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94 APPROCHE STOCHASTIQUE DES METHODES DE CONSTITUTION
DE CAISSE DE RETRAITE

S. HABERMAN

RESUME

On déerit un modéle mathématique qui facilite |acomparaison des différentes méthodes
de constitution de caisse de retraite. On suppose d'abord queles taux derendement sont
aléatoires, puis qu'ils sont représentés par un modele autorégressif de 'amplitude
correspondante de l'intérét. Des expressons de |a variabilité des contributions et du
niveau du fondspeuvent en &tre dérivées. Ceci conduit A une discussondelaméthode
"optimale” de constitution du fonds. Une description plus détaillée de la méthode est
donnée dans |a these de doctorat de Dufresne (1986) et dans les récents articles
d'Haberman et Dufresne (1987) et de Dufresne (1988, 1989). Les résultats
mathématiques de |a troisiéme partie sont présentés et discutés pluslonguement dans un
récent document de travail (Haberman, 1989).
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PROFESSOR S HABERMAN (CITY UNIVERSITY)

ABSTRACT

A mathematical modd is described which fadilitatesthe comparison d different penson
funding methods. Rates of return are assumed firdtly to be random and then to be
represented by an autoregressive modd for the corresponding force of interest.
Expressonsfor thevariability of contributionsand fund levelscan bederivedThi s leads
to adiscussonof theoptima™ method of funding. A fuller descriptiond the gpproach
is given in Dufrenes doctora thess (1986) and in recent papers by Haberman and
Dufresne (1987) and Dufresne (1988, 1989). The mathematical results of section 3 are
presented and discussed & greeter lengthin arecent working peper (Haberman (1989)).
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1 TYPESOF FUNDING METHOD
Broadly, there are two typesof funding methods.

With individua funding methods(e.g. Projected Unit Credit and Entry Age Normdl), the
norma cost (NC) and the actuarial liability (AL) are calculated separately for each
member and then summed to givethe totalsfor the popul ationunder consderation.

With aggregatef undi ng methods (e.g. Aggregateand Attained Age Normd), thereisno
hypothecation of normal cost or actuarid liability to individuds; instead the group is
considered as an entity, ab initio.

Let C (t) and F (t) be the overal contribution and Furd level at timet f aaparticuar
pensi on scheme.

For an individud fundingmethod,

clt) = ZNC(x,t) + ADJ(t) (1)
X

where NC (x,t) is the normal cost for a member aged x a timet, 2. denotessummation
over the membership subdivided by attained age and ADJ (t) is an adjusment to the
contribution rate at timet, representingt he tiquidation of t he unfunded liability at timet,
UL (). UL (t) isdefined by

UL(t) = z (AL(x,t)) - F(t)
X

where AL (x,t) isthe actuarial liability for amember aged x at timet

For an aggregate method, the overall contribution is directly related to the difference
between't he present valueof future benefitsand thefund. Specificdly,

c(t) =[vam - F(t) ] S(t) (2)
PVS(t)

where S (t) is the payroll at timet, PVB (t) isthe present valueof future benefits (of all
members including pensioners) at time t and PVS (t) is the present value of future
sdaries(of activemembers) at timet.

This paper considers the behaviour of C (t) and F (t) in the presence of random
investment returns.

At any time t, a vauation is carried out to estimate C (t) and F (t) based only on the
scheme membershipa time t. However, as t changes, we do dlow for new entrantsto
the membership 0 that the popul ation remainsstationary - Seeassunpt i ons below.
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In the subsequent mathemeti cdl discussion, we meke thefollowing assumptions.

1. All actuaria assumptions are consistently borme out by experience, except for
investment returns.

2 The population is Sationary from the Sart.

3 Thereisno inflation on salaries, and no promotional sdary scae. For smplicity, each
activemember's annud salaryisset a 1 unit.

4. Theinterest rate assumption for val uation purposesisfixed.

5. Thered interest rate earned during the period, ( t, t+1 ) isi (t+l ). The corresponding
forcedf interetis assumed here to be congant over theinterva (¢, t+l ) and is written
asO(t+1). Thus 1 +i(t+l )=exp(d(t+l)).

6 E[1+i(t)]=E[ed®)=1+i wheeiisthevaudionraed interest. Thismeans
that the valuation rate is correct "on average”. This assumption is not essential
mahemdticaly but it is in agreement with classca ideas on penson fund vauation.
Further, wedefinec? = Var i (t).

