Where Less is More: Reducing Variable Annuity Fees to Benefit Policyholder and Insurer*

Carole Bernard & Thorsten Moenig†

† Temple University — moenig@temple.edu

2017 ASTIN/AFIR Colloquia, Panama City

* Research supported by Fundación MAPFRE
1 Motivation

2 Financial Model

3 Results for Innovative VA Provider

4 Results for Competitive Market

5 Conclusion
Motivation

2 Financial Model

3 Results for Innovative VA Provider

4 Results for Competitive Market

5 Conclusion
Motivation

- **Variable Annuity (VA):** Popular long-term savings vehicle (in U.S.)
 - Investment flexibility + favorable tax treatment + downside protection

- Recently: decline in demand
Motivation

- **Variable Annuity (VA):** Popular long-term savings vehicle (in U.S.)
 - Investment flexibility + favorable tax treatment + downside protection
- Recently: decline in demand

![Graph showing VA Sales (in $b) from 2005 to 2016](image)
Many financial advisers advocate against buying VAs. Why???

Forbes:

5 Reasons Why You Should Never Buy A Variable Annuity:
1. You’ll Pay High Fees

Kiplinger.com:

The high costs of variable annuities […] usually makes them an awful deal for investors.

The Motley Fool:

Your broker’s Ferrari is getting a little long in the tooth, and you want to make sure he can afford a shiny new one.

…
Many financial advisers advocate against buying VAs. Why???

- Forbes:

 5 Reasons Why You Should Never Buy A Variable Annuity:
 1. You’ll Pay High Fees

- Kiplinger.com:

 The high costs of variable annuities […] usually makes them an awful deal for investors.

- The Motley Fool:

 Your broker’s Ferrari is getting a little long in the tooth, and you want to make sure he can afford a shiny new one.

- ...
• Why are VA fees so high?
 ▶ Fee charged at level rate in proportion to VA account value
 ▶ Fee covers expenses & costs of guarantees
 ▶ Insurer pays acquisition expenses, recovers them through VA base fee

• Frequent policy lapses further increase the fee rate
 ▶ If VA is lapsed, insurer loses future fee income
 ▶ Market reentry ("1035 exchange") triggers new policy acquisition expenses

• Simply reducing VA fee rate could make product unprofitable

• Our proposal: Time-dependent fee structure
 ▶ Reduce VA fee after some policy years
Motivation

Why are VA fees so high?

- Fee charged at level rate in proportion to VA account value
- Fee covers expenses & costs of guarantees
- Insurer pays acquisition expenses, recovers them through VA base fee

Frequent policy lapses further increase the fee rate

- If VA is lapsed, insurer loses future fee income
- Market reentry ("1035 exchange") triggers new policy acquisition expenses

Simply reducing VA fee rate could make product unprofitable

Our proposal: Time-dependent fee structure

- Reduce VA fee after some policy years
Motivation

• Why are VA fees so high?
 ▶ Fee charged at level rate in proportion to VA account value
 ▶ Fee covers expenses & costs of guarantees
 ▶ Insurer pays acquisition expenses, recovers them through VA base fee

• Frequent policy lapses further increase the fee rate
 ▶ If VA is lapsed, insurer loses future fee income
 ▶ Market reentry ("1035 exchange") triggers new policy acquisition expenses

• Simply reducing VA fee rate could make product unprofitable

• Our proposal: Time-dependent fee structure
 ▶ Reduce VA fee after some policy years
Motivation

• Why are VA fees so high?
 ▶ Fee charged at level rate in proportion to VA account value
 ▶ Fee covers expenses & costs of guarantees
 ▶ Insurer pays acquisition expenses, recovers them through VA base fee

• Frequent policy lapses further increase the fee rate
 ▶ If VA is lapsed, insurer loses future fee income
 ▶ Market reentry ("1035 exchange") triggers new policy acquisition expenses

• Simply reducing VA fee rate could make product unprofitable

• Our proposal: Time-dependent fee structure
 ▶ Reduce VA fee after some policy years
Motivation

Benefits of a Time-Dependent Fee

● With level fee rate, policy lapses are free for PH

▷ Example: You purchase VA with single premium (& guaranteed amount) 100
▷ You pay level fee rate ϕ each year, in proportion to (random) account value
▷ If VA account value increases to 120 . . .

