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Introduction

One of the most commonly used statistical methods is linear regression. Multivariate adaptive
regression splines (MARS) are a type of regression that contains advanced features to address
some of the limitations of ordinary least squares regression. Among the key limitations addressed
by the MARS method are nonlinearity and interactions. Two different software packages are
used to illustrate the use of the MARS method: MARS, a commercial statistical analysis product
and earth, an R library for applying the MARS technique.

The Data

The data used to illustrate MARS is from the coil 2000 Competition. The data is described in the
paper “Big Data Working Party II: Introduction and Summary”. A brief summary of the data is:

The dependent variable: CARAVAN. This is an indicator variable that indicates whether or not a
customer purchased a caravan (mobile home) policy.

The predictors are in several categories:

 External demographic variables
 Insurance company data - Financial values (i.e. premium)
 Insurance company data - Count values
 Two categorical customer type variables. All other variables are numeric.

The full list of variables and their definitions is provided in the “Introduction and Summary”.

Methods for Addressing Nonlinearity: Classical Statistics versus MARS

Classical linear regression assumes that the relationship between a dependent variable and the
predictors in the regression is linear. A common problem in linear regression is that the
relationships between dependent and predictor variables often are not linear. Traditional linear
modeling can approximate some types of nonlinearity through a transformation of dependent or
independent variables.  In addition, there are techniques specifically developed for fitting
nonlinear functions such as nonlinear regression.  However, these techniques require that theory
or experience specify the form of the nonlinear relationships.
To illustrate a tradition1al method of fitting models to nonlinear curves, a variable is selected
which 1) has a significant correlation with the dependent variable, and 2) displays a highly
nonlinear relationship which is illustrated with a curve fit using data mining method well known
for its ability to fit nonlinear functions. The figure below displays an example of a nonlinear
relationship from the COIL data between a zip code income variable (MINKM30) and personal
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auto premium (PPERSAUT).  This figure indicates that this is not a relationship that can be
modeled with a simple transformation such as the log transformation.

Nonlinear Relationship – Neural Network2 Fit: Personal Auto Contribution vs. Zip Code Income

The Figure Displays an Example of a nonlinear relationship that is not easily fit with classical
statistical methods

The relationship shown is modeled using a neural network. Neural networks are well known for
their ability to model nonlinear functions. Research has shown that a neural network with a
sufficient number of parameters can model any continuous nonlinear function
accurately. Because the neural network technique was introduced by a previous ASTIN working
party (Ali and Rahul), we do not describe it in this paper... This curve of the fitted neural
network is contrasted with the linear fit of ordinary least squares regression below:

eNeural networks are a machine learning method that is known for its ability to fit nonlinear functions.  This
technique was introduced by Ali and Rahul (2016). The neural network function fit was used only to illustrate a
nonlinear curve that can be approximated with piecewise regression using the MARS method.



Classical Regression Line Fit

A line fit to the same data as the nonlinear neural network

The least squares regression forces a linear fit to PPERSAUT versus the income variable. Thus,
rather than a curve, a line with a constant slope is fitted.  If the relationship is, in fact, nonlinear,
this procedure is not as accurate as the fit from a procedure such as neural networks that fit
nonlinear functions.

MARS uses a piecewise linear regression to address nonlinearity. That is, MARS breaks the data
into ranges and allows the slope of the line to be different for the different ranges. MARS
requires the function fit to be continuous, thus there cannot be jump points between contiguous
ranges. We use the income and personal auto premium as an example of fitting a simple
piecewise regression. The result is displayed the MARS Piecewise Linear Regression Figure.

The fitted regression line can be written as follows:
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BF2 = max(0, MINKM30 - 7);
BF4 = max(0, MINKM30 - 2);
BF8 = max(0, MINKM30 - 1);

PPERSAUTO = 3.16049 - 0.606323 * BF2 + 0.336289 * BF4 - 0.310248 * BF8;

In order to understand MARS, it is necessary to understand the key components of the piecewise
regression functions implemented by MARS. A crucial component to the method is the
development of the model’s “basis functions”. The basis functions break the independent
variable into pieces with a different slope for each piece. The points in the data range where the
curves change slope are known as “knots”.

