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66 UN MODELE STOCHASTIQUE DE COURBE DES TAUX POUR DES 
SIMULATIONS ACl"IFS - ENGAGEMENTS 

JAMES A. TILLEY, F. S. A., PH. D. 

RESUME 

Cet article mnte un m d l e  stochastique de w b e s  des taux du Tr6sor des Etats - 
Unis d'Am&ique, destid it Btre utilisC pour des simulations actifs - engagements 
applicables aw  cOmpagnies d'assurance, aux banques et autres institutions de &@t, et ' 
a w  caisses de reaaite. Le prix de numbre d'actifs et & passifs de valeur nominale 
exprim& en dollars dricains, et payables dans cette monnaie, est fmC par rappart A 
une courbe des taux du T r h .  Le &le stochastique est empirique - il est dCrivC dune 
analyse statistique & caubes historiques des taux, et non &s principes fcmdarnentaux 
des sciences Bconomiques et fmancihres. Moyenant les ajustements appropiCs, pour 
assurer une fmation des prix sans arbitrage, le d h l e  put- etre u W  pour kaluer des 
options &bitrices et des cash flows dwndant du taux d'intk&t ghCral. 

Ce mod&le est 6 l a W  en exprimant des courbes des taux comme des superpositions 
linCaires de polyndmes orthonormCs, puis en effectuant une analyse en sCrie 
chronologique des coefficients d'expansion et une analyse statistique des rCsidus de 
l'ajusternent, pour spkifier les propriCt& smhastiques de l'Cvolution des courbes des 
taux. Le resultat de cette analyse suggkre qu'un haut degrC d'irnmunisation serait 
rCalisable en ajustant les indices qui caract&isent les rCpanses de prix des actifs et des 
engagements aux Cvolutions des quatre caract6ristiques principales & la forme d'une 
courbe de. taux : niveau, pente, courbure et ondulation. 

Les domh de la cuurbe des taux analyst% prhtent une &version moyenne et des 
distributions tt fort trahage, des residus. Une combinaison de deux distributions 
n o d e s  s'adapte trh bien aux rhidus. Une analyse thbrique des propriCt& de stabilitk 
du m a l e  est p&nCee, et un test de simulation & ce rnod2le est u W  pour examiner 
son comporternent sur une p6riode de 100 ans. 



A STOCHASTIC YIELD CURVE MODEL 
FOR ASSET I LIABILITY SIMULATIONS 

BY JAMES A. TILIEY, F. S. A., PH. D. 

ABSTRACI' 

In this paper a stochastic model of the U. S. 'Ifeasury yield curve is developed for use in. 
asset/liability simulations applicable to insurance companies, banking and other' 
depository institutions, and pension funds. Many assets and liabilities denominated and 
payable in U. S. dollars are priced relative to the Tkeasury yield curve. The stochastic 
model is empirical - it is derived from a statistical analysis of historical yield curves, not 
from basic principles of econanics and finance. With appropriate adjustments to ensure 
arbitrage-free pricing, the model could be used to value debt options and general interest 
rate contingent cash flows. 

The model is developed by expressing yield curves as linear superpositions of 
orthonarmal polynomials and rhen performing time series analysis of the &cients of 
expansion and statistical analysis of the residuals of the fit to specify the stochastic 
properties of the evolutim of yield curves. The results of these analyses suggest that a 
high degree of immunization should be achievable through matching indexes that 
characterize asset and liability price responses to changes in four primary shape 
characteristics of a yield curve : its level, tilt, warp, and undulation. 

The yield curve data analyzed exhibit mean reversion and fat-tailed distributions of the 
residuals. A mixture of two normal distribulions fits the residuals very well. A 
theoretical analysis of the stability properties of the model is presented and a simulation 
test of the model was used to examine its behavior over a 100 - year period. 

