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66 UN MODELE STOCHASTIQUE DE COURBE DES TAUX POURDES
SMULATIONSACTIFS - ENGAGEMENTS

JAMVESA. TILLEY,F. S A, PH. D.

RESUME

Cet aticle présente un modele stochastique de courbes des taux du Trésor des Etats -

Unis d'Amérique, destiné 2 &tre utilisé pour des Smuldions actifs = engagements
applicables aux compagnies d'assurance, aux bangues €t autres inditutionsde dépét, et’
aux caisses de retraite. Le prix de nombre dactifs et de passifs de valeur nominale

exprimée en dollars américains, €t payables dans cefte monnaie, st fixé par rapport 2

une courbe des taux du Trésor. Le modele stochedtiqueest empirique - il est dérivé dune
andy<se statistique de courbes historiques des tauX, et non des principes fondamentaux

des sciences économiques et financidres. Moyenant |€s ajustements appropiés, pour
assurer une fixation des prix sansarbitrage, le modle peut- &tre utilisé pour évaluer des
options débitrices et desCash flows dépendant dut ax dintérét général.

Ce modele et élaboré en exprimant des courbes des taUX comme des SUperpositions
linéaires de polynOmes orthonormés, puis en effectuant une analyse en série
chronologique des coefficients dexpangon et une andyse statistique des résidus de
l'ajustement, POUr spécifier les propriétés stochastiques de I'évolution des courbes des
taux. Le résultat de cette analyse suggdre quun haut degré d'immunisation serait
réalisable en ajustant les indices qui caractérisent |es réponses de prix des actifset des
engagements aux évolutions des quatre caractéristiques principales de la forme d'une
courbe des taX : niveau, pente, courbure et ondulation.

Les données de la courbe des taux analysée présentent une réversion moyenne et des
distributionsa fort trainage, des résidus. Une combinaison de deux distributions
normales s'adapte trés bien aux résidus. Une andysethéorique despropriétés destabilité
du modRle est présentée, et un test de Imuldionde ce modele et utilisé pour examiner
Son comportement sur une période de 100 ans.
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ABSTRACT

I nthis paper astochadticmodd of the U. S Treasury yieldcurveisdevelopedfor usein.
asset/liability smulations applicable to insurance companies, banking and other’
depository ingtitutions, and pension funds. Many assetsand liabilities denominated and
payablein U. S dollars are priced relativeto the Treasury yidd curve The stochadtic
mode isempiricd - it isderived from agtatistica andyssd histaicd yied curves not
from basic principlesof economics and finance. With appropriate adjusmentsto ensure
arbitrage-freepricing, themodd could be used tova ue debt optionsand generd interest
rate contingent cash flows

The model is developed by expressing yield curves as linear superpositionsof
orthonormal polynomiasand then performing timeseries andysisof the coefficients of
expansion and dtatistical andysisdf the residuds d thefit to specify the stochastic
propertiesd the evolution o yield curves Theresultsd these analyses Suggest that a
high degree o immunization should be achievable through matching indexes thet
characterize asset and liability price responses to changes in four primary shape
characteridicsd ayidd curve: itslevd, tilt, warp, and undulation.

The yidd curve data andyzed exhibit meen reversion and fat-tailed distributions of the
residuals. A mixture of two normal distribulions fits the residuals very well. A
theoreticd andysisof the sability propertiesof themodd is presented and asmulation
test of themodd wasused to examineitsbehavior over a100 - year period.

1- BACKGROUND AND INTRODUCTION

Penson and life actuaries in the United States and Canada began usng interest rate
smulations extensively during the 1980s as a todl for pricing and vauing various
products and financid security programs A review of stochedtic interest rate modds
derived from badic principlesdf economics and finance was presented by Sharp [1] at
the 23rd Internationd Congressdf Actuariesin Helsinki. Such one - factor and two-
factor modds have had some, but limited, success in describing the richnessof yidd
curve movements observed in the finandid market place. The wak presarted in this
paper semmedfrom aneed to modd the observed dynamicsdo yidd curves better then
has been possible with purdly theoreticd moddls. An empirical approachbased on an
andysisof higtorica yield curveswas deamed gppropriatefor the purposedt long - term
asset/liability smulations, but could be of questionable vaue to traders interested in
achievingshort-run arbitrageprofits

A vauable byproduct of agudy of the dynamicsdf yidd curves is indght into the
number of risk indexes that must be controlled in order to achieve acceptable
asset/liability immunization. A considerable amount of ressarch has been done in this
area by both academicians and practitioners OF particular importanceis the work by
Harris[2] that utilizes principal component and factor andysis of changes in yidd
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curves to derive two duration meesures - "twigt" durationand "concave' duration - in
addition to the classica "pardld - shift" duration. Harriss studies have demonstrated
that | nmoni zi ng against twist and concave shiftsin the yield curve in addition to
pardld shifts often achieves significantly better risk control than i mon zi ng againgt
pardld shifts done.

