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94 APPROCHE STOCHASTIQUE DES ~ T H o D E S  DE CON!3TlTUTION 
DE CAISSE DE RETRAlTE 

RESUME 

On &t un d l e  rnaMrnatique qui facilite la cornparaison des diffCrentes rn6thodes 
de mtitution & cake & retraite. On suppose d'abord que les taux de remkment m t  
albatoires, puis qu'ils sont reprCsends par un rnod2le autorCgressif de l'amplitude 
correspondante de l'ineet. Des expressions de la variabilid des contributions et du 
niveau du fonds peuvent en &re M v h .  Ceci conduit une discussion de la mCthode 
"optimale" de umstituticm du fonds. Une description plus &taillk de la d thode est 
donnee dam la thtse de doctorat de Dufresne (1986) et dam les recents articles 
dlHaberman et Dufresne (1987) et de Dufresne (1988, 1989). Les rCsultats 
mathhatiques de la troisitrne partie sont p r h t t %  et discuds plus lcmguement dam un 
r k n t  document de travail (Haberman. 1989). 
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PROFESSOR S. HABERMAN (CITY UNIVERSITY) 

ABSTRACT 

A mathematical model is described which facilitates the comparison of different pension 
funding methods. Rates of return are assumed firstly to be random and then to be 
represented by an autoregressive model for the corresponding force of interest. 
Expressions for the variability of contributions and fund levels can be derived This leads 
to a discussion of the "optimal" method of funding. A fuller description of the approach 
is given in Dufresne's doctoral thesis (1986) and in recent papers by Haberman and 
Dufresne (1987) and Dufresne (1988, 1989). The mathematical results of section 3 are 
~esented and discussed at greater length in a recent working paper (Haberman (1989)). 
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1. TYPES OF FUNDING METHOD 

Broadly, there are two types of h d i n g  methods. 

With individual funding methods (e.g. Projected Unit Credit and Enay Age Normal), the 
normal c a t  (NC) and the actuarial liability (AL) are calculated separately for each 
member and then summed to give the totals for the population under consideration. 

With aggregate funding methods (e.g. Aggregate and Attained Age Normal), there is no 
hypothecation of normal cost or actuarial liability to individuals ; instead the group is 
considered as an entity, ab initio. 

kt C (t) and F (t) be the overall contribution and Fund level at time t f a  a particular 
pension scheme. 

For an individual funding method, 

where NC (x,t) is the normal cost for a member aged x at time t, C denotes summation 
over the membership subdivided by attained age and ADJ (t) is an adjustment to the 
contribution rate at time t, representing the liquidatim of the unfunded liability at time t, 
UL (t). UL (t) is defined by 

where AL (x,t) is the actuarial liability for a member aged x at time t. 

For an aggregate method, the overall contribution is directly related to the difference 
between the Fesent value of future benefits and the fund. Specifically, 

where S (t) is the payroll at time t, PVB (t) is the present value of fum benefits (of all 
members includmg pensioners) at time t and PVS (t) is the present value of future 
salaries (of active members) at time t. 

This paper considers the behaviour of C (t) and F (t) in the presence of random 
investment returns. 

At any time t, a valuation is carried out to estimate C (t) and F (t) based only on the 
scheme membership at time t. However, as t changes, we do allow for new entrants to 
the membership so that the population remains stationary - see assumptions below. 
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In the subsequent mathematical discussion, we make the following assumptions. 
1. All actuarial assumptions are consistently borne out by experience, except for 
investment returns. 

2. The population is stationary from h e  start. 

3. There is no inflation on salaries, and no promotional salary scale. For simplicity, each 
active member's annual salary is set at 1 unit. 

4. The interest rate assumption for valuation purposes is fixed. 

5. The real interest rate earned during the period, ( t, t+l ) is i ( t+l ). The comespding 
force of interest is assumed here to be constant over the interval ( t, t+l ) and is written 
as6(t+l).Thusl+i(t+l)=exp(6(t+l)). 

6. E [l + i (t) ] = E [ e6 (t) ] = 1 + i, where i is the valuation rate of interest. This means 
that the valuation rate is correct "on average". This assumption is not essential 
mathematically but it is in agreement with classical ideas on pension fund valuation. 
Further, we define a2 = Var i (t). 

Assumptions 1.. 2., 3., and 4. imply that the following parameters are constant with 
respect to time t : 

NC the total normal contribution 
AL the total actuarial liability 
B the overall benefit outgo (per unit of time). 

