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Abstract 
The development of stochastic investment models for actuarial and investment 
applications has become an important area of interest to actuaries. This paper reports 
the application of some techniques of modem time series and econometric analysis to 
Australian investment return and inflation data. It considers unit roots, cointegration 
and state space models. Some results from this analysis are not reflected in published 
stochastic investment models. 
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INTRODUCTION 

The main aim of this paper is to apply some of the techniques of modem time series 
and econometric analysis to analyse investment data in order to better understand the 
nature of long run relationships in investment series typically used in stochastic 
investment models. The analysis is based on Australian data. Other stochastic 
investment modelling studies for actuarial applications have not formally investigated 
such relationships yet these are fundamental to the structure of any model to be used 
in actuarial applications. 

The paper attempts to identify and address fundamental issues that need to be 
considered before developing a particular stochastic investment model. It has 
identified many structural features of investment models that should be included in 
such a model. Many of these features are not found in published stochastic investment 
models for actuarial applications. The paper does not present a stochastic investment 
model. The detail required for a stochastic investment model will depend on the 
application. Parameter estimates and initial values for a stochastic investment model 
will generally need to be based on the most recent data. 

Transfer functions were used to fit models to Australian investment data. These were 
found not to be appropriate for investment modelling analysis for the Australian asset 
returns series data since there was evidence of feedback relationships between many 
of the series. State space models were then fitted to the asset returns data and the 
inflation series allowing for feedback between inflation and asset class returns. The 
fitted models are reported in this paper. 

The analysis in this paper uses quarterly data. Stochastic investment models are used 
in practice to establish strategic asset allocations and to examine solvency and capital 
adequacy. Long run asset allocation strategies are often determined using an annual 
model on the assumption that cash flows occur at annual intervals. In practice this will 
be a crude approximation to the timing of cash flows and a higher frequency model 
will be preferred. Similarly the capital requirements for meeting a solvency test will 
be much less stringent when solvency is tested at annual time intervals than at 
quarterly intervals. In this context the difference between annual and quarterly models 
has yet to be investigated but in order to do this it will be necessary to develop an 
appropriate quarterly model. 

There are many important issues in stochastic investment modelling that require 
further investigation. These include modelling structural changes that have occurred in 
the economy using regime-switching models (Garcia and Perron, 1996 and van 
Norden and Vigfusson, 1996) and allowing for other time varying components of the 
series such as heteroscedasticity. Parameter estimation and stability of parameters 
require further investigation. Parameter and model uncertainty also needs to be 
incorporated. 

Structural time series models provide a framework for analysing and developing 
stochastic investment models. Such models can be developed using a state space 
formulation. Such an approach provides a number of significant advantages over more 
dated time series techniques. These are: 



Models reflect the salient characteristics of the data. 
Model parameters are interpretable. 
Feedback mechanisms (bi-directional causality) are included. 
Stationarity does not have to be assumed. 
On-line model maintenance and updating on receipt of additional 
information. 

Further research is required in this area. It is hoped that this paper will provide a 
foundation for that research. 

DATA 
The structure of a model needs to be based on economic and financial theory as far as 
possible. Often theory will rely on empirical data for justification. The model structure 
and the parameters of a stochastic model will need to reflect historical data. Parameter 
estimation will usually be based on historical data. A statistical analysis of historical 
data will also provide useful insights into the features of past experience that the 
model will need to capture. 

The data used for the empirical analysis in this research is taken from the Reserve 
Bank of Australia Bulletin database. The study uses quarterly data in contrast to most 
other studies in this area that use annual data. The reasons for using quarterly data, 
rather than monthly or some other higher frequency, is that this is the highest 
frequency for which many of the main economic and investment series are available. 
It is also a frequency that is suited to most practical applications and will be more 
realistic than annual data as currently used. 

Different series are available over different time periods. The longest time period for 
which data was available on a quarterly basis for all of the financial and economic 
series was from September 1969. Individual series were available for differing time 
periods. The series considered were Consumer Price Index - All groups (CPI), the All 
Ordinaries Share Price Index (SPI), Average Weekly Earnings - adult males (AWE), 
share dividend yields, 90 day bank bill yields, 2 year Treasury bond yields, 5 year 
Treasury bond yields, and 10 year Treasury bond yields. An index of dividends was 
constructed from the dividend yield and the Share Price Index series. Logarithms and 
differences of the logarithms are used in the analysis of the CPI, SPI, AWE and 
dividends. The differences in the logarithms of the level of a series is the continuously 
compounded equivalent growth rate of the series. 

Appendix A sets out summary statistics for the series used. It is important to note that 
none of the series is well represented by an assumption of independent and identically 
distributed normal variables. Mean-variance optimisation models that are often used 
in determining optimal asset allocation strategies by fund managers and asset 
consultants assume that the returns are correlated but serially independent and 
identically distributed normal variables. It is clear from the data that such assumptions 
are inappropriate and that mean-variance models should be used with caution. 



UNIT ROOTS AND STATIONARY SERIES 

Many of the series used in stochastic investment modelling are non-stationary. For 
example the level of the Consumer Price Index, the level of the Share Price Index and 
the level of a dividend index can be seen to be non-stationary by simple inspection of 
a time series plot. It is less clear whether or not interest rates have stationary 
distributions and this cannot easily be determined by inspection of a time series plot. 
Rates of changes in indices or rates of return have been used in stochastic investment 
models and this might be justified because they can be considered as "natural" 
variables to use. 

Because the level of the Consumer Price Index, the level of the Share Price Index and 
the level of a dividend index are non-stationary this has lead researchers to difference 
the data, or some transformation of the data such as a logarithmic transform, in order 
to obtain a stationary series for modelling. Wilkie (1986) and Carter (1991) used 
differenced data, as does Harris (1994, 1995) for equity and inflation series. In Carter 
(1991) the order of differencing was decided using more traditional time series 
techniques based on the sample autocorrelations. FitzHerbert (1992) fits a 
deterministic trend to various index levels instead of taking differences. Neither 
FitzHerbert (1992) nor Harris (1994, 1995) conduct formal tests for stationarity of the 
series used in their models. 

If the level of a series is non-stationary but the difference of the series is stationary 
then the series is said to contain a "unit root", be "integrated or order l", or be 
"difference stationary". It is important to understand that the existence of unit roots 
determines the nature of the trends in the series. If a series contains a unit root then the 
trend in the series is stochastic and shocks to the series will be permanent. If the series 
does not contain a unit root then the series is "trend stationary". The trend in the series 
will be deterministic and shocks to the series will be transitory. This has major 
implications for investment models in actuarial applications. 

The other aspect of unit roots is that if they exist in a series and differences are not 
used in model fitting and parameter estimation then the statistical properties of the 
parameter estimates for the model will not be standard and the use of standard results 
for model identification and parameter estimation can result in an incorrect model 
structure and unreliable parameter estimates. Insignificant parameters are more likely 
to be accepted as being significant. 