☆ Guarantee value is low & fee payments are high
⇒ Lapse-and-Reentry: Exchange VA for identical product (to upgrade guarantee)
☆ Guaranteed amount stepped up to VA account value
☆ All other VA specifications (incl. fee rate) are identical ⇒ Arbitrage!

● With time-dependent (front-loaded) fee, lapsing is costly

▷ Lapse-and-reentry makes policyholder forego (or delay) fee reduction
⇒ Fewer lapses ⇒ Fewer expenses ⇒ Finances fee reduction
Motivation

Benefits of a Time-Dependent Fee

- With level fee rate, policy lapses are free for PH
 - Example: You purchase VA with single premium (& guaranteed amount) 100
 - You pay level fee rate ϕ each year, in proportion to (random) account value
 - If VA account value increases to 120 . . .
 - Guarantee value is low & fee payments are high
 - Lapse-and-Reentry: Exchange VA for identical product (to upgrade guarantee)
 - Guaranteed amount stepped up to VA account value
 - All other VA specifications (incl. fee rate) are identical \implies Arbitrage!

- With time-dependent (front-loaded) fee, lapsing is costly
 - Lapse-and-reentry makes policyholder forego (or delay) fee reduction
 \implies Fewer lapses \implies Fewer expenses \implies Finances fee reduction
Motivation

Benefits of a Time-Dependent Fee

- With level fee rate, policy lapses are free for PH
 - Example: You purchase VA with single premium (& guaranteed amount) 100
 - You pay level fee rate ϕ each year, in proportion to (random) account value
 - If VA account value increases to 120 . . .
 - Guarantee value is low & fee payments are high
 - \textbf{Lapse-and-Reentry:} Exchange VA for identical product (to upgrade guarantee)
 - Guaranteed amount stepped up to VA account value
 - All other VA specifications (incl. fee rate) are identical \implies \textbf{Arbitrage!}

- With time-dependent (front-loaded) fee, lapsing is costly
 - Lapse-and-reentry makes policyholder forego (or delay) fee reduction
 - \implies Fewer lapses \implies Fewer expenses \implies Finances fee reduction
Motivation

Benefits of a Time-Dependent Fee

• With level fee rate, policy lapses are free for PH

 ▶ Example: You purchase VA with single premium (& guaranteed amount) 100

 ▶ You pay level fee rate ϕ each year, in proportion to (random) account value

 ▶ If VA account value increases to 120 . . .

 ⋆ Guarantee value is low & fee payments are high

 \implies **Lapse-and-Reentry**: Exchange VA for identical product (to upgrade guarantee)

 ⋆ Guaranteed amount stepped up to VA account value

 ⋆ All other VA specifications (incl. fee rate) are identical \implies Arbitrage!

• With time-dependent (front-loaded) fee, lapsing is costly

 ▶ Lapse-and-reentry makes policyholder forego (or delay) fee reduction

 \implies Fewer lapses \implies Fewer expenses \implies Finances fee reduction
Benefits of a Time-Dependent Fee

- Time-dependent fee can make both parties better off
 - Policyholder pays lower fee rate
 - VA provider: expense savings outweigh reduced fee income
 - By eliminating transaction costs (i.e. repeated policy acquisition expenses)
- Discourages lapse-and-reentry, but also pure lapses
 - VA provider less exposed to policyholder behavior risk
 - Improves hedging of embedded guarantee (Kling, Ruez, and Russ, 2014)
- Easy to implement on new and existing policies: “Customer loyalty”
Benefits of a Time-Dependent Fee

- Time-dependent fee can make both parties better off
 - Policyholder pays lower fee rate
 - VA provider: expense savings outweigh reduced fee income
 - By eliminating transaction costs (i.e. repeated policy acquisition expenses)

- Discourages lapse-and-reentry, but also pure lapses
 - VA provider less exposed to policyholder behavior risk
 - Improves hedging of embedded guarantee (Kling, Ruez, and Russ, 2014)

- Easy to implement on new and existing policies: “Customer loyalty”
Motivation
Benefits of a Time-Dependent Fee