Further, assumptions 1.. 2.. and 6. imply that 

' A L  = ( 1  + i)(AL + NC - B). ( 3 )  

?he paper adopts a discrete time approach It is possible to approach this problem using 
a continuous time formulation ; however, the mathematics requires familiarity with 
stochastic differential equations and the derails have been omitted here - the interested 
reader is referred to Dufresne (1986). 

Several results are quoted here without proof. Full proofs are available in the referem 
by Dufresne and Haberman given at the end of this paper. 

2. RANDOM INDEPENDENT, IDENTICALLY DISTRIBUTED RATES OF 
RETURN : BASIC RESULTS 

It is assumed in this section that the earned rates of retum i (t) for t > 1 are independent, 
identically distributed random variables with i(t)>-1 with probability 1. 

2.1. Moments of C(t) and F(t) : individual funding methods 
mere are two general ways in which the ADJ (t) term may be computed. 

Under the "amortization of losses" method, we consider the loss in each year between 
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valuation dates, for example ( t-1,t ). ADJ (t) is then the total of the intervaluation losses 
arising during the last M years (i.e. between t-M and t) divided by the present value of 
an amity for a term of M years (i.e. sped over an M year period). 

?he properties of this method are not pursued here and the interested reader is referred to 
Dufresne (1986,1989) for a detailed discussion. 

Under the "spead" method, we defm ADJ(t) = i.e. the adjustment to the normal 

cost is equal to the overall unfunded liability divided by the present value of an annuity 
for a term of M years. Then. 

C ( t )  = NC + (AL - ~ ( t ) ) .  
a m 

The paper concentrates on the "spread" method. 

Then 

whereq= ( 1  + i ) ( 1  - l / a a )  and r = ( 1  + i )  (NC - B + AL/ ;~@.  

Then, it can be proved that 

'Ihis is a recurrence relation which can be solved to give 

E F (t) = q t ~ ( ~ )  + r ( 1  - q t ) / ( l  - q )  for t 0.  

I fM> 1 thenitcanbeshownrhatO<q< 1 andso 

Lim E F(t) = r/(1-q). 
t 

Using AL = ( l+i ) ( AL + NC - B ), it can be shown that 

r/(l -q) = AL. 

Equation (4) implies that E C(t) = NC + (AL - EF(t)) 1 and so 

Lim E C(t) = NC. 
t 
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A cansequeslce of equatim (6) - (8) is that, if F (0) = AL, then 

E F(t) = AL and E C(t) = NC for t > 0. 

Concerning second moments, it can be proved that 

.Var F(t+l) = a Var F(t) + b (E F (t+1)12 ( 9 )  
where a = q2 (1 + oq 1 +i)-2) and b = o2 (1 +ir2. 

Equation (9) is also a recurrence relation which may be solved in successive steps to 
give 

Var F(0) = 0 
var ~ ( 1 )  = b (E ~ ( 1 1 1 2  
Var F(2) = a b(E F (1) l 2  + b ( E  ~ ( 2 ) ) ~  and so on. 

t 
Generally,Varf(t)= b at-k (E ~ ( k )  l 2  for t > 1. (10) 

k=l 

It can then be show that 

Lim Var F(t) = ~ A L ~ / ( I  -a) i f a > 1  (11) 
t OD if a b l  

It is also possible to work out covariances. Thus, it can be proved that 

and 

Thus, if a < 1, the correlation coefficients satisfy 

~ i m  Cor(F(t+u), F(t)) = Lim Cor(C(t+u), C(t)) 
t 

= -Lim Cor(F(t+u), C(t)) 
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2.2. Moments of C (t) and F (t) : the aggregate funding method 

As noted in equation (2). the Aggregate Funding Method is such that 

with 
S = Pensionable earnings ; 
PVB = Present value of future benefits (including pensioners) ; 
PVS = Present value of future earnings. 

S, PVB and PVS are aggregate values. relating to the whole population of current 
members, and here are constants (from assumptions 1 ., 2., 3. and 4.). 

Here 

As before E F ( t+l ) = q' E F (t) + r'. 
It can also be shown that 0 < q' c 1. 

Clearly, E C (t) = ( PVB - E F (t) ) . S / PVS. 