These are all significant reasons that make testing for unit roots in a series for use in 
developing an investment model critical. Formal statistical tests for unit roots have 
been developed over the past decade in the econometric literature. Unit root tests are 
described in many articles and books including Dickey and Fuller (1979) and Mills 
(1993). These procedures are implemented in various statistical and econometric 
packages such as Shazam (1993). 

In order to test for unit roots in the series x, the following regressions are fitted: 



where E, are assumed to be independent and identically distributed and Axt = xt-xt.l is 
the first difference in the series. These are referred to as Dickey-Fuller regressions. If 
the value of al is equal to zero then xt is integrated or order 1. In this case (1) defines 
xt as a random walk with drift and (2) defines xt as a random walk around a non-linear 
time trend. This can be seen by substituting al= 0 and rearranging to get: 

Y: = Y;-1 + Et 

with 
y; = xt - aot for (I), and 

In the case that the E, are not i.i.d. then the following regressions are used: 

& =a .  + alxt + a,t+ %yJ&, + r, (4) 
J=l 

where p is selected to ensure the errors are uncorrelated. These are referred to as 
augmented Dickey-Fuller regressions. 

The procedure for testing for unit roots and determining the order of integration uses 
the t-statistic of the coefficient al of xt-1 in the regressions given by (3) and (4). The 
null hypothesis is that the series is non-stationary with al = 0 and the alternative is 
that a1 < 0. The t-statistic under the null hypothesis has a non-standard distribution 
and is compared with the table of critical values found in Fuller (1976, p. 373). If the 
null is rejected then this is evidence that xt is a stationary series. If the null is not 
rejected then differences of the series are taken and the differences tested for a unit 
root. When the null is eventually rejected the level of differencing required to reject 
the null determines the order of integration of the series. Usually this requires only one 
order of differencing for financial and economic series. 

The critical values used for testing for a unit root depend on whether or not a2 is zero 
in the regression given by (4). If ao and a2 are zero then the t-statistic for a, has the 
non-standard limiting distribution as in Dickey and Fuller (1979). This distribution 
applies if @ is non-zero. If a2 is non-zero then the limiting distribution is standard 
normal. It is therefore necessary to determine if a2 is non-zero in order to determine 
critical values for testing for unit roots. Dickey and Fuller (1981) provide critical 
values for a range of tests as follows: 

$1 using Equation (3) with Null @=O, al=O 
using Equation (4) with Null o@, a f l ,  al=O 

@ using Equation (4) with Null W, a2=0, al=O 

The procedure for testing for unit roots can be set out as follows (Holden and Perman, 
1994): 



Step 1: Estimate the regression (4). 
Step 2: Use $ to test the null hypothesis a&O, a2=0, al=O against the alternative 
W, a&, al&. If the null can not be rejected then go to Step 5. 
Step 3: Need to determine if az&, al=O, or a 4 ,  al#O or a2t0, a&. Test for a&. 
If this null is not rejected then conclude that a2&, al=O and the series has a unit root 
and linear trend. 
Step 4: If the null is rejected in Step 3 then there is no unit root and the series is 
stationary. A conventional t-test for a24 is used to test for a trend. If this null is 
rejected then the series is stationary with a linear trend. A conventional t-test is used to 
test for a constant u&. 
Step 5: In this case the series has a unit root with no trend and possibly with drift. This 
can be confirmed using the non-standard critical values for the null al=0. 
Step 6: To test for non-zero drift use Qr since this tests the null @, a+, a1=0 and 
previous tests have not rejected a2=0, al=O. If the null is not rejected then the 
evidence suggests that the series is a random walk without drift. If the null is rejected 
then the series is a random walk with drift. 
Step 7: Regression (3) is used and $1 used to test the null @, aid. This will 
confirm the results of earlier steps. 

Table 1 sets out the unit root test statistics using the augmented Dickey-Fuller 
procedure for Australian quarterly data over the period September 1969 to December 
1994. Table 2 gives the parameter estimates and t statistics for regressions (3) and (4) 
for this data. 

Applying the procedure to the unit root test statistics in Tables 1 and 2 gives the 
following results: 

IogCPI - logarithm of the Consumer Price Index 
$ does not reject the null hypothesis a&O, a24, al=O so the series has a unit root. $1 
rejects the null @, al=O suggesting the drift is significant. This is confirmed by the 
regression (3) where the estimate of rn is 0.0244 with a t statistic of 2.94 which is 
significant at the 0.4% level. 

ALmgCPI - first ditference of logCPI ~ rejects the null hypothesis W, a d  al=O for the differences. The z2 test statistic 
rejects the hypothesis that al=O so there is evidence that the differences are stationary. 

Conclusion 
On the assumption of i.i.d. errors, the logarithm of the CPI is integrated of order 1 and 
differences in the logarithm of the CPI is a stationary series with drift. 

LogSPI - logarithm of the Share Price Index 
$ does not reject the null hypothesis w, Q=O, al=O so the series has a unit root 
with no trend. Qr does not reject the null @, a2=0, a 4  so that this is evidence of 
no drift. Using the more powerful test with $1 does not reject the null w, a d .  
From the regression (3) the estimate of Q is 0.0547 with a t statistic of 0.52 which is 
not significant suggesting that the drift is zero. 



ALagsPI 
$ rejects the null hypothesis that a&, a2=0, aI=O for the differences. The ~2 test 
statistic rejects the hypothesis that al=O so there is evidence that the differences are 
stationary. From regression (4) the estimate of @ is 0.0128 and of a2 is 0.0002 and 
neither of these is significant. 

Conclusion 
The logarithm of the SPI is integrated of order 1 and differences in the logarithm of 
the SPI is a stationary series. The results suggest that the drift in the difference of 
log(SP1) is not signicantly different from zero. This could be because the test used has 
little power against an alternative of a positive drift close to zero. 

LogAWE - logarithm of Average Weekly Earnings 
@ does not reject the null hypothesis a&, aZ=O, al=O so the series has a unit root 
with no trend. +z does not reject the null u&, a2=0, al=O so this does not reject the 
zero drift hypothesis. Using the more powerful test with $1 does reject the null @, 
al=O suggesting that the drift is significant. From the regression (3) the estimate of a 
is 0.1182 with a t statistic of 3.04 which confirms this. 

b g A w E  
$ does not reject the null hypothesis a&, a2=0, al=O for the differences which 
suggests that the differences have a unit root. However the 22 test statistic rejects the 
hypothesis that al=O and this is evidence that the differences are stationary. Note that 
if the differences in the logarithm of AWE are not stationary then this means that a 
random shock to the continuously compounding growth rate of AWE would be 
permanent. A model with this feature would not be sensible since it would allow the 
continuously compounding growth rate to become arbitrarily large or small. 

