
Can you see the quality of a financial risk? 

Hans Biihlmann, ETH Ziirich 

On this common ASTIN-AFIR clay, I should like to address a topic 

of equal importance in insurance and finance 

Performance measurement 

Performance prediction 

Perfbrmance is measured by appropriate ratios 

Insurance: Loss ratios (with or without costs) 

Finance: Return rates (on investment, on equity etc.) 

Log return rates 

Bbth loss ratios and return rates are used,routinely. The more it is 

astonishing that the ongoing actuarial. techniques for dealing with 

these two quantities have very little in common. Let me make my 

point even more provocative: 

I believe strongly that the thinking developped in insurance to deal 

with loss ratios should also be used in the finance sector for dealing 

with returns. Obviously some modifications are appropriate and 

I shall talk about them. But - and that is my message to the 

specialists in finance - the basic concepts are there to be used, 

developped over more than eighty years by casuality actuaries and 

by members of ASTIN on one side and by- statisticians on the 

other. 
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1. Insurance and loss ratios 

In insurance the constomary ratio is 

Incurred claims (with or without costs) = X 
volume 

for given periods (e.g. years, semesters, quarters). Volume may 

mean 

premiums earned 

sums insured 

total salary 

depending on traditions in different branches and parts of the 

world. 

As actuaries we are then typically confronted with the following 

scheme relating to a group of risks all considered to belong to the 

same collective 

x11 x12 . . . xij . . x1N 

x21 . . . . . x2N 

Xi j 

xl1 &2 . ‘. xnj . . xnN 

Xij - 10~s ratio for period i 

risk j 

X n+l,l . .’ .‘. X n+l,j . . . X n+l,N 

Quantities relating to the same individual risk are in the same 

column. 

Rows 1,2,... n are observed, 

row n + 1 is to be predicted. 
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Modelling of individual risk 

Individual risk may physically mean 

a group life contract 

a tariff position in fire insurance 

a reinsurance treaty etc. 

in short, the smallest statistical unit considered in our analysis. 

Take one such individual risk (e.g. number 1) and its loss ratio 

column 

x11 

x21 

xx1 

X n+l,l 

They fluctuate around a common theoretical value ~1 
Figure 1 

X n+l, 1 

x11 x41 

Gl+l, 1 

El1 E41 
O 1 

" - F1 

CT1 
E31 

0 x31 

X21 
We write Xi1 = PI + Gl i=l,...,n+l 

T T 
signal noise 
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Question: After we have observed n ratios, 

X11, x21, . , -Ll 

How can we decompose them into signal? 
noise? 

This is, how electrical engineers talk about this problem and they 
call the decomposition filtering. 

We actuaries call the signal the true premium rate and the de- 
compositions name is credibility. 

Unfortunately this true premium can not be observed, still it is 
probably the most important item, like the signal in telecommuni- 
cation. This remark should justify the title chosen for this lecture. 

Modelling. of the Collective 

Premium rating in insurance has always relied havily dn collec- 
tive data. They are typically aboundant whereas individual data 
are scarce. What we mean by a collective is typically a matter 
of definition by convenience. The requirement of a homogeneous 
collective - still founcl in older textbooks of insurance - is unnec- 
cessary, I would say even counterproductive. 

Reverting to our modelling of the indiviudal risk, the best way to 
model the collective is an urn, that contains all possible individu- 
ally correct premiums p 
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Figure 2 

L i-h, I-L2, . . . . . ..I kN 

WJJ pl, p2,. . , /dN 

probability distribution are drawn from this urn in an i.i.d 

fashion, where the content of the urn 

is described by the structural func- 

tion U(p). 

If you have no data on an individual risk (e.g. number 1) you 
have no clue to guess its correct premium ,ul, but as you know 
the structural distribution your best guess is 

m = E[p] = J pudU(p) . 

Filtering = Credibility formula 

After you have made the observations X11, X21, , Xnr you esti- 

mate ,LL~ by 

El = m+Zp.l-m] formula as used 

by electrical engineers 

= 2x.r + (1 - Z)m formula used 

T by actuaries 

credibility weight 
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2. A quick technical sumwary 

I have .presented the most simple case 

(1) noise Eij all i.i.d. E[Eij] = 0 

Var[cij] = a2 

Var[p] = 7-2 

z=-.c- America1 actuaries 

n+$ Whitney 1918 etc. 

Let me generalize as follows: 

You draw the individual distribution 6 form the collective non 

not only the individual p. 

Hence we write from here on: 

( 2 ) replace either eij c- a(tij)Eij 

or eij +-- C7(24j)* 

6 

The second substitution leads to the most commonly used model 

l!ij - volume in period i for risk j 

( 3 ) replace: p(d) +- Regression line or regression on general 

covariates (Hachemeister 1975). 
Figure 3 

= / 

P(W 
PA++) 

Regression line 
Regression on general 
covariates 
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It is the next generalizator which I suggest that to be used in 

finance to model returns or better log returns. 

