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ABSTRACT
In this paper we extend the continuous-time dynamic programming approach for

Asset/Liability Management from Boulier et al. (1995). It is an extension in the sense that we
consider objective functions for pension fund management that are different from the standard
quadratic loss functions. In particular, we calculate optimal policies for a loss function with
Constant Relative Risk Aversion (CRRA) as well as one with Constant Absolute Risk
Aversion (CARA). Taking these specific loss functions is based on the work of Merton (1990),
as he uses these same functions as utility functions for the consumption/investment framework.

For each loss function we solve the associated HIB-equation and obtain closed form solutions.
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1. Introduction

In the area of Asset/Liability Management (ALM), much attention is paid to the formulation
and optimization of stochastic programming models. An important area of application is ALM
for pension funds. See Dert (1995), Carifio et al. (1993) and Boender (1997) for some
examples of this approach. See also Ziemba and Mulvey (1998) for a recent overview. Much
effort is put in finding efficient algorithms, creating sets of scenarios that are consistent with
real world uncertainty, and overcoming computational problems and limitations. It is
remarkable that comparatively little attention has been paid to the opposite of this
‘quantitative' approach, namely the qualitative assessment of the factors that can or should be
important for pension fund management in determining the optimal policy. A first step in this
direction is taken by Boulier et al. (1995), where a continuous-time dynamic programming
model is formulated. It contains all of the basic elements for modeling dynamic pension fund
behavior, but can be solved by means of analytical methods. See also the article of Sundaresan
and Zapatero (1997), which is specifically aimed at asset allocation and retirement decisions in
the case of a pension fund. In the current paper, we extend the approach taken by Boulier et al.

(1995,1996), and Cairns (1997) by dropping the assumption of a quadratic loss function.

The paper is set up as follows. In Section 2, we introduce the model of Boulier et al. (1995),
without specifying the exact form of the loss function. In section 3 we specify non-quadratic
loss functions as in Merton (1990) and in particular study the effect of constant relative and
constant absolute risk aversion (CRRA and CARA) on the resulting optimal decision rules.
We end the paper in section 4 with some concluding remarks and directions for further

research.

2.  Model setup

As said in the introduction, we follow the approach as given by Boulier et al. (1995) to model
pension fund management. It is the framework of stochastic dynamic optimization. The
essence of the approach is that continuous-time relationships between state variables are
defined, and then a well-defined objective function. The result is a mathematical formulation of

the basic characteristics of a pension fund.
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We start with the definition of the state variables. The two state variables in the model are the
level of wealth (W) and the amount of pension benefits to be paid (P). To start with the latter,

the aggregated amount of pension benefits follows a deterministic process with growth rate o:
dp,= o p dt. M

As pension benefits are directly subtracted from the wealth of the fund, we will refer to it as

pension costs in the rest of the paper.

The evolution of wealth depends on the return on investment, the amount of pension cost and
the level of contribution(C) that is paid by the participants to the fund The investment
opportunities are given by one riskless asset, yielding a rate of return of r (continuously
compounded) and one risky asset, i.e. stocks. The market value of the risky asset is denoted

by S; and follows a stochastic process given by
dS./ Si=(A +r)dt + odB,, )

where A >0 is the risk premium for the risky asset and B, denotes standard Brownian motion.
The investment decision is modeled by a decision variable u, representing the fraction of assets
that is invested in the risky asset. Given the evolution of the riskless and the risky asset, the

evolution of wealth can be described as

d.
aw, =u,W, S q- u, Wyrds +(C, - Py )dt
St (3)
=W, + MW, +C, = FB)dt +u, oW dB,
where the second equality follows directly from the definition of S; in equation (2).
Given the evolution of state variables, and the definition of the decision variables u and C, the
problem the pension fund management faces is to find optimal feedback decision rules for the

fraction to invest in the risky asset, u(W,P), and the level of contributions, C(W,P), solving the

stochastic dynamic optimization problem:

J =min Bo| [e P LCYat |, € >0, @)
uC 0
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where L(C) is a positive convex function in the amount of contributions and p the
psychological discount factor. Although many other objective functions could be assumed for
a pension fund, it captures the essence of pension fund management, under the restriction that

wealth is always strictly positive, which we add to avoid a trivial solution (C=0).

3. General solution

Given the objective function in (4) and the evolution of the state variables in equations (1) and

(3), the appropriate HIB-equation associated with this problem is:

0=inf o(u,C;W 1),
u,C

5)
= ing{g‘P'L(C) +Jp + (W + 2l +C =PV +aPIp +LuoW2 )y } (
u,

where the derivative of a function f with respect to variable x is denoted as f;. See Merton
(1990) for a good introduction to stochastic dynamic programming. He applies it to several
instances of a general consumption/investment problem. See also @ksendal (1998) for an

exposition on stochastic differential equations and the application to Stochastic Control.

