Pricing and Hedging in Incomplete markets with Model Ambiguity

Antoon Pelsser1 \hspace{1cm} Anne Balter2

1Maastricht University & Kleynen Consultants & Netspar
Email: a.pelsser@maastrichtuniversity.nl

2Maastricht University & Netspar
Email: a.balter@maastrichtuniversity.nl

10 June 2015
IAA Colloquium – Olso
Outline

1. Introduction
2. Literature Overview
3. Pricing and Hedging with Model Ambiguity
4. Examples
5. Conclusion
Figure: Overview of Pricing in Incomplete Markets
Complete Market (1)

Explain concepts on one-step binomial “fork”:

\[
\begin{array}{c}
\uparrow \quad \downarrow \\
\quad \quad \\quad \quad {\text{t} = 0} \quad \text{buy replicating portfolio } \Delta S + B \text{ to replicate uncertain payoff } (f_u, f_d) \text{ at } t = 1.
\end{array}
\]
Complete Market (2)

Solve system of equations to match payoff:

\[
\begin{align*}
 u\Delta S + RB &= f_u \\
 d\Delta S + RB &= f_d
\end{align*}
\]

Solution given by:

\[
\Delta S = \frac{f_u - f_d}{u - d}, \quad B = \frac{uf_d - df_u}{R(u - d)}
\]

Market price of replio at \(t = 0 \):

\[
\Delta S + B = \frac{(R - d)f_u + (u - R)f_d}{R(u - d)} = \frac{1}{R} (qf_u + (1 - q)f_d)
\]

\(q \) well-defined iff \(u > R > d \) (FTAP: [Delbaen and Schachermayer, 1994])

Hence: “risk-neutral” pricing is convenient representation of the market price of the replio
Binomial Incomplete Market

Note: in real world we never have complete market!

Model for incomplete market:
Combine two binomial forks: financial \((u, d)\) and insurance \((g, b)\)

\[
\begin{align*}
&\uparrow f_{ug} \text{ with prob } p\pi \\
&S \quad \downarrow f_{ub} \text{ with prob } p(1 - \pi) \\
&\uparrow f_{dg} \text{ with prob } (1 - p)\pi \\
&\downarrow f_{db} \text{ with prob } (1 - p)(1 - \pi)
\end{align*}
\]

For simplicity we use independent prob’s
Can only trade \((S, B)\). Insurance event \((g, b)\) makes market incomplete.
How do we price the uncertain payoff \(f\)?
Market-Consistent & Time-Consistent (1)

For pricing insurance and pension contracts we want to consider realistic pricing operators $v[t, X]$ that are:

- market consistent
- time consistent

Market-consistent (MC): $v[t, X + H] = v[t, X] + \mathbb{E}_Q[H | \mathcal{F}_t]$ for all hedgeable claims H

This is an extension of “cash invariance” to all H

Time-consistent (TC): if $X_1 \geq X_2$ at time T, then $v[t, X_1] \geq v[t, X_2]$ for all $t < T$

This is an extension of no-arbitrage to incomplete markets.

Note: the conditional expectation operator $\mathbb{E}_Q[H | \mathcal{F}_t]$ is TC (and MC)
Result by [Pelsser and Stadje, 2014]: every MC and TC pricing operator can be represented as a “two-step” operator:

\[
\frac{1}{R} (q f_u + (1 - q) f_d)
\]

\[
f_u := \nu[f | uS]
\]

\[
f_d := \nu[f | dS]
\]

“financial” valuation “actuarial” valuation

Clean separation of financial and actuarial pricing in each “half-step”.

Tech. cond: financial info arrives more frequently than insurance info
Binomial Insurance Risk

We will now concentrate on the “actuarial” pricing step, in a “pure” incomplete market.

One-step binomial “fork” for insurance process y:

$$y + a\Delta t + b\sqrt{\Delta t} \quad \text{with prob } \frac{1}{2}$$

$$y + a\Delta t - b\sqrt{\Delta t} \quad \text{with prob } \frac{1}{2}$$

The term $\pm \sqrt{\Delta t}$ is approximation of Brownian Motion increment ΔW.