Assumptions 1., 2., 3., and 4. imply that the following parameters are condtant with
respect totimet :

NC the totd normal contribution
AL thetotd actuarid liability
B the overdl bendfit outgo (per unit of time).

Further, assumptionst., 2., and 6. imply that
"AL= (1 + i)(AL * NC - B). (3)

The paper adoptsadiscretetime approach It is possibleto goproach this problem usi ng
a continuous time formulation ; however, the mathematics requiresfamiliarity with
stochadtic differentia equations and the derals have been omitted here - the interested
reeder isreferred to Dufresne (1986).

Severd results are quoted here without proof. Full proofs are available in the references
by Dufresne and Haberman given & theend of this paper.

2 RANDOM INDEPENDENT, IDENTICALLY DISTRIBUTED RATES OF
RETURN:BASICRESULTS

Itisasumed in thissection that the eamed ratesof return i (t) for t > 1 areindependent,
identically distributed random varigbleswith i(t)>-1 with probability 1.

2.1. Momentsof C(t) and F(t) : individual funding methods
There aretwogenerd waysin whichthe ADJ(t) term may be compuied.
Under the"amortization o losses" method, we consider the l0ss in each year between
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vauation dates, for example (t-1,t). ADJ (t)isthen thetotd of the intervaluation |osses
aigng during thelast M years (i.e. between tM and t) divided by the present value of
anamity for atamad M years(i.e. spead over an Myeer pari o).

The propertiesd this method arenot pursued here and t he interested reeder isreferred to
Dufresne (1986,1989) for adetailed discusson.

Under the“spead” method, wedefine ADJ(t) = i.e. the adjustment to the normal
cogtisequa to the overadl unfunded liability divided by the present vaue of an annuity
foratemd M years Then.

C(t) = NC *+ !AL - F(t)). (4)
m

The paper concentratesont he ' spread” nat hod
Then

F(tel) = (1 + 1(t+1))(F(t) + C(t) - B) .
(1 + i(t+1{)§7(t) + NC + (AL - F(t))/df - Bl
)

(1 + i(ts (1 + 1)1(gF(t) + ) (5)

whereq= (1 + 1)(1 - 1/8g) and r = (1 + 1) (NC - B + AL/ag).
Then, it can be proved thet

E F(t+1) = ¢ E F(t) + r . (6)
This isarecurrence relationwhich can besolvedto give

EF (t) = qtF(0) + 2 (1 - q¥)/(1 - @) for t » O.
If M > 1 then it can be shown that 0 < q < 1 and so

Lim E F(t) = r/(1-q).
t

Usng AL=(I+i) (AL*tNC- B), it can beshown that
r/(1-gq) = AL. (7)

Equation (4) impliesthat EC()=NC+ (AL - EF@®)/ adso

Lim E C(t) = NC (8)
t
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A consequence of equations (6) - (8) isthat, if F (0) = AL, then
E F(t) = AL and E c(t) = NC for t » O
(ncer ni ng second moments it can beproved that
‘Var F(t+1) = a Var F(t) + b (E F (t+1))2 (9)
wherea=a2 (1 +o2(1+i)y2) and b=o02 (1+iy2.
Equation (9) is also a recurrence relation which may be solved in successive seps to
give

Var F(0)

=0
var F(1) = b (E F(1))2
Var F(2) = a b(EF (1))2 + b(E F(2))2  and so on.
t
Generally, Varf))= b ) at-k (E F(k))2 for t > 1 (10)
k=l
[tcan then be show that
Lim Var F(t) = baL2/(1- a) if a > 1 (11)
t © if a » 1
Also, VarC(t)= Var F(t)/ (&g 2.
It isalso possbletowork out covariances. Thus it can beproved thet
Cov(F(t+u), F(t)) = gq¥var F(t), u > 0.

Similarly, Cov(C(t+u), C(t)) = g¥var C(t)
and
Cov(C(t+u), F(t)) = —unar(F(t)/Em.

Thus, if a< 1, thecorrdationcoefficientssatisfy

Lim Cor(F(t+u), F(t)) = Lim Cor(C(t+u), C(t))
t
-Lim Cor(F(t+u), C(t))

t
g Ml
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22. Momentsaf C (t) and F (t) : theaggr egatefundingmethod
Asnoted in equation (2), the Aggregate Funding Method is such that

C@®)=(PVB-F()).S/PVS

with

S= Pendonableearnings;

PVB = Present valued future benefits(including pensioners);
PVS= Present valued futureearnings.

