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Many financial time series processes appear subject to periodic structural changes in their 

dynamics. Regression relationships are often not robust to outliers nor stable over time, whilst 

the existence of changes in variance over time is well documented. This paper considers a 

vector autoregression subject to pseudocyclical structural changes. The parameters of a vector 

autoregression are modelled as the outcome of an unobserved discrete Markov process with 

unknown transition probabilities. The unobserved regimes, one for each time point, together 

with the regime transition probabilities, are to be determined in addition to the vector 

autoregression parameters within each regime. 

A Bayesian Markov Chain Monte Carlo estimation procedure is developed which 

generates the joint posterior density of the parameters and the regimes, rather than the more 

common point estimates. The complete likelihood surface is generated at the same time. The 

procedure can readily be extended to produce joint prediction densities for the variables, 

incorporating parameter uncertainty. 

Results using simulated and real data are provided. A clear separation of the variance 

between regimes is observed. Ignoring regime shifts is very likely to produce misleading 

volatility estimates, and is unlikely to be robust to outliers. A comparison with commonly used 

models suggests that the regime switching vector autoregression provides a particularly good 

description of the data. 

Keywords: regime switching; joint parameter density, joint prediction densities; outliers; 

robust estimation; Gibbs sampler, Markov chains; Bayesian estimation. 



Stock & Watson (1996) examined the stability and predictive ability of 8 univariate 

models for each of 76 monthly U S times series, and 8 bivariate models for each of 5,700 

bivariate relationships They found evidence of substantial instability in a significant proportion 

of the univariate and bivariate autoregressive models considered. 

Conditional heteroscedasticity, or changes in the level of volatility, has been found in 

financial series by numerous researchers, both actuarial and from the wider financial and 

econometric fields. Examples of the former include Praetz (1969), Becker (1991), Harris 

(1995b), Frees et al (1996) and Harris (1996) Examples of the latter include McNees (1979), 

Engle (1982), Akgiray (1989), Hamilton & Susmel (1994), Hamilton & Lin (1996) and Gray 

(1996). 

The proposition underlying regime switching models is that, over time, changes in the 

financial environment may be closely associated with relatively discrete specific events. The 

process may have quite different characteristics in different regimes. A tractable mathematical 

model of structural changes and discrete market phases is the univariate Markov regime 

switching autoregressive process introduced by Hamilton (1989), and considered by Albert & 

Chib (1993) and Harris (1996). 

Given that financial series appear interdependent, both in terms of their levels and their 

volatilities, e.g. Harris (1994, 1995b, 1995c) and Hamilton & Lin (1996), a vector regime 

switching process would seem to be an attractive description of the data. Hamilton (1990) 

proposed an EM maximum likelihood algorithm for estimating a Markov regime switching 

vector autoregression. The present paper develops an alternative Bayesian Markov Chain 

Monte Carlo (MCMC) estimation procedure which is more informative, flexible, and efficient 

than a maximum likelihood based approach. 

In the process being considered, the various series are able to interact through regression 

relationships in the conditional means and through contemporaneous correlations in the 

residuals, as well as through joint regime switching in the conditional means, regressive 

correlations, variances and contemporaneous error correlations. Within each regime the 

process is assumed linear stationary. Joint regime switching produces nonlinear dependence 

between the series, and can account for discrete market phases and cycles, episodes of 

instability, and ieptokurtic (i.e. fat-tailed) frequency distributions. In the univariate case, the 

model fitting results of Gray (1996) and Harris (1996) suggest that regime switching models 

compare more than favourably with common autoregressive and conditional heteroscedasticity 

models. The results in section 6.3 of the present paper suggest that the same is true of regime 

switching vector autoregressions. 





- 
~ i ~ ( ~ , )  = 0 and E C , ( ~ ,  )i:p,, = qp,, V t  > q . X ,  and are n q x l  column vectors, while the 

A are mqxniq matrices. 

The total parameter set to be estimated is h r , p j x , ,  A(,) ,  .., A j r l ,  n( l l , .  ., qx,, P] , 

which can be partitioned as h = (O,P). To ensure that the process is identifiable, it will 

sometimes be necessary to define the regimes by insisting upon prior restrictions on the 

parameters, such as ordering of the variances of at least one of the variables (components of 

the x,). If this is not done, it is possible that the regime associated with essentially the same set 

of data points could be labelled differently in different iterations of the estimation procedure. 

The next 3 sections, sections 3 to 5, develop the procedure used to generate the joint 

parameter density and estimate the model. Those who do not wish to consider the mathematics 

of the estimation procedure at this stage may wish to skip the next 14 or so pages and go 

directly to section 6.2, which reports the results of fitting the model to real data. 

Draws from the joint posterior distribution of the regimes and the parameters, given the 

sample data, can be simulated using Markov Chain Monte Carlo methods, such as the Gibbs 

sampler and Metropolis-Hastings algorithm. Chib & Greenberg (1995) provide a usehl and 

readable description of MCMC methods 

Markov Chain theory would usually start with a transition matrix in the case of discrete 

states, pT = @,I, or a transition kernel density in the case of continuous states, p(xy) Since 

the process must end up somewhere at each transition, x , p U  = 1 or ly(x ,y)dy = 1 The 

probability of the process being in state j after n transitions, given that it was initially in state i ,  
is given by p!'') = xkp!; - ' )pb  (discrete case). A limiting or invariant distribution is said to 

exist whenever pj;") -+ rr, as 11 + m It follows therefore that i?, = ~ , r r r p V  or 

X(Y)  = j +)P(x> Y)& 

A major concern of the theory is to determine conditions under which there exists an 

invariant distribution, and conditions under which iterations of the transition matrix or kernel 

converge to the invariant distribution. 