In the output from the MARS3 software the basis functions are denoted with the letters “BF” i.e.,
BF1 is a basis function.  Basis functions can be viewed as similar to dummy variables in linear
regression. (Dummy variables are used in regression analysis when the predictor variables are
categorical.) For instance, the MINKM30 variable can be converted to an indicator variable
denoting whether the percentage of people’s incomes below 30,000 is less than that of a specific
threshold (In this example, category seven represents a ZIP Code where 76% to 88% (the value 7
on MINKM30 corresponds to the range 76%-88%) of the population has an income below
30,000).

Example of Indicator Variable for Splitting Range of a Variable

Indicator
Dummy
Variable

Value of
MINK30

0 MINK30 <= 7
1 MINK30  > 7

To illustrate further, if MINK30 is 4, the dummy variable will be 0. When it is 8 the dummy
variable will be 1.

A regression with dummy variables, where the dummy variables are denoted D1, D2 etc.,

has the form:

Y = B0 + B1*D1 + B2 * D2 + B3*D3+ …+ Bn * Dn

Each basis function can be considered a combination of a dummy variable and a continuous
variable.  In the regression function between income and premium:

BF1 =  max(0, MINKM30 - 7)

3 This refers to the commercial MARS software.  Output from the R earth library will also be presented



BF1 can be rewritten as:

BF1 = D1*( MINKM30 - 7)

These basis functions allow the slope of the line to change at specific points (in this example, at
7, 3 and 2) thereby modeling nonlinear effects.

Finding the Knots

As mentioned above, a knot is a point in a range at which the slope of the curve changes. Both
the number of knots and their placement are unknown at the beginning of the process. A
stepwise procedure is used to find the best points to place the spline knots. In its most general
form, each value of the independent variable is tested as a possible point for placement of a knot.
The model initially developed is intentionally overfit.  A statistical criterion that tests for a
significant impact on a goodness of fit measure is used to remove knots.  Only those that have a
significant impact on the regression are retained. The statistical criterion, known as generalized
cross-validation or GCV, will be described later in the paper.

Interactions

An interaction occurs if the relationship between our two variables, personal auto premium and
ZIP Code income level, depends on a third variable. When the MARS piecewise regression is
involved, the shape of the curve will depend on the value of a third variable. To illustrate, below
we note that the relationship between personal auto premium and ZIP Code income varies by
customer type.



As with the piecewise nonlinear functions, the interaction of categorical variables and numeric
variables is captured through basis functions. The algorithm first creates subsets of the
categorical variables that are then used in the basis functions. Below we show the subsets along
with the basis functions and coefficients from the MARS model fitted. Based on t the
coefficients for subset1, we can conclude that it affects only the intercept whereas subset2
interacts with the curve describing the relationship between the ZIP Code income variable,
MINKM30, and the dependent variable.

The subsets do not need to be mutually exclusive. This is because subset one is not used in an
interaction and subset two is. That is the different subsets appear in different parts of the model
and capture different effects.

Subsets for MOSHOOFD (Customer Type)
SubSet1 = { "Career Loners", "Cruising Seniors" }
SubSet2 = { "Career Loners", "Conservative families",
"Family with grown ups", "Retired and Religious" }

Basis Functions
BF1 = ( MOSHOOFD_LABEL is in SubSet1 );
BF10 = max(0, MINKM30 - 6);
BF12 = ( MOSHOOFD_LABEL is in SubSet2 ) * BF10;
BF14 = max(0, MINKM30 - 8);

Y = 3.02203 - 0.766386 * BF1 - 0.746859 * BF10 + 0.558785 * BF12
+ 1.01308 * BF14;



To create the subset1 ad subset2 groupings, the MARS procedure searches all the
categories of customer type4.  By recursive partitioning, or sequential splitting of the
categories into two distinct groups, it groups together those categories with a similar effect
on the dependent variable.  When there is more than one categorical variable, in the MARS
regression, the procedure is performed on each one. Only those basis functions with a
significant effect on the target variable, as determined by the improvement in a goodness
of fit measure, the GCV described later, are included in the final model.

Similarly, an automated search procedure is used to create basis functions that specify
interaction effects.  Combinations of predictors are tested two at a time for two-way5

interaction.  New basis functions may be created to capture the interaction effect.  Thus,
a different combination of the customer types than those in subset1 could be associated
with the interaction of variables other than personal auto premium and the dependent
variable.  This will become relevant when we build a more complex model with the entire
data set.

This example illustrates one advantage of MARS over other data mining techniques such
as neural networks. Specifically, MARS groups together related categories of nominal
variables.