Parallel clr & i 0n quantifies the pri ce reponsed an asset or liabiity to afirst-order shift
in the level of interest rates. It has become fashionablein the practicedf portfolio
management in the United States to talk about the “convexity " d assts, particulaly
assetswith option festures such as mortgage - backed securities and callable corporate
bonds. The convexity index is a risk measure that quantifies the [ri ce regponseto a
second - iy shiftintheleve of interest rates

if nonedf the asset or liabiity cash flows are contingent On interest rates, it can be
shown that immunizing parald duration and convexity is equivaent to immunizing
againd first - ader shocks to both thelevel and the dopedf the teemstructure of interest
rates. However, it is a reasonable conjecture thet better risk contral in the case of
interest-contingent cash flows is attainable by matching asset and ligbility responsesto
first-order shocks in both theleved and the dopedf the t er mstructure then by matching
ast and liability parallel durations and convexities. The method of orthonormal
polynomials usad in this peper to bresk apart a yidd curve into mutudly orthogond
components sUggests that ahigh degree of immunization should be achievablethrough
matching risk indexes basad on [ri e responses to first - order changesin four primary
shape characteristics of yield curves : ther levd, tilt, warp, and undulation. The
immunixation studies needed to support this conjecture are beyond the scope d this
paper and will bethe subject o further investigations.

An important decision in the study  interest rate dynamicsis the choice d what to
model. In a recent monograph, Coleman, Fisher, and Ibbotson [3] discuss
congderaions in whether to andlyze the yidd curve that expressesthe yiddsof bonds
trading at par, the term Structure thet expresses the yields of zero - coupon bonds
(namely, oot rates derivable from the yidd curve), o forward retes thet are derivable
from spot rates. They sdected forward rates for ther analyses, whereas many other
resear chers have studied spot rates Froma theoreticd viewpoinl, curves of spot rates
and forward rates are both preferred to the yied curve because, unlike the yidds
defining the yidd curve, spot rates and forward rates rlate to discounting asingle cash
flow occurring & one point in timeto someearlier point in time. However, yidd curves
are studied in this paper in keepi ng with its emphasison practice. The yidd curve, not
the tam structure, directly describes the market mede by traders of U. S. government
securities, and isthus what isdirectly obsarvablein thefinancial market place.

Section 2 describes how the method of orthonorma polynomials can be usd to

ayidd curve unambiguoudy into its congtituent parts and then presentsthe
resuts o "fitting" 101 yidd curves utilizing this method. Section 3 presentsthe resuilts
d atimeszriesregresson andydsd thefitting parametersdevel oped from the andlyss
in Section 2, and leads to the specificationand estimation § a stochetic yidd curve
modd. In Section 4, sability propertiesd the model are andyzed ad the resultsd a
smulaion test are discussad. Section 5 summarizesthe paper and indicates directions
for futureresearch.
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2- FITTING HISTORICAL YIELD CURVES

The yield curves analyzed in this tudy cane fromthe US government security data

basemaintained by tradersat Morgan Stanley & Co. in New York. The yiddsar e based

on thetraders bid prices at 3:00 p.m. for "on-the -run" US Treasury hills naes, and

bonds. The data coversthe period from December 16, 1981 to August 16, 1989 at

intervals o four weeks giving atota of 101 yidd curves, Only one of the interval-:
ending Wednesdays occurred when the markets weredased - November 11,1987 - and

this was replaced by data for the Wednesday of the following week There ves one

missngyidd in eechdf three yidd curves- the threemissing data points were replaced

by averagesd theyiddson both Sdesaf the missing points. All yidds are expressed as
percentageson abond-equivalent basifthet  is, convertiblesemi-annually).