MCMC methods look at the theory from a different perspective. The invariant distribution 

is the target distribution from which we wish to sample, generally a Bsyesian posterior 

distribution. The transition matrix or kernel is unknown. 



3.1 THE GIBBS SAMPLER 

The Gibbs Sampler generates samples from a joint density fo = ~(XI,..,XN) via a 

sequence of random draws or samples from full conditional densities, as follows 

xy'' c f (x, xir'.  . ., x;)) 

That completes a transition from p' to pi". The sequence {p') forms a realisation of a 

Markov chain which converges in distribution to a random sample from the joint distribution 

fo =f(x,,..,x~). 

3.2 THE METROPOLIS-HASTINGS ALGORITHM 

Suppose p(xy) is unknown, but that a density q(xy) exists, Jq(x ,~)dy = 1 ,  from which 

candidate values of y can be generated for given x, to be accepted or rejected. The candidate 

generating density, q(xy), is a first approximation to the unknown transition kernel density, 

p(xy). q(x8) needs to be modified to ensure convergence to the desired target density. This is 

done by introducing a move probability, a ( x j )  < 1 If a move is not made, with probability 

1 - a(xy), then the process remains at x and again returns a value of x as a value from the 

target distribution. The move probability is given by 

I 1 otherwise 

An important feature of the algorithm is that the calculation of a(x8) only requires 

knowledge of the target density 4 . )  up to proportionality (which in the case of a Bayesian 

posterior is given by the product of the likelihood and the prior), since 4 . )  only appears as a 

ratio. 

A particularly useful application of the Metropolis-Hastings algorithm is where an 

intractable density arises within a Gibbs Sampler as the product of a standard density and 

another density, e.g n(x) oc Hx).&), where Kx) is a standard density that can be sampled. 

Then q(xy) = &) can be used to generate candidate y, which are accepted with probability 

a ( q )  = min{yliy)/tp(x), 1 )  The Metropolis-Hastings algorithm will be superior to direct 

acceptancelrejection methods since the move probability will be higher than H.), the 

acceptance probability under the acceptancelrejection method, particularly where tp(.) is small. 



4. THE LIKELIHOOD FUNCTION 

The contribution of the 1-th data vector to the likelihood conditional on the regime is 

~ ( ~ , I P , . Y ~ - ~ > ~ ) = ( ~ ~ ) - ~  ~lq;,)li ~ e x ~ ( - i 5 ; ~ , , q ; , ) 5 , , ~ , ) ]  

6=1 

in the case o f t  > q, where Y, - (XI ,.., x,) 

The first q data vectors can be taken together. I(X,lp,,h) can be obtained by exploiting 

stationarity, i.e. 

Ex, = p, and assuming the process is stable' within each regime, 

The unconditional or stationary r n q x n q  variance-covariance matrix, V, can also be determined 

from 

vecv = (I,, - A 8 A)-' vecB, 

as described by Liitkepohl (1991, p21-22). vec is the column stacking operator2, and 8 is the 

(right) kronecker product3 The contribution to the likelihood from the first q data vectors is 

therefore 

"'9 

' ( X ~ I P ~ > L ) =  (2z)-y 'exp{-i(xq - & ( k ) ) T v ( ~ k ) > ~ ( k i ) - l ( x q  -F (~ ) ) } ,  

where p, = k. 



In practice, to avoid inversion of an nz2 q2 x nl2 q2 matrix, V could be approximated as a 

finite sum of the form 61 ~ A r 6 ( A z ) ' ,  and then an approximation to V-I obtained by 
r = l  

inverting the approximation to V (an rnqxlnq matrix) 

The full likelihood conditional on the regimes is therefore 

where Y = Y ~ a n d  p =  (p,,.., PN} 

The exact or unconditional likelihood of h ("h likelihood) is obtained by integrating 

over all possible regimes, i.e. 

The exact or unconditional maximum likelihood parameter estimate is given by the value of h 

that maximises L.  

5. MARKOV CHAIN MONTE CARLO ESTIMATION OF THE MODEL 

Draws from the joint posterior distribution of the regimes and the parameters given the 

data,p@,hlY), can be simulated via the Gibbs Sampler and the Metropolis-Hastings algorithm. 

The algorithm will involve the repeated generation of variates from their full conditional 

densities, as follows: 

p(CCl )  + p(C), A(C), ~ ( c ) ,  p'c) 

p ( ~ + l l  + P(C+Il  AIC) ,  ~ ( 0 ,  pW 

A(ctl) + P('+I) p(c+l)r  Q(c), P '~'  

n(Ctl) + p(C"), p ( ~ i l ) ,  A(ctl)  p(C) 

p(c+l) p(C+l), p (C+l ) ,  A(c+~),  Q ( C + l ) ,  

In each case, V will be a function of the A and the R on the right hand side. Under mild 

regularity conditions, the sequence {p'"", h("") = {p""', p'c'l', A'"", o'"", P'""} will form 

a Markov chain whose limiting distribution will bep(p,hlY). 

5.1 GENERATING THE REGIMES 

p'"" t p@', A"', R'"), P"'. The regimes can be generated jointly from 
. A - 1  

P(Pl Y ,  h) = P(P, IY, A). n P(P, I,,+, ,Y,. A) 
t=q 

The filter probabilities, p @ ~ ~ ~ , h ) J ,  can be calculated from 



Once the filter probabilities, p@NIY,h), have been calculated, a sample can easily be generated 

fromp@~IY,h), since it is a discrete density. 

