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Abstract 
We adress the problem of calculating the required risk based capital (RBC) of a 
portfolio of options subject to default risk. In order to solve this problem, an 
actuarial approach is adopted in specifying a (Markov) default process, modelling 
the (discounted) credit loss and finally calculating RBC in a way to keep the loss 
probability under control. As an alternative we propose a calculation of RISC 
restricting the expected excess value of discounted credit loss. 

Nous analysons le probleme de la d&ermination du montant du capital base du ris- 
que (RE3C) qu’il faut retenir pour une portefeuille des options qui sont vulnerable 
au risque de credit. Atin de resoudre ce probltme, une approche actuarielle est 
adopt6e par la specification d’un processus de solvabilite mrkovien modelisant la 
perte de credit discontee et finalement calculant le capital necessaire d’une mar&e 
garantassant que la probabilite d’une perte est bien contr6lCe. Comme alternative 
nous proposons le calcul du capital necessaire de man&e que l’esp&ance ma- 
thematique de la valeur d’exc5.s de la perte de credit discont&e est limit6 a un 
certain niveau. 
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1 Introduction 

The present paper adresses the problem of calculating the required risk based 

capital (RBC) of a portfolio of options subject to default risk. In order to achieve 

this objective’) an actuarial approach is adopted in specifying a (Murkov) default 

process, modelling the (discounted) credit loss and finally calculating RBC in a way 

to keep the loss probability under control, i.e. maintaining a tolerance level E. A 

small simulation study illustrates the approach proposed. As an alternative a control 

criterion is adopted which amounts to restricting the expected excess value of 

discounted credit loss. 

2. Modelling the Discounted Credit Loss Distribution 

2.1 The Default Process 

Let Z(f) = I&) denote the default process of a counterparty belonging to rating 

class R. The deafult process is modelled as a time-discrete inhomogeneous two-state 

Murkov chain {Z(t); t = 0, 1,. .}. The random variable Z(r) indicates the status of 

solvency of the counterparty at time 1. We have 

1 1 
z(t) = o 

counterparty is insolvent in I 

else. 
(2.1) 

The process starts with Z(0) E 0. In addition we assume, that state 1 is an ab- 

sorbing state of the chain, i.e. there is no probability of recovering from a default. 

The one-period transition probabilities of the process are given by 

q, := Pr[Z(r) = 1 ) Z(f-1) = 01, 
(2.2) 

p, : = zJr[Z(t) = 0 1 Z(P1) = O] = l-q, . 

We call q, the one-period defuulf probability. Let now Q, : = Z’r[l(t) = l] denote the 

cumulutive default probability. We then have 
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1 - Q, = Pr[Z(r) = 0] = izp, , t 21 . (2.3) 
j=l 

On the other hand we have 

1 - Q, -. ’ - qr = 1 - Q,_l 
(2.4) 

Central to the analysis of the default process of a counterparty is the (here: integer 

valued) default time r = rR, a stopping time of the process. The default time is the 

time of the first passage from state 0 to state 1 and we have 

7 = yjy {t; Z(f) = 1 ] Z(0) = O} (2.5) 

The first passage probabilities A = Pr(r = t), I 1 1 are given by 

Pr(7 = f) = Pr[Z(f) = 1, Z(f) = 0 for 1 <j< I ] Z(f) = 0] 

(2.6) 

In addition, we obviously have 

Q, = c 4. 
jsr 

(2.7) 

For the purpose of simulation the introduction of an additional quantity is useful. 

Let J(r) := Z(f) - Z(f-l), then we have 

J(f) = ; 
{ 

r=t 

else 

and Pr[ Z(t) = l] = f,, the corresponding first passage probability. 

For the purpose of a statistical identification of the default process we use the 

results of Lucas (1995). Lucas calculates cumulative default probabilities Q, = 

Q,(R) depending on rating class R and period t on the basis of data of Moody’s 



28 

Investor Service on occurrences of default and changes of credit quality. Q,(R) gives 

the cumulative probability of default until time t of a counterparty belonging to 

rating class R at time 0. Table 1 gives the cumulative default probabilities as 

calculated by Lucas. 

Table I: Cumulative default probabilities of selected rating classes in per cent 

Table 2 gives the corresponding one-period default probabilities calculated on the 

basis of (2.4). 