Condusion 
The logarithm of AWE is most likely integrated of order 1 although the statistical tests 
suggest it could be of higher order. 

LogSDiv - logarithm of the Share Index Dividend Series 
does not reject the null hypothesis a&O, a24 al=O so the series has a unit root 

with no trend. & does not reject the null *--0, az=O, al=O so this does not reject the 
zero drift hypothesis. Using the more powerful test with $1 does not reject the null @, al=O suggesting that the drift is not significant. From the regression (3) the 
estimate of Q is 0.0940 with a t statistic of 1.188 which confirms this. 



Table 1 Test Statistics for Unit Roots - ADF Regressions 
Variable n 
10% Critical Value 5 (-2.57) (4.03) (5.34) 
LogCPI 
ALogCPI 
LogSPI 
ALogSPI 
LogAWE 
ALogAWE 
LogSDiv 
ALogSDiv 
SDyields 
ASDyields 
BB90 
ABB90 
TB2 
ATB2 
TB5 
ATB5 
TBlO 
All310 

* indicates significant at 10% level 

96 -2.5394 5.0773* -0.14401 3.3658 3.2153 
95 - 1.9654 1 .9387 -3.2620* 3.8593 5.7811* 

101 -0.36670 1 .0593 -2.5374 2.9977 3.4468 
93 -4.0574* 8.2403* -4.0353* 5.5106* 8.2573* 
94 -2.9235* 5.0615* -1.1134 3.3407 4.2320 
94 -1.6971 1.5320 -3.1763* 3.4963* 5.1460 
91 -0.94375 3.2947 -2.2644 3.8328 2.7697 
97 -3.6085* 6.5145* -3.5827* 4.3077* 6.4580* 
94 -2.6065* 3.4282 -2.4752 2.4863 3.6984 
93 -4.2322* 8.9565* -4.3210* 6.2671* 9.3998* 
95 -2.065 I 2.1326 -1.8133 1.4128 2.1 190 
93 -4.3252* 9.3662* -4.5146* 6.825 1 * 10.225* 
98 -2.1987 2.4757 -2.2523 1.7769 2.6071 
97 -3.5883* 6.4738* -3.5303* 4.3129* 6.4337* 
98 -1.9812 2.0334 -1.8892 1.3792 1.9985 
96 -3.5858* 6.4526* -3.6100* 4.4730* 6.6862* 

101 -1.8629 1.9083 -1.3939 1.3380 1.8353 
98 -4.8847* 1 1 .930* -4.9430* 8.2041* 12.306* 



Table 2 Tests for Unit Roots - Pa 
(t statistics in brackets b 
Regression 3 

Variable P a0 a 
LogCPI 5 0.02438 -0.00446 

" 
(1.803) (-4.057) 

Log AWE 7 0.11815 -0.01577 

ameters of ADF Regressions 
neath the estimate) 

Regression 4 
P a0 a1 ocz 
5 0.017387 -0.00175 -0.00006 

(0.5417) (-0.1440) (-0.2255) 
5 0.01406 -0.41302 -0.0001 1 

(3.262) (-3.262) (-2.724) 
0 0.54693 -0.10166 0.00251 

(2.536) (-2.537) (2.598) 
7 0.01283 -1.3302 0.00021 



ALagSDiv 
& does reject the null hypothesis W, a2=0, al=O which is evidence that the 
differences in the series are stationary without trend. The z2 test statistic rejects the 
hypothesis that al=0 so this is further evidence that the differences are stationary. 

Conclusion 
The logarithm of the dividend series is integrated of order 1 and the differences in the 
series have no drift. 

SDyields - Dividend yields on the Sbare Price Index 
& does not reject the null hypothesis a&, a2=0, al=0 so the series has a unit root 
with no trend. b does not reject the null Q=&, a2=0, al=O so this does not reject the 
zero drift hypothesis. Using the more powerful test with $1 does not reject the null @, aI=O suggesting that the drift is not significant. However regression (3) shows 
an estimate for cq, of 0.849 and this is significant. 

ASDyields 
& does reject the null hypothesis ct&O, a2=0, al=O for the differences of the series 
which is evidence that the differences are stationary. The z2 test statistic rejects the 
hypothesis that al=O SO this is further evidence that the differences are stationary. 

Conclusion 
The dividend yield series is integrated of order 1 and the differences in the series are 
stationary with zero drift. 

Intenst rates - BB90 - 90 day bank bi i  yields, TB2 - 2 year Treasury bond yields, TB5 - 5 year 
Treasury bond yields, TBlO - 10 year Treasury bond yields 
The same test statistics are significant for all of the interest rate series. @ does not 
reject the null hypothesis W,  a24. a d  so this is evidence that each of the series 
has a unit root with no trend. does not reject the null -, a2=0, al=O so this does 
not reject the zero drift hypothesis. Using the more powerful test with $1 does not 
reject the null al=0 suggesting that the drift is not significant. 

Ahtenst rates - ABB90, ATB2, ATB5, ATBIO 
& does reject the null hypothesis ct&O, a&, al=O for all interest rate series which is 
evidence that the differences of each of the series is stationary without trend. The z2 
test statistic rejects the hypothesis that al=O so this is further evidence that the 
differences of the series are stationary. 

Conclusion 
Each of the interest rate series is integrated of order 1 so the changes in yields are 
stationary with no drift. 



ATB 10 ( -9.0689* 41.130* -9.1662* 28.013* 42.018* 
* indicates significant at 10% level 

Table 3 Test Statistics for Unit Roots -Phillips-Perron Tests (n=101) 

Phillips and Perron (1988) have proposed non-parametric procedures for testing for 
unit roots with more general assumptions concerning E( than the i.i.d. assumptions for 
the Dickey-Fuller and augmented Dickey-Fuller tests. Table 3 sets out the equivalent 
test statistics to those in Table 1 using the Phillips-Perron test procedures. These were 
calculated using the procedures in Shazarn (1993). 

Variable 
10% Critical Value 
LogCPI 
ALogCPI 
LogSPI 
ALogSPI 
LogAWE 
ALogAWE 
LogSDiv 
ALogSDiv 
SDyields 

The conclusions already drawn for the SPI and for the interest rate series are 
supported by these test statistics. There are however some differences apparent for the 

TI A 72 4'2 b 
(-2.57) (3.78) (-3.13) (4.03) (5.34) 
-3.8378* 1 19.83* 2.2660 98.752* 13.073* 
-5.2039* 13.482* -6.3676* 13.538* 20.307* 
-0.3098 0.9029 -2.8153 3.4695 4.3031 

-9.8017* 48.052* -9.8160* 32.128* 48.178* 
-4.1848* 48.665* 0.0434 33.830* 9.6581* 
-8.4424* 35.636* -9.9542* 33.037* 49.544* 
-1.1221 6.5966* -1.5004 4.8385* 1.4252 

-10.607* 56.279* -10.613* 37.587* 56.374* 
-3.1195* 4.9308* -3.0255 3.3472 4.9644 

other series. For the IogCPI series the Phillips-Perron & rejects the i l l  hypothesis 
u&O, a2=0, al=O and the hypothesis that al=0 is not rejected. The conclusion is that 
the series has a unit root with a trend. The differences in the series are stationary. 
Similar conclusions are reached for IogAWE using the Phillips-Perron statistics. In the 
case of LogSDiv, the logarithm of the dividends series, the Phillips-Perron statistics 
suggest that this series is difference stationary with drift. Dividend yields are 
difference stationary without drift. 