Differentiating ¢(u,C; W t) with respect to C and u gives the first order conditions:
e PUpq+Jy =0,
Ay +us Wy,

which yield the following expression for the optimal decision rules for C and u :

e =ugtfertsy) ©)
u* =——£W—2. )
JWWwO‘
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Clearly, these decision rules minimize J if and only if

P 0
0 ou

>0

¢

>

which is satisfied for L. > 0 and Jww > 0 . Because the optimal decision rules can be expressed
as functions of W and P, when substituting (6) and (7) into the HIB-equation (5), we obtain a
differential equation in the two state variables W and P . The theory from stochastic dynamic
programming now tells us that a solution to the differential equation (5) is also the optimal
solution to the original problem. To this extent, the next two subsections are dedicated to
finding a solution to the HJB-equation, given a specific functional form for L(C).

For the solution method to be valid, it follows that we have to assume r > a , i.e. the riskfree
return exceeds the growth of pension cost. Given this assumption and writing W, =P / (r-o) ,
it is clear that in the domain Wy, < W the optimal policy is zero contribution and no risky asset
in the portfolio. This means that the optimal policies we derive in the next section hold for

W > W only.

3.1 Constant Relative Risk Aversion

In this subsection, we solve the HIB-equation associated with the optimization problem
formulated in section 1 for a loss function that exhibits Constant Relative Risk
Aversion(CRRA). Formally, this means that the Pratt-Arrow relative risk-aversion function -
Lee / Le is a constant. See Pratt (1964) for an exposition on the notion of risk aversion.
Ingersoll (1987) gives a thorough treatment on the use of utility functions with respect to

financial decisions.

We choose the loss function L(C)=Cy / y as CRRA loss function, y>1. It is easy to see that it
is convex and indeed has constant relative risk aversion. In the appendix, we solve the HIB-
equation associated with the optimization problem by guessing the functional form of the
optimal value function and solving for the unknown parameters. Given the expression for the
optimal value function, the resulting decision rules follow from substitution in equations (6)

and (7), which yields:
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Pyl 2o M - 1), ®
=10 v 262(y-1)

| W, —-W

* )\.
u W, Py=—— 9
T ©)

3.1.1 Economic interpretation

First of all, we observe that the amount invested in the risky asset is linear in wealth and goes
to zero as W reaches the equilibrium wealth W,,. Following Merton (1990), one could call the
fraction A / (%(y-1)) the optimal-growth fraction invested in the risky asset. It is observed that
the optimal fraction in our model is equal to this optimal-growth fraction, multiplied by the
relative distance to the equilibrium wealth W,, . For W=W./2 it is exactly equal to the
optimal-growth fraction.

Secondly, looking at the condition that holds for C", namely that it must be nonnegative, we

have that

22
PEY|r——5—|. (10)
202(7‘1)

According to Ingersoll (1987), we have here a 'transversality condition'. Formally, optimal
contribution is negative should p violate this condition, but this obviously cannot be true. Even
if negative contribution (retribution) is meaningful, its loss (utility) is not defined for power
utility functions.

With respect to the influence of uncertainty in the decision rules, we observer the following: If
the excess return on stocks as represented by A is higher, contributions are lower and
investment in stocks is higher. On the other hand, if the variability in stock returns increases,
this leads to higher contributions and a lower fraction invested in stocks.

Finally, note that one could also obtain optimal decision rules in terms of the time parameter,
but we prefer to have the solution in so called feedback form, as we are interested in the
relations between the state variables and the optimal controls, not in the time path of the

controls an sich.
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3.2 Constant Absolute Risk Aversion

We can solve the same optimization problem for another type of loss function, one that has
constant absolute risk aversion (CARA). Let L(C) = en", >0 , where -Lco/Le=n) is Pratt's
measure of absolute risk aversion.

Again, we have derived for this specific loss function the optimal decision rules that solve the

optimization problem. See the appendix for derivation. The results are:

. 1 A2
Cr=rWy -W)+—|r-p-——|, (11)
nr 202
u = 2?» . (12)
vkiid 4

3.2.1 Economic interpretation

The first observation we make is that except for some differences in sign, the optimal policies
bear a close resemblance to those derived by Merton. Given the context of pension fund
management, it is remarkable that the optimal fraction invested in the risky asset is not
dependent on the equilibrium level of wealth, Wy, , but only on the current wealth W . Note
that the amount invested in the risky asset is constant, whereas for the CRRA case the amount
invested was linear in wealth.

