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Summary 

The present paper derives general results for the (immunizing) duration of (default- 

free) generic interest rate swaps within the framework of single-factor duration 

models (SFDM). Results on the duration of floating-rate notes (FRNs) are obtained 

as a special case. 

The problem of determining the duration of an interest rate swap has been analyzed 

by GOODMAN (1991) for the special case of a flat term structure of interest rates, 

however, these results are flawed. 
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Le present expose derive des resultats d’ordre general pour la duke 

(d’immunisation) de swaps de taux d’int&i% generiques (saris defaut) dans 

le cadre de modeles de duree a un seul facteur (SFDM). Des resultats sur la 

duke d’obligations ?I taux variable (FRN) sont obtenus sous forme de cas 

particulier. 

Le probleme de determination de la duree d’un swap de taux d’int&& a 6te 

analyse par GOODMAN (1991) pour un cas particulier d’une structure 

inchangee des taux d’inttWt, mais ces resultats presentaient des erreurs. 
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1. Introduction 

The concept of duration plays a central role in the measurement of interest rate 

risk, whereas interest rate swaps are an important tool in interest rate risk 

management. Therefore, the calculation of the duration of an interest rate swap 

seems to be of some interest, first results are contained in GOODMAN (1991) for 

the case of a flat yield curve. 

In the present paper we derive the (immunizing) duration of an interest rate swap 

within the framework of traditional single-factor duration models (SFDM), cf. 

BIERWAG (1987, pp. 312-314). In SFDMs, the change of deterministic forms of 

the term structure of interest rates depends on the change of a one-dimensional 

parameter. 

Generic interest rate swaps consist of an exchange of fixed for floating interest 

payments and therefore their value can be looked at as the difference between the 

values of a fixed-rate bond and a floating-rate bond. Thus, the problem of 

determining the duration of a floating-rate note (FRN) is closely related to the 

problem considered in this paper. 

Our results correct results of GOODMAN (1987) in the case of interest rate swaps 

and generalize results of CHANCE (1983) and MORGAN (1986) in the case of 

FRNs. The generalization of our derivations to multiple factor duration models 

(MFDM), where the change of deterministic forms of the term structure depends on 

the change of a multi-dimensional parameter, is straightforward. However, an 

analysis within the framework of stochastic models of the term structure of interest 

rates, as done for FRNs by RAMASWAMY/SUNDARESAN (1986) and 

SUNDARESAN (1991), is beyond the scope of this paper. The interest rate swaps 
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considered are always assumed to be default-free. 

2. Modelliig the Term Structure of Interest Rates 

For the ease of exposition, we are working with a time continuous model of interest 

rates. Let i(s,u) denote the instantaneous interest rate at time u as observed at time 

s, which implies that one unit of money at time s will increase in value up to time 

t 2 s to the amount 

q(s,t) = exp ji(s,u)du , 
i I S 

(1) 

which determines the accumulation factors within the given interest rate model. The 

value, b(s,t), at time s of a pure discount bond maturing at time t 1 s with unit 

maturity value is given by 

b(s,t) = exp (2) 

which determines the discounting factors within the given interest rate model. The 

term structure of interest rates, r(s,t), at time s is given by the internal rate of 

return of this discount bond, that is, 
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r(s,t) = 1 t -hb(s,t) = -Ji(s,u)du . (3) 
t-s t-s 

S 

Comparing (1) with (2) and (1) with (3) we obtain (1’) and (2’) respectively: 

4 W> = exp 1 (t -4 r (s,t> 1 

b(s,t) = exp[ -(t-s)r(s,t)] . (2’) 

Finally, let f(s,t,v) denote (v > t 2 s) the implied forward accwmhtion factors at 

time s with respect to the given term stucture, i.e. the accumulation of one unit of 

money given at time t up to the time v under the interest rate process as given at 

time s. We have 

f(s,t,v) = exp 

= exp[ii(s,u)du - ii(s,u)du 
\S S 

(4) 

= exp[(v-s)r(s,v) - (t-s)r(s,t)] . 