Table 2: One-period default probabilities of selected rating classes in per cent 

2.2 The Amount of Credit Loss 

The credit exposure of a derivative product transaction at any time over the life of 

the transaction is equal to the maximum of zero and its mark-to-market value 

(which is assumed to be the cosr of replacing a transaction if the counterparty 
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defaults on an in-the-money position). As we only consider option positions in this 

paper this means that only long positions in options are subject to credit risk and - 

because the price process of an option is always non-negative - the replacement cost 

is identical to the price of the option at the time of default. 

2.3 Discounted Credit Loss 

2.3.1 The One-Counterparty / One-Option Case 

We fix a counterparty with rating R and we concentrate on the case of one option 

position (a long call, a long put or a long position in an exotic option) on one unit 

of the underlying position, which will be a stock or a stock index in the framework 

of the present paper. Let T denote the expiration date of the option and {CT(t); 0 

S t 4 T) the price process of the option. 

The central quantity for evaluating credit loss exposure now is the discounted credit 

loss DCL = DCL(R) given by 

exp(-r7) OP(7), 7 4 T 
7 > T. 

(2.9) 

The discounted credit loss denotes the discounted replacement cost in case of 

default of the fixed counterparty. For the purpose of keeping the definition simple, 

we have worked with a flat term structure of interest rates (in a time continuous 

setting). This can easily be generalized and the term structure used should be 

commensurate with the option pricing model applied. 

Employing quantitiy J(r) from (2.8) an equivalent expression for tire discounted 

credit loss is 
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DCL = k exp( -rr) J(f) CP(t) , 
1=1 

(2.10) 

which is more suitable for the purpose of simulation. 

To prepare a further point in the analysis we are interested in Pr(DCL = 0), as 

already from (2.9) it is obvious, that DCL possesses a mass point in x = 0. There 

are two mutually exclusive events, which imply DCL = 0: 

1) r>T 

2) r = T and the option expires worthless. 

If we denote the probability that the option expires worthless by wr we obtain 

Pr(DCL = 0) = Pr(7 > Z) + Pr(7 = Z) wT. 

= 1 - Qr + B-(7 = Z) wr (2.11) 

In case of e.g. a put option with exercise price X we have wr = P&Y, > X) = 1 - 

FAX), where Sr is the price of the underlying at time T and F, is the distribution 

function of S,. 

2.3.2 The Multi-Counterparty / Multi-Option Case 

The general case can be modelled as follows. Let there be N rating classes R,, n = 

l,.. ., N. In rating class R, there are Z(n) counterparties i,, = 1,. .., I(n). The default 

time of counterparty i, is denoted by rl. With counterparty in there are j(i,) long 

option positions of different type, j(i,J = 1,. . . , J(i,). These option positions have 

volume aV (number of underlyings in one option contract), expiration dates Tg and 

price processes {OP&t); 0 < t < cj}. The discounted credit loss of one particular 

position is 
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exp( -r~,) aij OP, (7, ) , rin s T, 
DCL, = 

(2.12) 

0, 7io > Tij 

The total discounted credi; loss TDCL of the considered portfolio of options then is 

given by 

N I(n) J(i) 

TDCL = cc c DCL, . 
n=L ia-1 j(i)=I 

(2.13) 

3 Required Risk Based Capital 

3.1 Approach I: Controlling the Probability of Discounted Credit Loss 

3.1.1 The One-Counterparty / One-Option Case 

A traditional risk theoretical approach to determine solvency capital is to restrict the 

loss probability. This is essentially the idea that we translate to the present case. If 

RBC denotes the risk based capital to be determined the postulated requirement is 

Pr(DCL > RBC) < E. The probability that the discounted replacement costs exceed 

the available risk based capital should be under control and small. We present a 

slightly modified approach, which is virtually identical, but can be directly generali- 

zed (9 3.2). 

We define the discounted return on risk based capital (RORLKJ by 

ROR,jC = RBc - DCL = l _ DCL 
RBC RBC 

(3.1) 

and choose as control criterion 

Pr(RORBC < 0) = E , 
(3.2a) 

i.e. a negative RORBC may only occour with a small probability E. As Pr(RORBC 

< 0) = Pr(RBC - DCL < 0) = Pr(DCL > RBC), (3.2a) is equivalent to 

Pr(DCL > RBC) = E, (3.2b) 
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the capital requirement criterion as mentioned above. Let Fn&x) denote the cumu- 

lative distribution function of DCL. If we define as usually F&y) : = inf{x; F,,(x) 

2 y}, then we have 

RBC = F&(1 -&), (3.3) 

i.e. RBC is the (l- s)-quantile of the distribution of DCL. 