Theyidd curvesint he detabase are spedified a mauritiesadf threenont hs, Sx months,
and one, two, three, four, five, seven, ten, twenty, and thirty years This maturity rangeis
mapped ontot he unit interva [0,11 by first taking naturd logarithms of the maturities
expressed in years and then linearly rescaling t he log - maturity range to be one unit in
length. The trandformationplaces the three-month maturity &t zero and the thirty - year
maturity a unity. Each yidd curve S0 nagped onto the unit interva is assumed to be
linear between the paints a which it is defined, and thusis continuous and piecewise
linear on[0,1].

Appendix 1 describes how a completeset of mutudly orthogonal polynomiascan be
defined on [0,1). By normdizing such polynomias, a complete st o orthonormal
polynomias is obtained. They are completein the sense thet any continuousfunction
f(x) defined on [0,1] can beexpanded as an infinite Sseries

O
() = > 2,0,(x)
n-0

whereqy,(x) representst he orthonormal polynomia of degreen and thevariousay, are
the ceefficients d theexpanson. Theay, arecomputed from thefollowingequation :

1
2 - jo' £(x) gy(x) dx

The orthonormal polynomiad method of "fitting" yield curve functions differsfrom
other polynomid fitting methods in afew important respects First, each ceefficient in
the expansion is independent of the other caefficients - thisfollowsfrom the
orthogondity property of the polynomids. Thus, the ceefficient of the nth polynomid in
the expansion does not depend on whet other polynomias have been included or
excuded. If one wants to improve upon an gpproximation to the yidd curve based on
the first n polynomids by adding higher order polynomids, none d the ceefficients in
the origina approximeation change in value when more terms are included. The
decompostiond a given yidd curve into these orthonormal polynomidsis unique
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Second, the completeness property assures thet any yidd curve ot the type described
above can be fit exactly if an infinite number of termsis used Ay yield curve, no
matter how strangely shaped, can be accomodated within this framework. From a
practica standpoint, the question isone of how meany terms are needed to achieve an
acceptable gpproximation to subgtantidly all of the yield curves encountered in a
historical universe The gpproachis ussful only if asmall nunber d termsisrequired.

The 101 yidd curves comprisng the higtorica sample were decomposed in terms of
orthonormal polynomids up to and including degree 10, and the errors of fit were
computed for successvedegreesd gpproximation. If the goproximetion to the yied
curve f(x) defined on {0,1] that is obtained by including all orthonormal polynomids
with degrees up to and indluding n is denoted by £, (x), the meen square error d fit,
B,?, isgivenby :

1

B2 - [ I60-10 R
0

With the yiddsfy, (x) andf (X) both expressed as percentages, the means and standard
deviations across al 101 yidd curves o the root n@an square errors Ep, expressad in
bass points (hundredthsdf apercent)for n=0,1,...,10, aregivenin Table 1.
Table 1
Meansad Standard Devidionsdf the Root Mean Square Errors of Fit

Order
of
Approximation Mean of B Standard Devigiond Ej

0 74.5 32.6
1 17.2 10.5
2 9.6 438
3 4.7 24
4 40 23
5 35 19
6 28 14
7 26 14
8 2.5 12
9 21 1.0
10 20 1.0

Table 1 clearly shows that substantial improvementsin fit are obtained with each
successive degree of approximation through polynomials d degr ee three, It then takes
another five or six terms to halve the already small error. It islikely that an
goproximetionto yied curvedynamicssatisfactory for asset/liability Smulation
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purposes and for immunization can be obtained by usi ng only the qo (X), 41 (X), & (X)
and g3 (X) componentsdf the fit. A more detailed examination of the root mean square
errors o fit is givenin Table 2 wheret he number of yield curves for which theerror of
fit fallswithin specified bandsis given. Tese ditributionsof Ey, for variousn confirm
that severd terms aftern =3 areneadiad t o improve the fit markedly.