Sometimes one wants to transform results derived within this continuous time model 

to results expressed within a discrete time interest rate model or vice versa. This 

can be done as follows. Let r*(s,t) denote the current interest rate at time s of a 

discrete time interest rate model, then the corresponding accumulation factor is 

given by 
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which implies 

q&t) = [ 1 + r *(s,t)-y , 

r*(s,t) = expr(s,t) - 1 

(5) 

(6) 

as well as 

r(s,t) = ltl[l +r*(s,t)] . (6’) 

ExamDle 1 : Flat term structure 

A flat term structure at time s is defined within the discrete time interest 
rate model by 

r *(s,t) = rs for all t2s , (7) 

which implies for the continuous time model 

r&t) E ln(1 +q m (7’) 

3. The General Structure of an Interest Rate Swap 

A (generic) interest rate swap consists of the exchange of floating-rate interest 

payments for fixed-rate payments. The underlying debt instrument, however, is not 

being exchanged. We assume in the following that the two underlying debt 

instuments have an identical notional amount (principal), N, and that the exchange 

payments take place at times 6 (: =0) < tr < . . . < f. The notional amount N is 

not exchanged. However, in order to obtain duration measures being interpretable 

for the fixed and the floating rate part of the swap, we assume a fictitious exchange 

of N at time f, leaving the net position unchanged. The participant in the swap 

paying fixed interest rates, let us say of amount Z&J, and receiving floating 
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interest rates, let us say of amount Z&J, will be called @e&rate payer, the 

counter-party, floating-rate payer. Now we are able to illustrate the general 

structure of a generic interest rate swap graphically as it is done in Figure 1. 

FIXED 

RATE 

PAYER 

W,) - 
Z&J - 

Z,(t,,)+N - 

t . 0 
2 ) z,w 

) Z,&) 

t i * z,(ti) 

. 

tll +’ Z,(tJ+N 

FLOA- 

TING 

RATE 

PAYER 

ieure 1: The general structure of an interest rate swap 

In the following, we always assume N = 1 as well as equidistant times of payment, 

i.e. 

ti = tim1 + h = ih i= l,...,n . (8) 

We will allow Z&J = 0 and Z&J = 0, which means that it is not necessary at all 

points of time for both fixed and floaating rate payments to be made. 

Taking the point of view of the fixed-rate payer and defining 
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‘s CtJ : = Z,(tJ - Z&J i=l,...,n , (9) 

then the interest rate swap is completely characterized by the following stream of 

payments 

This payment stream is a stochastic one as the amounts of the floating-rate 

payments are normally unknown at 6, their realizations depending on the 

development of the term structure of interest rates. 

Let at time b = 0 the existing (time-continuous) term structure be given by r(t) : = 

r(O,t). That means the present value P, of the payment stream (10) is given by 

Ps = 6 Z&)e -tt’w . 
i=l 

(11) 

In a similar manner, we define the present values P, and Pv of the payment streams 

GOA e-e, W,J+N~ and PW, ..-, Z,(tJ+N) respectively. Clearly, that means 

that we have 

Ps =Pv-P, . (12) 

In addition, we will use the term structure r(7,t) as existing at a point of time 6 < 

7 < tl and will analyze the present value Ps(r) of payment stream (10) at time 7 

which is given by 
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P,(t) = k Zf(tJeXp 
i=l 

+(r,u)dz4 

t 1 (13) 

= k ~~(ti)e-(fi-r)r(r,fl-r) . 
i=l 

Let us now take a closer look at the structure of the payment streams (Z&J) and 

(Z&j. The former is based on fixed interest payments. Let i0 denote the 

corresponding coupon rate defined for a time period of length h. Then, assuming 

N=l we have 

ZF(ti) = i. for all i = l,...,n . (14) 

Additionally, we have assumed here that fixed interest rate payments are made at 

every point of time t+ 

We now have to pay attention to a convention in the swap markets’. Usually the 

quotation of the entire swap transaction is given as a constant increment (swap 

spread) over the yield to maturity of the appropriate fixed-rate bond, e. g. the yield 

of the most recently issued Treasury bonds with maturity f, (“spread over 

treasury”). Within our model, this can be formalized by using an eflctive fixed 

swap rate, which means that Z&J has the form 

1) For the conventions in the swap markets see for example BROWN/SMITH 
(1991). 
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ZF(ti) = i,+M , i=l,..,n , (15) 

where M is a constant margin which specifies the swap spread. 