Uncertainty in state variables is displayed through the term A%/(267), and the same connections

between excess return, volatility and the optimal policies hold as for the CRRA loss function.

4 Conclusion

We have formulated the same model as Boulier et al. (1995) for dynamic pension fund
management, but solved it for a much broader class of loss function, namely the CRRA and
the CARA class. We observe that the results show a great deal of similarity with the result
derived by Merton (1990) for a consumption/investment model.

Besides the similarity, we observe that the expression for the optimal value function in both
cases is of the same functional form as the loss function. It was proven by Merton (1990) that
this property holds for the consumption/investment framework, but it seems to hold in the

asset/liability setting as well.
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4.1  Suggestions for further research

Since the seminal paper of Kahneman and Tversky (1979) a lot of research has been done on
the subject of how a realistic utility or value function should look like. In the field of prospect
theory for example, it is now generally agreed upon that ".. .the marginal value of both gains
and losses generally decreases with their magnitude...". In the context of the present pension
fund modeling, this implies that a loss function in the contributions should be concave in the
contributions: the loss of asking one extra unit of contribution decreases with the level of
contributions. Although this might seem easy to implement, it is obvious that a concave loss
function leads to corner solutions with the rest of the model unaltered, i.e. it becomes optimal
to ask contributions necessary to reach equilibrium all at once. More research and perhaps a

totally different setup is necessary to overcome these difficulties.

Besides the loss function, the evolution of the state variables could need some adjustment. In
particular, consider the (deterministic) growth of pension cost: In the present setup, the
pension cost is completely hedged. There is no risk associated with the development of the
amount of benefits to be paid and the riskfree rate exceeds the pension cost growth rate.
Introducing correlation with returns on investment or other exogenous uncertainty would
change the outcome of the optimal policies drastically, if the problem can be solved

analytically at all.

Finally, for scenario-based optimization models, and in practice it is often observed that the
Jraction of wealth invested in stocks tends to rise when the pension fund becomes wealthier.
See for example Sundaresan and Zapatero (1997) where it is mentioned that investing an
increasing amount in the riskfree security "...seems to contradict empirical evidence, which
suggests that an increasing proportion of the overfunding is actually placed in equity." In our

opinion, more research could be done to find simple models that display this behavior.
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Appendix
A General power loss function
With U(C)=Cy/y , we substitute (6) and (7) in (5) and obtain
- 2 gz
-l V(—JW)Y 1 exp( ]+J, +(rW - P)Jy +oPJp M
-y 262 Jww

(13)

To solve (13), we take as trial solution:
Lemn (~aW +bP)Y,
ya
(14)

where a and b are constants that have to be determined. Substituting (14) in (13) leads to

- A2
ey

»aW+bP)-—( —aW +bP)-(rW - P)+> aP——' (~aW +bP)
a 2 a(y-1)

Given that the above equality must hold for any W and P, we obtain:

a:_Y_ r- P_ ( m= l
y-1 Y 26%(y-1)

p=-12

r—a
provided that a>0 and b>0 . If otherwise, then the solution method we have used is not valid.
With a>0 it is clear that Jww >0 . As explained in section 3 this means that we have indeed a
minimum for these parameter values. With b>0 we see that we have to demand r>a. , as we
already mentioned at the end of section 3. By substitution in the expressions for the optimal

decision rules, we obtain:
p N
cr=c'w.p=-"L|r-2— W, -w)
-1 Y 26°(y-D)

-1 W
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B Negative exponential loss function
With loss function L(C)=en"/1 the expressions for the optimal decision rules become

c* :ilog(—ethW)

W Mw
Jww Wo?

and substitution in the HIB-equation (5) yields

2 g2
0= —J—W+J, +(W - P)Jy +ilog(-ep’JW PW +aPJp M
n n 262 Jww
Taking as a trial solution for the value function:
Jrial ~ e exp{- bW +cP +d)
leads to
2
0= l—p+(rW—P)b—ﬁlog(b)-ﬁ(—bw+cP+d)+acP—"—.
n M n 262

Because the above equality must hold for all W and P we can solve for b, ¢ and d, giving:

b=mr,
o=
r-o
2
d=1-2 _logh- > —
r 2rc

Substituting the parameter values in the trial value function leads to the following expression

for the optimal value function:

2
J=ePlexp —nr(W—W,,,)+1—E—log(nr)— A St
r 2rc

Substitution in equations (6) and (7) gives:

. 1 A2
C :r(W,,,-W)+— r=p-—1
nr 26
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