
Clustering

Fumihiro Endo Hidemasa Oda

July 15, 2017

1 Introduction

Clustering is the method of dividing data into several groups. Each group is
called “cluster” and similar objects are intended to be grouped in the same clus-
ter. Since it only uses information of the dataset and does not use a dependent
variable, it is classified as unsupervised learning.

2 Dissimilarity

In measuring how similar the two objects in the dataset, the concept of “dis-
similarity” is introduced. The dissimilarity between objects i and j, d(i, j) has
the following properties.

d(i, j) ≥ 0

d(i, i) = 0

d(i, j) = d(j, i)

These are similar to the ones of distance. However, the triangle inequality
does not hold in dissimilarity. This enables us to use measures such as Sørensen-
Dice coefficient, when we deal with categorical variables.

In other words, any distance can be used as dissimilarity. In this paper, we
use “Euclidean distance” and “Manhattan distance” as dissimilarity. Manhat-
tan distance is also known as “City-block distance”.

The matrix of dissimilarities between each object is known as dissimilarity
matrix and this is the input for clustering analysis.

2.1 Measuring dissimilarity of categorical valuables

For categorical valuables, we cannot measure the dissimilarity (or, distance)
in the same manner as numerical valuables. Intuitively, for example, if the
categorical valuable consists of three values, red, yellow and green, we cannot
tell which distance is larger: the distance between red and yellow, or red and
green like in numerical variables.

To measure the distance of categorical valuables, we can use either of the
following method, though we do not treat categorical variables in this paper.

1

1. use one-hot encoding (as in the principal component analysis)

2. use gower distance

We can calculate the dissimilarity explicitly in gower distance by the function
daisy in the cluster package.

daisy (x, metric = ‘‘gower’’ , stand = T)
where x is a matrix or dataframe. daisy is the function for calculating

dissimilarity matrix. As for the metric, we can also choose Euclidean distance
and Manhattan distance for numeric variables or categorical variables coded as
0-1 indicators (coded as one-hot encoding).

Unlike in calculating Euclidean distance or Manhattan distance, in gower
distance, the input can include categorical variables without using one-hot en-
coding. If the data contains both numerical variables and categorical ones, the
dissimilarity d(i, j) for p dimensional data is calculated by

d(i, j) =

∑p
f=1 δ

(f)
ij d

(f)
ij∑p

f=1 δ
(f)
ij

∈ [0, 1],

where d
(f)
ij is the contribution of variable f to d(i, j), which depends on the

type of the variable. For numerical variables, d
(f)
ij =

|xif−xjf |
maxh xhf−minh xhf

and for

categorical variables, d
(f)
ij = 0 if xif = xjf , and d

(f)
ij = 1 otherwise. δ

(f)
ij is the

weight of the variable f and δ
(f)
ij = 1 unless xif or xjf is missing.

The dissimilarity for numeric variables is similar to the Manhattan distance.
For categorical variables, the dissimilarity is similar to the Manhattan distance
calculated after one-hot encoding other than scaling.

Since we use the result of PCA in analyzing the result of the clustering, we
recommend using one-hot encoding if you also deal with categorical variables.
In this paper, we use Euclidean distance and Manhattan distance. Since dis-
similarities are calculated in functions for performing clustering (clara, agnes
and diana) from the input data before clustering, we do not use daisy in the
following.

3 Clustering

There are two types of clustering: k-means clustering (or partitional cluster-
ing) and hierarchical clustering. In k-means clustering, we divide data into k
disjoint sets and in hierarchical clustering we create a nested tree of partition.
The computation time is much shorter in k-means clustering than in hierar-
chical clustering. In this paper, the cluster library in R is used to perform
clusterings.

3.1 R cluster library

R cluster library contains fuctions both for k-means clustering and hierar-
chical clustering. For k-means clustering, pam or clara is used and agnes or

2

diana is used for hierarchical clustering. After executing each function, we can
obtain not only the result of the clustering but also useful information on the
result such as “Silhouette value” in pam or clara. Also, useful functions for
analyzing the result are contained in the library like cutree for hierarchical
clustering. From the CRAN website, a pdf file with documentation for all the
cluster functions (Maechler 2017) can be obtained.

Also, the “Unsupervised Learning” chapter in the book Predictive model-
ing applications in actuarial science. Vol. 1 provides a good introduction to
performing clusterings using the cluster library with a plenty of illustrative
examples and exercises along with the sample R codes.

3.2 k-means clustering

For k-means clustering, we use clara in cluster package. (Since we use
“medoids” instead of means in clara, it seems to be more accurate to call it
k-medoids clustering, but the word k-means clustering is widely used in this
case, too.)

clara (x, metric = ‘‘Euclidean’’, stand = T)
where x is a dataset, and stand defines whether the standardization is

applied (stand = T) or not (stand = F).
In the package cluster, there are two function for k-means clustering: pam

and clara. The two functions are using the same algorithm except for the point
that clara uses sampling technique for determining the “medoids”, the center
of each cluster, in order to reduce computation time. For large datasets, clara
is more suitable. Note that we cannot use dissimilarity matrices produced by
daisy as an input in clara, unlike in pam. In clara(pam) the dissimilarity is
computed from the input before performing clustering. With the option stand
=T, the measurement will be standardized to zero location and unit spread.
This option can only be used when all variables are numeric. Standardization is
usually desirable in performing clustering since the result will be highly effected
by the variables with large quantity without standardization.