Again 

Vu F(t+l ) = a' Var F(t) + b(E ~ ( t + l ) ] ~  

wiih a' = (& (1 + a*(~+i)-*) 

Eq (10) still holds, and the earlier result becomes 

b[Lim E ~(t)]~/(1 - a') if a ' <  1 
t 

Lim Var F(t) = 
t 01 if a') 1. 
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Clearly, Var C(t) = Var F(t)) . s2 / PVS 2. Covariances and correlation coeficients are 
&rived in the same fashion, substituting q' for q. 

Remarks 

(a) Trowbridge (1952) has shown that in some cases the Aggregate and Entry Age 
Normal methods are asymptotically equivalent. The conditions he supposed are 
assumptions 1. - 6. inclusive plus 

7. There is only one entry age into the scheme ; and 

8. o2 = Var i(t) = 0. 

Clearly, if assumption 7. is maintained but assumption 8. is dropped (ia. o2 > 0) then 
'hwbridge's proof still applies, but now to E F (t) and E C (t), yielding 

(b) It should be noted that, in this simple framework, the Aggregate method is really a 
particular case of the Entry Age Normal method (assuming assumption 7. is still in 
force) ; equation (13) implies 

where N is defined such that 'im = PVS/S. Equation (14) says that the Aggregate and 
Entry Age Normal methods are identical, if the latter is applied together with an N-year 
spread of ( AL - F (t) ), This fact was previously noted by CJ. Nesbiu in his contribution 
to the discussion of Trowbridge (1%3). 

(c) If M = 1, then equation (15) does not apply ; instead 

F(t+l) = (1 + i(t+l ))[F(t) + NC + (AL - F(t)) - Bl 
= [(I + i(t+l))/(l + i)] (1 + i)(AL + NC - B) 
= [(I + i(t+l))/(l + i)l AL. 

'Ihus, for each t > 1, 

EF (t) = AL 
EC (t) = NC 
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and 

23. Numerical example 

A numerical example is now introducsd in order to illustrate how C (t) and F (1) vary 
about their mean values. 

The assumptions are : 

Population : English Life Table no 13 (Males) stationary 
Enuy age : 30 (only) 
Retirement age : 65 
No salary scale, or inflation on salaries 
Benefits : Level life annuity (2/3 of salary) 
Funding methods : 1. Aggregate 

2. Entry Age Normal, spreading AL - F (t) over M years. 
Valuation interest rate : .O1 

Given these assumptions, it can be shown that the actuarial liability and normal cost 
have the following numerical values : 

€ANAL = 45 1 % of payroll 

EANNc = 14.5 % of payroll. 

Actual rates of return on assets : (i(~))~, 11, identically distributed random variables, with 
Ei(t) = .O1 and (Var i(t))# = .05 (=a). 

nble 1 contains the limiting "relative standard deviations" 

as t- .  In every case 

L i m  E F(t) = E A N ~ ~  and Lirn E C ( t )  = E A N ~ ~  
t t 

(including the Aggregate method - see Remark (b) of Section 2.2. For this particular 
population and interest rate, the value of N satisfying as E pvsls is about 17). 

Remath 
(a) Of course, Var F (t) and Var C (t) can be computed for t < - , using the formulae of 
Section 2.1. 

(b) Leaving aside the case M = 80 (of little practical importance), there appears to be a 
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trade-off between Var F and Var C, e.g. increasing M reduces Var C, but increw Var F. 
'Ihis phenomenon is studied in greater detail in the next section 

(c) Both st. dev. F (m) and st. dev. C (m) are nearly linear in o when a is "small" (see 
equation 9). F a  instance, if a= .lo, then for M = 24) we obtain 

and 

or roughly double the cu-respondmg figures in nble 1. If a = .025, then for M = 20 the 
ratios are 8.3 % and 14.2 % a roughly half the ms-g figures in nble 1. 

2.4. The trade-off between Var F and Var C 
As a2 + Oand M + -, it can be shown that the following results hold : 

( a )  i f  i 3 0, 

Var F(-)- (J 
2 3 .  A L ~  , 

( I  + i ) 2  2 

As approximatim, these results are quite good ; for example, if a = .05, i = .O1 and M = 
20, equation (15) yields 

while the exact value (from Table 1) is 16.8 8. 

When i = 0, the result becomes 

which can be interpreted as follows : st. dev. F (resp. st. dev. C) is approximately 
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proportional (rap. inversely proportional) to Mn, at least when i is close to 0. Hence, in 
nble 1, moving from M = 5 to M = 20 approximately doubles st. &v. F (=) and halves 
st. dev. C (-). 