Many insurance categorical variables have many different levels.  For instance, while the
customer type variable in the COIL data has only 10 levels, categorical data often has
hundreds or even thousands of possible values.  A procedure that can group together
codes with a similar impact on the dependent variable is very handy when many values
are available.  The neural network procedure typically turns each of the possible values of
a categorical variable into a binary dummy variable when fitting a model.  Many of these
categories contain a tiny fraction of the data, thus the parameters fitted to the categories of
the categorical variables may be very unstable.  Collapsing the categories into larger
groups, with each group having a similar impact on the dependent variable (perhaps when
interacting with another variable) improves stability and significantly reduces the number
of parameters in the model.

Goodness of Fit Test

The typical MARS goodness of fit statistic that is minimized is related to the mean square
error and is called generalized cross-validation6 (GCV). Note that the formula for the
GCV error is:

4 The code list of customer type is in the Introduction document.
5 Two way interactions involve interactions of two variables.  Interactions involving more than two variables are
possible.
6 Note that generalized cross validation should not be confused with the resampling method known as cross
validation. Cross validation is introduced and discussed later in this document
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Where:

N is the number of observations
y is the dependent variable
x is the independent variable(s)
k is the effective number of parameters or degrees of freedom in the model. The software
may use a rule of thumb such as multiplying all variables in the model by a factor of two in
order to estimate k

This statistic is a modification to the traditional mean square error statistic where the
denominator is typically the degrees of freedom for the model (usually the sample size
minus the number of predictors.) This modification reduces the degrees of freedom in the
denominator compared to the degrees of freedom in the mean square error calculation.
This is done because the effective number of parameters in the model, given all the
testing that is done, is much higher than the number of parameters in the final fitted
model after recursive procedures are used. The effective number of degrees of freedom is
frequently selected subjectively. For instance, one suitable choice can be the number of
basis functions in the final model multiplied by a factor, such as 3.

Training, Validation and Testing Data
It is common to split data into three pieces, a training data set, a validation data set and
the testing data set. The training data set is used for fitting the model, the validation data
set is used during model fitting to tune parameters and to compare various models before
selecting the final model. Thus the validation data set is used for testing but it is not a
pure holdout data set because models are often refitted and improved after being tested on
validation data set therefore it is not a pure holdout data set. For the COIL data the testing
data set was provided by the organizers of the competition. The training data set supplied
by the organizers was randomly split into two pieces: two thirds of the records were used
for training and one third for validation.

More Complex Models

The models presented thus far have been relatively simple one and two variable models. In
the following illustrations many more variables from the full COIL data set are used and
the results of a more complex model will be presented. The data, as mentioned in the Data
section above, is introduced in the working party’s “Introduction and Summary” document.
The target (dependent) variable is CARAVAN, the indicator variable of whether a
customer purchased a caravan, i.e., mobile home policy.  There are 85 potential predictor
variables including ZIP Code-like7 level demographic variables, policyholder premiums
for different types of policies and policyholder counts of different types of policies.

7 The data was supplied by a Danish company and may use non-US geographic codes.



The R earth package

The open source R package “earth” is used to fit the models in R. This package is described
by Milborrow (2016) and implements fast-MARS as described by Freidman in his paper
on fast-MARS (Freidman, 1993). The earth library also uses code developed in
collaboration with Freidman.

The dependent variable, CARAVAN is binary and carries a value of 1 if the customer has
purchased a mobile home policy.

In the first illustration, we will use only demographic variables. A general format for the
earth function is:
earth(y~x1+x2..+xn, degree=number, nk=number, data=dataframe) where
y is the dependent variable
x1..xn are predictor variables
degree is the maximum degrees of interaction
nk is maximum number of knots
dataframe is the name of the dataframe containing the data

As seen, two parameters needed by the model are 1) the maximum degree of interaction
and nk, the maximum number of basis (knots) functions that can be tested. Both of these
have defaults.  Note that the default for degree is 1, therefore no interactions will be tested
if the default is used. In the examples used in this paper, we set degree equal to 2 (two-
way interactions are tested). The R code to fit the model using the demographic variables
is:

>fitDemographic=earth(CARAVAN~MAANTHUI+MGEMOMV+MGEMLEEF+MGO
DRK+MGODPR+MGODOV+MGODGE+MRELGE+MRELSA+MRELOV+MFALLE
EN+MFGEKIND+MFWEKIND+MOPLHOOG+MOPLMIDD+MOPLLAAG+MBERH
OOG+MBERZELF+MBERBOER+MBERMIDD+MBERARBG+MBERARBO+MSKA
+MSKB1+MSKB2+MSKC+MSKD+MHHUUR+MHKOOP+MAUT1+MAUT2+MAU
T0+MZFONDS+MZPART+MINKM30+MINK3045+MINK4575+MINK7512+MINK1
23M+MINKGEM+MKOOPKLA,degree=2,nk=50,data=COILTrain)

To obtain a summary of the model, one can use the code:
>summary(fitDemographic)

Below is summary output from the earth demographic variables model.  R earth denotes
basis functions with the letter h (as opposed to MARS which uses the BF notation) and the
piecewise cut point for a given variable in parentheses. The R-squared of the model was
.058 and the generalized cross validation was 0.055. These relatively low values for the R-
squared are not uncommon with similar insurance data.



coefficients
(Intercept)
0.04195994
h(3-MGODGE)
0.11816204
h(MKOOPKLA-6)
0.10559132
h(MKOOPKLA-7) -
0.11921254
MGODOV * h(MINK3045-8) -
0.12345027
h(MGEMOMV-3) * h(3-MGODGE)
0.03636832
h(1-MGODRK) * h(3-MGODGE) -
0.07395979
h(MGODRK-1) * h(3-MGODGE) -
0.08376562
h(MGODRK-2) * h(3-MGODGE)
0.08064664
h(2-MGODOV) * h(MKOOPKLA-7) -
0.04654950
h(MGODGE-3) * h(MBERHOOG-5)
0.02703408
h(MGODGE-3) * h(MINK3045-8) -
0.07328269
h(3-MGODGE) * h(MINKGEM-7) -
0.18721473
h(3-MGODGE) * h(7-MINKGEM) -
0.01085237
h(3-MGODGE) * h(MINKGEM-6)
0.08298421
h(MGODGE-3) * h(MINKGEM-5) -
0.01734012
h(MBERARBG-1) * h(MKOOPKLA-6) -
0.04639824
h(MBERARBG-2) * h(MKOOPKLA-7)
0.09786719
h(4-MZFONDS) * h(MINK3045-8)
0.19950705
h(MZFONDS-4) * h(MINK3045-8)
0.09172507

One of the useful outputs of the earth function is a ranking of the variables in importance.
According to Milborrow (2016,2), estimating the importance of a variable to a model is a
complex problem and there is no agreed upon way to do this. The earth “evimp” function
is used to provide the importance ranking. The statistics used to estimate the variables
importance are:

 Number of subsets that include the variable
o Note that variables that are in 19 subsets will be in all subsets less than 19.

 Change in RSS: the reduction in residual sum of squares for each subset with the
variable

 Change in GCV: the reduction in generalized cross-validation for each subset that
includes the variable



From the table of variable importance from the demographic model, MKOOPLA (purchasing
power class) is the most important variable and the second most important variable is MGODGE
(the proportion of the population with no religion).

Variable Importance in Demographic Model
(per the evimp R function)

The next model illustration is limited to the financial premium variables. In this model we use
actual cross-validation, rather than the GCV to select the optimum number of basis functions
to include in the model.  In this case we specify 5 cross-validation subsets (nfold=5) and
ncross=2 (perform cross-validation twice). The earth command can accommodate these
additional specifications. The R code to fit the model is:

>fitPremium=earth(CARAVAN~PWAPART+PWABEDR+PWALAND+PPERSAUT+PBESA
UT+PMOTSCO+PVRAAUT+PAANHANG+PTRACTOR+PWERKT+PBROM+PLEVEN+PP
ERSONG+PGEZONG+PWAOREG+PBRAND+PZEILPL+PPLEZIER+PFIETS+PINBOED+P
BYSTAND,degree=2,nk=50,ncross=2, nfold=5,data=COILTrain)

Cross Validation Plot

Cross validation is a resampling technique for testing a model on hold-out data that uses all the
records in a sample. The data is split into subsets. For instance it might be split into 10 subsets.
The method uses one of the subsets of the data, say 10%, as a test data set. The model is fit to
the non- held out data (i.e., the remaining 90%) and tested on the 10% holdout set. The process is
then repeated k times. The results of testing on the k samples of holdout data are averaged.
Cross-validation is considered a useful approach for testing data on small datasets.