- Time-dependent fee can make both parties better off
 - Policyholder pays lower fee rate
 - VA provider: expense savings outweigh reduced fee income
 - By eliminating transaction costs (i.e. repeated policy acquisition expenses)
- Discourages lapse-and-reentry, but also pure lapses
- VA provider less exposed to policyholder behavior risk
 - Improves hedging of embedded guarantee (Kling, Ruez, and Russ, 2014)
- Easy to implement on new and existing policies: “Customer loyalty”
Motivation

Benefits of a Time-Dependent Fee

- Time-dependent fee can make both parties better off
 - Policyholder pays lower fee rate
 - VA provider: expense savings outweigh reduced fee income
 - By eliminating transaction costs (i.e. repeated policy acquisition expenses)
- Discourages lapse-and-reentry, but also pure lapses
- VA provider less exposed to policyholder behavior risk
 - Improves hedging of embedded guarantee (Kling, Ruez, and Russ, 2014)
- Easy to implement on new and existing policies: “Customer loyalty”
1 Motivation

2 Financial Model
 VA Product Features
 Policyholder’s Decision Making
 Valuation to VA Provider
 Numerical Implementation

3 Results for Innovative VA Provider

4 Results for Competitive Market

5 Conclusion
Financial Model

VA Product Features

- Implement typical (B-share) VA from U.S. market
- Face amount/premium $100,000
 - Time-\(t\) account value: \(A_t (A_0 = 100,000)\)
- Includes return-of-premium GMDB
 - Guaranteed amount denoted by \(G_t\)
 - \(G_1 = 100,000; G_t\) changes only upon lapse-and-reentry
 - If PH dies in year \(t\), receives \(\max(A_t, G_t)\) at time \(t\)
- If PH survives to maturity (time \(T\)), receives \(A_T\)
- 7-year surrender schedule
 - 7% in year 1, 6% in year 2, \ldots, 0% for \(t \geq 7\)
Financial Model

VA Product Features, cont’d

- Annual fee rate $\phi_t = \begin{cases}
\phi_{ini}, & m_t < n_{red} \\
\phi_{red}, & m_t \geq n_{red}
\end{cases}$

 - m_t is the time (in years) under the current VA policy
 - Fee charged continuously in proportion to A_t

- PH can lapse on policy anniversary dates
 - Re-enters market by acquiring identical policy
 - Begins new policy with $m_t = 0$; same A_t (minus surr. fee); $G_{t+1} = \text{new } A_t$

- Expenses are paid by insurer
 - For policy acquisition (incl. reentry): ϵ_{ini}
 - Annually recurring: ϵ_{rec}
 - Assessed at beginning of year in proportion to A_t
Financial Model

VA Product Features, cont’d

- **Annual fee rate** $\phi_t = \begin{cases}
\phi_{\text{ini}}, & m_t < n_{\text{red}} \\
\phi_{\text{red}}, & m_t \geq n_{\text{red}}
\end{cases}

 - m_t is the time (in years) under the current VA policy
 - Fee charged continuously in proportion to A_t

- PH can lapse on policy anniversary dates
 - Re-enters market by acquiring identical policy
 - Begins new policy with $m_t = 0$; same A_t (minus surr. fee); $G_{t+1} = \text{new } A_t$

- Expenses are paid by insurer
 - For policy acquisition (incl. reentry): ϵ_{ini}
 - Annually recurring: ϵ_{rec}
 - Assessed at beginning of year in proportion to A_t
Financial Model

VA Product Features, cont’d

- Annual fee rate $\phi_t = \begin{cases}
\phi_{ini}, & m_t < n_{red} \\
\phi_{red}, & m_t \geq n_{red}
\end{cases}$

 - m_t is the time (in years) under the current VA policy
 - Fee charged continuously in proportion to A_t

- PH can lapse on policy anniversary dates
 - Re-enters market by acquiring identical policy
 - Begins new policy with $m_t = 0$; same A_t (minus surr. fee); $G_{t+1} = \text{new } A_t$

- Expenses are paid by insurer
 - For policy acquisition (incl. reentry): ϵ_{ini}
 - Annually recurring: ϵ_{rec}
 - Assessed at beginning of year in proportion to A_t
Financial Model
Policyholder’s Decision Making

• Continuation value of VA policy: \(V^{\text{cont}}_t(A_t, G_t, m_t) = \tilde{V}(t, A_t, G_t, m_t) \),
 - With intermediary function \(\tilde{V}(t, A_t, G_{t+1}, m_t) = q_{x+t} \left[A_t e^{-\phi m_t} + \text{Put}(A_t, G_{t+1}, \phi m_t) \right] + (1 - q_{x+t}) e^{-rE}\pi [V_{t+1}(A_{t+1}, G_{t+1}, 1 + m_t)] \).