3.1.2 The Multi-Counterparty I Multi-Option Case 

The general case is as follows. Let ZDCL be the total discounted credit loss accor- 

ding to (2.13) with distribution function F,, (x). Then the total risk based capital 

ZRBC required is 

Z’RBC = F;,(l-E). (3.4) 

3.1.3 The One-Counterparty Case: Zero Risk Based Capital 

Beginning with the one-option case it is easy to see in which cases the required risk 

based capital amounts to zero. As Pr(DCL > RBC) I E is equivalent to Pr(DCL 

5 RBC) 2 1-s and there is a probability mass of DCL in x = 0 according to 

(2.11), we have the relation 

RBc=o * Pr(DCL = 0) 2 1 -E. (3.5) 

As Pr(DCL = 0) = Pr(r > T) + Pr(r = T) wr, a sz.@ient criterion - which is 

independent of the type of option contract (but on its expiration date) and only is 

depending on the default process of the counterparty - for this is: 
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Pr(r>T)>l-& @ PI-(7 < r) 5 E. (3.6) 

As long as the probability of default of the counterparty within the expiration period 

of the option contract is not exceeding the required safety level E the risk based 

capital will be zero. 

We now take a look at the case of J different option positions j, (j = 1,. . . , J) held 

with one counterparty. Let the expiration date of option j be q and the volume of 

the position be aj. Then we have DCL = Ci=, DCLj, where 

DCL, = 
exp(-rr) aj OPj(7), 7 < Tj (3.7) 

0, 7 > Tj. 

Obviously if r > Zj for allj = l,..., J, then DCL, = 0 for all j and thus DCL = 

0. Define T = max(T,, . . . , T,). In case Pr(r > I’) 1 1-s again the required risk 

based capital amounts to zero. The constellation of a risk based capital with amount 

zero therefore crucially depends on the required safety level E, the rating class R of 

the counterparty and the lifetimes of the options. 

3.2 Approach II: Controlling the Expected Excess Value of Discounted 

Credit Loss 

Stating control criterion (3.2a) alternatively, it controls the shortfall probability of 

the (discounted) return RORBC with respect to the target return r, = 0. As demon- 

strated by Albrecht (1994, p. 93) a general class of shortfall measures of a return 

R with respect to a target return r, is given by 

LPM,(r& = E[max(r, - R, O)“] , (3.8) 

the n-th order lower partial moments of R with respect to the target return r,. The 

case n = 0 gives the shortfall probability, the control criterion of paragraph 3.1, 

the case n = 1 gives the shortfall expectation, which will be the basis for an 
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alternative control criterion considered now. This new control criterion implies the 

restriction of the shortfall expectation of RORBC with respect to the target r, = 0 

to a small amount cy, (e.g. 1% or 5%). Formally we have 

resp. equivalently 

E[max(-RORBC, 0)] = Q, (3.9a) 

E[--[g - 1, 0]] =CY. (3.9b) 

As E[max (/cX, 0)] = k E[max (X, 0)] this in turn is equivalent to 

E [max(DCL -RBC, 0)] = cr RBC. (3.9c) 

Relation (3.9~) has the interpretation, that the expected excess value of the discoun- 

ted credit loss DCL over the available risk based capital is restricted to a given 

fraction of the risk based capital. 

We use the version (3.9b) of the control criterion for the further analysis. Define 

H,,(z) = +a~[~_,, 0]] for z. > 0. First we want to show, that H(z) 

is monotonically decreasing in z. To see this, note that for I, < zz we have 

> max 5 - 1 0 max[$-1. 01 - [z2 , ] for all x and from that max F7 Ol 
2 max[y-1, 0] a.s., whichintumimplies Ep[y-1. 0]] > 

Ek[y-1, 0]] and thus the stated behaviour of H(z). Now define H-‘(y) 

= inf{z; H(z) I y} and we can conclude 

RBC = H&(Q). (3.12) 

This equation is properly defined, if a! E im H,,(z) is fulfilled. 
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The suggested approach clearly deserves further consideration as an alternative to 

restricting the loss probability (shortfall probability) with the calculated risk based 

capital. This however will be done in a different contribution. In the simulation 

analyses presented in the remaining part of the paper we will restrict to the “tradi- 

tional” criterion. 