The above iterations require the evaluation of the contributions to the conditional 

likelihood, l(~,(p,,Y,~,h). These will require evaluation of the mxni determinants of the K 
a - I  5 .  

To initialise the previous iterations, the K p@,/h) will be required. They can be derived as 

the limiting distribution of the Markov chain6 Define the Kxl column vector 

x - @@,=ilk), i = l, . . ,K}, then x = Pn:. n: can be estimated by iterating on x'""' = ~x'"' until 

convergence to the desired level of accuracy. T h e p h l h )  are given as the elements of n:. 

Thus to generate a sample from the joint distribution of p we first generate p~ from 

p@~lY,h). Then for t = N-1 to q, calculate p@rlpt+l,Yr,h) using the most recently generated 

value of p,+, and the previously calculated filter probabilities, as follows 

P ( P ~ + I > P ~ I ~ , > ~ )  = P ( P , + ~ I P , J ) ~  P (P , IY ,>~)  for Pl= l , . . J  

Once the probabilities, p@,lpl+l,Y,,h), have been calculated, pl can easily be generated 

from p@llpl+l,Yl,h), since it is a discrete density. For the regime switching process to be 

defined, each of the K regimes needs to be visited. 



5.2 GENERATING THE PARAMETERS 

The conditional densities of the parameters are given by 

~ ( h ,  lp, hs, > Y) oc L(YlP. h) .  ~ ( P l h ) .  P(h ,). 

pic+') +- pic+'", A'"', a"', Pic'. In this section, pi,.) represents one of the possible discrete 
values of p(p, ) ,  pI E ( I ,  ,K) .  Independent uniform priors can be used for the pi,), conveying 

no prior information. The prior would therefore be uniform where the identifiability restrictions 

(if any) are met, and zero everywhere else. The level parameter vectors can be generated 

jointly from 

which is the product of K independent multivariate Normal densities (and the identifiability 

prior), since the contribution at each time t involves only one of the pi,,. The exponent in the 

above expression is 

Suppose p, = k and that n, of the pl = r, then the exponent can be rewritten as 



Ignoring the first term in V-', which is a function of p(klr the above expression is in the 

form of K independent vector Normal densities in the p(,,. 

where N(.,.) is the multivariate or vector Normal density7 The K-1 p,,,, r * k, can therefore 

be independently generated from the above multivariate Normal densities Asymptotically, the 

means of the above densities, for each regime, are the average of the data vectors in each 

regime, as expected. 

The terms in ~ k ,  are not quite vector Normal, since V" is also a function of ~ k ,  A 
Metropolis-Hastings step can be used to generate p(~,. First, a candidate p(k, is generated, 

- ( n, - 1 - A )  , = ,  =(., - t A ; : p + l , ) , l W , i  , and accepted i e .  
p,=P /,=I ?Ik - 1 
,>q 

p&') = pji\, with probability 

otherwise the value from the previous Gibbs iteration is retained, i e. = pi;;. Here, 

VG;(') is a hnction of Alf), and Qil;", while v(;~;" is a function of A&') and q;yc-" 



Generation of the K k,., would continue until the prior conditions represented by 

~ ( p ( , ) ,  . . , pix,)  are satisfied ( i e  by direct acceptancelrejection). 

5.4 GENERATING THE REGRESSIVE CORRELATION PARAMETERS 

A ( ~ + ~ )  + d c i l )  , p'c'l', R'", P'"'. In this section, A',, represents one of the possible discrete 
values of Aip,,, p, E (l , . . ,K).  The regressive correlation parameter matrices can be generated 

Recall that 

so that only the first 111 rows need to be generated Define the liixniq matrix operator 

9 = (I,, Om, On,, .. , Om), so that 9 A  = (A'", . , A'~)). It is the K 9A(,., that need to be 

generated. 

A suitable prior for each of the 9A(,-, is a matrix Normal density in the region of stability of 

the VAR process within each regime, and zero everywhere else Thus it is assumed a priori 

that the process is stable in each regime. The prior for 9Af,, will be represented by 

p(9A(,]) a N(B(,), lly,., I&) x &A(,)), where the first term is a matrix ~ o r m a l '  density, 

B(,) = ( B ~ ~ ~ , B ~ : ~ , .  . ,B;:;) is the nlxniq prior estimate of SA,,.,, I,&, is an ni2q x m2q identity 

matrix, and the last term is uniform in the stable region of A(,, and zero everywhere else In the 
absence of strong prior evidence, each of the B::: is likely to be zero everywhere except 

perhaps instances on the diagonal where serial correlation is clearly present, e.g. inflation rate 

series. The prior variance of each element of 9A(,, is I/!+,, where I+, can be interpreted as the 

equivalent number of prior observations in regime r. 