( 4 > PL(‘L9) b ecomes a stochastic curve 

Figure 4 

Professor Cramer 

Sundt 1981, 1983 

1967 (?), Gerber/J ones 1975, Kremer 1982, 

3. Finance and returns on investment (log returns) 

We use the same schema as for loss ratios in insurance, but we 

interpret now 
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where S(j)(j = 1,2 > . * . ) N) denote values of financial instruments 
chosen from the same collective 

(e.g. bonds with same rating, 
stocks with same rating) 

x11 x12 XlN 

x21 x22 
observed 

x Xn+1,2 n+l,l 

61 82 

X n+l,N 

flN 

next period 

quality (never observable) 

Modelling: (in the spirit of ( 4 ) 

PtP> = P\~~++B)-d.y)] +& 

long term level 

In mathematical statistics this is called an autoregressive model. 

AR (1) on the p-space (state-space) 
Figure5 

I I I , I 
b 

P pt-1 

& i.i.d innovation I?[&] = 0 

Va&] = ~7: 
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Observations 

xtj = ptVj)+ &tj E[&,] = cl 

T Var(Et] = CJ~ 

noise i.i.d 

It is instructive to draw both the 

p-curve (red) 

X-curve (black) 

Figure 6 
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Problem: You observe the black X-curve 

You want to filter the red p-curve 

Observe: p(d) from collective urn 

@ fixed (could be generalized) 

~~(a) depends on collective urn 

+ innovations 

6 innovations do not depend on 1.9 

(generalization meaningful?) 

How to work with this model? 

Structural parameters %4~)1 = m 
Var[p(6)] = 7-2 collective variance 

Qi 

Var[&] = a: variance of innovation 

Var[Et] = ~-7: variance of noice 

estimation Peter Biihlmann 

Hans Andresen (student of Ragnar Norberg) 

Difference between inovation and noise 

Pt = P + @ [wk-2 - P) + L1] + St 

= p + St + @St-l + !D2st-2 + @3st-3 + . 

xt = p + (6t + m-1 + Q2St-2 + . . .) + Et 

Noise: deviation only at time t 
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Innovation: deviation remains active over the whole time range 

(discounted by 0 ) 

Observe that under stationary conditions 

Var[k(@] = Var 
[ 
~(79) + & 1 

and 

~~(29) - ~(8) independent of p(g) 

4. Applying the Kalman filter 

The good news is that the just described model is taylormade fou 

applying the Kalman-filter (see e.g. Abraham/Ledolter 1983). 

As we can do that for each individual risk we use in this section 

only one index which denotes time 

State vector 
(dimension 2) 

Observation Xf = HS~+E~ 
(dimension 1) 

f 

H = (OJ) 

Movement of state vector 

St = AS + (,9) 

T 
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Denote by St,, - 

ptql, - 

best estimate of St based on 

observations Xr, Xx, . . . ) XL 

expected square deviation matrix 

between St/k and St 

and use the following initial values 

m 
so/o = m, 

0 

For Polo we may take two different views. 

First case: 

We start at time 0 with So = 

T2 r2 
This leads to PO/O = ( ,) ~2 72 

Second case: 

We start at time 0 with So = 

assuming the stationary distribution for So 

This leads to Polo = 

The Kalman equations are (t = 0, 1,2,. . . ) 

Movement 

S t+1/t = A&/t 

P t+1/t = APtItA’ + 

Updating 

S t+1/t = Kt+,(Xt - H&+1/t) 

P t+1/t = &l/k - Kt+lHPt+l/t 

--a- 



where 

Kt+1 = Pt+1/tJf’ (fw,l,Jf’ + d) -l 
. ” / 

Scalar 

It is instructive to have a look at K,+i You find 

K second column 
‘+’ = > lower right element + g,” of matrix ,, Ifl/f 

e.g. assuming first case initial conditions 

Under second case initial conditions ai has to be replaced by 

c7;<1+ &-r) 

211 - credibility of Xr for CL(~) 

221 - credibility of Xr for pi(S) 

5. Outlook 

We have discussed a special model to predict returns. The same 

techniques can be used to predict volatilities. The latter task 

seems to be even more in practical demand. 

The basic idea which I was driving at was that of bringing two 

approaches together. On one side the understanding of the prior 

distribution (structural distribution) as a description of a collective 
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into which the individual risk is embedded. On the other side the 

time series approach to model the evolution of the individual risk 

quality. The Kalman filter has turned out to be an appriate tool 
that can be used for prediction even in this combined view, which 

renders the technique useful for practical applications. 

Let us therefore hope that many such applications shall be re- 

ported about in our future meetings. 
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