• Lapse-value of VA policy:
 \[V^{\text{lapse}}_t(A_t, G_t, m_t) = \tilde{V}(t, [1 - s(m_t)]A_t, [1 - s(m_t)]A_t, 0) \]

• PH chooses to lapse and reenter if \(V^{\text{lapse}}_t > V^{\text{cont}}_t \)
 \[V_t(A_t, G_t, m_t) = \max \left\{ V^{\text{cont}}_t(A_t, G_t, m_t), V^{\text{lapse}}_t(A_t, G_t, m_t) \right\} \]

• Terminal condition: \(V_T(A_T, G_T, m_T) = [1 - s(m_T)]A_T \)

• Time-0 risk-neutral policy value: \(V_0 := \tilde{V}(0, A_0, A_0, 0) \)
Financial Model
Policyholder’s Decision Making

• Continuation value of VA policy: \(V_t^{cont}(A_t, G_t, m_t) = \tilde{V}(t, A_t, G_t, m_t) \),

 ▶ With intermediary function \(\tilde{V}(t, A_t, G_{t+1}, m_t) = q_{x+t} \left[A_t e^{-\phi m_t} + \text{Put}(A_t, G_{t+1}, m_t) \right] + (1 - q_{x+t}) e^{-rE[Q]} [V_{t+1}(A_{t+1}, G_{t+1}, 1 + m_t)] \).

• Lapse-value of VA policy:
 \[V_t^{lapse}(A_t, G_t, m_t) = \tilde{V}(t, [1 - s(m_t)]A_t, [1 - s(m_t)]A_t, 0) , \]

• PH chooses to lapse and reenter if \(V_t^{lapse} > V_t^{cont} \)
 \[V_t(A_t, G_t, m_t) = \max \left\{ V_t^{cont}(A_t, G_t, m_t), V_t^{lapse}(A_t, G_t, m_t) \right\} . \]

• Terminal condition: \(V_T(A_T, G_T, m_T) = [1 - s(m_T)]A_T \)

• Time-0 risk-neutral policy value: \(V_0 := \tilde{V}(0, A_0, A_0, 0) \)
Financial Model

Policyholder’s Decision Making

- Continuation value of VA policy: \(V_{t}^\text{cont}(A_t, G_t, m_t) = \tilde{V}(t, A_t, G_t, m_t) \),
 - With intermediary function \(\tilde{V}(t, A_t, G_{t+1}, m_t) = q_{x+t} \left[A_t e^{-\phi m_t} + \text{Put}(A_t, G_{t+1}, \phi m_t) \right] + (1 - q_{x+t}) e^{-r\mathbb{E}^{Q}} [V_{t+1}(A_{t+1}, G_{t+1}, 1 + m_t)] \).

- Lapse-value of VA policy:
 \[
 V_{t}^\text{lapse}(A_t, G_t, m_t) = \tilde{V}(t, [1 - s(m_t)]A_t, [1 - s(m_t)]A_t, 0),
 \]

- PH chooses to lapse and reenter if \(V_{t}^\text{lapse} > V_{t}^\text{cont} \)
 \[
 V_{t}(A_t, G_t, m_t) = \max \left\{ V_{t}^\text{cont}(A_t, G_t, m_t), V_{t}^\text{lapse}(A_t, G_t, m_t) \right\}.
 \]

- Terminal condition: \(V_T(A_T, G_T, m_T) = [1 - s(m_T)]A_T \)

- Time-0 risk-neutral policy value: \(V_0 := \tilde{V}(0, A_0, A_0, 0) \)
Financial Model

Policyholder’s Decision Making

- Continuation value of VA policy: \(V^\text{cont}_t(A_t, G_t, m_t) = \tilde{V}(t, A_t, G_t, m_t) \),
 - With intermediary function \(\tilde{V}(t, A_t, G_{t+1}, m_t) = q_{x+t} \left[A_t e^{-\phi_m t} + \text{Put}(A_t, G_{t+1}, \phi_m t) \right] + (1 - q_{x+t}) e^{-r \mathbb{E}^\mathbb{Q}} \left[V_{t+1}(A_{t+1}, G_{t+1}, 1 + m_t) \right] \).