In pam, the goal is to find k representative objects, or medoids from the
dataset of n records which minimize the total dissimilarity of all the objects to
their nearest medoids. In other words, the goal is to find a subset m1, · · · ,mk ⊂
1, · · · , n which minimize the following objective function

n∑
i=1

min
t=1,···,k

d(i,mt). (1)

The algorithm for pam is the following.

1. Construct initial medoids:

• m1 is the object with the smallest
∑n

i=1 d(i,mt)

• m2 is the object which decreases (1) the most

• repeat this process to mk

3

2. Repeat swap until convergence: For all the pairs of objects (i, j) with

i ∈ {m1, · · · ,mk}, j /∈ {m1, · · · ,mk}

and swap i and j which decreases (1) the most.

In clara, only the sampled data is used for finding the medoids in order
to reduce the computation time, although the algorithm is the same as pam. It
repeats this process for the sample times and the best result is restored as the
medods for each time. In default settings, the sample size is 40 + 2 ∗ k and the
sample times is 5. We can change this setting by the option sampsize = n
and samples = m.

R has yet another function for k-means clustering, kmeans, but clara(pam)
is more robust due to its algorithm. First, clara(pam) does not need initial
guess of the center of each cluster unlike kmeans, where different result can
be generated by different initial guess. Also, in the kmeans the center of each
cluster is defined as the mean of the objects in the cluster and the goal is to
minimize a sum of squared Euclidean distance. This assume that each cluster
has a spherical normal distribution. In clara, the center is called “medoids”
and minimize a sum of unsquared dissimilarities. This is also the point which
contribute to the robustness of clara.

Basically, the number of the cluster k has to be decided subjectively or by
try-and-error method. Also, it is difficult to tell the goodness of the result of
the clustering but one way is to use silhouette value.

Silhouette value for the object i, s(i) is calculated as

s(i) =
b(i)− a(i)

max(a(i), b(i))
∈ [−1, 1],

where a(i) is the average dissimilarity of i to the other objects of the cluster
which i belongs to, and b(i) is the average dissimilarity of i to all the objects
of the second-best cluster for i. If s(i) is close to 1, it can be interpreted as the
object i is well classified to it own cluster. On the other hand, if it is close to
-1, the object i is badly classified since it is closer to the “second-best” cluster.

The Silhouette value is calculated automatically in clara(pam) with the
clustering result. Also, they provides the average silhouette width, which is the
average of the silhouette value of the all objects. It can be used as one of the
criteria for determining the number of the cluster k. Or, it can be interpreted
as how the dataset is easy for dividing. In real data, sometimes it is impossible
to get high average silhouetted width in k-means clustering.

The Silhouette plot, the plot of the silhouette value for each object, is ob-
tained by the following code along with the average silhouette width.

plot (clara.result)
Note that for the result of the clara, the silhouette values are calculted

only for the best samples, unlike in pam.

4

3.3 Hierarchical clustering

Hierarchical clustering has two main methods: agglomerative (bottom-up) method
and divisive (top-down) method.

3.3.1 Agglomerative method

In agglomerative method, we use the function agnes in the package cluster.
It starts with n clusters, each containing one object. Then at each step, it
merges the two most similar cluster. It iterates the step until only one cluster
remains, which is the whole dataset. In finding the two most similar cluster,
the dissimilarity between the two is used as a criterion. However, when the
cluster contains more than one objects, we have to define how to measure the
dissimilarity between the two cluster. In the function agnes, we can choose
methods for measuring it. Here we introduce typical four methods.

• single linkage: single

In single link clustering, also known as nearest neighbor clustering, the
dissimilarity between two cluster is defined as the dissimilarity between
the two closest objects of the cluster.

• complete linkage: complete

In complete link clustering, also known as furthest neighbor clustering, the
dissimilarity between two cluster is defined as the dissimilarity between
the two furthest objects of the cluster.

• average linkage: average

In average link clustering, the dissimilarity between two cluster is defined
as the average dissimilarity between the all objects of the cluster.

• Ward’s method: ward

In Ward’s method, at each step, it finds two clusters which lead to the
minimum increase in total within-cluster dissimilarity after merging the
clusters.

Single linkage and complete linkage have shorter computation time compared
to average linkage and Ward’s method. In practice, average linkage and Ward’s
method are popular since they generate relatively well-balanced results.

The example for the function agnes is below.
agnes(x, metric =‘‘euclidean’’, stand = T, method =‘‘average’’)
where x denotes the dataset. We can use Manhattan distance by metric

=‘‘manhattan’’. For agnes, dissimilarity matrices can be inputs if we spec-
ify it as diss = T (the default setting is diss = F).