One of the outputs that can be obtained when using the earth cross-validation is a plot that
presents the change GCV and other statistics as the number of basis functions increases. The
graph can be used to select the model (i.e., number of basis functions) with the best out-of-
sample GCV.

Variable nsubsets gcv rss
MKOOPKLA 19 100.0 100.0
MGODGE 17 82.2 87.3
MINKGEM 16 77.0 83.1
MBERHOOG 15 66.6 76.2
MZFONDS 14 59.7 71.2
MINK3045 14 59.7 71.2
MGODOV 12 50.9 63.8
MBERARBG 10 43.1 56.7
MGODRK 9 39.1 52.9
MGEMOMV 6 25.1 40.5



On the plot of cross-validation results, the pink lines, showing a mean out-of –sample R2 reaches
its peak value at 5 terms.  Thus, based on the cross-validation testing, the best model is obtained
with 5 basis functions, the number used in the final fit of models using the premium variables.

>summary(fitPremium)

Below is some of the summary output from the model

coefficients
(Intercept)                    0.02322389
h(PPERSAUT-5) 0.04051898
h(PPLEZIER-2)                  0.16824414
PLEVEN * h(PPLEZIER-2) -0.03863938
h(PWAPART-1) * h(PPERSAUT-5)   0.07656289

Model Premium
Variables

GCV 0.0539
RSq 0.085
# of terms 15
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The variable importance is displayed in the table below:

Variable nsubsets gcv rss
PWAPART 4 100 100
PPERSAUT 4 100 100
PPLEZIER 3 44.2 50.4
PLEVEN 1 26.2 29.6
PBRAND-
unused 1 23.7 27.7

In this example, the private third party premium (PWAPART) and personal auto premium
(PPERSAUT) variable are tied as the most important variables.

The next illustration, uses just the policy count variables. Cross-validation was again used to
determine the best model size. The R code to fit the model, print out a summary of the model
and plot the importance of the variables is:

fitCount=earth(CARAVAN~AWAPART+AWABEDR+AWALAND+
APERSAUT+ABESAUT+AMOTSCO+AVRAAUT+AAANHANG+ATRACTOR+AWERKT+
ABROM+ALEVEN+APERSONG+AGEZONG+AWAOREG+ABRAND+AZEILPL+APLEZI
ER+AFIETS+AINBOED+ABYSTAND,degree=2,ncross=2,nfold=5,nk=50,data=COILTrain)

summary(fitCount)

imp<-evimp(fitCount)

plot(imp)

This table presents some model output:

Model Premium Variables
GCV 0.0544
RSq 0.076
# of terms 5



Importance Plot of Earth Fit with Count Variables

The plot of variable importance indicates that APERSAUT (Personal Auto Count) is the most
important variable in the model. Note that this model has a higher GCV but lower RSq than the
premium model. This is due to the impact of the larger number of variables on the GCV
calculation in the first model.

The previous models examined various subsets of the variables as predictors. We now use all the
predictor variables. In this model, we use cross-validation to help determine the number of terms
that gives the optimum performance.

>fitCOIL=earth(CARAVAN~PWAPART+PWABEDR+PWALAND+PPERSAUT+PBESAUT
+PMOTSCO+PVRAAUT+PAANHANG+PTRACTOR+PWERKT+PBROM+PLEVEN+PPER
SONG+PGEZONG+PWAOREG+PBRAND+PZEILPL+PPLEZIER+PFIETS+PINBOED+PBY
STAND+AWAPART+AWABEDR+AWALAND+
APERSAUT+ABESAUT+AMOTSCO+AVRAAUT+AAANHANG+ATRACTOR+AWERKT+
ABROM+ALEVEN+APERSONG+AGEZONG+AWAOREG+ABRAND+AZEILPL+APLEZI
ER+AFIETS+AINBOED+ABYSTAND+MOSHOOFD+MOSTYPE+MAANTHUI+MGEMO
MV+MGEMLEEF+MGODRK+MGODPR+MGODOV+MGODGE+MRELGE+MRELSA+MR
ELOV+MFALLEEN+MFGEKIND+MFWEKIND+MOPLHOOG+MOPLMIDD+MOPLLAAG
+MBERHOOG+MBERZELF+MBERBOER+MBERMIDD+MBERARBG+MBERARBO+MS
KA+MSKB1+MSKB2+MSKC+MSKD+MHHUUR+MHKOOP+MAUT1+MAUT2+MAUT0+
MZFONDS+MZPART+MINKM30+MINK3045+MINK4575+MINK7512+MINK123M+MIN
KGEM+MKOOPKLA,ncross=2,nk=50,nfold=4, keepxy=TRUE,degree=2,data=COILTrain)

The code to produce a graph showing the cross-validated results is:

>plot(fitCOIL,which=1,col.rsq=0)
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The plot of cross-validation results indicate that the optimum model has about 4 terms (ie. basis
functions.)