S PVB and PVS are aggregate values. relating to the whole population of current
members, and hereare condants(from assumptionsl., 2, 3. and4.).

Here

F(t+)=(1+i(#1))(FO+C@®-B)
=(1+i(t+1))(F@®(1-S/PVS)+S.PVB/PVS-B)
={(1+i(#1))/(1+) } (F@®+1")

where @’ =(14)(1-S/PVS)andr’=(1+i)(S.PVB/PVS-B).
As beforeEF(t+l )=q EF(t)*+r'
Itcanasobeshownthat 0<q < 1.

Therefore,
Lim E FQ) =r'/ (1-Q).
t
Clearly, EC (t)=(PVB-EF(t)).S/PVS.
Agan
Var F(+1)=d Var F(t) + b{E F(t+1))2
witha'= (@)2 (1 + o2(1+i)2)
Eq (10) il holds, and theearlier result becomes

blLin EF(t)12/(1 - a) if a'¢ !

Lim Var F(t) = (12)
t . if a's 1.
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Clearly, Va C(t) = Var F()) . $2 / PVS 2, Covariances and correlation coefficients are
derived i n the samefashion, subdtitutingq’ for g.

Remarks

(@) Trowhbridge (1952) has shown that in some cases the Aggregate and Etry Age
Norma methods are asymptotically equivaent. The conditions he supposed are
assumptionsl - 6. indusive plus

7. Trere isonly oneentry agei nt 0 the scheme; and
8 02=Vait)=0.

Clearly, if assumption 7. is maintained but assumption 8. is dropped (ie. 62 > 0) then
Trowbridge’s proof till applies but nowto E F(t) and EC (t), yidding

Lim EPSGF(t) = Lim EEANp(t) = EANpp,

t t (13)
Lim EACGCGC(t) = Lim EEANC(t) = EMNyc,
t t

(b) It should be noted that, i n this smple framework, the Aggregete method isredlly a
paticular case of the Entry Age Norma method (assuming assumption 7. is il in
force) ; equation (13) implies
AGGc(t) = (pve - AGGp(t)).s/pvs
= (pvB - EANay) 5/pvs + (EANap - AGGp(¢))s/pvs

= EANne 4 (EPNaL - AGGp(t))/ag (14)

whaeN isdefined suchthat agy = PVs/s. Equaion (14) saysthat the Aggregateand
Entry Age Normd methodsare identicdl, if the latter is gpplied together with an N-year
greed of (AL - F(t) ). Thisfact was previoudy noted by CJ. Nesbitt in hiscontribution
tothediscussond Trowbridge (1963).

(©) If M =1, then eguetion (15) does nat gpply ; insteed

F(t+1) = (1 * i(t+1))[F(t) + NC + (AL - F(t)) - B]
= [(1 + i(t+1))/(1 + 1)1 (1 + 1i)(AL + NC - B)
= [(1 + i(t+1))/ (Vv + 1)1 AL

Thus, foreacht> 1,

EF(t)=AL

EC ()= NC
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and
Var C(t) = Var F(t) = 62(1+i)2 ALZ,

2.3. Numerica example

A numericd example is now introduced in order to illustrate how C (t) and F(t) vary
about their meen values

Theassumptionsare:

Population: English LifeTablen® 13 (Mdes) dationary
Entry age: 30 (only)
Retirement age: 65
Nosday scde, or inflationon sdaries
Bendfits: Levd lifeannuity (2/3 of dary)
Funding methods: 1. Aggregate
2 Etry Age Normd, spreeding AL = F(t) over M years.
Vdudioninterestrate: O1

Given these assumptions, it can be shown thet the actuarid liability and normal cost
havethefollowing numerical values:

EANj1 =451 % of payroll
EANNC =145 % d payroll.

Adud ratesdr return on assets : (i(t)); > 1, identically digtributed random variables, with
Ei(t)= Ol and (Var i(t))2 = .05 (=a).

Table 1 contains thelimiting 'rdative Sandard deviations'

(Var F(t))‘!/EF(t) and (Var C(t))*/EC(t)
as t+» ., In every case

Lim E F(t) = EANap and nim E c(t) = EANNe
t t

(indluding the Aggregate method - Sse Renar k (b) of Section 22 For this particular
populationand interest rate, the vdued N saifying agy = pvs/s isabout 17).

