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ABSTRACT 

The constant elasticity of variance (CEV) diffusion process can be used to model heteroscedasticity 

in returns to common stocks. In this diffusion process, the volatility is a function of the stock price and 

involves two parameters. Similar to the Black-Scholes analysis, the equilibrium price of a call option can 

be obtained for the CEV model. The purpose of this paper is to propose a new estimation procedure 

for the CEV model. A merit of our method is that no constraints on the elasticity parameter of the 

model are imposed. In addition, frequent adjustments of the parameter estimates are not required. 

Simulation studies indicate that the proposed method is suitable for practical use. As an illustration, 

real examples on the Hong Kong stock option market are carried out. Various aspects of the method 

are also diiussed. 
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1. INTRODUCTION 

The valuation of options has been one of the main issues in the areas of modern 
finance, and is of great interest to actuaries. In particular, stock options are often 
used in the study of option pricing. Suppose that the stock price process S, is 
defined as the solution of a stochastic differential equation 

dSt = &dt + uS,dB,, (1) 

where p is known as the expected rate of return; u is the standard deviation of 
the percentage price return and often called the stock price volatility; and Bt is 
a Wiener process. In option pricing theory, the risk-neutrality assumption allows 
us to replace the expected rate of return by the risk-free rate of interest; and 
hence the only unobservable value in (1) is the volatility. The parameter u can 
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be estimated from the history of stock prices, that is, using the sample standard 
deviation of the return rate. Given model (1) and a certain set of assumptions, 
Black and &holes (1973) obtained exact formulas for pricing European options. 
Through the Black-Scholes (BS) f ormulas, an observed option price in the market 
can be used to find an implied value of u. This alternative estimate is termed an 
implied volatility. 

Much attention has been paid to the constant volatility assumption in (1) which 
seems not very suitable in real cases. There is considerable evidence in the liter- 
ature, indicating that stock returns are heteroscedastic. For example, see Black 
(1976), Blattberg and Go&es (1974), and MacBeth and Merville (1979). In 
view of this property, Cox (1975) and Cox and Ross (1976) studied the constant 
elasticity of variance (CEV) diffusion process which takes the form 

d& = /&dt + &+dBt, (2) 

where 6 and 0 are constants. The volatility of model (2) is SS,~-‘. The variance 
rate of St is d2Se and the elasticity of this variance with respect to St is 0. It is 
easily seen that model (1) is equivalent to model (2) when 8 = 2, and that the 
volatility is a increasing (decreasing) function of St when 0 > 2 (6’ < 2). Under 
model (2) and the set of assumptions in the BS framework, Cox (1975) derived 
the equilibrium price of a call option for 0 < 2. Emanuel and MacBeth (1982) 
extended the pricing formula to the case of 0 > 2. 

Models (1) and (2) are sometimes referred to as the BS and CEV models re- 
spectively. In this paper, the number and abbreviation of the models are used 
interchangeably. Both the BS and CEV option pricing formulas are given in the 
Appendix. The option pricing formula for the CEV model certainly has a more 
complex form than that for the BS model. 

MacBeth and Merville (1980) investigated the problem of estimating 6 and 0 
and proposed a three-stage procedure. The first stage is to find a reasonable point 
estimate of 0. It relies on the fact that, given the true value of 0, the value of 6 
is the same for all options written on the same stock. For an integer value of 0 
and an observed option price, an application of a numerical search routine to the 
CEV option pricing formula yields an implied value of b. Then an arbitrary set of 
observed option prices from the same stock generates a set of implied values of 6 
for the same 8. The same steps are repeated for different integer values of 0. The 
final estimate of 0 is the one for which the implied values of d are most nearly 
constant. The second stage is based on their simulation study indicating that 
the BS model with the correct variance rate of return will give approximately the 
correct price for at-the-money options even if the underlying stock price process 
follows the CEV model with 0 < 2. Thus the BS implied volatility calculated 
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using an at-the-money option price is treated as a good estimate of the volatility 
of the CEV model. The final stage is to obtain an etimate of 6 using the results 
in the first two stages. As the market option price changes, the value of 6 needs 
to be reestimated. Hence daily adjustment of b is possibly required. 