Plot of Out of sample R Squared for full Model

The model output is shown below:

The full model with all the predictor variables has four terms and uses five of the predictor
variables. It’s GCV is below that of other models.
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                            coefficients

(Intercept)                   0.01223162

h(PPERSAUT-5)                 0.07023844

APLEZIER * MBERZELF           0.43460743

h(PBRAND-2) * h(MBERMIDD-2)   0.01497503

Model Premium Variables
GCV 0.0494
RSq 0.0615
# of terms 4



Assessment of models

A common method used to assess the goodness of fit for a model with a binary dependent
variable (like CARAVAN) is the Receiver Operating Characteristics (ROC) curve. Measures
such as the R-squared and GCV are applied to the training data.  Model assessment is usually
applied to data not used in training (here we use the validation data). Moreover, statistical
measures such as the R-squared make assumptions (i.e., normality of the data) that are often not
satisfied, especially in the case of a binary dependent variable. The “stats geek8” sugests that
measures such as R-squared capture the percent of explained variation, not goodness of fit. A
goodness of fit measure such as the ROC curve can capture how good a model is on average, as
opposed to in specific instances, in prediction.

The ROC curve is a plot of sensitivity (percent of target variable correctly predicted) versus
specificity (percent of non-target variable correctly predicted) for a range of values of the
predicted value from the model. The R library pROC is used to create the ROC curve. A plot of
the ROC curve for the full model based on all the data is shown below. With ROC curves, the
more the curve rises over the diagonal line, the better the fitted model is. A summary measure of
goodness of fit using the ROC curve, is the area under the ROC curve (“auc”).  When two
models are compared, the one with the highest auc is considered the best.

This model has an area under the ROC curve of 0.697.

Using the GLM Option

Because the dependent variable is binary, a logistic, rather than an ordinary least squares
regression may be a more appropriate. The earth function contains an option for using
generalized linear models, rather than linear regression, to estimate the coefficients of the basis

8 http://thestatsgeek.com/2014/02/08/r-squared-in-logistic-regression/
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functions used in the model. Below is the code for using the glm option where logistic regression
is performed by specifying the family=”binomial” option.

>fitCOILLgst=earth(CARAVAN~PWAPART+PWABEDR+PWALAND+PPERSAUT+PBESA
UT+PMOTSCO+PVRAAUT+PAANHANG+PTRACTOR+PWERKT+PBROM+PLEVEN+PP
ERSONG+PGEZONG+PWAOREG+PBRAND+PZEILPL+PPLEZIER+PFIETS+PINBOED+P
BYSTAND+AWAPART+AWABEDR+AWALAND+
APERSAUT+ABESAUT+AMOTSCO+AVRAAUT+AAANHANG+ATRACTOR+AWERKT+
ABROM+ALEVEN+APERSONG+AGEZONG+AWAOREG+ABRAND+AZEILPL+APLEZI
ER+AFIETS+AINBOED+ABYSTAND+MOSHOOFD+MOSTYPE+MAANTHUI+MGEMO
MV+MGEMLEEF+MGODRK+MGODPR+MGODOV+MGODGE+MRELGE+MRELSA+MR
ELOV+MFALLEEN+MFGEKIND+MFWEKIND+MOPLHOOG+MOPLMIDD+MOPLLAAG
+MBERHOOG+MBERZELF+MBERBOER+MBERMIDD+MBERARBG+MBERARBO+MS
KA+MSKB1+MSKB2+MSKC+MSKD+MHHUUR+MHKOOP+MAUT1+MAUT2+MAUT0+
MZFONDS+MZPART+MINKM30+MINK3045+MINK4575+MINK7512+MINK123M+MIN
KGEM+MKOOPKLA,penalty=3,ncross=1,nfold=5, keepxy=TRUE,degree=2,nk=50,nprune=5

,glm=list(family=binomial),data=COILTrain)