In the limit $\Delta t \to 0$ this converges to the sde $dy = a(t, y)dt + b(t, y)dW$.
Binomial Insurance Risk – Girsanov

Consider the change of probability measure:

\[y + a\Delta t + b\sqrt{\Delta t} \] with prob \(\frac{1}{2}(1 + \lambda \sqrt{\Delta t}) \)

\[y \rightarrow y + a\Delta t - b\sqrt{\Delta t} \] with prob \(\frac{1}{2}(1 - \lambda \sqrt{\Delta t}) \)

Factor \((1 + \lambda \Delta W)\) is the Radon-Nikodym derivative

Tree above is equivalent to process \(y \) with adjusted drift:

\[y + (a + \lambda b)\Delta t + b\sqrt{\Delta t} \] with prob \(\frac{1}{2} \)

\[y \rightarrow y + (a + \lambda b)\Delta t - b\sqrt{\Delta t} \] with prob \(\frac{1}{2} \)

Hence:

\[\mathbb{E}_t^{(\lambda)}[y_{t+\Delta t}] = y_t + (a + \lambda b)\Delta t = \mathbb{E}_t[y_{t+\Delta t}] + \lambda b\Delta t. \]
Actuarial Variance and Utility Pricing

Variance pricing operator: \(\nu_{\text{var}}(t, y) := \mathbb{E}_t[y_{t+\Delta t}] + \alpha \text{Var}_t[y_{t+\Delta t}] \)

In our binomial model: \(\nu_{\text{var}}(t, y) = \mathbb{E}_t[y_{t+\Delta t}] + \alpha b^2 \Delta t \)

But, this is equivalent to: \(\mathbb{E}_t^{(\lambda)}[y_{t+\Delta t}] \) with \(\lambda = \alpha b \)

Reference: [Kaas et al., 2008]

Utility pricing operator: \(\nu_{\text{util}}(t, y) := u^{-1}(\mathbb{E}_t[u(y_{t+\Delta t})]) \)

In our binomial model: \(\nu_{\text{util}}(t, y) \approx \mathbb{E}_t[y_{t+\Delta t}] + \frac{1}{2} \frac{u''}{u'} b^2 \Delta t \)

But, this is equivalent to: \(\mathbb{E}_t^{(\lambda)}[y_{t+\Delta t}] \) with \(\lambda = \frac{1}{2} \frac{u''}{u'} b \)

Note: \(\lambda(t, y) \) can be state dependent, e.g. with \(u(t, y) \)

References: [Musiela and Zariphopoulou, 2004], [Carmona, 2009]
Prescribed in the standard model of Solvency II
\(\nu_{\text{CoC}}(t, y) := \mathbb{E}_t[y_{t+\Delta t}] + \gamma \sqrt{\Delta t} \text{VaR}_t[y_{t+\Delta t}] \)

Note: standard model uses time-step of \(\Delta t = 1 \) year
We include factor \(\sqrt{\Delta t} \) to allow scaling to different time horizons
For small time-step \(\Delta t \to 0 \) the \(\text{VaR}[\cdot] \to k \sqrt{\text{Var}[\cdot]} \)
Standard model uses 99.5% prob, hence \(k = \Phi^{-1}(0.995) = 2.58 \)

In our binomial model: \(\nu_{\text{CoC}}(t, y) = \mathbb{E}_t[y_{t+\Delta t}] + \gamma k |b| \Delta t \)
But, this is equivalent to: \(\mathbb{E}_t^{(\lambda)}[y_{t+\Delta t}] \) with \(\lambda = \gamma k \text{sign}(b) \)
Standard model corresponds to: \(\lambda = 0.06 \times 2.58 = 0.15 \).
Coherent and Convex Risk Measures

Axiomatic foundation of risk measure / pricing operator (note ±-switch)
Started with coherent: [Artzner et al., 1999]
Extended to convex: [Föllmer and Schied, 2002]
Extension to time-consistent convex: [Cheridito et al., 2006]