The result of the clustering is represented as a binary tree, called as a den-
drogram. The height of the branches represents the dissimilarity between the
two clusters which are merged. The top of the tree represents a group which
contains the whole data. If we cut the tree at the specific height, we can divide

5

the data into several groups as in k-means clustering. We can use the function
cutree in order to divide the data into k clusters.

cutree(agnes.result, k)

Like the silhouette plot in clara(pam), agnes has a quality index called
the agglomerative coefficient. The agglomerative coefficient is defined as

AC =
1

n
(1−

n∑
i=1

σ(d(i))),

where σ(d(i)) is defined as the object i’s dissimilarity to the first cluster it
merged with, divided by the dissimilarity of the merger of the last step, where
the cluster becomes one. Intuitively, AC gets close to one as the number of
the merger increase. Therefore, when we use large dataset, it is difficult to tell
which approach is better only by ACs.

3.3.2 Divisive method

In divisive method, we use the function diana in the package cluster. Con-
trary to the agglomerative method, it starts with one cluster, the whole dataset.
Then it recursively divides each cluster into two clusters. There are many ap-
proaches in dividing a cluster into the two cluster. The approach used in diana
is called dissimilarity analysis. The algorithm is the following.

1. In each step, choose the cluster with the largest diameter, where

diam(C) := max
i,j∈C

d(i, j)

Let A := C and B := ∅

2. Move one object from A to B. For each object i ∈ A, we calculate a(i),
the average dissimilarity of i to all other objects of A. Then, the object
with the largest a(i), m is moved to B:

A := A\{m}, B := {m}

3. Move other objects from A to B. Calculate a(i) for all i < A , and the
average dissimilarity of i to all objects of B, d(i, B), unless A contains only
one object. Then select the object h ∈ A for which

a(h)− d(h,B) = max
i∈A

(a(i)− d(i, B))

If a(h) − d(h,B) > 0, move h from A to B and repeat this process. If
a(h)− d(h,B) ≤ 0, stop this process.

The example for the function diana is below.
diana(x, metric = ‘‘euclidean’’, stand = T)

6

where x denotes the dataset. We can use Manhattan distance by metric =
‘‘manhattan’’. As in agnes, dissimilarity matrices can be inputs in diana
if we specify it as diss = T (the default setting is diss = F).

diana also has a quality index called the divisive coefficient.

DC =
1

n
(1−

n∑
i=1

σ(d(i))),

where σ(d(i)) is defined as the diameter of the last cluster object i belongs
(before being split off as a single object), divided by the diameter of the whole
dataset. Like AC, DC gets close to one as the dataset gets large and number of
the division increase.

4 Result

We performed several clustering methods for the COIL dataset. From the COIL
dataset, the dataset C is created for this purpose. The dataset contains 41 di-
mensions, which are external demographic variables excluding MOSTYPE and
MOSHOOFD. These two variables are categorical and related to the classifica-
tion of customer type.

From a practical point of view, this analysis can be seen as classifying the
customer from the sociodemographic data and creating another customer clas-
sification, which can be more useful in analyzing the relation between the cus-
tomer type and insurance sales. In general, measuring the plausibility of the
clustering result can be quite subjective, although the results vary with the
method we choose. In this paper, we use the result of the PCA analysis in order
to compare the plausibility of each clustering result.

First, we perform PCA analysis on the dataset C. The result is shown in
Fig.1.

In the following, we analyze the result of the clustering by plotting the results
by PCs as the axes.

4.1 k-means clustering

The result of the clara is shown in Fig.2 to Fig.5. In order to check the differ-
ence by the different metrics, we performed clara both in Euclidean distance
and Manhattan distance. We choose k, the number of the cluster equals to 10,
the same as the number of the classes of MOSTYPE for the starting point of
the analysis.

The silhouette values for the both clustering results are quite low, 0.08 (for
Euclidean distance) and 0.13 (for Manhattan distance), respectively (see Fig.6
and Fig.7). This is almost the same if we change k to 4, 6, or 8. (Since the
silhouette values are calculated only for the best samples in clara, we also per-
formed pam to get the average silhouette values for all data, for reference. The
results are similar. The average silhouette values are 0.05 (for Euclidean dis-
tance) and 0.07 (for Manhattan distance), respectively.) This can be interpreted

7

Figure 1: scree plot for dataset C

Figure 2: clara (k=10, Euclidean distance) in PC1-PC2

8

Figure 3: clara (k=10, Euclidean distance) in PC1-PC3

Figure 4: clara (k=10, Manhattan distance) in PC1-PC2

9

Figure 5: clara (k=10, Manhattan distance) in PC1-PC3

in many ways. First, we can just determine that this dataset is not suitable for
clustering. However, in practice, it is not likely that we have datasets which
can be separated easily. In other words, the value represents the difficulty of
dividing data. Another way is to focus on the difference between the silhouette
values. In this case, the clustering with Manhattan distance seems better in
terms of the silhouette value. Of course, we can use the silhouette value as one
of the criteria for deciding k.