Below we show the output:

summary(ProbCaravan4)

coefficients
(Intercept)                    0.02714210
APLEZIER * MBERZELF            0.45038141
h(PWAPART-1) * h(PPERSAUT-5)   0.09641705
h(PBRAND-2) * h(MBERMIDD-3)    0.01925833

Note that the predicted value from a logistic regression is the log odds ratio.  This can be
converted into probabilities. Let’s use the probabilities, not the logistic function for evaluation
using the code:

PredCaravan4<-predict(fitCOILLgst)

ProbCaravan4<-exp(PredCaravan4)/(1+exp(PredCaravan4))

We then plot the probabilities from the model using the R “hist” function. The histogram shows
a skewed distribution of probabilities with a large proportion of records having low probabilities.
This is to be expected, since the overall percentage of records with caravan policies is less than 1
%.

>hist(ProbCaravan4)



The area under the ROC curve is computed for the glm model and is almost the same as that for
the linear regression model.

Much literature suggests that a better prediction is obtained when ensembles of more than one
model are used. To test if we can get improved accuracy, 3 model fits, one for the premium
variables, one for the count (and class) variables and two for the demographic variables, are
combined and the combined prediction is tested on the validation data. We use the following
code to combine the models and plot a histogram of the combined ROC probabilities.

>predCombined=(predDemographic+PredCaravanPre+PredCount)/3

The area under the ROC curve for the combined model was  0.7092.  The confidence interval
was:

95% CI: 0.6628-0.7557

Though the ensemble model’s auc was a little higher than the auc for the FULL model, the differ
ence was not statistically significant (which indicates that we cannot say that one model is better
than the other).

Histogram of ProbCaravan4

ProbCaravan4
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Commercial MARS Package

The MARS Commercial software was also used to fit MARS models to the COIL data. A key
way the MARS package differs from the R earth function is its ability create groupings of factor
variables. Specifically, it searches for subsets of categories on categorical variables that are
homogenous with respect to their effect on the target dependent variable. Below are results from
a fit with MARS.

The first model fit included count variables along with the categorical class variables. The
following grouping of customer class variables was fit by the model9:

SubSet1 = { "Affluent young families", "Career and childcare",
"Etnically diverse", "High status seniors", "Middle class families",
"Mixed small town dwellers", "Very Important Provincials" }
SubSet2 = { "Couples with teens 'Married with children'",
"Dinki's (double income no kids)", "Etnically diverse",
"Fresh masters in the city", "High status seniors",
"Large family farms", "Large family, employed child",
"Low income catholics", "Lower class large families", "Mixed rurals",
"Mixed small town dwellers", "Own home elderly",
"Porchless seniors: no front yard", "Religious elderly singles",
"Residential elderly", "Senior cosmopolitans",
"Seniors in apartments", "Single youth", "Stable family",
"Students in apartments", "Suburban youth",
"Very Important Provincials", "Village families", "Young and rising",
"Young seniors in the city", "Young urban have-nots",
"Young, low educated" }

The following is the model formula as output by MARS:

BF2 = max(0, 2 - APERSAUT);
BF4 = max(0, 1 - APLEZIER);
BF5 = ( MOSTYPE_LABEL$ is in SubSet1 );
BF8 = max(0, 1 - ABYSTAND);

9 Note that a discussion of the subjective nature of the categories is contained in the working party Introduction
and Summary document

ROC Curve for Combined Model
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BF9 = ( MOSTYPE_LABEL$ is in SubSet2 );

Y = 0.685162 - 0.0605302 * BF2 - 0.357244 * BF4
+ 0.0787121 * BF5 - 0.178345 * BF8 - 0.0346616 * BF9;

One of the MARS outputs is the “Odds Graph”. The Odds Graph shows the odds ratio (the
number of target records/ the number of non-target records) for 10 deciles, where the deciles are
determined by the value of the predicted variable. That is, if the prediction from the model takes
on values from zero to one (i.e., a probability of purchasing a caravan policy)10 the records can
be sorted on the predictions. Then they can be grouped into 10 groups based on the sorting, and
the actual percentage of customers purchasing caravan policies computed for each group, which
can then be used to compute the odds of purchasing a caravan policy. The graph shows that as
the predicted model score increases, so does the odds ratio of the actual data.

The following graph shows the “Odds Graph.

Odds Graph for MARS Count Class Model

The MARS ROC curve displays the ROC for both the training (solid line) and test (dashed line)
data.  The model appears to be a good fit on both samples, but it is a better fit on the training
data.