4 Preliminary Simulation Results 

In this section we present the results of a small simulation study in order to demon- 

strate that the approach described in $ 3.1 does work in principle. We only consider 

long put positions, assume that the process {S,; t 1 0} driving the underlying object 

is a geometric Wiener process with drift p and diffusion u and that the option price 

is the Black-&holes-price of a Euro-pean put option. 

Our starting point is the difference equation 

S(t) = S(r-1) exp [(p -% 2) + u AW(r)], 

where W(t) denotes the standard Wiener process at time 1. 

(4.1) 

This means that the increments AW(t) = W(t) - W(t-1) are stochastically indepen- 

dent and normally distributed with parameter p = 0 and u = 1. Departing with a 

starting value S(0) we generate in the context of a Monte-Carlo-simulation H paths2) 

of the process of the underlying stock for a time of T periods3). At each time t = 

1, 2,..., T we calculate on the basis of the realizations of the stock value process 

the corresponding Black-&holes-values which represent by assumption the price - 

demand of the short position on the OTC-market. 

For the stochastic process driving the development of the option prices the follo- 

wing model specification is chosen where we intend to preserve the nominal amount 

of the initial capital (X = S(0) = 100): 
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exercise price X diffusion o drift p stock price p(O) life time option T interest rate r 

100 0.13 0.1 loo 5 0,05 

Table 3: Model specification of the process driving the option price 

This model specification implies (without regarding the default risk) an option price 

an time zero p(O) = 2,75302 DM. 

After nmning the simulation we get the estimated distribution function of the 

discounted credit loss DCL for selected initial rating classes R. Figure 1 shows as 

an example for rating class Baa3 the simulated distribution function F(Ci) of the 

discounted credit loss of the i-th counterparty. From the graph of the distribution 

function we see on the one hand the rareness of insolvency, on the other hand one 

can recognize the big loss potential, especially compared to the OTC price. 

FCC.) 

L 
I . .._........_...._.._................... 

0.9585 ( 

0 I I I I * c. 

0 2 4 6 a 10 12 

Figure 1: Distribution function of the discounted credit loss for rating class Baa 3 
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The following Table 4 shows the calculated default probabilities and risk based 

capital requirements for selected rating classes when regarding a single counter- 

Party. 

Ratins 

Ad 

A3 

Baa1 

Default probability aBc (95%~percentile) BBC (99% -percentile) 

0.0025 0 0 

0.0111 0 0 

0,0142 0 0.0119 

I BasZ I 0.0274 I 0 I 0.6055 

I Baa3 I 0.0443 I 0 I I 7450 

Bal 0.0868 0.1400 3,0073 

Ba3 0.1991 1.7875 5.8851 

B3 0,507 I 3.9229 8.9327 

Table 4 : Default probabilities and risk based capital requirements 

Assuming that the risk measure is given by the excess probability and that the 

exogeneously determined safety level is 95% (99%), the results for selected rating 

classes can be interpreted in the following way: 

In both cases (95 % and 99 % safety level), counterparties belonging to rating classes 

A3 or higher do not require any risk based capital. For example an Aa counter- 

party possesses a discounted credit loss probability of 0,0025; in this case, without 

any risk based capital requirement the safety level amounts to 99,75%. In other 

words, the buyer of the option is safe to an extent of more than 99% even without 

an underlying RBC. 

Counterparties which are rated Baa3 to Bal require risk based capital only in the 

case of a desired safety level of 99%. If the target level is the 95%-percentile, we 

do not need any underlying capital. As one can see in the case of a counterparty 

rated Baa3 the discounted credit loss probability runs up to 0.0443; the resulting 

safety level of the option buyer without consideration of RBC amounts to 95,57 %; 
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thus, the resulting safety level is higher than 95 % but lower than 99 % . In order to 

reach a safety level of 99 % , it is necessary to acquire a risk based capital amoun- 

ting to 1,745 DM. 

Within the third group consisting of rating classes Bal and lower risk based capital 

is required for both safety levels. With a counterparty rated Ba3, the corresponding 

safety level without consideration of RBC is 80,37 % In order to achieve a safety 

level of 95% (99%), consequently a risk based capital amounting to 1,7875 DM 

(5,885l DM) is necessary. 
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Endnotes 

A similar approach is presented in IbedBrofherfon-Rafcliffe (1984) for a portfolio of 
swaps. However, the authors concentrate more on the simulation process and less on the 
analysis of the structural properties of the model, as it is done here. 

We have H = 3250. 

The present analysis concentrates on T = 5 periods. 