Now let us turn to the floating-rate part of the swap. As we have seen, the floating 

interest rate payments are of stochastic nature. To be able to resolve this 

uncertainty and to value the interest rate swap one usually assumes that all forward 

accumulation factors, f(s,t,v), implied by the term structure, r(s,t), at time s are 

identical to the realized future accumulation factors, q(t,v). This is the standard 

procedure for the valuation of floating-rate notes (FRN) and the floating-rate part 

of a swap, cf. CHANCE (1983), FINNERTY (1989, especially pp. 90-91), 

MORGAN (1986) and BECKSTROM (1990). On that basis for resolving the 

interest rate uncertainty problem, it is now possible to proceed as in the case of 

deterministic payment streams when valuing floating-rate notes and interest rate 

swaps. 

Finally, we have to pay attention to another convention in the swap markets 

concerning the floating-rate schedule. This schedule depends on an index, usually 

LIBOR for floating-rate interest rate payments. It is now usual convention’ to fix 

LIBOR one settlement date ahead of the payment date. That is, the floating-rate 

payment at point of time $ is identical to the LIBOR (with maturity h) that 

prevailed at time G.,. Within the framework of our model, that convention can be 

incorporated as follows: 

2) See BROWN/SMITH (1991, p. 71). 
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= eXp[tir(O,t,) - ti-llfO,ti-l)] - 1 . 

Now, both the fixed-rate and floating-rate parts of an interest rate swap are 

specified. This allows us to state the following conclusion about the margin M: 

M can be considered fair, if the present values of the fixed and the floating-rate 

payment stream at initiation date are identical. Taking the point of view of the 

fixed-rate payer, that means the present value (11) must equal zero, i.e. 

5 MO ,ti+ti) - 1 - (i,+A4)]e-tidfi) = 0 . 
i=l 

For the sake of simplicity, we have assumed that at each payment date there are 

fixed- and floating-rate payments. Solving for M yields 

~ Lf(O,ti-l,ti) -(l +io>]e -zir’ti) 
M = i=l 

. 
n 

c e - ti titJ 

i=l 

w-0 

In reality, the margin will be unfair as a rule, letting the present value Ps differ 

from zero. In addition, even a margin which is fair at the outset won’t be fair after 

the first change of the term structure of interest rates. 

If we want to analyze the interest rate swap not at initiation date but at a point of 

time 0 < r < ti , we have to modify our approach. The floating-rate payment due 

at t1 is already fixed at t=O and it shall be denoted F, . The following floating-rate 
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payments must be modeled according to the term structure of interest rates 

prevailing at 7. Thus, for the analysis of an interest rate swap at the point of time 

0 < 7 < tI , the structure of the floating-rate payments may be character&d by 

(19) 
Z,(ti) = f(T,ti-l,ti) - 1 i=2 ,..., n , 

The present value P, (7) of the floating-rate part of an interest rate swap is 

found to be 

n 
+ 

C[ 
e (ti-T)r(T,ti-T) -(ti-l -T)f(T,ti-1 -T) - l]e -($-T)r(T,$-T) 

i=2 

= F 
0 

e -(f,-TM~d, -T) 

n 

+ 
C[ 

e -(t~-l-r)r(r,ti-l-T) _ e -(ti-T)r(T,ti-T) 1 
i=2 

+ e -(~,-eod,-4 . 

This yields (remember c = h i ) 

Pv(t) = (F, + l)e -(h-r)~f~h-T) , (20) 
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4. Derivation of Duration Measures in Single-factor Duration Models 

In the following, we will consider the payment stream {Z(t,), . . . , Z(a)} and analyze 

the consequences of a change in the term structure of interest rates at time 7 (0 I 

7 < t, ). Let r(r,t) : = r(r,t,x,,) denote the initial term structure prevailing in time 

r and r(r,t,x) denote the term structure observed after an instant shift in 7. The 

change of the one-dimensional real parameter, x, is assumed to describe the instant 

interest rate “shock”. This way of modelling interest rate risk in SFDMs follows 

BIERWAG (1987, pp. 312 - 314). The general approach to derive duration 

measures, D, for different interest rate shocks is based on the immunizing property 

of these duration measures. The different duration definitions must satisfy the 

condition that in time s = D ( > 7 ), the value of the payment stream, (Z(t,), . . . . 