Remarks

(@ O course, Var F (t) and Var C (t) can be computed for t < es , using theformulae of
Section2.1.

(d) Leaving aside the case M = 80 (of little practicd i martaos), there gppearsto bea
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trade-off between Var Fand Var C, e.g. increasingM reduces Va C, but increases \& F
This phenomenonisgudied in grester detall in thenext section

(c) Bth <. dev. F (<) and . dev. C (=) are nearly linear in ¢ when ais"small" (see
equation9). F aindance, if o= .10, then for M =20 weobtain

(Var F(m))*/AL = 35.0%

and

(Var C(«))¥/Nc = 59.8%,

or roughly double thecorresponding figures in Table 1. If o = 025, thenfor M = 20 the
raiosare 8.3 % and 14.2 % aroughly half thecorresponding figuresin Table 1.

24. Thetrade-off between Var Fand Var C
Asc2 > 0and M & =, it can beshown thatt he following resultshold :

(a) if i » o0,

Var F(w)~ ol .M _Ar2

{1 +i)2 2 (15)

Var C(w)~ 02 (i aL?;

(1T + )2 Zim

(b) 1if 1 < 0,

Var F(e)~ o° . Sm-anL2
(1 + )2 2 + 1

(16)

var c(w)~__ o2 (1 + )" A

(1 + )2 (2 + i)%i-m

2

Asapproximations, theseresultsarequitegood ; for example, if a=.05,i= Ol axdM =
20, equation (15) yidds

(Var Fl=))}/an = .05(1.01)"1(az5-01)/2)}

16.4%
whiletheexact vaue(from Table1) iS16.8 %.

Wheni=0,the result tﬁrms
var F(w) ~ 62 M .aL2
—~

(17)
Var C(w) ~ 02 1 .AL2

2M
which can be interpreted as follows : &. dev. F (resp. <. dev. C) is gpproximately
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proportional (resp. inversdy proportiona) to M2, a least wheni iscloseto 0. Hence in
Table 1, moving from M =5 to M = 20 gpproximately doubles <. dev. F () and halves
&. dev. C ().

Hgurelisaplot of &. dev. F (=) agand <. dev. C (), corresponding to Table 1. It
shows that the trade-off aluded to above does take place but only up to M* = 60 ;
however, the Stuation is dtogether different for larger M's : if we intend to minimize
variances, thenany M > M* =60 isto bergected for clearly someother M < M* =60
reducesboth Va Fand Var C. For thisreason,the range1 1 M < M* may be described
asan "optimdl region’”.

The particular M* = 60in Fgure 1 haslittle practicd significance becausedeficiencies
or surpluses are not in practice spread over periods o 50 years ar more. However,
comparing Figures 1 and 2 shows how sengtive . dev. F and 4. dev. C can be to
varying the parameter i = B (t). If ais4ill .05 but i isnow .10, only vduesof M
smdlerthen 8 would be consdered. But thisexampleis again artificial, for it amounts to
asuming red ratesd return to be 10 % on average.

The teble bdow gives numericd vaues o M* (rounded), as afunction of i and alt
should be bome in mind thet i isan average red rate o return, when interpreting these
figures, Theseresultsmay havesome practicd importance if M* tums out to be small -
for example, if i = 0.03 and a = 0.20, theoptimd regionis1 1 M | 13. At thetimedf
writing, a vauation (real) rate of interest of 3 % would be common in the United
Kingdon, as would valuesof M d between 10 and 20 years : both parameter vduesare
conggent with the"' optimd"* valuesaf M* shown beow.

i -01 0 01 03 05
05 - 401 60 23 14
10 - 101 42 20 13
A5 158 45 28 16 11
20 41 26 19 13 10
25 22 17 14 10 8

Explicit formulae for M* can be obtained : the details are not presanted here but the
interested reeder is referred to Dufresne (1986) Or Haberman and Dufresne (1987).

2.5. Extendons

It is possble to investigate the properties of the first two moments o F (t) and C (t)
when somed the strict assumptionslaid down in Section 1 are relaxed. Thus, Dufresne

+ (1986) ad Habennan and Dufresne (1987) consider weekening these assumptions SO
thet

Ei(t)=i=1i’ the vdudioninterestrate;

the population isonly asynpt oti cal | y stationary ; and
sdariesgrow with inflation (congtant or nat, but not random).
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In section 3, we move away from the assumption thet earned rates of interest are
independent and identicaly distributedrandomvarigbles

3. AUTOREGRESSIVE RATESOF RETURN : BASC RESULTS

It is gpparent fromthe discussionin Section 2 thet the equationsfor the momentsaof F (t)
and C (1) are o the same type for individud and aggregate funding methods. This
section, therefore, considersonly onetype, viz individud f undi ng methods

In order to invedigate the effects d autoregressve moddsfor the earned red rate of
return, the paper follows the suggestion of Panjer and Belihouse (1980) and condders
t he corresponding force of interest and assumethat it is constant over theinterva of time
(t, t+) : thenotation usad will be(t+1).