1 - BACKGROUND AND INTRODUCTION 

Pension and life actuaries in the United States and Canada began using interest rate 
simulations extensively during the 1980s as a tool for pricing and valuing various 
products and financial security programs. A review of stochastic interest rate models 
derived from basic principles of ecanomics and finance was presented by Sharp [l] at 
the 23rd International Congress of Actuaries in Helsinki. Such one - factor and t w ~  
factor models have had some, but limited, success in describing the richness of yield 
curve movements observed in the financial market place. The wak presented in this 
paper stemmed from a need to model the obsewed dynamics of yield curves better than 
has been possible with purely theoretical models. An empirical approach based on an 
analysis of historical yield curves was deemed appropriate for the purpose of long - term 
assertliability simulations, but could be of questionable value to traders interested in 
achieving short-run arbitrage profits. 

A valuable byproduct of a study of the dynamics of yield curves is insight into @ 
number of risk indexes that must be controlled in order to achieve acceptable 
asset~liability immunization. A considerable amount of research has been done in this 
area by both academicians and practitioners. Of particular importance is the work by 
Harris [2] that utilizes principal component and factor analysis of changes in yield 
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cwes to derive two duration measures - "twist'' duration and "concave" duration - in 
addition to the classical "parallel - shift1' duration. Harris's studies have demonstrated 
that immunizing against twist and concave shifts in the yield c w e  in addition to 
parallel shifts often achieves significantly better risk mtrol than immunizing against 
parallel shifts alone. 

Parallel duration quantifies the price response of an asset or liabiity to a fmt.order shift 
in the level of interest rates. It has become fashionable in the practice of portfolio 
management in the United States to talk about the "convexity " of assets, particularly 
assets with option features such as mortgage - backed securities and callable corporate 
bonds. The convexity index is a risk measure that quantifies the price response to a 
second - order shift in the level of interest rates. 

If none of the asset or liabiity cash flows are contingent on interest rates, it can be 
shown that immunizing parallel duration and convexity is equivalent to immuniziig 
against fmt - ader shocks to both the level and the slope of the term structure of interest 
rates. However, it is a reasonable conjecture that better risk control in the case of 
interestcontingent cash flows is attainable by matching asset and liability responses to 
fust-or&r shocks in both the level and the slope of the term structure than by matching 
asset and liability parallel durations and convexities. The method of orthonormal 
polynomials used in this paper to break apart a yield curve into mutually orthogonal 
components suggests that a high degree of immunization should be achievable through 
matching risk indexes based on price respses to first - ader changes in four primary 
shape characteristics of yield curves : their level, tilt, warp, and undulation. The 
immunixation studies needed to support this conjecture are beyond the scope of this 
papex and will be the subject of further investigatim. 

An important decision in the study of interest rate dynamics is the choice of what to 
model. In a recent monograph, Coleman, Fisher, and Ibbotson [3] discuss 
considerations in whether to analyze the yield curve that expresses tk yields of bonds 
trading at par, the term structure that expresses the yields of zero - coupon bonds 
(namely, spot rates derivable fram the yield curve), or forward rates that are derivable 
from spot rates. They selected forward rates for their analyses, whereas many other 
researchers have studied spot rates. From a theoretical viewpoinl, curves of spot rates 
and forward rates are both preferred to the yield curve because, unlike the yields 
defining the yield curve, spot rates and forward rates relate to discounting a single cash 
flow occurring at one point in time to some earlier point in time. However, yield curves 
are studied in this paper in keeping with its emphasis on practice. The yield curve, not 
the term structure, directly describes the market made by traders of U. S. government 
securities, and is thus what is directly observable in the financial market place. 

Section 2 describes how the method of orthonormal polynomials can be used to 
decompose a yield curve unambiguously into its constituent parts and then presents the 
results of "fitting" 101 yield curves utilizing this method. Section 3 presents the results 
of a time series regression analysis of the fitting parameters developed from the analysis 
in Section 2, and leads to the specification and estimation of a stochastic yield curve 
model. In Section 4, stability properties of the Illode1 are analyzed and the results of a 
simulation test are discussed. Section 5 summarizes the paper and indicates directions 
for future research. 