- Lapse-value of VA policy:
 \[V^\text{lapse}_t(A_t, G_t, m_t) = \tilde{V}(t, [1 - s(m_t)]A_t, [1 - s(m_t)]A_t, 0) \, , \]

- PH chooses to lapse and reenter if \(V^\text{lapse}_t > V^\text{cont}_t \)
 \[V_t(A_t, G_t, m_t) = \max \left\{ V^\text{cont}_t(A_t, G_t, m_t), V^\text{lapse}_t(A_t, G_t, m_t) \right\} \, . \]

- Terminal condition: \(V_T(A_T, G_T, m_T) = [1 - s(m_T)]A_T \)

- Time-0 risk-neutral policy value: \(V_0 := \tilde{V}(0, A_0, A_0, 0) \)
Financial Model

Policyholder’s Decision Making

- Continuation value of VA policy: \(V^{\text{cont}}_t(A_t, G_t, m_t) = \tilde{V}(t, A_t, G_t, m_t) \),

 - With intermediary function \(\tilde{V}(t, A_t, G_{t+1}, m_t) =
 q_{x+t} \left[A_t e^{-\phi m_t} + \text{Put}(A_t, G_{t+1}, \phi m_t) \right] + (1 - q_{x+t}) e^{-r\mathbb{E}^\Theta} [V_{t+1}(A_{t+1}, G_{t+1}, 1 + m_t)] \).

- Lapse-value of VA policy:

 \(V^{\text{lapse}}_t(A_t, G_t, m_t) = \tilde{V}(t, [1 - s(m_t)]A_t, [1 - s(m_t)]A_t, 0) \),

- PH chooses to lapse and reenter if \(V^{\text{lapse}}_t > V^{\text{cont}}_t \)

 \(V_t(A_t, G_t, m_t) = \max \left\{ V^{\text{cont}}_t(A_t, G_t, m_t), V^{\text{lapse}}_t(A_t, G_t, m_t) \right\} \).

- Terminal condition: \(V_T(A_T, G_T, m_T) = [1 - s(m_T)]A_T \)

- Time-0 risk-neutral policy value: \(V_0 := \tilde{V}(0, A_0, A_0, 0) \)
Financial Model

Valuation to VA Provider

- PV of insurer’s expenses, from time t forward: \(EPVE_t(A_t, G_t, m_t) = \)
 \[
 \begin{cases}
 EPVE(t, [1 - s(m_t)]A_t, [1 - s(m_t)]A_t, 0, \epsilon_{ini} + \epsilon_{rec}) , & \text{if lapse} \\
 EPVE(t, A_t, G_t, m_t, \epsilon_{rec}) , & \text{if cont.}
 \end{cases}
 \]

 - \(EPVE(t, A_t, G_{t+1}, m_t, \epsilon) = \epsilon A_t + (1 - q_{x+t}) e^{-r_{t}^{Q}} [EPVE_{t+1}(A_{t+1}, G_{t+1}, 1 + m_t)] \)
 - Terminal condition: \(EPVE_T(A_T, G_T, m_T) = 0 \)

- Time-0 present value of all expenses:
 \[
 EPVE_0 = EPVE(0, A_0, A_0, 0, \epsilon_{ini} + \epsilon_{rec})
 \]

- Time-0 NPV of VA policy to insurer:
 \[
 NPV_0 = NPV_0(\phi_{red}, n_{red}, \phi_{ini}) = A_0 - V_0 - EPVE_0
 \]
Valuation to VA Provider

- PV of insurer’s expenses, from time t forward: $EPVE_t(A_t, G_t, m_t) = \begin{cases} \overline{EPVE}(t, [1 - s(m_t)]A_t, [1 - s(m_t)]A_t, 0, \epsilon_{ini} + \epsilon_{rec}) &, \text{if lapse} \\ \overline{EPVE}(t, A_t, G_t, m_t, \epsilon_{rec}) &, \text{if cont.} \end{cases}$