Now, it is assumed thet the (earned redl) force of interestis then given by thefollowing
autoregressveprocessin discretetimedf order 1( AR (1)) :

§(t) = 0+ o [S(t-1) -0 1 + e(t) (18)

wheee (1) for t = 1,2 ... are independent and identicaly digtributed normd random
variables each with mean 0 and variance y2. Equation (18) replaces assumption 5.
introduced earlier. Thismodd suggests thet interest rate eamed in any yeer depend upon
interest rates earned in the previous year and some condant leve. Box and Jenkins
(1976) have shown that, under themodd represented by equation (18),

E[8(t)] = ©
Vvar [8(t)] = y? = v2, say
1-9p2
Cov Ls(t), s(s)] = (y2 ).adt=sl = y(t,8), say.
1-92

Theconditionfor this processto bedaionary isthat 1 ¢ 1<
Boyle (1976) investigated the sSmpler modd :

S(t) = 9 + e(t) (19)

where ¢ = 0. Clearly this modd bears acloseresemblance to that considered in Section
2 It can be shown that equation (9) leads to sSimilar resultsto those presented in section
21 for individud funding methods.

In order to gpply the autoregressvemodd (18) to determine momentsof F (t) and C (t),
it is necessary to abandon the gpproach of section 2 whereby recurrence relations
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between, for example, EF (t+ ) and EF (t) weresought. The presence of adependence
onthe past in theautoregressive modd would mekesuch an gpproach problematic.

The approach followed here begins with considering the series generated by the
recurrence relation(5), which for convenienceisrewritten here s

F(t+1) = (1+1(t+1)) (Q F(t) + R) (20)
where @ = 1 - 1 =vq, R = (NC - B + AL) = vr and vie (1s1)-1,

& i

Then F(t) = F(0). qf e 2(t) 4 gt-Tpe B(t) ,ot-2p A(t)-4(1)
gt + R eB(E)-A(t-1) (21)

where A (t) =‘Z1 §(u).

Inorder toobtain anexpressionfor E F(t) itisnecessary toconsider termsd theform

E(eMt)-8(s}) 5 8=0,1, ..., t-1.

Given thedigributional assumptionfor e (t), and that

e
E(A{t)) = E(Z8(u)) = t0 . ¢
.

var(a(t)) = Var(Zs (u)) Z Ly (U,w)

=\;z o luvl (22)
1 W
then E(eME)-AIS)) o exp[(t-s)0 +} VY (ww)
1 3

expl(t-s)0+ v2 G(t,s)] ,say.

Anexpressonfor G (t, s) can beobtained by sandard techniques (Haberman (1989)).

Thus Ete?(t)-2(8)y | exp [(t-s)(0 + }ite \’2)'\’24’ (}_'_?%-S]- (23)
1-¢ )
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If the subsidiary parameters c = exp (0 +4# _11_+_<gv2) and

-¢
d =viep(1-9)-%, are introduced,
then E[eA(t) - A(s’] = ct=8 ¢-d1-¢ ), (24)
Equation (21), implies that -1
E F(t) = F(0) ot E e 2(t) RZ Qt-s-1 g(eb(t)-A(s))
=o
Tt B o tes dot-s, -3
= t d - - ¢ -
(F(0)Qtctedot + g S;(o ct s e ye d . (25)

The sccond term isdf the form of the present valuein conventional life contingenciesof
a temporary annuity based on Gompentz’s & Makeham's law of mortality.

In sction 2.1., it wasnoted that 0 < g < 1.