Stability requires that A' converge rapidly to zero as r + so, so that the sequence 

{A7, s = 0,1,2,..) is absolutely summable9, converging to (I - A).'. This is equivalent to 

insisting that all eigenvalues of A have modulus less than one The latter condition holds if and 

only if the determinant of (I - :A) is nonzero for lzl i 1, i.e iff det(1 - :A"' - . - Z ~ A ' ~ ) )  # 0 on 

the interval lzl 5 1. For practical implementation it is wise to insist that det(1 - :A) exceeds a 

fixed positive constant, say 0.15, for z = i l  (noting that it equals 1 for : = 0), to control the 

occurrence of (I - A).' becoming large, which can lead to the level estimates visiting unlikely 

values (since the level parameters are not defined when (I - A) is not invertible) 



Supposing p, = k, consider regimes p, = r (z k), and define the nrxn,. 
matrix of regime r residual vectors, , , , ( , : p , = r ) ,  and matrices of 

deviation vectors, i,,, r ( ( x ,  - Fir))  p f  = r) and x,,, = ((x, - ) :  = 7 ) .  Noting that 
- 

-tt = A,,,(X.-, - c,,) - (x, - F ( ~ )  from the VAR(1) form, consider the following 

(dropping the references to regime r, for brevity). 

where C = s ( ~ x ~ ) ( ~ ~ ~ ) ~ '  is an mxnq sample correlation matrix at lag 1. Note that 

vec(AB) = (B' 8 I) vec(A). Liitkepohl (1991, Appendix A.11-A.12) provides a useful 

summary of the properties of the kronecker product and the vec and trace operators. 

The contribution at each time t involves only one of the A(,,. The exponent of the 

likelihood term can be expressed as 

where G ( ~ ,  = (t, p ,  = k. f > q) is the m x ( n ~  - 1) matrix of regime k residual vectors, excluding 

the first ( I  = q) The exponent, including the prior, can therefore be expressed as 

where %(,) and C(,, are defined to exclude the first vector (f = q), and 



Note that the term involving V-' is also a function of A(h-,. Excluding the term in V-', the 

previous expression is in the form of independent matrix Normal densities in the A(,). 

The means of the above densities for the A(,., are weighted averages of the sample 

correlation matrices of the data vectors within each regime and the prior estimates of the A(,), 

as expected. The prior variance provides a floor under the inverse of the variance matrix, and 

hence limits the variance of the A,,,. 

Direct acceptance/rejection can be used to independently generate the regression matrices, 

A(,), r # p,. Candidate A(,, are generated from the matrix Normal densities until they fall within 

the stable region. 

The terms in A(k) are not quite matrix Normal, since v-' is also a function of A(r A 

Metropolis-Hastings step can be used to generate A(h, First, a candidate A(kl is generated, 

A!;), - ~(cx~,,,~;,,), and if it is stable, accepted, i e A~C" = A;;\. with probability 

otherwise the value from the previous Gibbs iteration is retamed, i e A::') = A;?, Here, 

v;/') is a hnction of A;:\ and q;:('), while v ~ ~ " '  is a function of and q;Yc-" 

5.5 GENERATING THE VARIANCE AND COVARIANCE PARAMETERS 

D'~+') +- p'"", p'c+", A'"", P'". In this section, a(,, represents one of the possible 
discrete values of q,p,,, p, E {l,..,K). It is more convenient to generate the inverse of the 

variance-covariance matrices (i.e. to generate the precision matrices), rather than the Q , ,  

directly. 

Suitable priors for the nmnl precision matrices would be Wishart densities with 

parameters g,) and F', where F is diagonal with i-th diagonal element equal to where s: 

is the prior error variance for the I-th series. The %,., can be interpreted as the equivalent 

number of prior observations in each regime. The generation of the precision matrices 

presents no stability problems, so that the prior need only be diffuse, hence q,) is likely 



to be smaller than 4,). The complete prior would therefore be of the form 

~ (q ; ; ,  . . .q:,) = fi wm,(l~(rI.  *,;:) x h ( 4 , ) .  . . . qK)). where h(q,, , . . . qK,) captures the 
,=I 

identifiability prior restrictions (if any). An example of an identifiability restriction might be that 

the variance of the second series increases with the regime, i.e. &2(1) < .. < & 2 ( ~ ) ,  where a,,,,) is 
the 1-th diagonal element of Ol,.). As before, detine c,,, - ( ~ , : p ,  = r ) ,  r # pq and 

G ( ~ )  = = k, 1 > q ) ,  k = p, (noting that the 5, are functions of the most recently 

generated A(,)). 

The precision matrices can be generated jointly from 

Therefore the precision matrices, other than Or,',, can be generated independently 

from Wishart densities. O;:, can be generated via a Metropolis-Hastings step 

with a Wishart candidate generating density, i.e, generate a candidate a:;,, 

"I;:" - wn,(nk + n,,, - I ,  (c,,c,:l + F,,,)-l) , and accept it, i e set Q::'" = O;i\*', with 

probability 



otherwise retain the value from the previous Gibbs iteration, i e set QriY1' = RT~;" Here, 

VG;(') is a function of C$.'jm) and A!;T1', while V,;'jC' is a functlon of q,;") and A!?) 

A variate from the Wlshart density, W - Wm(?l,C), can be generated as 

W = QQ', where Q = LU, L is lower triangular given by the Choleski decomposition 

C = LL', and U is upper triangular given by the Bartlett decomposition, I,,, = 0 for I > J, 
I,,: - X :  (I = J) and I,,, - N(0,l) for I < I  (so that U'U - W,,(11,1~,) ) 

5.6 GENERATING THE TRANSITION PROBABILITIES 

Pee") + p'"", p'"", A'"", Q'c'". The transition probability matrix can be generated 

from 

P(PIP>@Y) a ~ ( f q l ~ )  fJP(P, lP  ,-,, P).P(P). 
,=,,+I 

Suppose that p represents ti,, transltlons from reglme 1 to reglme I Define the prior for the 

p, to be Beta(n~,, + 1, m,, + I), where m,, has the mterpretation as the equivalent number of 

prior transitions, then 

In the above expression, p(p,lP) IS a function of each of the p,, Draws from the above 

jomt denslty can be generated using a Metropolls-Hast~ngs step, uslng Independent Beta 

dens~t~es as the cand~date generating densltles Generate cand~date P, P"', from 
p;) - Beta(n, + m, + 1, n,, + m,, + 1) for 1 $1, p!" = 1 - xPr) , untd p(," > 0, wh~ch IS then 

! = I  

accepted, i e P'"" set equal to P"', with probability min 



otherwise the value from the previous Gibbs iteration is retained, i e set P'"" = P'"'. Recall 

thatp@,IP) is given by iterating on P. 