So far the data period used has been common to all the series covering the period 
September 1969 to December 1994. Some of the series are available for longer time 
periods. Tables 4 and 5 report unit root test statistics for these longer time periods for 
the relevant series. 



Table 4 Test Statistics for Unit Roots - ADF Regressions 
Various Periods 

Variable I n 71 b 72 4 h 
10% Crirical Value I (-2.57) (3.78) (-3.13) (4.03) (5.34) 
Data from March 1939 to March 1995 

Data from March 1958 to December 1994 
LogCPI I 179 0.18249 3.3767 -1.6925 3.3323 1.5961 

LoeSPI " 
ALogSPI 

223 -0.0369 3.2802 -2.7539 4.9204* 3.9974 
210 -4.4210* 9.7739* -4.4454* 6.5980* 9.8960* 

For the period March 1939 to March 1995 Tables 4 and 5 provide support for the 
hypothesis that logSPI is difference stationary with drift. This longer period of data 
provides a more reliable estimate of the drift so the conclusion is that the IogSPI is 
difference stationary with positive drift There is evidence in Table 4 that logAWE and 

ALogCPI 
LogSPI 
ALogSPI 
LogAWE 
ALogAWE 
Data from March 1958 
LogCPI 
ALogCPI 
LogSPI 
ALogSPI 
LogAWE 
ALogAWE 
TBlO 
ATBIO 

IogCPI are integrated of higher order than 1 but the results in Table 5 suggest that 
they are integrated of order 1. 

LoeAWE 

180 -3.2500* 5.2817* -3.2444* 3.5113 5.2666 
185 -0.29941 2.8000 -2.4794 3.9967 3.1611 
172 -4.0135* 8.0617* -4.0168* 5.4166* 8.1 171* 
172 -0.07160 1.4983 -2.6340 3.4014 3.5482 
173 -2.6096* 3.7562 -2.6057 2.5520 3.4787 

to December 1994 
147 -0.51786 1.3032 -2.6342 3.1287 3.4721 
141 -2.1290 2.2675 -1.9831 1.5080 2.2608 
146 -0.60057 2.3429 -2.1793 3.0718 2.3939 
138 -4.3209* 9.3540* -4.3673* 6.3799* 9.5508* 
134 -1.0694 2.1296 -1.4421 1.9822 1.4069 
134 -1.6881 1.4316 -1.6724 1.2924 1.93 19 
143 -1.4655 1.2807 - 1.6998 1.2059 1.6020 
142 -4.4264* 9.8343* -4.4309* 6.6185* 9.8903* 

Because the data used is quarterly it is necessary to test for seasonal integration. In 

210 -0.6899 2.1214 -2.4390 3.3084 3.0349 

* indicates significant at 10% level 

quarterly data there could be a bi-annual or annual frequency seasonal unit root as 
well as the quarterly unit root tested for already. Hylleberg et a1 (1990) develop tests 
and test statistics for seasonal unit roots. Shazam (1993) provides procedures for 
implementing these tests. These procedures were applied and bi-annual and annual 
unit roots are convincingly rejected for all of these series. 

It is worth noting that structural breaks in any series can result in a stationary series 
appearing to have a unit root. This will lead to differencing the data when a model 
using the levels of the data and explicitly capturing the structural break would be more 
appropriate. Differencing series results in the loss of information about the long run 
level of the series so that care has to be taken to ensure that the series is not stationary. 



It could be argued that deregulation of financial markets during the 1980's resulted in 
a structural break in many of the series. For instance the method used to sell 
government securities changed during this period and the bond market became more 
active. The requirements for life insurance companies, superannuation funds and 
banks to hold government securities were also relaxed. During this period an 
imputation tax system was introduced for share investments. All of these factors could 
well have resulted in structural changes in rates of return and the levels of the series 
used in this study. 

Table 5 Test Statistics for Unit Roots - Phifflips-Perron Tests 
Various Periods 

Variable I Zl b 22 b b 
10% Critical Value 1 (-2.57) (3.78) (-3.13) (4.03) (5.34) 
Data from March 1939 to March 1995 (n=224) 
LogSPI 1 -0.066319 3.1281 -2.8455 4.9236* 4.2426 
ALQgSPI 1 -14.151* 100.13* -14.143* 66.678* 100.02* 
LogAWE 1 0.020279 57.654* -1 .0626 38.75 1 * 0.58240 
ALQgAWE 1 -11.358* 64.474* -1 1.332* 42.781* 64.171* 
Data from March 1948 to December 1994 (n=186) 
LogCPI 1 0.23384 73.724* -0.64481 49.144* 0.28228 

d L o g ~ W E  1 -10.584* 55.994* -10.604* 37.463* 56.192* 
Data from March 1958 to December 1994 (n=147) 
LogCPI 1 1.5225 75.700* -2.5431 57.601* 5.4467* 

dLogcpl 
LogSPI 
ALQgSPI 
LogAWE 

-5.5568* 15.382* -5.5431* 10.185* 15.278* 
-0.32714 2.6717 -2.5693 4.0070* 3.3852 
-12.851* 82.575* -12.827* 54.846* 82.268* 
-0.963 16 48.872* -0.52415 32.424* 0.52388 

COINTEGRATION 

ALQgCPI 
LogSPI 
ALQgSPI 
LogAWE 
ALQgAWE 
TB 10 
ATBIO 

The differencing operation used to achieve stationarity, often used in developing 
stochastic investment models for actuarial applications, involves a loss of information 
about long-run movements in the series. The theory of cointegration explains how to 
study the inter-relationships between the long-term trends in the series. These long- 
term trends are differenced away in the standard Box-Jenkins approach. The inter- 
relationships between the long-term trends in the series can be interpreted as 
equilibrium relationships between the series. 

-5.1516* 13.206* -5.2291* 9.1058* 13.655* 
-0.61547 2.2874 -2.2381 3.0804 2.5254 
-1 1.650* 67.861* -11.611* 44.949* 67.421* 
-0.42646 39.283* -0.52395 26.044* 0.19468 
-10.069* 50.672* -10.041* 33.597* 50.395* 
- 1.3495 1.1305 - 1 .3746 0.90826 1.1456 
-10.920* -59.631 -10.913* 39.706* 59.559* 

* indicates significant at 10% level 



Empirical studies have demonstrated that financial markets generally move quickly to 
an equilibrium since informed investors act quickly on new information particularly 
when transaction costs are low and markets are liquid. Financial markets can be out of 
apparent equilibrium as evidenced by "speculative bubbles" that occur when the share 
market booms and subsequently "crashes" even though these events are consistent 
with rational expectations. Economic systems are less likely to be in equilibrium since 
friction and price stickiness in goods and labour markets can cause the adjustment 
process to equilibrium to occur over an extended time frame. This suggests that if 
equilibrium relationships exist between financial and economic variables then these 
will only be detected by examining data over long time periods. 