Here comes another question. Is the difference between the two silhouette
value is substantial for this analysis? To check this, we can utilize the result of
the PCA. Looking at the both plots, the result with Manhattan distance looks
better in dividing the data along with the PCs especially in PC1, although
both result are not so well-divided along them. With the help of the PCA
results, we can have another criterion for judging the plausibleness of the k-
means clustering.

4.2 Hierarchical clustering

The result of the hierarchical clustering is highly sensitive to the methods chosen
for the clustering. It depends not only on whether we use agnes or diana,
but also the metric we choose. Moreover, it is highly dependent on the method
in agnes (ward, average and so on).

Here are the results of the clustering analysis. We use cutree and divide
the data into 10 clusters.

Can we tell which clustering is better than others? At a glance, agnes
with average linkage does not divide the data well, almost all of the data being

10

Figure 6: Silhouette plot for clara (k=10, Euclidean distance)

Figure 7: Silhouette plot for clara (k=10, Manhattan distance)

11

Figure 8: agnes(average linkage, Euclidean distance)

Figure 9: agnes(average linkage, Manhattan distance)

Figure 10: agnes(Ward’s method, Euclidean distance)

12

Figure 11: agnes(Ward’s method, Manhattan distance)

Figure 12: diana(Euclidean distance)

Figure 13: diana(Manhattan distance)

13

Figure 14: agnes(Ward’s method, Euclidean distance) in PC1-PC2

labeled as a single cluster. How about the rest ones?
We can get agglomerative coefficient or divisive coefficient as the measure

of the goodness of the dividing data, however, since the dataset is large, the
coefficients are almost one for any of the cases (at least 0.970).

In order to check the plausibleness of the result, we can use the result of the
PCA as in k-means clustering. We plot the clustering results by PCs, excluding
the result of agnes with average linkage.

Looking at the results, diana with the Manhattan distance is the result
with the highest consistency with the PCA analysis. Moreover, the fact that
Manhattan distance is more suitable for this data is the same as in k-means
clustering.

4.3 interpretation of the result

Suppose that we choose diana with Manhattan distance as the most plausible
clustering. How can the result be interpreted? First, the number of the classifi-
cation now (10) can be too much, since the number of the cluster with more than
100 data (around 2% of the dataset) is 6 (see Table 1). Also, through check-
ing the customer main type (MOSHOOFD) in each cluster, we can get another
interpretation. For example, around 75% of the customer type 8 and 9 belong
to the cluster 1. Therefore, the customer labels “Family with Grownups” and
“Conservative Family” may be meaningful but can be merged. On the other
hand, “Average Family” is split into 3 large groups. Chances are customers
without obvious characteristics are labeled as “Average Family”.

To sell caravan insurance, which cluster should we choose? The cluster 4

14

Figure 15: agnes(Ward’s method, Euclidean distance) in PC1-PC3

Figure 16: agnes(Ward’s method, Manhattan distance) in PC1-PC2

15

Figure 17: agnes(Ward’s method, Manhattan distance) in PC1-PC3

Figure 18: diana(Euclidean distance) in PC1-PC2

16

Figure 19: diana(Euclidean distance) in PC1-PC3

Figure 20: diana(Manhattan distance) in PC1-PC2

17

Figure 21: diana(Manhattan distance) in PC1-PC3

and 5 enjoy high contribution for caravan insurance than the whole dataset (see
Table 2). Looking at the cluster 4, its PC1 is quite high. The variables positive
for PC1 are, for example, “MINKGEM” (average income), “MHKOOP”(home
owners), and “MZPART”(private insurance). This can be interpreted as typical
high income customers. For cluster 5, PC1 is not so high as PC1 of cluster 4, but
PC2 is smaller than that of cluster 4. The variables with the highest influence
on the PC2 are variables for family type. “MRELOV” (other relation) and
“MFALLEEN” (singles) have positive coefficient and “MRELGE” (married)
and “MFWEKIND” (household with children) has negative coefficient. This
implies that cluster 5 can be labeled as “family with children with relatively
high income”.

In order to check the plausibleness of the clustering we chose (diana with
Manhattan distance), We divide the test data as the following.

1. Set the number of the cluster to 6.

The clusters 1, 2, 3, 4, 5 and 7 are chosen.

2. Set the medoids to the each cluster.

Each value of the variables of the medoids is calculated as the mean value
of the train data which belongs to the cluster.

3. Calculate the Manhattan distance of the test data.

The Manhattan distance of each of the test data for the medoids are
calculated. Then the cluster each data belongs to is decided.

18

The result is shown in Table 3 . The average PCs calculated from the result
of the training data are similar to the ones in the training data. Looking at
the average value of the CARAVAN, the cluster 4 and 5 have the high average
values as in the training data.

