u)| {z }

=1

−
Z ∞

−∞
vh0 (SX(v)) .dSX(v)

=

Z ∞

−∞
vh0 (SX(v)) .dFX(v)

=

Z ∞

0

h (SX(v)) .dv
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