Z(Q), is immunized against the initial interest rate shock in 7. In order to state this 

condition more precisely, let us first define the present value of our payment stream 

in time r corresponding to the term structure, r(T,t,x), as 

Assuming the term structure, r(T,t,x), the capital value, K(s,x), of our payment 

stream in any time s > 7 is 

(22) 

Immunization of the value in time s is achieved if the following condition is 

satisfied: 

K&X) 2 K(S,XJ for all X . . (23) 

That is, regardless of direction and amount of the interest rate shock, the value of 
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the payment stream in time s at least equals the value which would have been 

achieved had the initial term stucture prevailed until s. The function of the capital 

value in s has a global minimum for the initial term structure. The duration (more 

precisely: the immunizing duration) of the payment stream corresponding to the 

initial term structure and to the interest rate shock assumed is to be defined in such 

a way that D equals time s fulfilling the condition (23). With K’(s,x): = aK(s,x)/ 

dx we have: 

K'(D,x) = 0 . (24) 

The statement in (24) contains only the necessary condition for the duration, but 

since the function (22) is convex as a rule [for special cases of payment streams, 

where this needs not be the case, cf. BIERWAG (1987, p. 113 f.)], this condition 

normally is sufficient. Let us furthermore define r’(r,t,x) : = &(T,t,x)l ax and 

P’(r,x) : = aP(r,x)/ ax as well as r(r,t) : = r(r,t,x,j and P(T) : = P(r,xo). Then 

from (22), it follows that 

K'(s,xJ = (s-t)r'(~,s-T,X$ e~s-r)r(T~S-T)P(t) 

Thus conditition (24) can be restated as 

P’(vo) 
(D-7)~‘(W-v,) = - p(7) , (25) 

with 

P’(t,x& = - k (ti - +qtJe -(ri-r)r(r,ti-r)r’(t,ti-T,Xg) (26) 
. 

i=l 

The condition in (25) is the suitable general definition of duration in a SFDM. Note 
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however, that this duration measure depends on the initial term structure prevailing 

in time 7 but not on 7 itself, because D is defined as the point of time where 

immunization is achieved. The (remaining) duration D*, i.e. the period of time 

from r to D is 

D*(t) =D-t , (2T) 

Since the duration measure D*(T) seems better suited to reflect the dynamics of the 

situation, we will concentrate in the following on this measure, the general 

definition of which is as follows: 

D *(T)T’(T, D *(t),q-,) = - 
Pkx,) 

Pb> l 

(28) 

If r’(T,t,x,,) = g(T), i.e. independent from t, we can obtain an explicit solution for 

the (remaining) duration D*: 

(29) 

With (26), this can be put in concrete terms as follows: 

D*(T) = k $ ($ - t)Z(t,)e -(ti-r)rm-r) , (30) 
i 

Examole 2: Macaulay-Duration 

Let us return to the case of a flat term structure of interest rates as in 

example 1. We assume that the prevailing term structure in 7 is flat, i.e., 

r*(T,t) = rr or r(7,t) = ln(1 +rr), and that this term structure is affected by 

an instant shock in 7, which in the discrete time model is additive, i.e. r, -, 
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r, +x. In the framework of our general analysis we have (with G= 0) 

r(z,t,x) = ln(1 + rT +x) , (30 

leading to r’(r,t,x.& = l/ (l+r,). Thus the condition for (30) being valid is 

met and we have 

c Z($)(l +rTpT) 
i=l 

and thus 

D*(t) = &$ tiz(ti)(l +?-,pT) - t . (32) 
i 

ExamDle 3: Fischer/Weil (1971) 

FISHEFUWEIL (1971) assume, in a continuous time framework, an interest 

rate process of the type (xg = 0) 

r(t,t,x) = x + r(z,t) ) (33) 

i.e. an additive (in a discrete time framework a multiplicative) shock. It 

follows that r’(r,t,x,,) = 1 and therefore from (30), 
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6 (ti- T)z(ti> e -(ti-r)~t~ti-r) 

D yt) = i--l 

5 0 
z t 

i 
e -(ti-t)rlT,ti-T) 

(34) 
i=l 

= .& $ tiz(t,)e -(ri-r)T(rJi-T) - t , 

i 

ExamDIe 4: Khang (1979) 

KHANG (1979) considers the following interest rate process (xg = 1): 

r(T,t,x) = nln(1 + at) + r-&t) . (35) 
at 

This shock was designed to capture the higher fluctuations of short-term 

rates compared with long-term rates, the parameter, (Y, controls the ratio of 

the shifts in the long versus the short range of the term stucture. The 

statement in (35) yields r’(T,t,xg) = ln(1 + at) I at, and we have from (28) 

D *(T) Wl + a D *W 
a D *(T) 

1 n 

= 

This yields 
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ln[l+a D*(t)] = ~~ In[l+cr(t,-t)]Z(t,)e-‘r~-““““-r’, ‘36) 
i 

which can be trivially solved for D*(r). 