The acceptance rate is high for stable regimes where thep,, are small The acceptance rate 

can become very low when a p,, becomes small, since then p,, = 1 - Cp, < II(1 - p,), and 

hence their ratio can become very small when raised to the power n,, +m,, However if ap, ,  is 

small, perhaps the appropriateness of modelling the regime at all should be questioned 

The estimation procedure was tested against a number of simulated data sets. The mean 

parameter estimates were found to converge extremely rapidly, even when the initial parameter 

estimates were very poor and the order of the fitted model was incorrect. The effects of the 

initial parameter estimates appeared to dissipate after only several iterations/samples. The 

MCMC procedure can therefore be expected to supply a good estimate of the mean parameter 

values within seconds, regardless of the initial parameter estimates, in contrast to an EM 

maximum likelihood approach. The results of one of the simulation tests are briefly reported 

below. 

2000 observations were generated from a bivariate RSVAR(2,2) process. The data 

generating process was a random noise process within each regime, apart from variable 2 in 

regime 1, which was generated from an AR(2) process with autoregressive parameters of 0.75 

and -0.25, i.e. xn = 0.01 + 0.75(x,.,,, - 0 01) - 0.25(~,.2,2 - 0.01) + 0.005z,, where z, - iid 

N O ,  1). 

The MCMC estimation procedure described in section 5 was used to generate 2000 

samples from the joint parameter density of the model. The mean parameter estimates are 

summarked in table 1. The procedure successfully identified the data generating process with 

very tight densities centred over the true parameter values. The significance or otherwise of the 

various parameter estimates is beyond doubt. Maximum likelihood estimated (MLE) 

parameters were taken as the set of parameters corresponding to the sampleliteration with the 

highest log-likelihood of the 2000 samplesliterations. The mean and MLE parameters were 

very close, which is to be expected, given the large data set (2000 observations). In the test 

shown the initial parameter estimates were reasonably close to the true parameters. Other tests 

demonstrated the robustness of the estimation procedure to various starting values. 

Graph 1 compares the mean regime (line) with the true regime (shaded bands) for the first 150 

time points. The procedure successfully differentiated between the low and high volatility 

regimes. 
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Graph 1: Probability of Being in Regime 2 

Table 1: Simulation Test Results 
True 1st 50 iteratedsamples 2000 iterateslsamples 

Value 5%Xe Mean 95%'ile 5%'ile Mean 95%'ile 

Number in regime 2 

Transition Prob pl2 

Transition Prob pzl 

Regime 1 : 

P1 

flp 
a;;) 

do11 



Table 1: Simulation Test Results (continued) 

True 1st 50 iteraleslsamples 2000 iterateslsamples 

Value 5%'ile Mean 95%'ile 5%'ile Mean 95%'ile 

Regime 2: 

PI 0.00% -0.08% 0.07% 0.20% -0.19% 0.03% 0.24% 

a::' 0.000 -0.073 0.015 0 I04 -0.074 0.025 0.120 

The data set considered, derived from the Reserve Bank of Australia database, consisted 

of 147 quarterly observations, for the quarters ending December 1959 through to June 1996, 

of the continuously compounded rates of 

real economic growth; 
change in the rate of price inflation; 

share price return; and 

change in the 10 year bond yield. 

More precisely, the data series examined were 

VlnGDP, where GDP, is the real Gross Domestic Product for the quarter ending time t ;  

V 2 1 n ~ ~ 1 ,  where CPI, is the Consumer Price Index at time t ,  

VlnSPI, where SPI, is the All Ordinaries Share Price Index at time I ,  and 

VlnB, where B, is the yield to maturity on 10 year Commonwealth Government bonds, 

where V is the backward difference operator. 

The results reported in this section relate to the fitting of an RSVAR(1,2) process to the 

above Australian financial data (m = 4, q = 1 ,  K = 2, N = 147). 5,000 iterationslsamples were 

generated using the MCMC estimation procedure described in section 5. The first 50 samples 

were discarded and the remaining 4,950 samples used to describe the joint parameter density. 

The estimation procedure identified two clearly distinct regimes One regime (regime 1) 

was characterised by stable inflation and interest rates, and relatively stable share price growth 



The other regime (regime 2) was characterised by volatile inflation and interest rates, and 

volatile and generally falling share prices. The low volatility regime is relatively stable in the 

sense that it is the more persistent of the two regimes. Given the estimated mean transition 

probability of 0.15, the expected duration of a regime 1 episode is about 6% The 

high volatility regime is unstable in the sense that it is not expected to persist for long. Given 

its estimated mean transition probability of 0.5 1, the expected duration of a regime 2 episode is 

only 2 quarters. The identified regimes seem highly intuitive. 