2 - FTITING HISTORICAL YIELD CURVES 

The yield curves analyzd in this study came from the U.S. government security data 
base maintained by traders at Morgan Stanley & Co. in New York. 'Ihe yields are based 
on the traders' bid pices at 3:00 p.m. far "on - the - run" U.S. 'Ikeasury bills, notes, and 
bonds. The data covers the period from December 16, 1981 to August 16, 1989 at 
intervals of four weeks, giving a total of 101 yield c w e s .  Only one of the interval-: 
ending Wednesdays occurred when the markets were closed - November 11,1987 - and 
this was replaced by data for the Wednesday of the following week ?here was one 
missing yield in each of three yield curves - the three missing data points were replaced 
by averages of the yields on both sides of the missing points. All yields are expmsed as 
percentages on a bandequivalent basis (that is, convertible semi-annually). 

The yield curves in the data base are specified at maturities of three months, six months, 
and one, two, three, four, five, seven, ten, twenty, and thirty years. 'Ihis maturity range is 
mapped onto the unit interval [0,1] by first taking natural logarithms of the maturities 
expressed in years and then linearly rescaling the log - maturity range to be one unit in 
length. The transformation places the three-month maturity at zero and the thirty - year 
maturity at unity. Each yield curve so mapped onto the unit interval is assumed to be 
linear between the points at which it is defined, and thus is continuous and piecewise 
linear on [0,1]. 

Appendix 1 describes how a complete set of mutually orthogonal polynomials can be 
defined on [0,1]. By normalizing such polynomials, a complete set of orthonormal 
polynomials is obtained. They are complete in the sense that any continuous function 
f(x) &fmed on [0,1] can be expanded as an infmite series 

where q,(x) represents the orthonormal polynomial of degree n and the various an are 
the caefficients of the expansion. The an are computed from the following equation : 

The orthonormal polynomial method of "fitting" yield curve functions differs from 
other polynomial fitting methods in a few important respects. First, each caefficient in 
the expansion is independent of the other caefficients - this follows from the 
orthogonality property of the polynomials. Thus, the mfficient of the nth polynomial in 
the expansion does not depend on what other polynomials have been included or 
excluded. If one wants to improve upon an approximation to the yield curve based on 
the first n polynomials by adding higher order polynomials, none of the mfficients in 
the original approximation change in value when more terms are included. The 
decomposition of a given yield curve into these orthonormal polynomials is unique. 
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Second, the completeness property assures that any yield curve of the type described 
above can be fit exactly if an infite number of terms is used Any yield m e ,  no 
matter how strangely shaped, can be accomodated within this framework. From a 
practical standpoint, the question is one of how many terms are needed to achieve an 
acceptable approximation to substantially all of the yield curves encountered in a 
historical universe. 'Ihe approach is useful cdy if a small number of terms is required. 

The 101 yield curves comprising the historical sample were decomposed in terns of 
orthonormal polynomials up to and including degree 10, and the errors of fit were 
computed for successive degrees of approximation. If the approximation to the yield 
curve f(x) defined on [0,1] that is obtained by including all orthonormal polynomials 
with degrees up to and including n is denoted by fn (x), the mean square error of fit, e, is given by : 

With the yields f, (x) and f (x) both expressed as percentages, the means and standard 
deviations across all 101 yield curves of the root mean square mrs E,, expressed in 
basis points (hundredths of a percent) for n = 0.1, ..., 10, are given in 'Pdble 1. 