19

Table 1: customer main type in each cluster
Customer main type (MOSHOOFD)

cluster number of objects 1 2 3 4 5 6 7 8 9 10

1 2,863 151 28 290 7 177 53 374 1,161 499 123
2 668 52 2 61 9 322 71 47 59 45 0
3 1,022 108 230 239 1 11 11 14 222 55 131
4 446 197 116 86 2 4 1 0 31 3 6
5 464 25 120 205 0 1 0 0 64 27 16
6 71 5 0 1 31 23 8 2 0 1 0
7 249 1 2 1 0 31 52 107 22 33 0
8 27 12 4 3 0 0 0 0 4 4 0
9 2 1 0 0 0 0 1 0 0 0 0
10 0 0 0 2 0 8 0 0 0 0 0

total 5,822 552 502 886 52 569 205 550 1,563 667 276

Table 2: average value for each cluster objects, divided by diana (Manhattan
distance)

cluster number of objects CARAVAN PC1 PC2 PC3

1 2,863 0.05 -1.22 -1.10 0.17
2 668 0.03 -2.22 2.57 -1.29
3 1,022 0.08 2.58 0.27 0.02
4 446 0.12 5.41 1.69 1.53
5 464 0.11 2.79 -1.25 -1.75
6 71 0.00 -2.84 5.64 -0.43
7 249 0.03 -5.43 2.01 1.69
8 27 0.00 6.24 2.12 1.93
9 2 0.00 3.34 4.17 -0.55
10 10 0.00 0.91 2.91 3.86

total 5,822 0.06 0.00 0.00 0.00

20

Figure 22: contribution of each variable for PC1-PC2

Table 3: average value for each cluster objects in test data
cluster number of objects CARAVAN PC1 PC2 PC3

1 1,519 0.05 -1.17 -1.39 0.39
2 587 0.04 -1.87 2.43 -1.09
3 713 0.06 2.27 0.47 0.31
4 384 0.10 5.35 1.76 1.50
5 470 0.11 2.24 -1.26 -1.63
7 327 0.04 -4.77 0.92 1.49

total 4,000 0.06 0.07 0.01 0.12

21

Figure 23: contribution of each variable for PC1-PC3

5 Appendix

library(data.table)
library(ggplot2)
library(cluster)

make dataset from data.A made in PCA section
data.C < - data.A[, -42:-84]
dim(data.C) #5822*41

execute prcomp
result.C <- prcomp(data.C, scale = T)

plot scree plots
plot((result.C$sdev)ˆ2/sum((result.C$sdev)ˆ2),

xlab = "Principal Component", ylab = "Propotion of Variance Explained",
type = "o", main = "41 dim * 5,822 train data", sub ="56% of the
variance is explained by PC1˜PC7")

plot contribution plots
cnames.C <- cnames[c(2,3,4,6:43), 1]
cnames.C <- as.data.frame(cnames.C)
result.C.rot <- data.table(result.C$rotation)
result.C.rot <- cbind(result.C.rot,cnames.C)
ggplot(result.C.rot, aes(x = PC1,y = PC2,color = result.C.rot$cnames.C))

22

+geom point(size = 0)+geom text(aes(label = as.character(result.C.
rot$cnames.C)))+labs(color = "variables")

ggplot(result.C.rot, aes(x = PC1,y = PC3,color = result.C.rot$cnames.C))
+geom point(size = 0)+geom text(aes(label = as.character(result.C.
rot$cnames.C)))+labs(color = "variables")

make data table
predict.C <- predict(result.C, data.C)
dim(predict.C) # 5822*41
predict.C <- cbind(data.C,predict.C)
dim(predict.C) # 5822*82
data.predict.C <- cbind(data,predict.C)
dim(data.predict.C) # 5822*168

execute clara
clara.C.euc.k10 <- clara(data.C,10,metric = "euclidean",stand = TRUE)
clara.C.man.k10 <- clara(data.C,10,metric = "manhattan",stand = TRUE)
plot(clara.C.euc.k10) # get Silhouette plot
plot(clara.C.man.k10)
result.clara.C.euc.k10 <- clara.C.euc.k10$clustering
result.clara.C.man.k10 <- clara.C.man.k10$clustering
result.clara.C.euc.k10 <- data.table(result.clara.C.euc.k10)
result.clara.C.man.k10 <- data.table(result.clara.C.man.k10)
data.predict.C.cluster <- cbind(data.predict.C,result.clara.C.euc.k10)
data.predict.C.cluster <- cbind(data.predict.C.

cluster,result.clara.C.man.k10)

execute pam to get the average silhouette width for all data
pam.C.euc.k10 <- pam(data.C,10,metric = "euclidean",stand = TRUE)
pam.C.man.k10 <- pam(data.C,10,metric = "manhattan",stand = TRUE)
plot(pam.C.euc.k10)
plot(pam.C.man.k10)

plot the result of clara in PCs
data.predict.C.cluster$result.clara.C.euc.k10 <- as.factor(data.

predict.C.cluster$result.clara.C.euc.k10)
data.predict.C.cluster$result.clara.C.man.k10 <- as.factor(data.

predict.C.cluster$result.clara.C.man.k10)
ggplot(data.predict.C.cluster,aes(x = PC1, y = PC2, color = result.clara.C.