Table 2
Digtributionsof theRoot Mean SquareEmrars d Fit to Historicd Yidd Curves

Order d Approximation

Error

Bana® _0 1 2 3 4 3 6 7 8 9 10
0-1 0 0 0 0 1 b) 6 7 9 12 14
1-2 0 0 0 S 9 9 16 17 18 36 43
2-3 0 0 4 11 22 27 47 St 52 39 34
3-4 0 1 6 25 28 30 23 18 14 7 6
4-5 1 3 8§ 25 20 15 3 3 4 b) 2
5-6 0 3 S 14 11 - 8 2 3 3 1 2
6-7 0 1 12 12 6 5 3 1 0 1 0
7-8 1 2 2 5 2 1 0 0 0 0 0
8-9 1 1. 16 2 0 0 0 0 1 0 0
9-10 0 S 7 1 1 0 0 0 0 ] 0
10- 98 85 41 1 1 1 1 1 0 0 0

Tota 10t 101 101 10! 101 1o0f 101 tOl 1ot 101 101

* The bands are measured in basis points. Each band isinclusived its lower
end point and exclusived its upper end point.

Before proceeding t o thet i e series regressonandysis o the four coefficientsin the
expansion of the yield curves to order three, it is instructive to examine the
decomposition of an actual yield curve into its orthonormal components. An ingpection
of graphs o thefirst four orthonomal polynomids plotted on theinterva [0,1] suggests
thet t he shape characteristics assodiated with the zeroth, first, second, and third order
polynomiasare gppropriately labdlled levd, tilt, warp, and undulation respectively. The
"undulation” te'mis somewhat presumptived thelack of importance of terms of order
four and higher, because the orthonormal polynomids of degree four and higher dso
look like "waves'. Table 3 gives the decomposition o the March 7, 1984 yidld curve
intoitslevd, tilt, warp, and undulation parts. Thefirst four ceefficients i n the polynomid
expangon for thet yidd curve are 11.19, - 0.9339, - 0.09308, and 0.1390, respectively,
to four significant figures.
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Table 3
Four - Component Decomposition Of theMarch 7.1984 Yield Curve

Maturity Bond-Equivalent Yields in Percent
n
0.25 11.19 -1.62 -0.21 0.37 973 9.63 0.10
0.5 11.19 -1.1S -005 -0.06 993 10.00 -0.07
1 11.19 -068 005 -0.16 1040 1028 0.12
2 11.19 -021 0.10 -007 1101 1105 -0.04
3 11.19 006 0.10 0.02 11.38 1135 0.03
4 11.19 026 0.10 0.08 1163 11.65 -0.02
5 11.19 041 008 0.12 11.81 1189 -0.08
7 11.19 063 0.06 0.16 1204 1209 -0.05
10 11.19 088 001 0.15 1223 1220 0.03
20 11.19 134 -0.11 -0.07 1236 12.36 0.00
30 11.19 162 -0.21 -0.37 1223 12.31 -0.08

The contours of the vauesin the levd, tilt, warp, and undulation columns in Table 3
indicates thet the shape labels are gppropriate. The column identified as "Total" isthe
third order gpproximation (four polynomias) of the"Actud" yied curve, and the
"Difference” column displaysfor eech reiurity the error of the fit

3+ TIME SERIES ANALYSI'S OF ORTHONORMAL POLYNOMIAL
COEFFICIENTS

In order to specify and estimate the stochastic dynamics of the yield curve, it is
necessary to perform a regression andysis o the ceefficients in the expanson o the
hisaicd timeseries of yidd curvesinterns o arthonormal pol ynomial s. Eachof the
101 yidd curvesinthehdaic universewasfitted up to and including the third order
pd ynomd . Thisresulted in avector ad four fitting ceefficients for each yidd curve
and thusatime seriesof 101 fitting vectors ay, t=0,1,...,100. Of the severd formsd
regressionatempted, the one with thegrestest explanatory power was an autoregressive
processaf order two, with the vector a; depending on thevector ; _ 1 at lag oneand on
thevector a; _ 2 & lag two. A gredter degreedf stationarity in the varianced the process
was achieved by replacing theleve ceefficient (thezeroth dement of the vector a) by its
naturd logarithm. Thetrarsf anad vectorsare denoted by d. Includingacondant term
k intheregressionsleadstot he following modd of the stochasticdynamicsaf t he yield
curve:

a, =k + R(1) Qg ¢ R(2) ', + €
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The matrices RD and R®) are autoregression parametersfor lags one and two,
repectively, and the errorsor residuds of the regression are denoted by t he random
VeCtorse;.

Stendard confidence tests bassd on Student's t Satistics and F Satistics were usad to

termine Whichdementsd the congtant vector k and which dementsof the ratri os
R(l) and R aesgnificantat he 5%level. Table 4 listst he pragte's retained at a
nonzero levd, the sandard errors d theestimates, and the assodaed t statistics The

hypat hesi s thet a given pararmeter isequal to zero can beaccept ed at a5%osignificance
levd if t he absolutevaued itsassodiated t tatigticislessthan 1.985.