10 Note that because ordinary least squares regression is used, the prediction can take on values below zero and
above one, and occasionally does.  However, the important point is that the predictions are sorted and then
binned into deciles and those deciles are used to compute the odds ratios.



ROC Curve for MARS Count/Class Model

The MARS auc was similar to the earth Count model auc of approximately 0.7.

As previously described, the graphical output of MARS can be used to visualize the piecewise
nonlinear functions fit. The following graphs display the curves for selected numeric variables in
the model:



Model’s Personal Auto Count Curve11

Model’s Boat Policy Curve

11 Note that the Y axis,”Contribution” captures what the incremental contribution of the variable to the prediction
of the dependent variable



Finally, the MARS software is calibrated to allow for all variables to become potential predictors.
This full model fit, as shown in the table below has a higher auc than the models that did not
include all the potential predictor variables. O

Below is a summary of the goodness of fit tests on the validation (not Blind test) data on various
models fit:

Model with Principal Components
The Principal Components team of the working party fit principal components to the COIL
data. The method and results are contained in their report “Application of Principal
Components Analysis (PCA) on Insurance Data12”.  The training data was augmented by
the PCA team with the fitted principal components. We wanted to test whether any of the
principal components would be predictive in a supervised learning model using a method
such as MARS. An earth model was run which included the principal components as
potential predictors. The table below shows the importance ranking of the variables in the
model. The importance ranking shows that the PC1, the first principal component is tied
for first place in importance ranking.

Variable nsubsets gcv rss
PPERSAUT 4

100.0 100.0
PC1 4

100.0 100.0
MZPART 3

52.3 55.3

12 Odo, Hidemasa and Fumihiro Endo, “Application of Principal Components Analysis on
Insurance Data”

Software Model AUROC
earth Premium 0.705

Count/Class 0.707
Demographic 0.650
Full 0.697
Combined 0.699

MARS Premium 0.712
Count 0.684
Demographic 0.638
Full 0.757
Combined 0.771



PBRAND 2
46.1 48.1

APLEZIER 1
31.4 33.0

MOSHOOFD 1
31.4 33.0

Below is the model that was fit:

coefficients

(Intercept)                        0.02460363

APLEZIER * MOSHOOFD                0.04997864

h(PPERSAUT-5) * h(4-PBRAND) -0.01737338

h(PPERSAUT-5) * h(7-MZPART)        0.01234532

h(PPERSAUT-5) * h(PC1- -1.20959)   0.02907331

This model has five terms and uses six predictor variables. When tested on the validation
data set the model had an AUC of 0.713. Currently the Principal components are
unavailable in the final Holdout data set so the model with principal components was only
tested on the validation data

Final Test – Testing dataset

The best earth model and the best MARS model, are used on the COIL testing dataset.  The
testing dataset is not used in any aspect of the model fits; that is, it is not used to select the
number of basis functions to include or to assess which of several models performed best.
The exclusion of this data during the model development ensures the independence of the
final testing phase. The table below displays the area under the ROC curve along with the
95% confidence intervals for each model using the testing dataset.

Results of ROC Curve on Testing Data
95% Confidence
Interval

Model AUC Lower Upper

MARS Full Model 0.696 0.661 0.730

earth Full model 0.672 0.637 0.704

The results indicate that the MARS model has a slightly higher auc, though the earth auc is
within the 95% confidence interval of the MARS auc. These aucs are a little lower than
those attained with the training data.  Nonetheless, these values indicate significant lift from



the techniques based on the MARS models versus traditional methods.

The test data auc was also computed for the MARS combined model.  The combined model
was a weighted average of the MARS premium, count and demographic models. The
demographic model was an average of two demographic models, one with the customer
type variables only and one with the numeric demographic variables only). The auc on the
test data for the combined model, 0.716 is higher than that of the MARS or earth full model.

Summary

The MARS method is a practical approach for fitting models that address common
complexities found in insurance data, including nonlinear relationships between predictor and
target variables, grouping/sub setting categorical variables (MARS software only) and
interactions. The commercial software MARS and the R library earth can be used to fit MARS
models. While MARS performed slightly better than earth on the sample dataset, the
differences were not statistically significant at the 5% level. In the “Introduction and Summary”
document, we compare the MARS auc from the best MARS model to the auc of the other
methods.
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