euc.k10)) + geom point(size = 1)+labs(color = "cluster number")
+ ggtitle("clara(k = 10, Euclidean distance)")

ggplot(data.predict.C.cluster,aes(x = PC1, y = PC2, color = result.clara.C.
man.k10)) + geom point(size = 1)+labs(color = "cluster number")
+ ggtitle("clara(k = 10, Manhattan distance)")

execute agnes, diana

23

agnes.C.euc.ave <- agnes(data.C,metric = "euclidean",stand = TRUE,
method = "average")

agnes.C.euc.wrd <- agnes(data.C,metric = "euclidean",stand = TRUE,
method = "ward")

agnes.C.man.ave <- agnes(data.C,metric = "manhattan",stand = TRUE,
method = "average")

agnes.C.man.wrd <- agnes(data.C,metric = "manhattan",stand = TRUE,
method = "ward")

diana.C.euc <- diana(data.D,metric = "euclidean",stand = T)
diana.C.man <- diana(data.D,metric = "manhattan",stand = T)

execute cutree
cutree.10.agnes.C.euc.ave <- cutree(as.hclust(agnes.C.euc.ave), k = 10)
cutree.10.agnes.C.euc.wrd <- cutree(as.hclust(agnes.C.euc.wrd), k = 10)
cutree.10.agnes.C.man.ave <- cutree(as.hclust(agnes.C.man.ave), k = 10)
cutree.10.agnes.C.man.wrd <- cutree(as.hclust(agnes.C.man.wrd), k = 10)
cutree.10.diana.C.euc <- cutree(as.hclust(diana.C.euc), k = 10)
cutree.10.diana.C.man <- cutree(as.hclust(diana.C.man), k = 10)

cutree.10.agnes.C.euc.ave <- data.table(cutree.10.agnes.C.euc.ave)
cutree.10.agnes.C.euc.wrd <- data.table(cutree.10.agnes.C.euc.wrd)
cutree.10.agnes.C.man.ave <- data.table(cutree.10.agnes.C.man.ave)
cutree.10.agnes.C.man.wrd <- data.table(cutree.10.agnes.C.man.wrd)
cutree.10.diana.C.euc <- data.table(cutree.10.diana.C.euc)
cutree.10.diana.C.man <- data.table(cutree.10.diana.C.man)

add data
data.predict.C.cluster <- cbind(data.predict.C.cluster,cutree.10.

agnes.C.euc.ave)
data.predict.C.cluster <- cbind(data.predict.C.cluster,cutree.10.

agnes.C.euc.wrd)
data.predict.C.cluster <- cbind(data.predict.C.cluster,cutree.10.

agnes.C.man.ave)
data.predict.C.cluster <- cbind(data.predict.C.cluster,cutree.10.

agnes.C.man.wrd)
data.predict.C.cluster <- cbind(data.predict.C.cluster,cutree.10.

diana.C.euc)
data.predict.C.cluster <- cbind(data.predict.C.cluster,cutree.10.

diana.C.man)

data.predict.C.cluster$cutree.10.agnes.C.euc.ave
<-as.factor(data.predict.C.cluster$cutree.10.agnes.C.euc.ave)

data.predict.C.cluster$cutree.10.agnes.C.euc.wrd
<-as.factor(data.predict.C.cluster$cutree.10.agnes.C.euc.wrd)

data.predict.C.cluster$cutree.10.agnes.C.man.ave
<-as.factor(data.predict.C.cluster$cutree.10.agnes.C.man.ave)

24

data.predict.C.cluster$cutree.10.agnes.C.man.wrd
<-as.factor(data.predict.C.cluster$cutree.10.agnes.C.man.wrd)

plot trees
pltree(agnes.C.euc.ave)
rect.hclust(as.hclust(agnes.C.euc.ave), 10)
pltree(agnes.C.euc.wrd)
rect.hclust(as.hclust(agnes.C.euc.wrd), 10)
pltree(agnes.C.man.ave)
rect.hclust(as.hclust(agnes.C.man.ave), 10)
pltree(agnes.C.man.wrd)
rect.hclust(as.hclust(agnes.C.man.wrd), 10)
pltree(diana.C.euc)
rect.hclust(as.hclust(diana.C.euc), 10)
pltree(diana.C.man)
rect.hclust(as.hclust(diana.C.man), 10)

plot in PCs
ggplot(data.predict.C.cluster, aes(x = PC1, y = PC2,

color = cutree.10.agnes.C.euc.ave)) + geom point(size = 1)
+ labs(color = "cluster number") + ggtitle("agnes(average linkage,
Euclidean distance)")

ggplot(data.predict.C.cluster, aes(x = PC1, y = PC3,
color = cutree.10.agnes.C.euc.ave)) + geom point(size = 1)
+ labs(color = "cluster number") + ggtitle("agnes(average linkage,
Euclidean distance)")

ggplot(data.predict.C.cluster, aes(x = PC1, y = PC2,
color = cutree.10.agnes.C.euc.wrd)) + geom point(size = 1)
+ labs(color = "cluster number") + ggtitle("agnes(Ward’s method,
Euclidean distance)")

ggplot(data.predict.C.cluster, aes(x = PC1, y = PC3,
color = cutree.10.agnes.C.euc.wrd)) + geom point(size = 1)
+ labs(color = "cluster number") + ggtitle("agnes(Ward’s method,
Euclidean distance)")