Rates of return on different investments would be expected to have long run 
equilibrium relationships determining their relative values. For example the spread 
between the return on a short term investment and the return on a longer term 
investment should fluctuate around some long term relationship that reflects the risk 
premium investors require for the longer term investment over the shorter term 
investment. If a long term relationship does hold then the difference between the 
returns should have a stationary distribution. The rates of return themselves might not 
be stationary but a linear combination of them will be stationary if such a long run 
equilibrium holds. Rates of return adjusted for expected rates of inflation, referred to 
as " r d ' r a t e s  of return as compared with nominal rates of return, might also be 
expected to have a stationary distribution. 

Similarly the level of the share price index (SPI) and the level of an inflation index 
(CPI) could have an equilibrium such that they do not "wander" too far away from 
each other even though each is non-stationary. Thus if there is excessive inflation then 
it is often argued for a variety of reasons that the level of the share market should 
eventually increase in line with inflation and vice versa. In some cases a well 
developed theory might not exist to specify the nature of the equilibrium relationships 
between different series or there might be conflicting theories. In this case it will be 
the empirical relationships in the data that will support one or the other theories. 

Most actuaries assume that there is a relationship between equity returns and inflation. 
This assumption is usually implicit in the use of "real" rates of return for projecting 
asset values and for valuation purposes. If a constant "real" rate of return is used then 
this implicitly assumes that asset returns are perfectly correlated with inflation. The 
Wilkie model uses inflation as the main factor driving asset returns. Investment model 
studies by Carter (1991) and Harris (1995) include results derived from fitting 
Wilkie's model to Australian data and find no statistically significant empirical 
relationship between equity returns and rates of inflation. This conflict between often 
used actuarial assumptions and empirical results clearly requires investigation since it 
will be fundamental to investment modelling and modelling the interaction between 
liabilities and assets of insurance companies and pension (superannuation) funds. 

It is important to recognise that equity values and inflation can have a long-run 
equilibrium relationship and for there to be no statistically significant relationship 
between equity returns and rates of inflation. This could be the case if the series are 
co-integrated. Since rates of inflation and equity (capital) returns are differences in the 
logarithm of the level of the inflation index and differences in the logarithm of the 



equity index respectively, these rates of change in the levels of the indexes might 
appear to have no statistical relationship even though the levels of the indexes might 
be co-integrated with a long run equilibrium relationship. Each of the index series 
would be difference stationary containing a unit root consistent with the notion of 
market efficiency and with studies of Australian data such as Carter (1991), Harris 
(1994) and the results in this paper. 

If variables are non-stationary but an equilibrium relationship represented by a linear 
combination of the variables exists such that this linear combination is stationary then 
the variables are said to be co-integrated. Engle and Granger (1987) suggested the 
concept of cointegration and developed tests for cointegration. The concept of 
cointegration captures the notion that two or more series "move together" in some 
fashion. Each series, if looked at individually, need not have a long run equilibrium 
but their relative values might. The series have common stochastic trends. 

Testing for cointegration between any two series, where there is only one co- 
integrating linear combination determining the equilibrium relationship between the 
series, requires only the unit root tests used earlier to determine the order of 
stationarity of the investment data. Consider two series xt and yt that are integrated of 
order 1 so that they are difference stationary. If a long term (linear) relationship exists 
between these then xt-py,, for some constant 0, will be stationary. If x, is regressed on 
yt and there is a long run equilibrium relationship between them, then the residuals 
from this regression will not have a unit root. Thus for these residuals the null 
hypothesis of a unit root should be rejected if the series are co-integrated. Otherwise 
there is no evidence of cointegration. 

Table 6 reports the results of unit root cointegration tests for bi-variate series from 
Australian data using Augmented Dickey Fuller tests and Table 7 reports the results 
using Phillips-Perron tests. From the tests carried out earlier in this paper all of the 
series used were previously found to be integrated of order 1. The results in Tables 6 
and 7 were calculated using procedures in Shazam (1993). They consider each of the 
bi-variate series over the longest time period available and also for shorter time 
periods. 

There is no evidence that any of the bi-variate series considered, other than the 90 day 
bank bill yield and the 10 year Treasury bond yield, are co-integrated. In all cases 
other than for these two interest rates the test statistics for both ADF and Phillips- 
Perron tests given in Tables 6 and 7 do not reject the null hypothesis of a unit root. 
Thus there is no evidence that the SPI and the CPI "move together" nor that share 
index dividends and the CPI "move together". It is encouraging to find that the long 
and short interest rate are co-integrated since this is supported by the results of Ang 
and Moore (1994). 



Table 6 Test Statistics for Co-integration - ADF Regression Tests 
Various Periods 

Data from September 1967 to December 1994 
RSC (SPI-CPI) 1 109 -1.7755 1.5808 -1.8020 1.1877 1.7770 

Variable 

ARSC 1 186 -3.9832* 7.9760* -3.9460* 5.2886* 7.8902* 
Data from March 1958 to December 1994 

n TI 4 22 4 b 

RSC (SPI-CPI) 
ARSC 
RlOC(TB 10-CPI) 

AFcDC 1 99 -4.5093* 10.167* -4.4580* 6.7409* 10.111* 
Data from September 1969 to December 1994 
RSC (SPI-CPI) 1 101 -2.1646 2.3788 -2.2573 2.1308 3.1598 

147 -2.2356 2.5917 -2.2261 1.7159 2.4817 
138 -4.1852* 8.7753* -4.1839* 5.8690* 8.7864* 
144 -1.8067 1.6823 -1.7801 1.2556 1.8333 

ARSC 
RSD (SPI-DIVS) 
ARSD 
RDC (DIVS-CPI) 

ARSC 1 93 -3.9151* 7.6758* -4.0427* 5.4993* 8.2371* 
RSD ISPI-DIVS) 1 94 -2.2297 2.4956 -2.4545 2.5298 3.7847 

10% Critical Value 

100 -3.5151* 6.1879* -3.7956* 4.8270* 7.2305* 
102 -1.991 1 1.9934 -2.0944 2.0728 3.0978 
100 -3.8000* 7.2352* -4.1384* 5.7208* 8.5658* 
99 -2.0153 2.0389 -2.0644 1.4597 2.1813 