Means and Standard Deviations of the Root Mean Square Errors of Fit 

Order 
of 

Approximation Mean of E, Srandard Deviation of E, 

Table 1 clearly shows that substantial improvements in fit are obtained with each 
successive degree of appoximation through polynomials of degree three. It then takes 
another five or six terms to halve the already small error. It is likely that an 
approximation to yield curve dynamics satisfactory for assertliability simulation 



purposes and for immunization can be obtained by using only the qo (x), ql (x), q2 (x) 
and Q (x) components of the fit. A more detailed examination of the root mean square 
errors of fit is given in 'hble 2 where the number of yield auves for which the error of 
fit falls within specified bands is given. These distributions of E, for various n d m  
that several terms after n = 3 are needed to improve the fit markedly. 

nble 2 
Distributions of the Root Mean Square Erras of Fit to Historical Yield Curves 

I 
Error 

_Band' 

Total 

Order of Approximation 

* The bands are measured in basis points. Each band is inclusive of its lower 
end point and exclusive of its upper end point. 

Before poceeding to the time series regression analysis of the four coefficients in the 
expansion of the yield curves to order three, it is instructive to examine the 
decomposition of an actual yield w e  into its athonmnal components. An inspection 
of graphs of the first four orthonomal polynomials plotted on the interval [0,1] suggests 
that the shape characteristics associated with the zeroth, first, second, and third arder 
polynomials are appropriately labelled level, tilt, warp, and undulation respectively. The 
"undulation" term is somewhat presumptive of the lack of i r n w  of tenns of order 
four and higher, because the orthonormal polynomials of degree four and higher also 
look like "waves". Table 3 gives the decomposition of the March 7, 1984 yield curve 
into its level, tilt, warp, and undulation parts. The fmt four cuSicients in h polynomial 
expansion for that yield w e  are 11 .l9, - 0.9339, - 0.09308, and 0.1390, respectively, 
to four signif~cant figures. 
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Wle 3 
Four - Companent Decanposition of the March 7.1984 Yield Curve 

Maturity ~elds m Per-t 
in 

Y e a r s L e v e l I i l I m U n d u l a l i o n l h t P l A c t u a l D i f f e r e n c e  

The contours of the values in the level, tilt, warp, and undulation columns in W e  3 
indicates that the shape labels are appropriate. 'lhe column identified as "Ibtal" is the 
third order approximation (four polynomials) of the "Actual" yield curve, and the 
"Dieretlce" column displays for each maturity the m of the fit 

3 TIME SERIES ANALYSIS OF ORTHONORMAL POLYNOMIAL 
COEFFICIENTS 

In order to specify and estimate the stochastic dynamics of the yield curve, it is 
necessary to perfam a regression analysis of the ccefficients in the expansion of the 
historical time series of yield curves in terms of crthanormal polynomials. Each of the 
101 yield curves in the historical universe was fitted up to and includq the third order 
polynomial. This resulted in a vector a of four fitting mfficients for each yield curve 
and thus a time series of 101 fitting vectors at at, t = 0.1, ..., 100. Of the several forms of 
regression attempted, the me with the greatest explanatory power was an autaegressive 
process of order two, with the vector at depending on the vector at - 1 at lag one and on 
the vector at ,  2 at lag two. A greater degree of stationarity in the variance of the process 
was achieved by replacing the level ccefficient (the woth element of the vector a) by its 
natural logarithm. The transformed vectors are denoted by a'. Including a constant tern 
k in the regressions leads to the following model of the stochastic dynamics of the yield 
curve : 



The matrices ~ ( l )  and R ( ~ )  are autoregression parameters for lags one and two, 
respectively, and the errors or residuals of the regression are denoted by the random 
vectors et. 

Standard confdence tests based an Student's t statistics and F statistics were used to 
&te& which elements of the constant vector k and which elements of tk matrices 
~ ( l )  and R ( ~ )  are significant at the 5% level. IhMe 4 lists the parameters retained at a 
minzero level, the standard errors of the estimates, and the associated t statistics The 
hypothesis that a given parameter is equal to zero can be accepted at a 5% sigtuficance 
level if the absolute value of its associated t statistic is less than 1.985. 