In the method of MacBeth and Merville (MM), the idea used in the first stage 
is intuitively clear and actually implied by model (2) while the third stage is 
straightforward. As pointed out by Manaster (1980), the validity of the second 
stage is in doubt. It is simply because the BS implied volatility is not the true 
volatility when the value of 0 is other than 2. Their estimates of 6 may there- 
fore differ systematically from the true value. Furthermore, even though, their 
second stage is supported by simulation results, it holds only for B < 2. The two 
parameters of the CEV model, in principle, should not require adjustments as 
frequently as the BS parameter. Because of the use of the BS implied volatility, 
this valuable feature of the CEV model cannot come into play in their method. 

In this paper, we propose a new estimation procedure for the CEV model 
in which neither constraints on 6 nor frequent adjustments of the parameter 
estimates are needed. Section 2 uses the log-linear property of the variance of 
the percentage price return and the results of Chesney, Elliott, Madan, and Yang 
(1993) to estimate the parameters through the least-squares method. Although 
this simple idea allows us to jointly estimate 6 and 0, the linearization of the 
variance causes certain numerical problems. Section 3 introduces a two-stage 
approach as a remedy and demonstrates its practicality through simulations. 
Real examples on the Hong Kong stock option market are carried out in Section 
4. Finally some remarks are given in Section 5. 

2. LEAST-SQUARES ESTIMATION 

We now introduce a least-squares procedure through which the two parameters 
of model (2) can be estimated jointly. To obtain point estimates of 6 and 0 
denoted by 8 and 8, we first find an estimate of uf = 62Sf-2 which is the square 
of the volatility at time t in model (2). Using the results of Chesney, Elliott, 
Madan, and Yang (1993), we have the following estimate of CJ~ 

where a is a constant and At is the length of a small time interval. It was shown 
that the conditional expectation E(&lSt) converges to CJ~ as At -+ 0, and that 
the conditional variance Var(V,l&) is minimized when 

,=-E-a! 
11 ll$’ 
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Table 1. Simulation results using (5) 

True value 
e 6 
-4 7000 
-3 1300 
-2 250 
-1 45 
0 8 
1 1.50 
2 0.25 
3 0.05 
4 0.01 

Mean 
-3.9963 
-3.0117 
-1.9890 
-1.0054 
0.0110 
1.0044 
1.9981 
3.0058 
3.9988 

i 
S.D. 

0.7222 
0.6993 
0.6483 
0.6221 
0.6205 
0.5741 
0.6319 
0.5838 
0.6453 

Mean 
9881.2 
1701.9 
283.98 
47.639 
8.3722 
1.4051 
0.2939 
0.0584 
0.0092 

6 
S.D. 

31003 
4911.4 
722.34 
118.93 
22.125 
3.7028 
0.7888 
0.1079 
0.0311 

Computationally, we start with an initial guess of a, and then obtain a value of 
V, from (3). The parameter ,u can be easily estimated using the sample return 
denoted by fi. Replacing 0; by V, and p by jYi in (4), we have a revised value of 
CL We iterate the two steps until the last two values of a are within a certain 
tolerance. 

Given Vt2 the method of least squares can be employed. The least-squares 
estimates 6 and 6’ minimize the sum of squares of deviations between hV, and 
en fff 

where n is the number of data points. Taking logarithm of u: produces a linear 
function of en St, and hence simplifies the minimization problem. 

From model (2), we generate 1000 stock prices with an initial stock price of 
$30, a risk-free interest rate of 5%, and At = 0.0025. We assume the initial 
volatility to be around 0.25. We summarize the simulation results in Table 1. 
For each pair of 6 and 8, the means and standard deviations (S.D.) are calculated 
from 1000 simulations. Table 1 shows that the simple linear least-squares method 
produces reasonably good estimates for 0 but not for 6. The means of 6 are close 
to the true values except for values of 6 over 250, and all the standard errors 
appear very large relative to the means. The large standard deviations of 8 can 
be explained by the fact that a small deviation between 4 ancj 8 yields a relatively 
large difference between 6 and 6. In fact, the variation of 8 has an exponential 
effect on that of 8. There is another problem of empirical nature. Theoretically, 
the values of S, and St+,, are different with probability 1. However, in real cases, 
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two consecutive stock prices in a short period of time often have the same value. 
When applying (3) to real data, it is very likely that we have a large number of 
undefined values of &Vi. These numerical difficulties motivate us to consider a 
two-stage approach to estimate the parameters in the next section. 