 - $\overline{EPVE}(t, A_t, G_t, m_t, \epsilon) = \epsilon A_t + (1 - q_{x+t}) e^{-rE^Q} [EPVE_{t+1}(A_{t+1}, G_{t+1}, 1 + m_t)]$
 - Terminal condition: $EPVE_T(A_T, G_T, m_T) = 0$

- Time-0 present value of all expenses:

 $EPVE_0 = \overline{EPVE}(0, A_0, A_0, 0, \epsilon_{ini} + \epsilon_{rec})$

- Time-0 NPV of VA policy to insurer:

 $NPV_0 = NPV_0(\phi_{red}, n_{red}, \phi_{ini}) = A_0 - V_0 - EPVE_0$
Implement numerically via **recursive dynamic programming**

⇒ State space: A_t, G_t, m_t

- Black-Scholes Economy

- Parameters (Moenig and Zhu, 2016):

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at inception (years)</td>
<td>x</td>
<td>55</td>
</tr>
<tr>
<td>Time to maturity (years)</td>
<td>T</td>
<td>25</td>
</tr>
<tr>
<td>Risk-free rate</td>
<td>r</td>
<td>3%</td>
</tr>
<tr>
<td>Volatility of investment</td>
<td>σ</td>
<td>20%</td>
</tr>
<tr>
<td>Policy acquisition expense</td>
<td>ϵ_{ini}</td>
<td>7%</td>
</tr>
<tr>
<td>Recurring expense rate</td>
<td>ϵ_{rec}</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

▶ Mortality: 2012 IAM basic male mortality table
Numerical Implementation

- Implement numerically via **recursive dynamic programming**
 \[\implies \text{State space: } A_t, G_t, m_t \]

- **Black-Scholes Economy**

- **Parameters (Moenig and Zhu, 2016):**

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at inception (years)</td>
<td>(x)</td>
<td>55</td>
</tr>
<tr>
<td>Time to maturity (years)</td>
<td>(T)</td>
<td>25</td>
</tr>
<tr>
<td>Risk-free rate</td>
<td>(r)</td>
<td>3%</td>
</tr>
<tr>
<td>Volatility of investment</td>
<td>(\sigma)</td>
<td>20%</td>
</tr>
<tr>
<td>Policy acquisition expense</td>
<td>(\epsilon_{ini})</td>
<td>7%</td>
</tr>
<tr>
<td>Recurring expense rate</td>
<td>(\epsilon_{rec})</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

- Mortality: 2012 IAM basic male mortality table
1 Motivation

2 Financial Model

3 Results for Innovative VA Provider

4 Results for Competitive Market

5 Conclusion
• Fix $\phi_{ini} = 150.7$ bps (level break-even fee)
 ▶ Insurer chooses n_{red} and ϕ_{red} to maximize NPV_0
• Fix $\phi_{ini} = 150.7$ bps (level break-even fee)

 ▶ Insurer chooses n_{red} and ϕ_{red} to maximize NPV_0
Where Less is More: Reducing VA Fees to Benefit PH and Insurer
Results for Innovative VA Provider

Select Valuation Statistics

<table>
<thead>
<tr>
<th></th>
<th>No Red.</th>
<th>(n_{\text{red}} = 7)</th>
<th>(n_{\text{red}} = 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi^{*}_{\text{red}}) (bps)</td>
<td>150.7</td>
<td>93.2</td>
<td>47.4</td>
</tr>
<tr>
<td>(NPV_{0}^{*}) ($)</td>
<td>0</td>
<td>3,600</td>
<td>6,170</td>
</tr>
<tr>
<td>(V_{0}) ($)</td>
<td>77,340</td>
<td>81,290</td>
<td>78,980</td>
</tr>
<tr>
<td>(EPVE_{0}) ($)</td>
<td>22,660</td>
<td>15,110</td>
<td>14,850</td>
</tr>
<tr>
<td>(L_{0}) ($)</td>
<td>1.45</td>
<td>0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- Fee reduction (almost) eliminates lapses
 - Also: reduces fee income for insurer (\(\Rightarrow \text{prefers to delay to} \ n_{\text{red}} = 18 \))
- Saved expenses distributed between insurer ($6,170) and PH ($1,640)

\(\Rightarrow \) Innovative VA provider could benefit substantially
Results for Innovative VA Provider