Graph 2: Density of Duration of Episodes 

----- - 

Quarters 

Graph 3: Density of Transition Probabilities 

I 

Frob of transit1011 
from reglnie 1 to 

regnne 2 



The theoretical density of the duration of an episode of each regime, given the mean 

transition probabilities", is shown in graph 2. The uncertainty in the estimated transition 

probabilities is illustrated by graph 3. 

The mean regime at each time point is shown in graph 4. The economic environment was 

identified as almost certainly being in the unstable regime during the turbulence of the mid- 

1970s and early 1980s, the last quarter of 1987 stock market crash, and briefly during the early 

1990s. There is a slightly better than average chance that mid-1994 also witnessed a regime 

shift. Again, the identified regimes seem highly intuitive. 

Graph 4: Probability of Being in Regime 2 

It will be noticed that the unstable high volatility regime captures the extreme events that 

might otherwise be termed outliers. Outliers have the potential to seriously distort the 

estimation of process dynamics. Regime shifting can therefore be viewed as providing a robust 

data driven treatment of outliers in this case, which should enable more robust parameter 

estimates. 

The clear distinction between the parameters in each regime is illustrated by the clear 

separation of a number of the parameter densities, particularly those relating to the volatility of 

share price returns and changes in inflation and interest rates, and to the level of share price 

returns (refer to table 2 and graphs 5a, 5b & 5c). Given the clear separation of the variance of 

the variables in the two regimes, any procedure that ignores the regime shifts is very likely to 

produce misleading volatility estimates, and is unlikely to be robust to outliers. 
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Graph 5a: Density of Std Dev of Change in Inflation Rate Parameter 

Regime 2 

In the case of the quarterly change in inflation, the mean standard deviation parameter estimate 

in regime 2 is 3 times as large as in regime 1 (1.55% verses 0.55%). The MLE regime 2 

parameter is slightly lower at 1.3%. 

Graph 5b: Density of Std Deviation of Share Price Return Parameter 

Regime 2 

In the case of the quarterly share price return, the mean standard deviation parameter estimate 

in regime 2 is 2% times as large as in regime 1 (17% verses 7%). The MLE regime 2 parameter 

is somewhat lower at 13%%. 
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Graph 5c: Density of Mean Share Price Return Parameter 

In the case of  the quarterly share price return, the mean level parameter estimate in regime 1 is 

3.8% compared with -4 6% in regime 2. The corresponding MLE parameters are 3.7% and 

-5.1%. 

Table 2: Parameter Estimates 

Recime 1 Rccime 2 

5%'ile Mean 95%'ile 5%'iie Mean 95%'ile 

Trans~t~on Prob p,, 0 089 0.151 0 23 1 0 351 0.509 0 668 

Mean Parameters: 

PI 0.98% l.14°/o 1.31% -0.82% 0.13% 1.05% 

m -0.07% 0.00"h 0.07% -0.39% 0.11% 0.65% 

P3 1.99% 3.28% 4 55% -10.82% -4.63% 0.86% 

.U -1.18% 0.22% 0.81% -1.69% 2.67% 7.51% 

Std Dev Parameters: 

do1 1 1.03% 1.170 132% 1.18% 1.50% 1.91% 

~ W _ Z  0.48% 0.55% 0.62% 1 19% 1.55% 2.01% 

d m  6.21% 7.06% 7.96% 13.15% 17.05% 21.63% 

d o h  3.71% 4.53% 5.37% 7.82% 10.02% 12.91% 

variable 1 = VlnGDP, , variable 2 = V'I~CPI, . vanable 3 = VlnSPl, , variable 4 = VlnB, 



mean A(I) 
-0.178 0.078 0.021 -0.009 
0.049 -0.332 0.000 0.006 
-0.156 0.078 0.072 -0.049 
-0.052 0.086 0.048 0.222 

mean contemporaneous error 
correlations implied by Q,, 

1 

0.148 1 
-0.014 -0.053 1 
0.087 -0.084 -0.195 1 

mean A(2) 
0.137 -0.021 -0.009 0.084 
-0.108 -0.419 0.019 0.080 

0 033 -0.030 -0.1 11 -0.125 
0.054 0.008 0.098 0.160 

mean contemporaneous error 
correlations implied by R(2) 

1 
-0.098 1 

-0.337 0.004 1 
0.132 -0.120 -0.181 1 

var~able 1 = VlnGDP, . variable 2 = V~~IICPI,. var~able 3 = VlnSPT, . variable 4 = OlnB, 

Only a few regressive and contemporaneous error correlation parameters were found to 

be significant. The notable regression parameters were serial correlation in the inflation rate in 

both regimes, and serial correlation in real GDP and the change in interest rates in the stable 

regime. Interestingly, no cross-correlations appear important in the dynamics once joint regime 

switching is allowed for. 

Ignoring regime shifts would expose estimates of regression parameters to the effects of 

"outliers" generated during episodes of the high volatility regime, the effects of which would 

then be assumed to operate at all times It is interesting to compare the estimated regression 

parameters of the RSVAR(1,2) process (above) with the corresponding VAR(1) parameters 

(below). 

A from VAR(1) 
- 0 1 0  0.06 0.02 0.03 
0.01 -0.51 0.00 0.03 
0.15 -0.74 -0.03 -0.28 
0.06 0.56 0.08 0.27 

Notable differences are the large feedback of lagged changes in inflation into share price 

returns and changes in interest rates, and the feedback of lagged changes in interest rates into 

share price returns If the feedback were as strong as indicated by the VAR model. the VAR 

model should have a significantly higher likelihood than an independent AR(1) model (where 

the off-diagonal elements of A are all zero) and one ought to be able to make better predictions 

than models without the feedback Neither of these features is observed empirically (refer 

section 6.3) .  