ARSD 1 93 -4.2881* 9.1979* -4.3814* 6.4889* 9.7294* 
RDC IDIVS-CPI) 1 91 -1.9483 1.9080 -2.0843 1.5118 2.2576 

(-2.57) (3.78) (-3.13) (4.03) (5.34) 
Data from September 1948 to March 1995 
RSC (SPI-CPI) 1 186 -2.2308 2.4892 -2.2755 1.7733 2.6588 

ARTlOC 1 98 -4.9972* 12.486* -5.0212* 8.4723* 12.708* 
* indicates significant at 10% level 

ARDC 
RJ390T10 (BB90-TB 10) 
~ ~ ~ 9 0 ~ 1 0  
RJ390C (BB90-CPI) 
ARB9OC 
RTl OC (TB 10-CPI) 

RSC are the Gsiduals from the regression logSPI = a, + a, IogCPI 
RSD are the residuals from the regression logSPI =a, + at logSDiv 
RDC are the residuals from the regression IogSDiv = ao + a, logCPI 
RB90T10 are the residuals from the regression BB90 = a, + at TBlO 
RB90C are the residuals from the regression BB90 = a, + a, IogCPI 
RTlOC are the residuals from the regression TBlO = a, + at IogCPI 

97 -3.7729* 7.1208* -3.7797* 4.8360* 7.2507* 
95 -3.0086* 4.6227* -3.3381* 3.7971 5.5976* 
93 -4.5139* 10.189* -4.4986* 6.7474* 10.120* 
95 -1.9732 1.9849 -1.9528 1.5621 2.3052 
93 -4.3734* 9.5769* -4.5307* 6.8770* 10.302* 

101 -1.4796 1.0999 -1.6161 1.3038 1.9502 



Table 7 Test Statistics for Co-integration - Phillips-Perron Tests 
Various periods 

Variable I n TI @I 72 h 4 
10% Critical Value I (-2.57) (3.78) (-3.13) (4.03) (5.34) 
Data from September 1948 to March 1995 
RSC I 187 -2.3507 2.7666 -2.3937 1.9552 2.93 18 
ARSC 186 -12.372* 76.536* -12.345* 51.800* 76.200* 

ARlOC 147 -11.194* 62.657* -1 1.207* 41.872* 62.807* 

ARSC 
RSD 
ARSD 
RDC 

Data from March 1958 to December 1994 

109 -10.128* 51.297* -10.122* 34.158* 51.277* 
110 -2.2646 2.5663 -2.2649 1 I906 2.6852 
109 -10.423* 54.332* -10.413* 36.145* 54.207* 
110 -1.9553 1.9130 -1.9500 1.2701 1.9015 

ARDC 

RSC 
ARSC 
RlOC 

Data from September 1967 to December 1994 

109 -11.337* 64.269* -1 1.283* 42.449* 63.674* 

ARSC 

148 -2.3100 2.7567 -2.301 1 1.8269 2.6546 
147 -11.440* 65.442* -1 1.400* 43.330* 64.991* 
148 -1.5317 1.2507 -1.5376 1.0544 1.5053 

RSC 

101 -9.6874* 46.938* -9.7916* 31.968* 47.938* 

ARSD 

110 -1.8159 1.6544 -1.8381 1.2285 1.8384 

Data from September 1969 to December 1994 

101 -9.8873* 48.908* -9.9629* 33.1 1 l* 49.644* 

ARDC 

RSC 

RSD 

101 -10.755* 57.858* -10.703* 38.215* 57.318* 

AR9OC 

RSC are the residuals from the regression IogSPI = a, + a, IogCPI 
RSD are the residuals from the regression IogSPI = a, + al IogSDiv 
RDC are the residuals from the regression IogSDiv = a, + a, IogCPI 
R9010 are the residuals from the regression BB90 = a, + a, TB 10 
R90C are the residuals from the regression BB90 = a, + a1 logCP1 
RlOC are the residuals from the regression TL3 10 = a, + a, IogCPI 

102 -2.1995 2.4551 -2.2783 2.1503 3.1902 

102 -2.7287 3.7547 -2.7584 2.8158 4.1945 

RDC 

101 -10.789* 58.196* -10.782* 38.750* 58.1 19* 

ARlOC 

The conclusions that can be drawn from this analysis of co-integrating, or "long-run" 
equilibrium, relationships in the Australian returns data is that, with the exception of 
the interest rate series, the analysis finds no strong evidence that such equilibrium 
relationships exist between the series analysed. This has implications for the structure 
of stochastic investment models since it will be important to incorporate an 
equilibrium structure for interest rates in the model but differences in the logarithms 
of the SPI, CPI and dividends can be used in the model as stationary variables without 

102 -1.8420 1.6966 -1.8487 1.1802 1.7688 

R90 10 

101 -9.2265* 42.570* -9.2868* 28.755* 43.130* 

the need to incorporate any specific equilibrium between these series. This also adds 

102 -4.2355* 8.9906* -4.5131* 6.81 19* 10.201* 

RlOC 

* indicates significant at 10% level 

102 -1.5535 1.2136 -1.6759 1.3390 2.0035 



to the empirical evidence that there are no strong relationships between inflation and 
equity returns. 

STATE SPACE MODELS 

Wilkie (1986, 1995) and Carter (1991) use transfer functions to develop their models. 
This approach allows the estimation of a cascade structure for a stochastic investment 
model where causality in one direction is assumed. The main driving variable in these 
models is the rate of inflation. 

Transfer functions were examined in this research. The results are not reported in any 
detail here since it was found that after fitting these models there was evidence of 
feedback between the different variables. This means that transfer functions will not 
adequately capture the relationship between the different series since they impose a 
uni-directional causality that is not supported by the empirical data. 

An alternative model is the Vector Autoregressive or VAR model. These models are 
used in practice for asset models and have the advantage that they allow for feedback. 
VAR models were fitted and it was found that too many lags were required and the 
models were difficult to interpret. Introducing a moving average tern into these 
models is equivalent to an infinite number of auto-regressive terms so that a Vector 
Autoregressive Moving Average (VARMA) model should provide a more 
parsimonious model than a VAR model. 

State space models provide a more succinct method of representing a stochastic 
investment model. They have an equivalent (VARMA) representation which has 
fewer lagged variables than the VAR models. Transfer function models are nested in 
the VARMA models. A state space model can be written as a state equation: 

ZK+I = F zt + G et+l 
and an observation equation: 

Yt = Hzt 
where yt are actual observations at time t, zt is the state of the model at time t, F, G 
and H are matrices of parameters and e, is a vector of mean zero, serially uncorrelated 
disturbances with covariance matrix Z. The statistical package SAS was used to fit 
state space models using its state space procedure that selects the best model using the 
AIC model selection criteria. We assume that the state of the system is observed 
without error and that the series used in the model are the relevant state variables. 