Select Valuation Statistics

<table>
<thead>
<tr>
<th></th>
<th>No Red.</th>
<th>(n_{\text{red}} = 7)</th>
<th>(n_{\text{red}} = 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi^*_{\text{red}}) (bps)</td>
<td>150.7</td>
<td>93.2</td>
<td>47.4</td>
</tr>
<tr>
<td>(NPV^*_0) ($)</td>
<td>0</td>
<td>3,600</td>
<td>6,170</td>
</tr>
<tr>
<td>(V_0) ($)</td>
<td>77,340</td>
<td>81,290</td>
<td>78,980</td>
</tr>
<tr>
<td>(EPVE^*_0) ($)</td>
<td>22,660</td>
<td>15,110</td>
<td>14,850</td>
</tr>
<tr>
<td>(L_0)</td>
<td>1.45</td>
<td>0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- Fee reduction (almost) eliminates lapses
 - Also: reduces fee income for insurer (⇒ prefers to delay to \(n_{\text{red}} = 18 \))
- Saved expenses distributed between insurer ($6,170) and PH ($1,640)

⇒ Innovative VA provider could benefit substantially
Results for Innovative VA Provider

Select Valuation Statistics

<table>
<thead>
<tr>
<th></th>
<th>No Red.</th>
<th>$n_{red} = 7$</th>
<th>$n_{red} = 18$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_{red}^* (bps)</td>
<td>150.7</td>
<td>93.2</td>
<td>47.4</td>
</tr>
<tr>
<td>NPV_0^* ($)</td>
<td>0</td>
<td>3,600</td>
<td>6,170</td>
</tr>
<tr>
<td>V_0 ($)</td>
<td>77,340</td>
<td>81,290</td>
<td>78,980</td>
</tr>
<tr>
<td>$EPVE_0$ ($)</td>
<td>22,660</td>
<td>15,110</td>
<td>14,850</td>
</tr>
<tr>
<td>L_0</td>
<td>1.45</td>
<td>0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>

- Fee reduction (almost) eliminates lapses
 - Also: reduces fee income for insurer (⇒ prefers to delay to $n_{red} = 18$)
- Saved expenses distributed between insurer ($6,170$) and PH ($1,640$)

⇒ Innovative VA provider could benefit substantially
Results for Competitive Market

1. Motivation

2. Financial Model

3. Results for Innovative VA Provider

4. Results for Competitive Market

5. Conclusion
Choose ϕ_{ini}, ϕ_{red}, and n_{red} to maximize V_0 s.t. $NPV_0 = 0$

- Constraint ($NPV_0 = 0$) implies a unique ϕ_{ini} for any given ϕ_{red}:
Choose ϕ_{ini}, ϕ_{red}, and n_{red} to maximize V_0 s.t. $NPV_0 = 0$

- Constraint ($NPV_0 = 0$) implies a unique ϕ_{ini} for any given ϕ_{red}:
Same graph, with truncated y-axis:

(If $n_{\text{red}} \geq 7$:) Reducing ϕ_{red} allows provider to reduce ϕ_{ini} as well

- Reduced expenses outweigh loss in fee income
- ... until lapse rate = 0; then provider needs to increase ϕ_{ini}
Results for Competitive Market

Lapse Rates

Carole Bernard & Thorsten Moenig
Where Less is More: Reducing VA Fees to Benefit PH and Insurer
• Reducing ϕ_{red} to policyholder’s benefit
 ▶ Initially: big impact due to reduced policy acquisition expenses
 ▶ Minor impact as ϕ_{red} gets smaller (due to lower recurring expenses)
Results for Competitive Market
Maximized Policy Value

- Same graph, with truncated x-axis & y-axis:

- Mathematical optimum: front-load all fees ($n_{red}=1$, $\phi_{red} = 0$)

- But: moderate front-loading captures vast majority of benefits
When ϕ_{red} is small, reducing it further increases V_0 a little. Why?

- Making ϕ_{red} even smaller leads to increase in ϕ_{ini} (see prior slides)
- Larger ϕ_{ini} means that A_t is reduced faster at the beginning
 - And more slowly later on b/c of lower ϕ_{red}
- We assumed that insurer’s recurring expenses are in proportion to A_t
- Lower A_t \implies fewer expenses \implies larger V_0

In practice, part of insurer’s expenses may be fixed

\implies (Minor) impact of fee reduction (below threshold) overstated

Focus on big impact of reduced fee policy: fewer lapses & acquisition expenses
When ϕ_{red} is small, reducing it further increases V_0 *a little*. Why?