ggplot(data.predict.C.cluster, aes(x = PC1, y = PC2,
color = cutree.10.agnes.C.euc.man)) + geom point(size = 1)
+ labs(color = "cluster number") + ggtitle("agnes(average linkage,
Manhattan distance)")

ggplot(data.predict.C.cluster, aes(x = PC1, y = PC3,
color = cutree.10.agnes.C.man.ave)) + geom point(size = 1)
+ labs(color = "cluster number") + ggtitle("agnes(average linkage,
Manhattan distance)")

ggplot(data.predict.C.cluster, aes(x = PC1, y = PC2,

25

color = cutree.10.agnes.C.man.wrd)) + geom point(size = 1)
+ labs(color = "cluster number") + ggtitle("agnes(Ward’s method,
Manhattan distance)")

ggplot(data.predict.C.cluster, aes(x = PC1, y = PC3,
color = cutree.10.agnes.C.man.wrd)) + geom point(size = 1)
+ labs(color = "cluster number") + ggtitle("agnes(Ward’s method,
Manhattan distance)")

ggplot(data.predict.C.cluster, aes(x = PC1, y = PC2,
color = cutree.10.diana.C.euc)) + geom point(size = 1)
+ labs(color = "cluster number") + ggtitle("diana
(Euclidean distance)")

ggplot(data.predict.C.cluster, aes(x = PC1, y = PC3,
color = cutree.10.diana.C.euc)) + geom point(size = 1)
+ labs(color = "cluster number") + ggtitle("diana
(Euclidean distance)")

ggplot(data.predict.C.cluster, aes(x = PC1, y = PC2,
color = cutree.10.diana.C.man)) + geom point(size = 1)
+ labs(color = "cluster number") + ggtitle("diana
(Manhattan distance)")

ggplot(data.predict.C.cluster, aes(x = PC1, y = PC3,
color = cutree.10.diana.C.man)) + geom point(size = 1)
+ labs(color = "cluster number") + ggtitle("diana
(Manhattan distance)")

apply the result to the test data
make data
data.eval.C <- data.eval.A[,-42:-84]
dim(data.eval.C) #4000*41

execute prcomp
predict.eval.C <- predict(result.C, data.eval.C)
dim(predict.eval.C) #4000*41
predict.eval.C <- data.table(predict.eval.C)
predict.eval.C <- cbind(data.eval.C,predict.eval.C)
dim(predict.eval.C) #4000*82
data.predict.eval.C <- cbind(data.eval,predict.eval.C)
dim(data.predict.eval.C) #4000*168

scale test data
scaled.data.eval.C <- scale(data.eval.C)

divide data by cluster No
make variables from cluster1 to cluster10
for (i in 1:10){

26

assign(paste("cluster", i, sep = ""), data.predict.C.cluster
[data.predict.C.cluster$cutree.10.diana.C.man == i,])

}

extract data
cluster1.data <- cbind(cluster1[, 2:4], cluster1[, 6:43])
cluster2.data <- cbind(cluster2[, 2:4], cluster2[, 6:43])
cluster3.data <- cbind(cluster3[, 2:4], cluster3[, 6:43])
cluster4.data <- cbind(cluster4[, 2:4], cluster4[, 6:43])
cluster5.data <- cbind(cluster5[, 2:4], cluster5[, 6:43])
cluster7.data <- cbind(cluster7[, 2:4], cluster7[, 6:43])

dim(cluster1.data) #2863*41
dim(cluster2.data) #668*41
dim(cluster3.data) #1022*41
dim(cluster4.data) #446*41
dim(cluster5.data) #464*41
dim(cluster7.data) #249*41

calculate medoids
medoid.1 <- apply(cluster1.data,2, mean)
medoid.2 <- apply(cluster2.data,2, mean)
medoid.3 <- apply(cluster3.data,2, mean)
medoid.4 <- apply(cluster4.data,2, mean)
medoid.5 <- apply(cluster5.data,2, mean)
medoid.7 <- apply(cluster7.data,2, mean)
medoid.1 <- data.table(medoid.1)
medoid.2 <- data.table(medoid.2)
medoid.3 <- data.table(medoid.3)
medoid.4 <- data.table(medoid.4)
medoid.5 <- data.table(medoid.5)
medoid.7 <- data.table(medoid.7)

scale medoids
mean.data.eval.C <- apply(data.eval.C, 2, mean)
std.div.data.eval.C <- apply(data.eval.C, 2, sd)
medoid.1.scaled <- (medoid.1 - mean.data.eval.C)/std.div.data.eval.C
medoid.2.scaled <- (medoid.2 - mean.data.eval.C)/std.div.data.eval.C
medoid.3.scaled <- (medoid.3 - mean.data.eval.C)/std.div.data.eval.C
medoid.4.scaled <- (medoid.4 - mean.data.eval.C)/std.div.data.eval.C
medoid.5.scaled <- (medoid.5 - mean.data.eval.C)/std.div.data.eval.C
medoid.7.scaled <- (medoid.7 - mean.data.eval.C)/std.div.data.eval.C

calculate manhattan distance for each medoid
medoid.1.scaled.t <- t(medoid.1.scaled)
dim(medoid.1.scaled.t) #1*41