Table4
T i eSaiesAndygsdf the Yidd Curve Ftting Ceefficients

Regresson Parameter Standard o
Parameter _Edimate = _Error t3atigic

ko 0.1000 0.0490 2,041
K, -0.1044 0.0365 -2.859
Ky 0.3046 0.1015 3.001
k3 -0.0082 0.0088 -0.938
toot! 1.0836 0.0957 11.105
) 0.9907 0.1033 9.503
£i5lt) -0.9182 0.3388 -2710
£opll) -0.1536 0.0482 -3.189
£95l1) 0.7788 0.1034 7.529
£yt -0.0449 00170 -2.639
£a5) 04667 .  0.0965 4.837
roo'? -0.1309 0.0966 -1.355
) -0.2260 0.0988 -2.289
l‘22(2) -0.1577 0.0995 -1.584

The t testsin Table 4 suggest thet the parametersfor t he autoregressive tem & lag two
are vary wesk, sincein three o t he four cases the Satistical test cannot be accepted at
the 5% levd. In each of those Stuations, however, the resduds d thefit exhibited
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insignificant serid correlation at severd lagsonly if the lag-two parameters were
retained at anonzerovauein theregression. The me dementin thecongtant vector t hat
falled the t test at the 5% level was retained at a nonzero value for reasons of
"symmetry" - namdly, because all other condantsare present in the modd at nonzero
values The values of R2 for the autoregressionsof the log - levd, tilt, warp, and
undulation ceefficients ar € 0.952, 0.846, 0.715, and 0.721, respectively.

Thesampleestimatesdf t he standarddeviations of theresiduelse; are (0.0467, 0.1464,

0.0726, 0.0358). The neas o the residuds are equd to zero due tothe indusion of
nonzero constant terms in the regression analysis. The sample estimate of the
cont enpor aneous correlationmatrix d the resdudsiis given in Table 5. Chi - square
testsof goodness of fit were perfarmed ont he distributionof the resduelsto determine
whether they could be considered to be normally distributed. For the residuas
associated with the regrsssions of the time seriesof the log -1 evel and tilt coeffidients,
the chi - square tests of the hypotheses o normdity could not be rejected a the 5%
level, but the tests of normality for the warp and undulation resduas were easly
rgected & the5%levd. Thefailured the tests was directly tracegbletot he fat tails of

thedidributions.

Table 5
Sample Edimated the Contemporaneous Correlation Matrix of the Resduals
€0 €1 €2 €3
) 1 0.156 -0.282 -0.022
€1 0.156 1 0.386 -0.227
e -0.282 0.386 1 0426
e3 " -0.022 -0.227 0426 1

Kon [4] has found that adiscrete mixtureof normd distributions can explain the
obsarved kurtosis in the disribution d daily rates of return f a certa n common stocks
and sock indexes. Accordingly, a separate mixture of two normal distributions, both
with zero meen, wasfit toeech seriesdf residudsby constrainingt he sandard deviation
of the mixture to equa t he sampleestimate of theresidud standard deviation, and then
choosing the i g probability and the ratio of the standard deviations of the two
normd dendtiesto minimizethe chi-gquarestaigticin the goodness- o - fit tet d the
asumed probability density function of theresduds

Ater accounting for thetwo fewer degressd freedomint he testsof the mixtured two
normalsthan inthe tests of asingle norma density, it wasfound thet the tilt, warp, and
undulation resduds are fit to a very high degree d confidence by amixtured two
normals, but thet the log - level residuds are dlill better fit by asinglenor mal density.

The fitted vauesd the mixing probahilities, expressed as percentages, are 74%, 82%,

and 90%for thetilt, warp, and undulation residuals, respectively. These percentagesare
the weights for the normal dengty having the smdler standard devietion, and their
complements - 26%, 18%, and 10%. respectively - are the weightsfor the norma
dengty havingt he larger sandard deviation. The fitted valuesof theratios of thelarger
Sandard deviation to the smdler sandard deviation are 2.50, 3.30, and 3.75 for thetilt,
warp, and undulation resduds, respectively.