Figure 1 is a plot of st. dev. F (-) against st. dev. C (-), comes-g to 'hble 1. It 
shows that the tradeaff alluded to above does take place but only up to M* = 60 ; 
however, the situation is altogether different for larger M's : if we intend to minimize 
variances, then any M > M* = 60 is to be rejected for clearly some other M I M* = 60 
reduces both Var F and Var C. For this reason, the range 1 I M I M* may be described 
as an "optimal region". 

The particular M* = 60 in Figure 1 has little practical si@icance because defciencies 
or surpluses are not in practice spread over periods of 50 years or more. However, 
comparing Figures 1 and 2 shows how sensitive st. dev. F and st. dev. C can be to 
varying the parameter i = Ei (t). If a is still .05 but i is now .lo, only values of M 
smaller than 8 would be considered. But this example is again arwcial, for it amaunts to 
assuming red rates of return to be 10 % on average. 

The table below gives numerical values of M* (rounded), as a function of i and a It 
should be bome in mind that i is an average real rate of return, when interpreting these 
fiw. These results may have some practical importance if M* turns out to be small - 
for example, if i = 0.03 and a = 0.20, the optimal region is 1 I M I 13. At the time of 
writing, a valuation (real) rate of interest of 3 % would be common in the United 
Kingdm, as would values of M of between 10 and 20 years : both parameter values are 
consistent with the "optimal" values of M* shown below. 

Explicit formulae for M* can be obtained : the details are not presented here but the 
interested reader is referred to Dufresne (1986) or Haberman and Dufresne (1987). 

25. Extensions 
It is possible to investigate the properties of the fmt two moments of F (t) and C (t) 
when some of the strict assumptions laid down in Section 1 are relaxed. Thus, Dufresne 

: (1986) and Habennan and Dufmne (1987) consider weakening these asswnptim so 
that : 

E i (t) = i + i' h e  valuation interest rate ; 
the population is only asymptotically stationary ; and 
salaries grow with inflation (constant or not, but not randam). 
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In section 3, we move away from the assumption that earned rates of interest are 
independent and identically distributed random variables. 

3. AUTOREGRESSIVE RATES OF RETURN : BASIC RESULTS 

It is apparent from the discussion in Section 2 that the equations for the moments of F (t) 
and C (I) are of the same type for individual and aggregate hnding methods. This 
section, therefore, considers only one type, viz individual funding methods. 

In order to investigate the effects of autoregressive models for the earned real rate of 
return, the paper follows the suggestion of Panjer and Bellhouse (1980) and considers 
the corresponding force of interest and assume that it is constant over the interval of time 
( t, t+l ) : the notation used will be (t+l ). 

Now, it is assumed that the (earned real) force of interest is then given by the following 
autoregressive process in discrete time of order 1 ( AR (1) ) : 

where c (I) for t = 1,2 ... are independcnt and identically distributed normal random 
variables each with mean 0 and variance y2. Equation (18) replaces assumption 5. 
inuoduced earlier. This model suggests that interest rate earned in any year depend upon 
interest rates earned in the previous year and some constant level. Box and Jenkins 
(1976) have shown that, under the model represented by equation (18). 

The condition for this process to be stationary is that I cp I < I 

Boyle (1976) investigated the simpler model : 

where cp = 0. Clearly this model bears a close resemb1an;e to that considered in Section 
2. It can be shown that equation (9) leads to similar results to those presented in section 
2 1. for individual funding methods. 

In order to apply the autoregressive model (18) to determine moments of F (t) and C (t), 
it is necessary to abandon the approach of section 2 whereby recurrence relations 
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between, for example, E F ( t+l ) and E F (t) were sought. The presence of a dependence 
on the past in the autoregressive model would make such an approach problematic. 

The approach followed here begins with considering the series generated by the 
recurrence relation (3, which for convenience is rewritten here as 

where Q = 1 - A  =vq, R = (NC - B + &) = vr and v'x ( l + i ) - ' .  
23 iis 

In order to obtain an expression for E F (t) it is necessary to ccmider terms of the form 

~ ( e ~ ( ~ ) - * ( ~ ) )  for  s=0,1 ,  ..., t - 1 .  

Given the distributional assumption for e (t), and that 

An expression for G ( t, s ) can be obtained by standard techniques (Haberman (1989)). 