27

scaled.data.eval.C.medoid1 <- rbind(medoid.1.scaled.t,scaled.data.eval.C)
dim(scaled.data.eval.C.medoid1) #4001*41
dist.data.eval.medoid1 <- dist(scaled.data.eval.C.medoid1,

method = "manhattan")
dist.data.eval.medoid1 <- data.table(dist.data.eval.medoid1)
result.dist.cluster1 <- dist.data.eval.medoid1[1:4000,]
dim(result.dist.cluster1)#4000*1

medoid.2.scaled.t <- t(medoid.2.scaled)
dim(medoid.2.scaled.t) #1*41
scaled.data.eval.C.medoid2 <- rbind(medoid.2.scaled.t,scaled.data.eval.C)
dim(scaled.data.eval.C.medoid2) #4001*41
dist.data.eval.medoid2 <- dist(scaled.data.eval.C.medoid2,

method = "manhattan")
dist.data.eval.medoid2 <- data.table(dist.data.eval.medoid2)
result.dist.cluster2 <- dist.data.eval.medoid2[1:4000,]
dim(result.dist.cluster2)#4000*1

medoid.3.scaled.t <- t(medoid.3.scaled)
dim(medoid.3.scaled.t) #1*41
scaled.data.eval.C.medoid3 <- rbind(medoid.3.scaled.t,scaled.data.eval.C)
dim(scaled.data.eval.C.medoid3) #4001*41
dist.data.eval.medoid3 <- dist(scaled.data.eval.C.medoid3,

method = "manhattan")
dist.data.eval.medoid3 <- data.table(dist.data.eval.medoid3)
result.dist.cluster3 <- dist.data.eval.medoid3[1:4000,]
dim(result.dist.cluster3)#4000*1

medoid.4.scaled.t <- t(medoid.4.scaled)
dim(medoid.4.scaled.t) #1*41
scaled.data.eval.C.medoid4 <- rbind(medoid.4.scaled.t,scaled.data.eval.C)
dim(scaled.data.eval.C.medoid4) #4001*41
dist.data.eval.medoid4 <- dist(scaled.data.eval.C.medoid4,

method = "manhattan")
dist.data.eval.medoid4 <- data.table(dist.data.eval.medoid4)
result.dist.cluster4 <- dist.data.eval.medoid4[1:4000,]
dim(result.dist.cluster4)#4000*1

medoid.5.scaled.t <- t(medoid.5.scaled)
dim(medoid.5.scaled.t) #1*41
scaled.data.eval.C.medoid5 <- rbind(medoid.5.scaled.t,scaled.data.eval.C)
dim(scaled.data.eval.C.medoid5) #4001*41
dist.data.eval.medoid5 <- dist(scaled.data.eval.C.medoid5,

method = "manhattan")
dist.data.eval.medoid5 <- data.table(dist.data.eval.medoid5)
result.dist.cluster5 <- dist.data.eval.medoid5[1:4000,]

28

dim(result.dist.cluster5)#4000*1

medoid.7.scaled.t <- t(medoid.7.scaled)
dim(medoid.7.scaled.t) #1*41
scaled.data.eval.C.medoid7 <- rbind(medoid.7.scaled.t,scaled.data.eval.C)
dim(scaled.data.eval.C.medoid7) #4001*41
dist.data.eval.medoid7 <- dist(scaled.data.eval.C.medoid7,

method = "manhattan")
dist.data.eval.medoid7 <- data.table(dist.data.eval.medoid7)
result.dist.cluster7 <- dist.data.eval.medoid7[1:4000,]
dim(result.dist.cluster7)#4000*1

allocate cluster number to each data
result.dist <- cbind(result.dist.cluster1, result.dist.cluster2,

result.dist.cluster3, result.dist.cluster4,
result.dist.cluster5, result.dist.cluster7)

result.cluster <- apply(result.dist, 1, which.min)
result.cluster <- data.table(result.cluster)
result.cluster$result.cluster[result.cluster$result.cluster == 6] <- 7

get result
data.predict.eval.C.cluster <- cbind(data.eval,predict.eval.C, result.cluster)
dim(data.predict.eval.C.cluster)#4000*169
write.csv(data.predict.eval.C.cluster,"data.predict.eval.C.cluster.csv")

References

[1] Frees, Edward W., Richard A. Derrig, and Glenn Meyers, eds. Predictive
modeling applications in actuarial science. Vol. 1. Cambridge University
Press, 2014.

[2] Kaufman, Leonard, and Peter J. Rousseeuw. Finding groups in data: an
introduction to cluster analysis. Vol. 344. John Wiley & Sons, 2009.

[3] Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.(2017).
cluster: Cluster Analysis Basics and Extensions. R package version 2.0.6.

[4] Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press,
2012.

[5] Zhang, Bin, and Sargur N. Srihari. Properties of binary vector dissimilarity
measures. Proc. JCIS Int’l Conf. Computer Vision, Pattern Recognition, and
Image Processing. Vol. 1. 2003.

29