3. TWO-STAGE ESTIMATION 

Following the first stage of the MM’s method, we make use of the fact that 
all options written on the same stock have the same values of d and 0. We 
arbitrarily select m call option prices (Cl, . ..C.,,) with the same underlying stock 
in the observation period. For each Cj and a given value of 6, we use a numerical 
search routine to calculate the implied value of 6, denoted by bj(e), from the 
CEV option pricing formula. To measure the degree of dispersion among dj’s , 
we consider the absolute relative error defined as 

(6) 

where Jj is the mean of bj’s. Then our final point estimate 6 is the one that 

minimizes U. After obtaining 8 in the first stage, we estimate b by minimizing 
the sum 

n-l 
C(& - b?$-2)2, 
t=1 

where G’s are defined in (3). Hence we have 

(7) 

We now perform a simulation study to assess the performance of the proposed 
method. For a given pair values of 6 and 0, we simulate 5 call option prices from 
model (2) with exercise prices $26, $28, $30, $32, $34. We set the initial stock 
price, risk-free interest rate, time to maturity as $30, 5%, and 0.25 respectively. 
In this simulation study, we arbitrarily consider six cases characterized by integer 
values of 0 ranging from -2 to 3. The corresponding 6’s are set in the way that the 
initial volatility is around 30%. The first step is to select the best B according to 
(6). For simplicity, we just try integer values of 0 from -3 to 4. Figure 1 displays 
the plots of U of (6) versus 8. We see that the measure U always attains its 
minimum at the true value of 0 for all the six cases. If the CEV model is correct, 
this measure does give a clear indication where the true 0 is located. The second 
step is to calculate the estimates of 6 using (8). Table 2 shows that vt of (3) 
together with (7) indeed produce a very good estimate of 6 given that 8 is close 
to 8. 
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Table 2. Simulation results using the two-stage method 

e 6 e B 
-2 270 -2 267.38 
-1 50 -1 51.199 
0 9 0 9.1553 
1 1.65 1 1.6559 
2 0.30 2 0.2999 
3 0.06 3 0.0607 

Table 3. Simulation results for 8 of (8) 

True value 
e 6 

-4 7000 
-3 1300 
-2 250 
-1 45 
0 8 
1 1.50 
2 0.25 
3 0.05 
4 0.01 

0 Mean S.D. 
-3.9963 6995.1 1137.7 
-3.0117 1318.2 169.68 
-1.9890 251.45 27.362 
-1.0054 45.216 3.5961 
0.0110 8.0173 0.2265 
1.0044 1.4975 0.0349 
1.9981 0.2483 0.0053 
3.0058 0.0496 0.0011 
3.9988 0.0098 0.0002 

To investigate the variability of d of (8), we perform another simulation similar 
to the one in the previous section. Here we use the means of 6 in Table 1 as our 
final estimates of 0 in the first stage, and the results are given in Table 3. Not 
surprisingly, the means and standard deviations of (8) look much better than 
those shown in Table 1. Although the first stage of our method is more or less 
the same as that of the MM’s method, our second stage has a stronger theoretical 
basis and is computationally easier. 

4. APPLICATION TO HONG KONG STOCK OPTIONS 

The Hong Kong stock option market began in late 1995 and most of the option 
contracts are on blue chips. Call option prices for three popular stocks, Cheung 
Kong Holdings Limited (CKH), Hong Kong Telecommunications Limited (HKT), 
and Swire Pacific Limited ‘A’ (SPA), from July 1, 1996 to June 30, 1997, are used 
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Table 4. Parameter estimates 

Stock CEV BS 
8 s - 

CKH 4 0.004 O.l68 
HKT 4 0.234 0.299 
SPA 0 16.16 0.243 

in the analysis. The data are obtained from Research and Planning Division, the 
Stock Exchange of Hong Kong. The time series plots of S’, and & for the three 
stocks are shown in Figure 2. The plots of Vt suggest that the volatility for 
each stock does vary through time. Roughly speaking, for CKH and HKT, the 
volatility increases with the stock price; and the reverse is true for SPA. 

The objectives of this section are to apply our two-stage method to the Hong 
Kong data and compare the performance of the CEV and BS models. In this 
application, we not only calculate the estimates of 6 and 0 but also the estimate 
of the volatility of model (1) denoted by d. Instead of using the implied volatility 
or the sample standard deviation, we use the method of least squares together 
with V, of (3) to obtain 6. The results are summarized in Table 4. As expected, 
the value of 8 for CHK and HKT is greater than 2 and that for SPA is less than 
2. 