A STOCHASTIC YIELD CURVE MODEL ROR ASSET / LIABILITY SIMULATIONS 75

In order to check for stationarity or lack o it in the modd estimation, the historicd

sampledf 101 yidd curves was sparated into two data sets - the first 50 yield curves

andthe last 51 yidd curves. Induding only the regression parameters that emerged with

nonzero values from t he anadysisof the entiresample of 101 yield curves, regressons
were performed for each of the subsets of the full data sample. The regression.
parameters and residud standard deviation for the tine series of log - level ceefficients

showed a high degree of stability, but the etimates of most of the other regression
parameters and residud standard deviaions, and of the contemporaneous correlation
matrix of the resduds differed noticesbly bet ween t he two datasubsets. I1n all Cases,

however, the parameter estimatesfrom hot h datasubsetslay withint he 95%confidence

intervals of thecorresponding parameter estimatesbasadon theful datasample

4 - ANALYS SAND TEST OF THESTOCHASTICMODEL

Ingtability is adifficulty often encountered When stochedtic Smulaions are performed
usng a yiedd curve modd developed from a statistica andysis of historical interest
rates. For example, alognormal modd of interest rate movements will produce
"runaway" interest ratesin ardatively short peri od of time, say 10to 20 years, unlessan
arbitrary ceiling isimposed, together with arule that Sates how the celling absorbs or
reflectsinterest rates that dtrike it. Difficulties with respect to the shape o the yidd
curve - for example, yied curves becoming too positively or negetively doped - dso
seem to arise with disturbingly high frequency in empirical modes unless arbitrary
condraintsarei nposed.

It has been recognized by meny researchers thet a property known as"'mean reverson’”
can curethe types o problemsdescribed above In quditative terms, meen reversion
can be thought of as arestoring force that causes a varigble which wanders avay from
itslong - run meenvaueto return to thet meaen vaue. Thefarther that thevariablestrays
from the meen vaue, the stronger becomes the restoring face. The theoretica one -
factor modd of the term Sructuredf interest rates pr oposed by Cox, Ingersoll, and Ross
[5] includes two parameters that characterize the mean reversion property : one
specifying the location of the meen and the other establishing the strength o the
reverson. Two questions neturdly arise with respect to the specification and estimation
of the yidd curve modd described in Section 3. Frg, is there Statistically significant
evidence of meen reverson in the data ? Second, if there is, does it diminate the
difficulties described above ? The first quedtion is answered best by examining the
theoretica propertiesof Equation [1], whilet he sscond is addressed best by performing
asmulationtest d themodd.

Meen reversion will occur if the expected vaued Equation () hes a Sablefixed point A
fixed point (nemely, ay = a'y.1 = a'y.9) will occur if thematrix | - RU) . R) isinvertible. In -
thet case the fixed point, in the expected value sense, will bea’ * = (1- RO . R@)y 1
Necessary and sufficient conditionsfor the fixed point to be stable are derived in
Appendix 2 Thefixed point ccefficients f a the regression model esimated in Section 3
ae ag*=2114,a"y =-0.7070,2'» =- 005314, and a'3” = 0.06749, corresponding to
agtablefixed - pairt yiedcurve & alevd of 8.28% with positivedope and aspread of
209 basispaints betweent he 30 - year yidd and thet hree - monthyield.
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Inthe case of the naturd logarithm of the level ceefficient, it is easy to derive the
necessary and sufficient conditions for stability from the generd result stated in
Appendix 2 because the regression equation for the naturd logarithm of the level
ceefficient dees Mt involve any of the other three ceefficients. Three conditions must be
met simultaneously for stability t o occur : rggf1) + rpg(® < 1, 19g@ - 1ep{1) <1 and
100 > - From Table 4, it can be seen thet the three conditions are satisfied by the
regression St | Mt €S of t he parameters. The conditionthat is closestt o being violatedis
1001 * 190(® < 1. In order to study further the issueof whether the historical yield
curve datasupportst he existence & wesk reversionto the mean level of interestrates,

several additiondl regressions were perforned in which the value of ro{1) wes fixed
and the estimate of roo(z) vés determined. The value of roo(l) was varied in
incrementscf 0.01 across t he interval [0.80, 1.25], and in all cases, the valuedf rpg(D) +
100) varied between 094 and 0.96, strongly confirming thet the data supports the
existenced weak reversontothe meanleve o interest rates