2 
Thus E [ ~ ~ ( ~ ) - * ( s ) ]  = exp [ ( t - s ) ( Q  + f . 1 2 u 2 ) - v  cp l&-']. ( 23 )  

1 ZQ (1 s cp)= 
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If the subsidiary parameters c = exp ( O + f I +  v2) and 

d =v2q(1 -q) -' , 73 
are introduced, 

- t - s  
.-d(l-cP 1 ,  

'Ihe sccond term is of the form of the present value in conventional life contingencies of 
a temporary annuity based on Gompem's a Makeham's law of mortality. 

In section 2.1., it was noted that 0 < q < 1. 

1 -Q 
= q exp = q i f 9  = 0.  

For convergence as t -> -, we require cQ < 1. And we note that cp< 1. 

It can then be shown that 

If Q=O then c = exp (Q+iv2) = 1 +i and d=0, and 

hence Lim E F(t) 3 r as in equation (7). 
t+- 1 =q 

Then E C(t) = NC + AL - E (F(t)) from equation (4). 
%l 

To obtain an explicit expression for Vat ( F (t) ), it will be necessary to consider E ( F (t) )2, 
which itself will depend on terms of the form 

E(,A(t) -A(s) + A  (t) - A  ( r ) )  

forr,s=O, 1 ,  ..., t-1. 
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Without loss of generality, we consider r > s. 

Given the distributional assurnptim for e (t), Haberman (1989) has shown that, for r >s, 

where, in this case of an AR (1) model, 

For convenience, we can write 

and it has been shown by Haberman (1989) that H (4 r, s ) simplifies to : 

For convenience, we will take F (0) = 0. 
+.I c-4 

~ h ~ ~ ,  ~ ( ~ ( t ) ) 2  = E [ C  c e A ( t ) d ( ~ )  e A ( t ) - A ( r )  Q ~ - ~ - ~  Qt-l-r R2] 
-so 

'Then, it has been shown by Haberman (1989) that 

where d =dcp , c = exp (O+b(l*cp)v 2 ) ,  Q=vq, R=vr a s  before  and 
( 1 - , 1 2  (1-9)  
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We note that cp < 1, by assumption, 

and that Qc = Q exp I @ + t ( l + L  v 2 1  = q exp (Q;-? 
1-9 

For convergence, as t + =, we require Qc < 1 and Q%W < 1. 
- 

Then, Lim Var F(t) = e-3d ~ R ~ Q C ~ W  +e-4d (29) 
t-- ( 1 -Qc ) ( 1 - Q ~ C W )  (1-Q CW) 

Then, formulae for Lim Var C(t) = Var2F(t) may be obtained. 
t-- ("R3 

The next step would be to investigate the existence of an "optimal" M* as in section 2.4. 
(for the case of r a n d a  rates of return). 'Ihis wak is currently in progress and it may be 
possible to report furher results at the AFlR Colloquium. 

4. CONCLUSIONS 

The variability of contributions (C) and fund levels (F) resulting from random (real) 
rates of return has been studied mathematically. The funding methods considered are the 
Aggregate Method and those Individual Methods that prescribe the n o m l  cost to be 
adjusted by the Werence between the actuarial liability and the current fund, divided by 
the present value of an annuity for a tenn of "h4" years. A simple demographic/f~nancial 
model permits the derivation of formulae for the fmt two moments of F and C, when 
earned (real) rates of return from an independent identically distributed sequence of 
random variables. The way these moments &pend on M has then analysed, with the 
help of a numerical example. The approach has been extended to include the case of an 
autoregressive model for the earned (real) rate of return Expressions for the fmt two 
moments of C (t) and F (t) have been obtained and reported and their detailed properties 
are currently under investigation. 
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RELATIVE STANDARD DEVIATIONS OFF (T) AND C (T), AS T - > - 

J I I 1 1 I I 

0 .2 .4 .a LO 1.2 1 (Variance F(o0 ) ) /EF(M ) 



112 STOCHASTIC APPROACH TO PENSION FUNDING METHODS 

RELATIVE STANDARD DEVIATIONS OFF (T) AND C (T), AS T - > m 

[i=.01,0=:.05] 

Funding Method 

E A N M = l  

M = 5  

M=lO 

M=20 

M=40 

M=60 

M=80 

Table 1 

Relative Standard Deviations 

of F() andC ( )  

J I 1 
0 .2 .4 .8 LO L2 i (Variance F(o0)) /EF(oo ) 