Table 4 
T i e  Series Analysis of the Yield Curve Fitting C&cients 

Regression 
Parameter 

Parameter 
Estimate 

0.1000 
-0.1044 
0.3046 

-0.0082 

1 .O836 
0.9907 

-0.9 182 
-0.1 536 
0.7788 

-0.0449 
0.4667 , 

-0.1309 
-0.2260 
-0.1 577 
0.1844 

Standard 
Error 

0.0490 
0.0365 
0.1015 
0.0088 

0.0957 
O.lO33 
0.3388 
0.0482 
0.1034 
0.0 170 
0.0965 

0.0966 
0.0988 
0.0995 
0.0959 

1 Statistic 

2.04 1 
-2.859 
3.00 1 

-0.938 

11.105 
9.593 

-2.7 10 
-3.1 89 
7.529 

-2.639 
4.837 

-1.355 
-2.289 
- 1 .584 

1.922 

'Ihe t tests in Table 4 suggest that the parameters for the autnegressive term at lag two 
are very weak, since in three of the four cases the statistical test cannot be accepted at 
the 5% level. In each of those situations, however, the residuals of the fit exhibited 
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insignificant serial correlation at several lags only if the lag-two parameters were 
retained at a nonzero value in the regression. ?he me element in the constant vector that 
failed the t test at the 5% level was retained at a nonzero value for reasons of 
"syrnrneoy" - namely, because all other constants are present in the model at 
values. The values of R~ for the autoregressions of the log - level, tilt, warp, and 
undulation mficients are 0.952,0.846,0.715, and 0.721, respectively. 

The sample estimates of the standard deviatians of the residuals et are (0.0467,0.1464, 
0.0726,0.0358). The means of the residuals are equal to zero due to the inclusion of 
nonzero constant terms in the regression analysis. The sample estimate of the 
contemporaneous correlation matrix of the residuals is given in Table 5. Chi - square 
tests of goodness of fit were pedamed on the distribution of the residuals to determine 
whether they could be considered to be normally distributed. For the residuals 
associated with the regrsssions of the time series of the log -1 eve1 and tilt coefficients, 
the chi - square tests of the hypotheses of normality could not be rejected at the 5% 
level, but the tests of normality for the warp and undulation residuals were easily 
rejected at the 5% level. The failure of the tests was directly traceable to the fat tails of 
the distributions. 

M l e  5 
Sample Estimate of the Contemporaneous Correlation Matrix of the Residuals 

Kon [4] has found that a discrete mixture of normal distributions can explain the 
observed kurtosis in the distribution of daily rates of retum f a  certain common stccks 
and stock indexes. Accordingly, a separate mixm of two namal distributions, both 
with zero mean, was fit to each series of residuals by constraining the standard & v i a  
of the rnixm to equal the sample estimate of the residual standard deviation, and then 
choosing the mixing probability and the ratio of the standard deviations of the two 
normal densities to minimize the chi-square statistic in the goodness - of - fit test of the 
assumed probability &nsity function of the residuals. 

After accounting for the two fewer degrees of freedom in the tests of the mixture of two 
normals than in the tests of a single normal density, it was found that the tilt, warp, and 
undulation residuals are fit to a very high degree of confidence by a mixture of two 
normals, but that the log - level residuals are still better fit by a single normal density. 
The fitted values of the mixing probabilities, expressed as percentages, are 74%, 828, 
and 90% for the tilt, warp, and undulation residuals, respectively. These percentages are 
the weights for the normal density having the smaller standard deviation, and their 
complements - 26%. 18%, and lo%, respectively - are the weights for the normal 
density having the larger standard deviatim. ?he fitted values of the ratia of the larger 
standard deviatian to the smaller standard deviation are 2.50.3.30, and 3.75 for the tilt, 
warp, and undulation residuals, respectively. 
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In order to check for stationarity or lack of it in the model estimation, the historical 
sample of 101 yield curves was separated into two data sets : the fmt 50 yield cwes 
and the last 51 yield curves. Including only the regression parameters that emerged with 
nonzero values fran the analysis of the entire sample of 101 yield curves, regressions 
were performed for each of the subsets of the full data sample. The regression. 
parameten and residual standard &viation f a  the time series of log - level ccefficients 
showed a high degree of stability, but the estimates of most of the other regression 
parameters and residual standard deviations, and of the contemporaneous correlation 
maaix of the residuals, differed noticeably between the two data subsets. In all cases, 
however, the parameter estimates from both data subsets lay within the 95% confi&m 
intervals of the corresponding parameter estimates based on the full data sample. 

