Measuring Claims Inflation: an Argentinean Case Study

Frank Cuypers
Motor Liability in Argentina

- Homogeneous portfolio ≠ homogeneous claims

- Claims type segmentation
 - Material damage (RCC)
 - Bodily injury (RCL)
 - Death (RCHO)

- Claims legal segmentation
 - Administrative (ADM)
 - Mediation (MED)
 - Trial (TRI)
Claims Durations

- Long tail business

- Little IBNYR
Claims Timing

- Payout mostly at settlement
 - Lump sum + expenses
 - No medical treatments
 - No annuities
Claims Timing

The diagram shows the exceedance probability over time for different years, with each year represented by a different color. The pie chart in the inset illustrates the distribution of claims timing across different months for the year 2013.
Claims Timing

- Payout mostly at settlement
 - Lump sum + expenses
 - No medical treatments
 - No annuities

- Define a claims „mortality“ table:

 \[q_x \rightarrow \Gamma_{s|n} = \text{probability to settle in year } s \]
 \[\text{if still open in year } n \leq s \]

- 0-6 months
- LAE
- Indemnity + LAE

claim payout

time
Claims Reserves

- Statutory reserves
 - Strict prescribed mechanic procedure
 ⇒ Useless

- ALAE
 - Individually volatile
 - Stable on average
- Nearly independent from indemnity
 ⇒ Useless
Claims Predictor: Disability Points

- Only for bodily injury (physical + psychological)
- Volatile
- Average nearly proportional to indemnity
- Awarded points increase with claim's duration
 - Forensic physicians fees proportionate to indemnity!
Claims Inflation

- Which inflation?
 - Government statistics
 - Falsified
 - Commercial statistics
 - Numerous
 - Inconsistent
Claims Interests

- Granted by courts
 - Passive = if plaintiff wealthy
 - Active = if plaintiff must borrow

- In-between interests exist

- Accounted for in settlements
 - But inconsistently

- Not compounded!
Claims Procrastination

- Complex claims take longer

- Procrastination increases indemnity
 - Lawyers fees
 - Forensic physicians
 - Award of psychological disability points
 - ...

- Adds up *de facto* to the effect of claims interests:

 The longer it takes a claim to settle,
 the higher the indemnity
Claims Normalization

- **Hypothesis:**
 - Interest & procrastination independent of settlement year
 - Inflation independent of duration

⇒ Normalize indemnities to compare claims:

\[X \rightarrow \tilde{X} = \Lambda_n^s \Pi_{\alpha}^s X \]

- Same inflation
- Same interests & procrastination
Indemnities survival probabilities
- Different scales according to accident year
- Similar lognormal shape

Inflation
Normalize indemnities
- To current calendar year
- Kolmogorov-Smirnov fit
Inflation

Development year

Settlement year

Inflation vector
Inflation

same constant inflation vectors
Inflation

- 2 different claims inflations
 - RCC material damage & death
 - RCL bodily injury

- Claims normalization

 - RCC

 - RCL

\[
X \rightarrow \tilde{X} = \Lambda^n
\]

\[
\Lambda^n = (1 + 20\%)^{n-s}
\]

\[
\Lambda^n = (1 + 10\%)^{n-s}
\]
Interests & Procrastination

Normalize indemnities
- To settlement year 0
- Kolmogorov-Smirnov fit

Indemnities survival probabilities
- Different scales according to settlement year
- Similar lognormal shape
Interests & Procrastination

- Claims normalization

 - $\Pi_n^s = (1 + 20\%)^{a-s}$

 $$X \rightarrow \tilde{X} = \Lambda_n \Pi_a^s X$$
Large Claims

- Whatever AY, SY, DY
 - Good fit to lognormal
 - No need to separate attritional & large claims

![Graph showing indemnity amount distribution with various curves labeled 0 to 7 and lognormal]

Legend:
- Blue: 0
- Red: 1
- Yellow: 2
- Green: 3
- Orange: 4
- Purple: 5
- Light blue: 6
- Green: 7
- Black: Lognormal
Reserves

as-is → as-if

past interests + procrastination → past inflation

accident notification closure now

current → ultimate

past & future interests + procrastination → future inflation

accident notification now closure
Models

<table>
<thead>
<tr>
<th>Runoff</th>
<th>Exposure</th>
<th>Decay</th>
<th>Disability</th>
<th>LD</th>
<th>BF</th>
<th>...</th>
</tr>
</thead>
</table>

Models

Runoff	Exposure	Decay	Disability	LD	BF	...
Models & Assumptions

<table>
<thead>
<tr>
<th></th>
<th>Runoff</th>
<th>Exposure</th>
<th>Decay</th>
<th>Disability</th>
<th>LD</th>
<th>BF</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy limits</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ALAE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payout timing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procrastination</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disability points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case reserves</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Model: Runoff

- Runoff
 \[R^a = (CR^a + IBNYR^a) \sum_{s \geq n} \Lambda^n_s \Pi^n_s \Gamma_{s-a|n-a} \]

- Exposure
 \[R^a = (1 + ALAE)(E^a X^a - P^a) \sum_{s \geq n} \Lambda^n_s \Pi^a_s \Gamma_{s-a|n-a} \]

- ...
Reserves

as-is → as-if

- Past interests + procrastination
- Past inflation

- Accident notification
- Closure
- Now

current → ultimate

- Past & future interests + procrastination
- Future inflation

- Accident notification
- Now
- Closure
Reserves

- Current → Ultimate
- Past & Future Interests + Procrastination
- Future Inflation

- Accident Notification
- Now
- Closure

- Time

- Best Estimate
- Future 1
- Future 2

- Graph showing reserve levels from 2013 to 2021 with estimated values from 0 to 7,000,000.
Forecast the Future
Conclusions

- Argentina is complex
- ESG are important
- AvE are important
- Actuarial techniques are not science, they are engineering
Reserving

Different models depending on
- data availability / quality
- line of business / market
- processes / products
- …
- actuarial judgment

→ 1st moment of a distribution

.standard reserving model

Solvency II

Different models depending on
- data availability / quality
- line of business / market
- processes / products
- …
- actuarial judgment

→ nth moment of a distribution

.standard solvency formula

... et Carthago delenda est!
Internal models

- Numerical aggregation of realistic distributions
 \[SCR \leftarrow \text{risk}_1 \otimes \text{risk}_2 \otimes \text{risk}_3 \otimes \cdots \]
- Probe the true tail

Standard Solvency II formula

- Analytic linear approximation
 \[SCR \leftarrow \sigma^2 = \sum \rho_{ij} \sigma_i \sigma_j \]
- Probe the tail with 2nd moments

... et Carthago delenda est!
Internal model

- Numerical aggregation of realistic distributions
 \[SCR \leftarrow \text{risk}_1 \otimes \text{risk}_2 \otimes \text{risk}_3 \otimes \ldots \]
- Probe the true tail

... et Carthago delenda est!
Lecturer’s Coordinates

Frank Cuypers
+41 (41) 725 32 94
frank.cuypers@prs-zug.com