5. The Immunizing Duration of the Floating-Rate Part of a Swap 

According to (19), the floating-rate side of an interest rate swap can be represented 

as a deterministic payment stream. Thus, the results of the last section are directly 

applicable. From (28), the (remaining) duration Dv* of the floating-rate part at time 

7 is 

D;(t)r’(r,D;(t),x,-,) 7 - 
f&J 

P”(4 l 

(37) 

If r’(r,t,x,,) = g(r), we can obtain the following explicit solution analogous to (29) 

for the duration of the floating-rate side of the swap : 

D; (7) = - 
p:(qJ (38) 

g (7) pv(7) ’ 

In (20) we have already found a general expression for the present value of the 

floating-rate part of a swap (including the notional principal N= 1). This yields 

P:(t) = -(F,+ l)(h-z)r’(z,h-t)e-(h-‘)~‘,h-r) (39) 

and with t, = h we obtain from (38): 
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D;(z) = t,-t . 

775 

(40) 

In the case where r’(r,t,xJ = g(r), we have the intuitive property 

limD;(t) = 0 , (41) 
T-t, 

i.e. directly before a determination date of the floating rate the duration is zero. 

The condition r’(r,t,x,,) = g(r) is - as shown in examples 2 and 3 - satisfied in the 

case of the Macaulay- and Fisher/Weil-duration. Therefore, our result in (41) can 

be compared with the calculations of CHANCE (1983) and MORGAN (1986). The 

comparison shows that Chance’s approach is erroneous whereas Morgan’s results, 

as far as they concern a floating rate note of the type considered by Chance, are 

verified. 

Moreover, it can be shown that the property in (40) is common to any single-factor 

duration model. According to (20), we have 

and therefore with (37), it follows that 

D;(t)r’(~,D;(t),x& = (tl -t)r’(q-T,Xg) . (42) 

Obviously, D v* = t, - r is always a solution of (42). In the case that the function 

H(z): = z r’(r,z,xJ possesses an inverse function z = He’ the solution will be 

unique. A sufficient condition is that H(z) is strictly monotonically increasing or 

decreasing, i.e. (in the case of differentiability) H’(z) > 0 or H’(z) < 0. This is 
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equivalent to the conditions x r ’ ‘(r,z,x,,) / r’(r,z,xg) > - 1 or < - 1, which are 

restrictions on the elasticity of the function r ‘(~,z,x,,). In the case of example 4, the 

model of KHANG (1979), we have H(z) = ln(1 +CYZ) / (II and thus an invertible 

function. 

6. The Immunizing Duration of an Interest Rate Swap 

According to section 3, an interest rate swap can be represented as a (deterministic) 

payment stream {Z&J, . . . , Z,(tJ). Therefore the (remaining) duration D,* of a 

swap at time T is, from (28), implicitly defined as 

D,&)r'(t,D;(t),xJ = - p;h+J 
P,(t) ' 

(43) 

In the case when r’(r,t,x,J = g(r) we obtain in analogy to (29) the following 

definition of the duration in an explicit form: 

(44) 

As we have PS(r) = P”(r) - Pr(r) according to (12), it follows from (44) that 

With DF*(r) : = - Pr’(r,x,,) / g(r) Pr(r) we have 
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D;(z) = 
P,WD;W - P,(W;W 

. (46) 
p,(t) 

Expression (46) gives a functional decomposition of the (immunizing) duration of 

an interest rate swap into the durations of the fixed- and the floating-rate part of the 

swap. The result in (46), in particular shows that the definition of the (modified) 

duration of an interest rate swap given by GOODMAN (1991, p. 309), namely D, 

= D, - D, , must be flawed. 

The case r’(r,t,xJ = g(r) covers, according to examples 2 and 3, in particular the 

cases of the Macaulay-Duration and the Fisher/Weil-Duration. The duration of the 

entire swap can be calculated on the basis of (46) in connection with (20), (40) and 

(32) or (34) respectively. A general decomposition for the general duration 

definition (43) along the lines of (46) is 

In the case of example 4, this can be simplified to 

ln(l+aD;) = ;ln(l+aD;) - ;ln(lt.D;) 
s s 

and 

. (48) 
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