4 - ANALYSIS AND TEST OF THE STOCHASTIC MODEL 

Instability is a dficulty often encountered when stochastic simulations are performed 
using a yield curve model developed from a statistical analysis of historical interest 
rates. For example, a lognormal model of interest rate movements will produce 
"runaway" interest rates in a relatively short period of time, say 10 to 20 years, unless an 
arbitrary ceiling is imposed, together with a rule that states how the ceiling absorbs or 
reflects interest rates that strike it. Difficulties with respect to the shape of the yield 
curve - for example, yield curves becoming too positively or negatively sloped - also 
seem to arise with disturbingly high frequency in empirical models unless arbitrary 
constraints are imposed. 

It has been recognized by many researchers that a property known as "mean reversion" 
can cure the types of problems described above. In qualitative terms, mean reversion 
can be thought of as a restoring force that causes a variable which wanders away fiom 
its long - run mean value to return to that mean value. The farther that the variable strays 
from the mean value, the stronger becomes the restoring face. The theoretical one - 
factor model of the term structure of interest rates proposed by Cox, Ingemll, and Ross 
[S] includes two parameters that characterize the mean reversion property : one 
specifying the location of the mean and the other establishing the strength of the 
reversion. l k o  questions naturally arise with respect to the specification and estimation 
of the yield curve model described in Section 3. First, is there statistically si@icant 
evidence of mean reversion in the data ? Second, if there is, does it eliminate the 
difficulties described above ? The first question is answered best by examining the 
theoretical properties of Equation [I], while the second is addressed best by performing 
a simulation test of the model. 

Mean reversion will.a'xw if the expeaed value of Equation (I) has a stable h e d  point A 
fuced point (namely, att = a't-l = att_i) will occuf if the matrix I - ~ ( l )  - R ( ~ )  is invatible. In ' 

that case, the fixed point, in the expected value sense, will be a' * = (I - RO - R(~)? k. 
Necessary and sufficient conditions for the fixed point to be stable are derived in 
Appendix 2. The fuc*ed point mfficips f a  the regression*no&l estimated in Section 3 
are a'o* = 2.1 14. a'l = - 0.7070, a'2 = - 0.053 14, and a'3 = 0.06749, corresponding to 
a stable fuced - point yield curve at a level of 8.28% with positive slope and a spread of 
U)9 basis points between the 30 - year yield and the three - month yield. 
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In the case of the natural logarithm of the level caefficient, it is easy to derive the 
necessary and sufficient conditions for stability from the general result stated in 
Appendix 2 because the regression equation for the natural logarithm of the level 
mfficient dm not involve any of the other three caefficients. 'Ihree conditions must be 
met simultaneously for stability to occur : rm(l) + rm(2) < 1, rW(2) - rm(l) < 1 and 

> -1. From llble 4, it can be seen that the three conditiau are satisfied by the 
regression estimates of the parameters. 'Ihe condition that is closest to Wing violated is 

+ roo(2) < 1. In order to study fuaher the issue of whether the historid yield 
curve data supports the existence of weak reversion to the mean level of interest rates, 
several additional regressions were performed in which the value of was fixed 
and the estimate of was determined. The value of rM(l) was varied in 
increments of 0.a across the interval [0.80,1 .25], and in al l  cases, the value of + 

varied between 0.94 and 0.96, strongly c o n f i g  that the data supports the 
existence of weak reversion to the mean level of interest rates. 