So cQ = exp (- 0-4v2) exp (0 + 1+¢v2)
1-¢
= g exp (ui):qif('):O-
1-9

Fa convergenceast -> e, werequirecQ < 1. And we natetha @< 1.
[t can then beshown that

Lim EF(t)) = R Q¢ ed

tom Q 1-Qc

= _vre e-d {26)
1-vgc

If ¢=0 then ¢ = exp (9+#v?) = 1+i and d=0, and
hence Lim E F(t) = I as in equation (7).
t+o 1-q

Then B c(t) = NC+ AL - E (F(t)) fromequation (4).
4m

Toobtain an explicit expression for Var (F (t) ), it will benecessary to condder E (F (t) )2,
which itsglf will depend anterns of thefarm

E(el(t) -A(s) +4 (t) -8 (x),
forr,s=0,1,..,t-1.
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Without lossof generality, weconsider r > s.
Given thedigributional assumptions for e (t), Haberman (1989) hasshown that, for r >s,

E(eA(t)'A(5)+A(t)'A(r)) = exp ((t-s)¢+(t-r)tp+§ Y(u,W)

¥
[ 4 sﬂs"
e 2 F 5y uw)
where inth's caseof an AR (1) modd,
Y(u,w) =v 2 glu-wj,
For convenience, wecan write

E(e 2(t)-B(s)+A(t)-A(r)) = exp [(t-s) 0 +(t-r) @+ v 2H(t,r,8)] (27)

and it hasbeen shown by Haberman (1989) thet H (i, r, S) simplifies to:

H(t,r,s) = }(t-s) (1+y) - F~S*1 4 2(r-g)gL-s
(1-¢) (1-9)?2 {1-¢p)

t-s+1

+3(t-r) (1+9) + 2(gt-T+! 4 ) - 3
T=9) § an.¢

For convenience, wewill takeF (0) =0.
et A(t)-A A(t)-A(r) ot-1-8 At-1-r 2
Then, E(F(£))2 = E [ I, © (t)-A(s) o r) g Q R€]

= 2R2 t4 & t-S ~ter At)-4(s)+B(t)- )
Q? 5 _‘Eo Q Q E(e ( ) (28)

+ R2 ‘T Q2(t-s) g(e 2(8(t)-A(s)))
QZ Sa0

Then, it has been shown by Haberman (1989) that

Lim E(F(t)2) = e~39 _ 2r20c2w + o4 2y
troo (1-Qc) (1-Q*cw) {(1-Q%cw)

C = exp (0+£(‘:+¢)v 2y, Q=vqg, R=vr as before and

where d =&2_(p
1-¢)

(T-912’
w=exp (0+}l1+q) v2).
1-9
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We notethat ¢ < 1, by assumption,
and that Qc = Q exp [o+i{1+¢) v2j = q exp v2
1-¢ -9

and ch LA qzv2 cwW = q2 exp, [(;I+3 9)\)2 ]
-9

For convergence, @t # o=, werequireQe < 1 andQZew < 1

Then, LimVar F(t) = e=3d 2r20c2w + e-4d (29)
t+w (1=Qe) (1-Q%cw) (1-Q cw)
- R2c2 e -2d
(1-0c)2
Then, formulae for Lim Var c(t) = Va§ F(t) my be obtained.
tro ( y

The next step would beto investigate theexistence of an"*optima™ M* asin ssction 24.
(for the case of random ratesof return). This wak iscurrently in progressand it may be
possible to report further resultsa the AFIR Colloguium.

4. CONCLUSIONS

The variability of contributions (C) and fund levels (F) resulting from random (redl)
ratesof return has been studied mathematically. Thefunding methodsconsdered are the
Aggregate Method and those Individua Methods thet prescribe the normal cost to be
adjusted by the difference between the actuarid liability and the current fund, divided by
the present valuedf an annuity for aterm of “M” years. A smple demographic/financial
modd permiits the derivation of formulaefor the first two moments of F and C, when
earned (real) rates of return from an independent identically distributed sequence of
random variables. The way these moments depend on M has then analysed, with the
help of a numerical example. The gpproach has been extended to includethe case of an
autoregressive mode for the earned (redl) rate of return. Expressonsfor the first two
momentsof C (t) and F (t) havelbeen obtained and reported and their detail ed properties
arecurrently under investigation.
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RELATIVE STANDARD DEVIATIONSOFF (T) AND C (T),AST - > e

[i=.01,0=.05]
Fundi ng Method (Var F(e2))1/2/ AL (Var Ce=)) /2 /NC
EANM=1 5.0 % 154 %
M=35 83 529
M=10 : 11.7 379
M=20 16.8 28.7
M=40 253 23.7
M=60 334 229
M=80 419 235
Aggregate 153 30.6
(=EAN withM =17)
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