It was also noticable that the MLE regression parameters could diverge considerably from 

the mean of the parameter density when the density was diffuse, so that parameter uncertainty 

was poorly represented by the usual asymptotic MLE errors 



The notable contemporaneous error correlations were between real GDP growth and 

changes in inflation in the stable regime (+ve), changes in interest rates and share price returns 

in the stable regime (-ve), and between real GDP growth and share price returns in the unstable 

regime (-ve). 

In this section the statistical goodness-of-fit of the vector regime switching model is 

compared with commonly used models. The models considered were independent 

randomlnoise, independent autoregressive, independent non-Gaussian autoregressive, 

independent GARCHI', Vector Autoregression and RSVAR. The results are summarised in 

table 3 

Non-Gaussian error distributions are sometimes used in an attempt to directly capture the 

leptokurtosis observed in the frequency distribution of many series. Two densities were tried as 

alternatives to the standard Normal density, the Student t density and the Generalised Error or 

Exponential Power Density (GED)'~ (both standardised). As the GED provided the better fit 

to the data, only the GED results are reported. 

The models were compared in terms of their likelihood and prediction errors, their ability 

to predict volatility, and their ability to explain the observed excess kurtosis (a measure of non- 

Normality). 

The log-likelihoods, both unconditional and conditional on the first data point, are 

reported in table 3. Where one model is completely nested within another, the increase in the 

log-likelihood is asymptotically distributed as '/zX,? where p is the number of additional 

parameters fitted in the more general of the two models. Thus the AR(1) model is significantly 

more likely than the Random model and both the GED-AR(1) and the GARCH-AR(1) models 

are significantly more likely than the AR(1) model. The introduction of the non-Normal error 

density (GED) produced a substantial increase in the likelihood with the addition of only 4 

parameters. It is important to note however that neither the GED nor GARCH models were 

able to produce lower prediction errors than the AR(1) model. The VAR model is not 

significantly more likely than the AR(1) model. 

Since the transition probabilities are not defined under the null hypothesis that the regime 

switching model is inappropriate, the usual asymptotic statistical distribution theory fails to 

apply in this case. If it did, the RSVAR(1,2) model would be extremely more likely than either 

the AR(1) or VAR(1) models. Though not a statistical test, it is at least reassuring that there is 

a large increase in the log-likelihood, even after allowing for the larger number of parameters. 

The addition of the second lag in the RSVAR(2,2) model produced only a very modest 

increase in the log-likelihood ('-value of 0.38). The addition of a hrther regime (K = 3) 



proved problematic, due to the degree of instability of the third regime in iterations wherep,, = 
0. A third regime would appear to be superfluous given its virtual unidentifiability. 

The average prediction or forecast errors for each model were assessed using the root- 

mean-square, or standard, error, which for series I was defined as rnise, = dm, where 

E, is the residual or one-period-ahead prediction error at time t The rnis errors for each series 

were combined into a single weighted rnis error for each model for ease of comparison The 

weights used were proportional to the reciprocals of the corresponding AR(1) residual 

variances, i e wrrns error = 4- As noted earlier, both the GED-AR(1) and 

GARCH(1,l)-AR(1) models produced forecasts no better than the simpler AR(1) model on 

average. The RSVAR models however produced the smallest errors on average by a 

consideraMe margin. 

Two measures were used to assess the ability to predict volatility. The first measure used 

was the root-mean-square absolute error, defined for series i as rnisae, = &z(le,l- . 
where q is the one-period-ahead predicted error standard deviation according to the model. 

The rms absolute errors were also combined into a single iveighted rnis absolute error using 

the same weights as used for the ivrnis error The second measure used was the 

root-mean-square log-absolute error, defined for series r as n n s h ,  = ,/- = 

The GED model produced particularly poor forecasts of volatility. The RSVAR models 

produced considerably better predictions of volatility on the whole, and notably better than the 

GARCH model, which also explicitly models conditional heteroscedasticity. Regime switching 

would appear to be a better explanation of conditional heteroscedasticity than the commonly 

used GARCH and ARCH processes, which generally impute too much persistency in the 

volatility (see, for example, Hamilton & Susmel (1994)). 

The frequency distribution of financial series typically display excess kurtosis, i.e. are fat- 

tailed and peaked at the mean (e.g. Mandelbrot (1963), Praetz (1969), Akgiray (1989), Peters 

(1991), Becker (1991) and Harris (1994, 1995a)). The excess kurtosis of the residuals of each 

series was calculated, and the average reported in table 3. Autoregressive, VAR and GARCH 

models failed to explain the observed excess kurtosis. The RSVAR models were able to 

successfUlly account for the excess kurtosis in terms of regime switching in the variance, i.e. 

conditional heteroscedasticity. The only other model to account for the excess kurtosis was the 

GED model, which explicitly models excess kurtosis by assuming the residuals are drawn from 

a non-Normal distribution, without explaining the mechanism leading to the non-Normality. 