The importance of mean reversion had a strong bearing on the manner in which the 
model specification and estimation were carried out. A casual inspection of the 
autocorrelalion function for the time series of the natural logarithms of the level 
mfficients suggested that differencing the time series would be necessary to achieve 
stationarity. First - order difkences are often taken in an autoregression analysis of time 
series of interest rate data, but such an approach forgoes the possibility of mean 
reversion. Over the short run, the dynamics of interest rates are rather insensitive to the 
presence or absence of weak mean reversion, but over the long run, interest rate 
movements will be stable only if mean reversion is present, even if very weakly. 
Accordingly, great care was exercised in order not to difference any of the time series 
"pematurely" - in actuality, none of the series needed to be M e r e d  at al l  ! 

A simulation test using the last two yield curves in the historical sample of 101 yield 
curves as the initial conditions was conducted in mder to examine the stability of the 
model over a very long period. Yield curves at four - week intervals for 100 years 
(1,300 yield curves) were generated using the regression model parameters, standard 
deviations, and contemporaneous correlation manix of residuals that were reported in 
Section 3 . Each yield curve was fransformed into its corresponding term structure - 
namely, spot rates d interest - and then those spot ram were transformed into forward 
rates of interest in order to verify that al l  spot and forward rates associated with the 
1300 simulated yield curves were positive. 

The level of interest rates in the 100 - year simulation ranged fram 4.24% to 13.41%. 
The minimum and maximum spreads between the 30 - year yield and the three - month 
yield were - 2.52% (inverted yield curve) and 4.80% (normal yield curve). 'lhe average 
spread was 1.86%. Only 41 of the 1,300 simulated yield curves were inverted. These 
statistics fat the simulated sample of yield curves show that the reversion to the mean 
level of interest rates is somewhat too strong because the simulated range of variation is 
smaller than has actually been observed in the U.S. Treasury markets. Similarly, the 
frequency of inverted yield curves is much too small, and the range of spreads between 
30 - year yields and three - month yields is modestly too large, relative to actual interest 
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rate history in the United States. Such deficiencies in the estimated stochastic model 
should not be surpising for two reasons : first, the model is based on a short (400 weeks) 
and partly uxxharacteristic (only eight inverted yield curves) history of yield curves, and 
second, the standard errors of the regression parameter estimates are not small. 

The model parameters, standard deviations, and correlation matrix of the residuals can 
be adjusted appropriately to produce simulations with characteristics suited to the 
purpose of a particular applicatim Fa example, the sum, + r&) can be set 
closer to unity in order to increase the range of interest rate variation. Also, the standard 
deviation of the e l  residuals can be increased, and other parameters adjusted to increase 
the a' 1 * fmed point, in order to increase the probability of inverted yield curves. 

5 - SUMMARY AND CONCLUSIONS 

The method of orthonormal polynomials was used to decompose U.S. 'Ifeasury yield 
curves into their constituent parts. The method has the advantages of avoiding 
arbitrariness in identifying yield curve shape characteristics and in being able to fit very 
closely any yield curve, no matter how perversely shaped, provided a number 
of fitting coefficients is used. In practice, very few components and associated 
caefficients are needed to fit yield curves accurately enough for purposes of 
asset/liability management. Utilizing only four components, an average root mean 
square error of fit of less than five basis points was achieved over the data sample 
studied. The four components, labelled by reference to their shape characteristics, are : 
level, tilt, warp, and undulation. The results of the yield curve analysis suggest that 
using four risk indexes or "duration" measures corresponding to the four primary shape 
attributes should be sufficient to obtain nearly full assetlliability immunization against 
changes in the yield curve. 

A time series analysis of the first four fitting coefficients was conducted, and it led to the 
specification and estimation of a second - order vector autoregressive model of yield 
curve dynamics. The two most si

gnifi

cant fhdmgs of the regression analysis are : (1) 
the existenae of mean reversion in the fitting coefficients, with the result that yield curves 
tend to revert over the long run to a normal (positively - sloped) form centered on a 
level estimated to be near 8.3%, and (2) the existence of fat-tailed dismbutions of the 
residuals of fit to the tilt, warp, and undulation caenicients that are explainable by a 
mixture of two normal distributions. Unfortunately, the values of many of the regression 
parameters and residual covatiances do not a w a r  to be stable over time. 