The importance of mean reversion had a strong bearing on the manner in which the
model specification and estimation were carried out. A casud inspection of the
autocorrelalion function for the time series of the naturd logarithms of the level
ceefficients suggested thet differencing the tima series would be necessary to achieve
stationarity. Hr<t - order differences are often taken in an autoregression andysisof tira
seriesof interest rate data, but such an approach forgoes the possibility of mean
reversion. Over the shortrun, the dynamicsd interest rates are rather insensitivet o the
presence or absence of week mean reverson, but over the long run, interest rate
movements will be stable only if mean reversion is present, even if very weskly.
Accordingly, greet care ves exercised in order nat to difference any of the time series
"prematurely" - in actudity, nonedf the seriesneeded to bedifferenced at all !

A smulaion tet usng the lest two yidd curves in the historical sample o 101 yidd
curves &s the initid conditions was conducted in order to examine the stability of the
mode over avery long period. Yidd curves at four - wek intervals for 100 years
(1,300 yidd curves) were generated using the regresson modd parameters, sandard
deviations, and contemporaneous correlation matrix of resduds that were reported in
Section 3 . Each yidd curve wes transformed into its corresponding term structure -
namdy, oot rates of interest - and then those spot rates were trandformedinto forward
rates of interest in order to verify thet all spot and forward rates associated with the
1300 smulated yield curves were postive.

The leve o interest rates in the 100 - year Smulation ranged from 4.24%to 13.41%.
The minimum and maximum spr eads betweenthe 30 - year yield and thethree- month
yidd were- 252% (inverted yidd curve) and 4.80% (normd yield curve). The average
spread was 1.86%. Only 41 o the 1,300 Smulated yidd curves wereinverted. These
statidtics for the sSmulated ssmple d yield curves show that the reversion to the meen
leve of interest ratesis somewhat t 00 strong becausethe smulated ranged variationis
smdler than has actudly been observed in the US Treasury markets Similarly, the
frequency of inverted yidd curvesismuch t 0o small, and the ranged Soreads between
30- year yiddsand three - month yiddsis modestly t 0o large, relativeto actud interest
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rate history in the United States. Such deficienciesin the estimated stochastic model
should not be surprising for tworeasons : first, t he mode! is besad on ashort (400 veeks)
and partly uncharacteristic (only eight inverted yieldcur ves) historyd yield curves, and
second, the standard errorsof the regression parameter estimatesarenot small.

The model parameters, standard deviations, and correlationmatrix d the residualscan
be adjusted appropriately to produce simulations with characteristicsguited to the
purpose of a particular application. For example, the sum, rgot!) + 1og(2 can be set
cdloser to unity in order toi ncrease therangedf interest rate variation. Also, t he standard
deviation of the e residualscan beincreased, and other parametersadjusted to incresse
thed ; * fixed point, inorder toincressethe probability of inverted yield curves.

5.SUMMARY AND CONCLUSIONS

The method of orthonormal polynomiaswas used to deconpose U.S Treasury yidd
curves into their constituent parts. The method has the advantages of avoiding
arbitrarinessin identifying yield curve shgpe characteristics and in being abletofit very
closdly any yield curve, no matter how perversdy shaped, provided a sufficient number
of fitting coefficients is used. In practice, very few components and associated
ceefficients are needed to fit yield curves accurately enough for purposes of
asset/liability management. Utilizing only four components, an average root mean
square error o fit of less than five basis points was achieved over the data sample
dudied. The four components, labelled by reference to their shape characteridtics, are :
level, tilt, warp, and undulation. The results of the yield curve anadlysis suggest that
using four risk indexesor "duration" messures correponding to thefour primary shape
attributes should be sufficient to obtain nearly full asset/liability immunization against
changesin theyield curve.

A timeseriesanalysisof t he first four fitting coefficientswas conducted, and it led to the
specification and estimation of a second - order vector autoregressivemode of yidd
curve dynamics. Thetwomosts  cant findings of the regresson andysisare : (1)
theexistence of mean reversion in thefitting coefficients, with the result thet yield curves
tend to revert over the long run to a norma (positively - soped) form centered on a
level estimated to be near 8.3%, and (2) the existence of fat-tailed distributions of the
resduasof fit tothe tilt, warp, and undulation ceefficients that are explainable by a
mixture of two normd distributions. Unfortunately, the valuesof many o theregression
parametersand resdud covariances do not appear to be stableover time.