Table 3: Model Comparison 
GARCH 

Randon1 AR(1) AR(1) GED- (I,!)- 
RS RS 

VAR VAR VAR 
AN1)  ( 1 )  (1.2) (2,2) 

unconditional lnL 

lnL cond on r=l 

AlnL over AR(1) 

standard 2 p-value 

~vr111s error 

wriiise as % Random 

wrms absolute error 

>vrnrsae as % 
Random 

av rim log obs error 

av rilislae as % 
Random 

ave escess kurtosis 

A Bayesian Markov Chain Monte Carlo procedure was developed for estimating the joint 

parameter and regime density for a regime switching vector autoregression given the observed 

data. The mean parameter estimates were found to converge extremely rapidly, even when the 

initial parameter estimates were very poor. The MCMC procedure can therefore be expected 

to supply a good estimate of the mean parameter values within seconds, regardless of the initial 

parameter estimates, in contrast to an EM maximum likelihood approach. 

The estimation procedure identified two clearly distinct regimes in quarterly Australian 

financial data One regime was characterised by stable inflation and interest rates, and relatively 

stable share price growth. The other regime was characterised by volatile inflation and interest 

rates, and volatile and generally falling share prices. The high volatility regime was found to be 

unstable, with an expected duration of only 6 months. 

The unstable high volatility regime captured extreme events that might otherwise be 

termed outliers. Outliers have the potential to seriously distort the estimation of process 



dynamics. Regime shifting can therefore be viewed as providing a robust data driven treatment 

of outliers in this case, which should enable more robust parameter estimates. 

No cross-correlations appeared important in the dynamics once joint regime switching 

was allowed for, in contrast to the large cross-correlation terms observed when a standard 

vector autoregression was fitted to the data If the feedback were as strong as indicated by the 

VAR model, the VAR model should have a significantly higher likelihood than an independent 

autoregressive model (where there are no cross-correlation terms) and one ought to be able to 

make better predictions than models without the feedback. Neither of these features was 

observed empirically. 

Whilst the GARCH and non-Normal Generalised Error Distribution models were able to 

produce significant increases in the likelihood over the simpler autoregressive model, it was 

noted that neither model was able to produce lower average prediction errors than the simple 

AR model. The RSVAR models produced the lowest average prediction errors by a 

considerable margin, however. 

The RSVAR models produced considerably better predictions of volatility on the whole, 

and notably better than the GED and GARCH models. Regime switching would appear to be a 

better explanation of conditional heteroscedasticity than the commonly used GARCH and 

ARCH processes. 

Autoregressive, VAR and GARCH models failed to explain the fat tails observed in the 

frequency distribution of the data. The RSVAR models were able to successfilly account for 

the excess kurtosis in terms of regime switching in the variance, i.e. conditional 

heteroscedasticity The only other model to account for the excess kurtosis was the GED 

model, which explicitly nlodels excess kurtosis by assuming the residuals are drawn from a 

non-Normal distribution, without explaining the mechanism leading to the non-Normality. 

In conclusion, many financial time series processes appear subject to periodic structural 

changes in their dynamics. Regression relationships are often not robust to outliers nor stable 

over time, whilst the existence of changes in variance over time is well known. This paper 

presented an attempt to deal with such difficulties in financial time series, a Regime Switching 

Vector Autoregression, the parameters of which are subject to pseudocyclical discrete 

changes. The regime switching vector autoregression model was found to provide a 

particularly good description of an Australian quarterly financial data set. 



' Stability requires that A' converge rapidly to zero as 7 -+ ao so that the partial sum A' converges rapidly 
r=O 

to (I -A)" as 7 -+ m. A stable process is also a stationary process. 

If A E (ol,..,a,) is an rrr x rt matrix with rrr x 1 columns o,, then vecA is the rim x 1 column vector (qT,.., a,'jT. 

If A and B are two matrices, rrr x n andp x q respectively, then A 63 B is the rrrp x riq matrix (o,B). 

p@,IY,,X) is a K-tuple of probabilities, representingp(p, = i /Y,.k) for r = 1, ... K. 

using the Choleski decomposition, P I / =  ]L\/LT1= Ill,,'. 

P is a stochastic matrix since all column sums equal one and all elenlents are non-negative, hence 1 is an 
eigenvalue of P, and all eigenvalues of P have magnitude no greater than one A necessary and sufficient 
condition for the existence of a limiting distribution is that P has a distinct non-repeated unit eigenvalue. 

A variate from the multivariate or vector Nornlal density, x - N(p,n), can be generated as x = p + Lz, where 
z is a vector of i.i.d. N(0,l) variates. and L is a lower triangular matrix obtained from the Choleski 
decomposition of Q, such that LL'= 0. 

Generation from a matrix Normal dens~ty IS the same as from a vector Normal density, since A - N(O,X) = 
vecA - N(ve&,Z). If A is mxrv, then O is also rrrxrrr. while 1 is rrr'xrrr:. and vecA and vecO are nr2xl. 
9 .  slnce X, = p + A(X,., - p) + 5, = (I - A)p + AX,.] + 5, = (I + A + A' + .. + AJ)(l - A)p + A'+'x,,., + 

l o  The duration of a regime i episode is a discrete random variable. w~ th  expected value given by 

2 k  X pi-' x (1 - P,,) = 1/(1- A). 
k-I 

' I   duration of regime i = k )  = p,t-'(l - p,,) 

l2 The Generalised ARCH model introduced by Bollerslev (1986). The conditional variance is modelled as a 
linear combination of lagged squared res~duals and variances. For esample, the commonly used GARCH(1,l) 

conditional variance is such that a; = a, + a , & L 1  + Pla;., 
l3  The Generalised Error or Exponential Power density is a generalisation of the Normal density where the 
exponential is raised to a general power. The density function is 

. where z = (x - ,u)l cz When v =  2 the density is Normal, when 

v <  2 it is leptokurtic, and when r. = I it is Double-Esponenttal 
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