Returns and idation 
To examine the relationships between asset returns and inflation, state space models 
were fitted using each of the individual asset returns series and inflation. Models were 
fitted to the return on the equity index, the growth rate of dividends, the 10 year bond 
rate and the rate of inflation since actuaries often focus on rates of return and inflation 
when assessing premiums and liabilities. These models also allow a comparison with 
the transfer function models fitted by others. 

EQUITY INDEX @PI) AND JNFLATION (CPI) 
The following state space model for equity index and inflation rates was fitted as the 
"best" model using the quarterly data from September 1948 to March 1995: 



with, = var[.wl] = [ 8.39~10" -7.18~10-' 
e,+, -7.18~10-' 8.84x10--' 

where the variables are the differences in the logarithms of the series, or the 
continuously compounding returns, adjusted for the mean of the series as follows: 

with Yt= log(CPI), Xt = log(SPI),, and y,+llt = yt+l-nt+l is the "predicted" value for 
time t+l conditional on information at time t. Note that the vectors e+l are assumed to 
be a sequence of independent normally distributed random vectors with mean 0 and 
covariance matrix Z. 

From the covariance matrix the standard deviation of the residuals after fitting the 
model are 0.0092 for the quarterly continuously compounding rate of inflation and 
0.094 for the quarterly continuously compounding rate of growth of the SPI with a 
correlation between the residuals of -0.0834. 

The parameter estimates were: 

Paramete Estimate Std. Error t value 

For simulation studies such as in asset-liability modelling it is important to recognise 
that this model does not capture parameter or model uncertainty and has been 
calibrated to historical data over the time period September 1948 to March 1995. The 
variances in asset returns and rates of inflation are assumed to be homoscedastic in 
this model whereas the analysis carried out later in this paper provides evidence of 
heteroscedasticity. 

The model can be written as an equivalent VARMA model as follows: 

Note that using this modelling approach the best model for log(SPI), is a random walk 
with drift and an ARMA model is required for l0g(CP1)~. This model is very different 
to that suggested by Wiikie. 



EQUITY DIVIDENDS AND INFLATION (CPI) 
The following state space model for equity dividends and inflation was fitted as the 
"best" model using the quarterly data from September 1967 to December 1994: 

with 

and Xt = IO~(DIVS)~. Y, = log(CPI),. 

The parameter estimates were: 

Parameter Estimate Std. Error t-value 
W,1) 0.030 0.010 3.038 
W,2) 0.340 0.121 2.800 
W.3) -0.236 0.082 -2.864 
F(5,4) 0.481 0.150 3.208 
G(3,2) 0.258 0.091 2.837 
~ ( 4 ~ 1 )  -0.021 0.010 -2.057 
G(4,2) 0.382 0.089 4.290 
G(5.2) 0.440 0.089 4.971 

An equivalent VARMA model can be readily developed from the above state space 
model. 

10-YEAR TREASURY BOND RATES (TBIO) AND CPI 
Using the quarterly series from March 1958 to December 1994 the state space model 
was: 



with 

and Xt = (TB lo),, Yt = log(CPI),. 

The parameter estimates were: 

Parameter Estimate Std. t-value 
Error 

F(4,3) 0.675 0.042 16.146 
F(4,4) -0.308 0.057 -5.448 
G(3,2) 0.126 0.056 2.245 
G(4,l) 0.382 0.073 5.232 
G(4,2) 0.182 0.052 3.516 

The equivalent VARMA model fit is given by the following equation. 

These bi-variate models capture the relationship between these variables and assist in 
understanding the nature of these series and their interrelationships. However it can be 
seen that the models for the inflation series differ in each of the above models. This 
suggests that a model incorporating all of the series could provide more information 
about the best model for inflation since it will incorporate the interrelationships 
between the series. Such a model was fitted and the resulting model was complex and 
difficult to interpret so it has not been set out in this paper. 

Other models 
Models were also fitted to the SPI and the dividend series as well as the SPI and the 
10 year bond yield to examine the relationships between these series. 

EQUITY INDEX (SPI) AND EQUITY DIVIDENDS 
The best state-space model using the quarterly series from September 1967 to 
December 1994 was found to be: 



where 

The model indicates that these series are random walks with drifts and correlated 
errors. In this case parameter estimates will be more efficient in a model that includes 
both series. Even though the statistical evidence supports random walk models for 
both series the correlation of the errors means that information is pooled by 
considering the two series simultaneously. Note that the model is for an equity 
dividend index and not for a dividend yield. The dividend yield is given by the 
difference in the dividend index divided by the value of the share price index. Models 
that assume that the dividend yield is stationary and mean-reverting will not 
necessarily be consistent with this fitted model. 

EQUITY INDEX (SPD AND 10-YEAR TREASURY BOND RATES (TB10) 
The best state-space model for the quarterly series from March 1958 to December 
1994 was: 

where 

The parameters were: 



Parameter Estimate SM. Error T-Value 
F(1,1) 0.982 0.016 63.029 

Note that the fitted 10 year bond yield model is close to a random walk with drift and 
the equity index is a random walk with drift. 

Summary 
These models have all been bi-variate models. Ignoring heteroscedasticity, they 
provide support for the random walk model for the equity index. They also provide 
support for modelling the difference in interest rates as a stationary series and not the 
level of the series. These features are not found in many of the stochastic models that 
have details available in the public domain. For asset liability studies it will be 
important to have a model to project the equity returns, dividends, inflation and 
interest rates as a multi-variatc system. As noted earlier such a model appears to be 
rather complex and difficult to interpret. This is an important issue that requires 
further investigation. The analysis of the variances of the series indicates the need for 
models that incorporate heteroscedasticity. In the state space approach the parameters 
in F and G can be allowed to be time varying. The models can incorporate parameter 
uncertainty. The Kalman filter maximum likelihood approach can be used with state 
space models to estimate these model parameters. 

It should also be noted that tests of the assumptions of the model concerning the 
residuals have not been performed for these models. The results are based on the 
assumptions of i.i.d. and normally distributed errors. 

CONCLUSIONS 

This paper has set out the results of research into the structural features of a stochastic 
investment model for actuarial applications using Australian data. This analysis is 
fundamental to the construction of a soundlv based model. It has analvsed Australian 
investment data using a quarterly time period. It has formally tested for stationarity of 
all the series and tested to see which series are co-integrated and therefore maintain a 
long run equilibrium relationship. It has also examined the appropriateness of transfer 
function models that assume one way causality between series using Australian 
investment data. 

The results of the research suggest that the stationary variables in the Australian 
investment data are the rate of (continuously compounding) growth in the Share Price 
Index (SPI), the rate of (continuously compounding) growth in the Consumer Price 
Index (SPI), the rate of (continuously compounding) growth in a Dividend index 
representing the dividends on the SPI, and differences in the interest rate series. The 
statistical analysis did not provide evidence that the interest rate levels were 
stationary. 