The main purpose of this paper has been to expose a methodology for constructing a
stochastic yield curve model appropriate for asset/liability Smulations of financial
institutions and financial security schemes. It is hoped that others will apply the
methodology to develop yidd curve modds for other countries. A promising area of
further research isimmunizationstudiesof both fixed and interest-contingent assatsand
liabilitiesin order to test the hypothesisthet indexes associated with theleve, tilt, warp,
and undulation shape characteristics of yield curvesindeed capture most of the risk of
changesin interest rates.
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APPENDIX 1
A good referencefor thematerial in thisgopendix isMorse and Feshbach [6].

The orthonormal polynomials qy,(x) introduced M Section 2 are given by gy, (x) = (2n t) 12
Qq (X) for n=0,1,..., where the Qq(x) are related to the well - known Legendre
polynomias Py(x) through the equation Qp(x) = Pp(1-2x). Assuming a unit weight
function, t he Legendre polynomialsaremumally or t hogonal onthe interva [- 1, 1], and the
palynomiadsQ, (x) aremutudlly orthogonal on't he interva [0,1], as expressed by

1
SQ,,(!)Q.,(x)dx .0, fomen.

The normdizationintegrasfor theQp,(x) are
1
[ 1o - @)
0

The Q,(x) take on thefollowing valuesat the boundaries: Qp(0) = 1 and Qu(l) = (-H™.
Thepolynomials Qp(x) satisfy thefollowing recursonreation:

(0+1) Qpy i (x) + N Quoy(x) = (2n+1) (1-21) Qu(x).
Tre first eight orthogonal polynominals Q;, (x) are:

Qu(x) =1

Ql(!) =1-2x

Qy(x) = 1-61+6x2

Qs(x) = 1-121+30x2-20x3

Q4(x) = 1-201+9012-14013+7014

Qs(x) = 1-30x+210x2-56013+630x4-25213

Qelx) = 1-421+420x2-1680x3+315014-2772x5+92416

Q4(x) = 1-563+756x2-4200x3+11550x4-1663215+12012x6-343217.

APPENDIX 2

The conditionfor thefixed point of thesecond - order vector difference equation
..l =k + R(I' ..[-l + R(z) t'l-g
(A-1)
to be asymptaticaly stable is derived by first expressing the differenceequetion in state
form asafirg-order vector difference equation. TH S i saccomplished by definingb; as a
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four dementsby a't.;. Smilaly, defmek' asacolumn vector of length eght, with the
t@ four dementsgiven by k and the bottom four elementsequa to zera. Findly, define
an eight-by-eight matrix R, partitioned into four = by - four matrices asfollows: R is
intheupper left. R@) isin the upper right, | (theidentity matrix) isin thelower left, and
0 (the zero matrix) isin the lower right. Equation (A- 1) can now be expressed in state,
formas:
b, = k' + Rb,,.
(A-2)

Starting with an arbitrary initid vector b, Equation (A-2) isiteratedntimesto give

n-1

by = () Ra )k s+ Raby.
m-0 (A-3)

The limit of Equation (A-3) as n approaches infinity will be finite, and will be
independent of the initial vectat by, if and only if the limit of RN & n gpproaches
infinity is the zero matrix. The derivation is continued under the assumptionthat all the
eigenvauesd R aredigtinct. Then, if T is the modal matrix having columns equa to
the eigenvectors of R, it followsthat T isnonsingular and that TTR T = D where D is
thediagond matrix with the egenvaduesd R dong its principd di . BecaueR"
= T D T-1, anecessary and sufficient conditionfor the limit of R™ as n approaches
infinity t0 equa thezero matrix isthat all theeigenvauesdf R lieinside the unit circle
in the complex plane ; namdly, thet all the eigenvauesof R have modulus less then
unity. In that Stution, the limit o Equation (A-3) is the asymptoatically stable fixed
pc(lzr)rt Ilo* = (1- R)1 Kk, o, intheequivaent form displayed in Section 4, a* = (I-RW-
R@)-1k,

If not al the eigenvaduesd R areditinct, one proceeds by determining the nonsingular
matrix Ssuch that S*1 R S = J, where J isin Jordan Canonicad Form. The proof
continuesin a manner Smilar to the case when R is diagonalizable. The result is the
same: thefixed point isasymptaticaly stableif and only if d1 theegenvaduesd R lie
inddethe unit circlein the complex plane.
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