The main purpose of this paper has been to expose a methodology for canstructing a 
stochastic yield curve model appropriate for assetj'iability simulations of f i c i a l  
institutions and financial security schemes. It is hoped that others will apply the 
methodology to develop yield curve models for other countries. A promising area of 
further research is immunization studies of both fixed and interestcontingent assets and 
liabilities in order to test the hypothesis that indexes associated with the level, tilt, warp, 
and undulation shape characteristics of yield curves indeed capture most of the risk of 
changes in interest rates. 
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APPENDIX 1 

A good reference for the material in this appendix is Morse and Feshbach [6]. 

?he oahw,m~I polymmiah k(x) introduced m Section 2 are given by &(x) = (21 + 1) 
Qn (x) for n = 0.1, ... , where the Qn(x) are related to the well - known Legendre 
polynomials P,(x) through the equation Qn(x) = Pn(l-2x). Assuming a unit weight 
furction, the Legendre polynomials are mumally orthogonal on the interval [- 1,1], and the 
polynomials Q, (x) are mutually ahogonal on the interval [OJ], as expressed by 

S QJx) Q&x) dx = 0 , for m + n . 
0 

?he normalization integrals for the Qn(x) are 

The G ( x )  take on the following values at the boundaries : Qn(0) = 1 and Qn(l) = (-1)'". 
The polynomials G(x)  satisfy the following recursion relation : 

(n+l )  Qntl(x) + n Qn-,(x) = (2n+1) (1-21) Qn(x). 
The first eight orthogonal plynominals Qn (x) are : 

APPENDIX 2 

The condition for the fixed point of the secand - order vector Werence equation 

a', = t + R(1) I * ~ - ~  + ~ ( 2 )  

(A-1 )  
to be asymptotically stable is derived by first expressing the difference equation in state 
form as a first-order vector difference equation. This is accomplished by defining bt as a 
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f au  elements by att,l. Similarly, defme k' as a column vector of length eight, with the 
top f m  elements given by k and the bottom four elements equal to zero. Finally, defme 
an eight-byeight matrix R, partitioned into four - by - four matrices as follows : R ( ~ )  is 
in the upper left. R ( ~ )  is in the upper right, I (the identity matrix) is in the lower left, and 
0 (the zero matrix) is in the lower right. Equation (A- 1) can now be expressed in state, 
famas: 
b, = k* + R b,-,. 

(A- 2)  
Staning with an arbitrary initial vector b ~ ,  Equatian (A-2) is iterated n times to give 

The limit of Equation (A-3) as n approaches infinity will be finite, and will be 
independent of the initial vectot bo, if and only if the limit of Rn as n approaches 
infinity is the zero matrix. ?he derivation is continued under the assumption that all the 
eigenvalues of R are distinct. Then, if T is the modal matrix having cdumns equal to 
the eigenvectors of R, it follows that T is nmingular and that T I  R T = D where D is 
the diagonal matrix with the eigenvalues of R along its principal diagonal. Because Rn 
= T D" T l ,  a necessary and sufficient condition for the limit of Rn as n aproaches 
infiity to equal the zero matrix is that all the eigenvalues of R lie inside the unit circle 
in the complex plane ; namely, that all the eigenvalues of R have modulus less than 
unity. In that situation, the limit of Equation (A-3) is the asymptotically stable fixed 
point b* = (I - R)-1 k', or, in the equivalent form displayed in Sectim 4, a'* = (I-R(l)- 
R(2))-lk. 

If not all the eigenvalues of R are distinct, one proceeds by determining the nonsingular 
matrix S such that S -1 R S = J, where J is in Jordan Canonical Form. The proof 
continues in a manner similar to the case when R is diagonalizable. The result is the 
same : the fixed point is asymptotically stable if and only if all the eigenvalues of R lie 
inside the unit circle in the complex plane. 
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