We have mentioned in Section 1 that the BS model works quite well for pricing 
at-the-money calls. On the other hand, empirical evidence suggests that the BS 
model systematically overprices in-the-money call options and underprices out- 
of-the-money call options if the underlying stock process follows the CEV model 
with 6 < 2. It is interesting to see if similar systematical pricing biases still hold 
for 0 > 2. 

We compute the BS and CEV model prices for CKH and HKT using the esti- 
mates shown in Table 4. For having more reasonably quoted market prices, we 
only include the options with high trading volume. We use a risk-free interest 
rate of 5% in our calculations. We now define M = (S - K)/K as a measure of 
how far the option is in or out of the money where K represents the exercise price 
of the option. Furthermore, we use V = (Cmorket - Cd)/Cm to measure the 
percent difference between model price C-1 and market price Cmorket. Figures 
3 and 4 plots V versus M for CKH and HKT respectively. Figure 3 clearly reveals 
similar pricing biases of the BS model and shows that the measure V for the CEV 
model looks more randomly scattered around the horizontal line. As for HKT, 
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the underpricing problem can also be seen to a certain degree. Although Figure 
4 does not exhibit much overpricing of in-the-money options for the BS model, 
we see that the points for the BS model are distributed farther away from zero 
than those for the CEV model. 

5. REMARKS 

At the first glance, it is natural to consider the sum of the squared deviations 
between uf and V, and use the non-linear least-squares method to estimate the 
two parameters jointly. This can be done easily using some statistical software 
package like SAS. However, the non-linear method does not result in acceptable 
estimates of the parameters. The resulting correlation matrix indicates that 6 
and 8 are highly correlated. 

In our two-stage method, it may take a long time to search for the best estimate 
of 8. The simulation results in Section 2 suggest that we can make use of (5) 
to obtain a good initial estimate of 0. To do this, we simply ignore those points 
with zero V, in the estimation. The true 0 is likely to be somewhere near the 
initial estimate. It is expected that the best estimate can be obtained within a 
few tries. Furthermore, in the previous examples, we have restricted our search 
to integer values of 0 only for simplicity. A more detailed search would certainly 
produce a more accurate estimate. 

For checking model adequacy, we may examine the distribution of the following 
random variables 

x 
t 

= dst - Pstdt . . 
8st~ 

(9) 

If the CEV model is correct, the histogram of Xt’s should roughly look like a 
normal curve with zero mean. This simple graphical method can also informally 
check whether the estimates are plausible. 

In this paper, we use V, of (3) and the least-squares method to develop an 
estimation procedure for the CEV model. It is worthy to mention that this idea 
can be extended to any general diffusion processes for stock prices. As shown in 
the real examples, the simplest case is the BS model; and the constant volatility 
is estimated by the square root of the mean of Vt’s. 
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APPENDIX 

Consider a European call option with an exercise price of K, maturing at 
time T. Let the risk-free interest rate be T. Then, from the risk-neutral valuation 
argument, the call option price is the discounted expected payoff, that is, 

C = e-‘(T-f)E[msx(ST - K, O)]. 

BS option pricing formulas: 

C = SN(dl) - Ke-‘(T-f)N(dz), 

where 

d 
1 

= h($)+(r+$)(T-t) 

agF3 ) 

d2 = dl-ofi, 

N = standard normal cdf, 

(T = constant volatility in model (1). 

CEV option pricing formulas: 

Ml = 

= 

M2 = 

= 

S’ = 

K’ = 

C = SMl - Ke-‘(T-“)M2, 

n.. g(S’b + l)GW’b + ~1, e<2 

I- nfodS’ln + dW’b + 11, e>2 

n. s@‘b + dW+ + 0, e<2 

I-- n@S’ln + l)G(K’In + P), e>2 

~re’(T-‘)(2-e)SZ-tJ 
62(2-e) e’W-W-~)-~ ’ 

~TK~-~ 
62(2-B) dT-‘)@-~L1 ’ 
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g(+n) = e, r(m) 

GM4 = J,” g(yl~)~y, 

P = 1+&q , 

0 = the elasticity of variance in model (2). 
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Figure 1: Plots of U 
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Figure 2: Plots of St and V, 
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Figure 3: Plots of V vs M for CKH 
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Figure 4: Plots of V vs M for HKT 
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