The cointegration tests indicated a long-run equilibrium relationship exists between 
the interest rates whereas there was no evidence to support such a relationship 
between equity values, as measured by the SPI and a Dividend index, and the level of 
the inflation index (CPI). 



Transfer functions models were fitted to the various series and inflation but they were 
not found to capture the relationships between these series. Thus it was necessary to 
use state space models to allow for feedback between the different series. State space 
models for the different series and inflation were fitted to provide a comparison with 
transfer function models fitted by other researchers. 

This research demonstrates that further investigation is required in order to understand 
the appropriate structure for a stochastic investment model. It does highlight some 
important lessons for those wishing to construct and use stochastic investment 
models. It indicates the type of variables that should be used in these models and the 
nature of the relationships that should be built into them. These matters are 
fundamental to the construction of stochastic investment models. 



APPENDIX A 

AUSTRALIAN INVESTMENT DATA - SUMMARY STATISTICS 

Different series were available for different time periods. In the analysis in the paper 
the longest time period available for the series have been used where possible. 
Statistics for these series over different time periods are summarised in this Appendix. 

(1) Consumer Price Index - all groups (CPI) and AU Ordinaries Share Price Index (SPI) 
Quarterly data was available for these series for the period September 1948 to March 
1995. Table A1 sets out summary statistics for these indices, the logarithm of the 
index and the change in the logarithm. 

Table A1 
Summary statistics of CPI and SPI, logarithm of CPI and SPI and first 

differences of logarithms of CPI and SPI. 
Statistics I N Min Max Mean St Dev Skewness Kurtosis 
CPI 1 187 6.70 114.70 39.1064 34.0734 1.0008 -0.4688 

A&(SPI) I 186 -0.5728 0.2613 0.0161 0.0940 -1.6993 8.7947 
Note the negative skewness and high kurtosis for the continuously compounding return on the SPI - 

log(CP1) 
AIog(CP1) 
SPI 
log(SP1) 

given by the variable AIog(SP1). 

187 1.9021 4.7423 3.2964 0.8573 0.3615 -1.2894 
186 -0.0087 0.0704 0.0153 0.0132 1.1935 2.0125 
187 84.60 2238.70 561.5283 567.3915 1.3879 0.6055 
187 4.4379 7.7137 5.8806 0.9354 0.3983 -0.9342 

(2) Consumer Price Index - all groups (CPI) and Share Dividends (DNS) 
Quarterly data for the period September 1967 to December 1994 was available for the 
CPI and dividend yields. The Dividend yield series is the Melbourne weighted (M.W.) 
series from September 1967 to December 1982. This was merged with the Australian 
dividend yield (A.Y.) series that is available from September 1983 to March 1995 by 
taking 2/3M.W.+1/3A.Y. for March 1983 and 1/3M.W.+2/3A.Y. for June 1983. The 
share dividend series (DIVS) is derived as the product of the SPI and the dividend 
yield for each quarter. It represents an annualised amount of dividends paid over the 
prior 12 months. Table A2 sets out summary statistics for these series, the logarithms 
of the series and the differences in the logarithms of the series. 



Table A2 
Summary statistics of CPI and DIVS, logarithm of CPI and DIVS and first 

differences of logarithms of CPI and DIVS. 
Statistics I N Min Max Mean St Dev Skewness Kurtosis 
CPI 1 110 16.20 112.80 56.9036 33.2526 0.3283 -1.3353 

(3) Interest Rates 
Quarterly interest rate data is available for 90-day Bank Bills (BB90) from September 
1969 to December 1994. The summary statistics of BB90, log(BB90) and 
IYog(BB90), = 10g(BB90)~ - log(BB90) are given in Table A3. Data for 5-year 
Treasury Bonds (TB5) is available for the period June 1969 to December 1994. The 
summary statistics of TB5 and A (TB5)[ = TB5[ - TB5,.1 are also given in Table A3. 
Data for 10-year Treasury Bonds (TBlO) is available for the period March 1958 to 
December 1994. The summary statistics of TBlO and A(TBIO)t = TBIOt - TBlOt.1 are 
also given in Table A3. 

log(CP1) 
AIog(CP1) 
DIVS 
log(D1VS) 
AIog@IVS) 

Table A3 

110 2.7850 4.7256 3.8406 0.6678 -0.2351 -1.3759 
109 -0.0046 0.0566 0.0178 0.0116 0.7168 1.0666 
110 747.40 9398.25 3526.76 2603.95 0.8094 -0.6369 
110 6.6166 9.1483 7.8808 0.7802 0.0526 -1.3005 
109 -0.1987 0.2132 0.0208 0.0653 -0.3005 1.2734 

Summary statistics of Interest rates and first differences of Interest rates. 
Statistics I N Min Max Mean St Dev Skewness Kurtosis 
BB90 1 102 4.45 19.95 10.9093 4.1029 0.3310 -0.8313 

1.4929 2.9932 2.3 148 0.3981 -0.2784 -0.8812 s:?;) 1 -0.4002 0.6213 0.0034 0.1712 0.6058 1.4652 
0.0128 0.0394 0.0253 0.0072 -0.0909 -1 .OW7 

AVfW 102 -0.0060 0.0050 0.0001 0.0019 -0.1966 1.2405 
TBlO 0.0106 0.0394 0.0216 0.0085 0.2654 -1.3368 
A m l o )  -0.0056 0.0048 0.00008 0.0014 -0.1 179 3.7768 

(4) AN series 
Quarterly data for all series was available from September 1969 to December 1994, 
Table A4 provides summary statistics for this time period. The data are CPI - 
Consumer Price Index, LogCPI - logarithm of (CPI), AWE - Average Weekly 
Earnings, LogAWE - logarithm of (AWE), SPI - Share Price Index, LogSPI - 
logarithm of (SPI), SDyields - Share dividend yields, SDiv - Share dividends series, 
BB90 - 90-day bank bills yields, TB2 - 2-year treasury bond yields, TB5 - 5-year 
treasury bond yields, TBlO - 10-year treasury bond yields. 



Table A4 
Summarv statistics of all series -~ ~ 

Quarterly Data from September 1969 to December 1994 
Variable 1 Mean StDev. Max Min Median Mode Skewnes Kurtosis 

CPI 
LogCPI 
AWE 
LogAWE 
SPI 
LogsPI 
SD yields 
SDiv 
BB90 
TB2 
TB5 
TBlO 110.648 2.8299 16.400 5.7500 10.180 9.5000 -0.0997 -1.0091 

Table A5 
Jaraue-Bera As-vm~totic LM Normality Test 

* ~eptember 1569 - Deecmber 1994 - 
Chi-squared 2DF 5% Critical Value 5.99 

Variable I Chi-Sauare 
I stat& 

CPI I 8.74* 
LQgCPI 
AWE 
LogAWE 
SPI 
LogsPI 
SD yields 
SDiv 
BB90 
TB2 
TB5 
TBlO I 4.57 

*significant at 5% level 
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