- Making ϕ_{red} even smaller leads to increase in ϕ_{ini} (see prior slides)
- Larger ϕ_{ini} means that A_t is reduced faster at the beginning
 - And more slowly later on b/c of lower ϕ_{red}
- We assumed that insurer’s recurring expenses are in proportion to A_t
- Lower A_t \implies fewer expenses \implies larger V_0

In practice, part of insurer’s expenses may be fixed

\implies (Minor) impact of fee reduction (below threshold) overstated

Focus on big impact of reduced fee policy: fewer lapses & acquisition expenses
Results for Competitive Market

Select Valuation Statistics

<table>
<thead>
<tr>
<th></th>
<th>No Red.</th>
<th>max. V_0</th>
<th>max. ϕ_{red} s.t. $L_0 < 0.005$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_{red} (years)</td>
<td>—</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>ϕ_{ini} (bps)</td>
<td>150.7</td>
<td>2,001.2</td>
<td>133.8</td>
</tr>
<tr>
<td>ϕ_{red} (bps)</td>
<td>—</td>
<td>0.0</td>
<td>70.7</td>
</tr>
<tr>
<td>V_0 ($)</td>
<td>77,340</td>
<td>85,470</td>
<td>84,870</td>
</tr>
<tr>
<td>$EPVE_{0}$ ($)</td>
<td>22,660</td>
<td>14,530</td>
<td>15,130</td>
</tr>
<tr>
<td>L_0</td>
<td>1.45</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

- Policy value (V_0) increased by $\approx 10\%$ over current status-quo
 - B/c of up to $8,130$ in reduced expenses
- Can capture most of benefits with moderate front-loading of fees
1 Motivation

2 Financial Model

3 Results for Innovative VA Provider

4 Results for Competitive Market

5 Conclusion
Conclusion

• Assess impact of partial frontloading of VA fees on PH behavior
 ▶ Simple & financially impactful
 ▶ Makes PH share cost of lapse decision
 ✫ Under level fee: cost of lapsing is fully socialized
 ▶ Benefits both PH and insurer (by reducing expenses & fee rates)
 ▶ Can be implemented on new and existing policies

• Directly addresses concerns about VAs being too expensive
 ▶ Without compromising VA’s attractive features

• Fewer lapses allows VA provider to increase investment horizon
 ▶ Invest in illiquid, long-term assets
 ▶ Benefits investors and economy overall (Gollier, 2015)
Conclusion

- Assess impact of partial frontloading of VA fees on PH behavior
 - Simple & financially impactful
 - Makes PH share cost of lapse decision
 - Under level fee: cost of lapsing is fully socialized
 - Benefits both PH and insurer (by reducing expenses & fee rates)
 - Can be implemented on new and existing policies

- Directly addresses concerns about VAs being too expensive
 - Without compromising VA’s attractive features

- Fewer lapses allows VA provider to increase investment horizon
 - Invest in illiquid, long-term assets
 - Benefits investors and economy overall (Gollier, 2015)
Assess impact of partial frontloading of VA fees on PH behavior

- Simple & financially impactful
- Makes PH share cost of lapse decision
 - Under level fee: cost of lapsing is fully socialized
- Benefits both PH and insurer (by reducing expenses & fee rates)
- Can be implemented on new and existing policies

Directly addresses concerns about VAs being too expensive

- Without compromising VA’s attractive features

Fewer lapses allows VA provider to increase investment horizon

- Invest in illiquid, long-term assets
- Benefits investors and economy overall (Gollier, 2015)
THANK YOU
Where Less is More: Reducing Variable Annuity Fees to Benefit Policyholder and Insurer*

Carole Bernard & Thorsten Moenig†

† Temple University — moenig@temple.edu

2017 ASTIN/AFIR Colloquia, Panama City

* Research supported by Fundación MAPFRE
Empirical observation of VA policy lapses (Paris, 2017)

Surrenders vary by living benefit type

- GMWB
- None
- GLWB
- GMIB

Years Remaining in Surrender Charge Period

Surrender Rate

0% to 30%