Any TC convex pricing operator can be characterised as:
(In our binomial model:) \(\nu_{cvx}(t, y) = \max_\lambda \mathbb{E}_t^{(\lambda)}[y_{t+\Delta t}] - c(\lambda)\Delta t \)
convex penalty function \(c(\lambda) \geq 0 \) and \(c(0) = 0 \)
Equiv to: \(\nu_{cvx}(t, y) = \mathbb{E}_t[y_{t+\Delta t}] + (\max_\lambda \lambda b - c(\lambda))\Delta t \)
Equiv to: \(\nu_{cvx}(t, y) = \mathbb{E}_t[y_{t+\Delta t}] + \tilde{c}(b)\Delta t \)
where \(\tilde{c}(b) \) is the convex dual of \(c(\lambda) \)

Interpretation: pricing based on “worst case” measure \(\lambda \), but with a penalty for choosing “too large” values of \(\lambda \).
Coherent Risk Measures

Special case of convex risk measure, with penalty function:

\[c(\lambda) = \begin{cases}
0 & \text{for } |\lambda| \leq k; \\
\infty & \text{for } |\lambda| > k.
\end{cases} \]

Convex dual is given by: \(\tilde{c}(b) = \max_{|\lambda| \leq k} \lambda b \)

LP with explicit solution: \(\tilde{c}(b) = k|b| \)

Hence: \(v_{\text{coh}}(t,y) = E_t[y_{t+\Delta t}] + k|b|\Delta t \)

Note: Cost-of-Capital is a coherent pricing operator.
Good Deal Bound

Consider the change of probability measure:

\[y + a \Delta t + b \sqrt{\Delta t} \quad \text{with prob } \frac{1}{2} (1 + \lambda \sqrt{\Delta t}) \]

\[y \quad \leftrightarrow \quad y + a \Delta t - b \sqrt{\Delta t} \quad \text{with prob } \frac{1}{2} (1 - \lambda \sqrt{\Delta t}) \]

We can also interpret \(\lambda \) as *market price of risk* (MPR)

Arbitrage opportunity is “ridiculous good deal” with \(\lambda \to \pm \infty \)

Good deal bound: only look at measures with MPR not too high

Hence: only consider measures with \(|\lambda| \leq k \)

Hence: \(\nu_{\text{GDB}}(t, y) = \nu_{\text{coh}}(t, y) = E_t[y_{t+\Delta t}] + k|b|\Delta t \)

References: [Cochrane and Saá-Requejo, 2000], [Björk and Slinko, 2006]
Figure: Overview of Pricing in Incomplete Markets
Ambition: “general theory” for pricing and hedging in incomplete markets

Minimal # of assumptions:
1. Agent (or company) wants to maximise surplus
2. Agent (or company) is able to trade financial risk
3. Concerned about model mis-specification
Model Ambiguity

How can we handle model mis-specification mathematically?
Consider models near “central model” \(dy = a(t, y)dt + b(t, y)dW: \)

\[
\begin{align*}
 &y + a\Delta t + b\sqrt{\Delta t} & \text{with prob } & \frac{1}{2}(1 + \lambda \sqrt{\Delta t}) \\
 &y + a\Delta t - b\sqrt{\Delta t} & \text{with prob } & \frac{1}{2}(1 - \lambda \sqrt{\Delta t})
\end{align*}
\]

Models near “central model” correspond to small values of \(\lambda \)

We consider the set of models \(|\lambda| \leq k \), where \(k \) is chosen based on estimation error or statistical test procedure.
Note: stochastic \(\lambda(t, y) \) give a very rich class of alternative models.
Intuition (2)

1. Objective of agent

$$\max_{\tilde{\theta}(t)} \mathbb{E}[A(T, \bar{x}_T, \bar{\theta}_T) - L(T, \bar{x}_T, y_T)]$$

2. Set of alternative models

$$\mathcal{K} = \{ \mu(t, z) + \epsilon(t) | \epsilon(t)' \Sigma^{-1}(t) \epsilon(t) \leq k^2 \}$$

3. Robust optimisation specification via “two-player game”:

$$\max_{\tilde{\theta}(t)} \min_{Q \in \mathcal{K}} \mathbb{E}^Q[A(T, \bar{x}_T, \bar{\theta}_T) - L(T, \bar{x}_T, y_T) | \mathcal{F}_t]$$
Model

- \(n \) tradeable assets \(\mathbf{x}(t) = \{x_i(t)|i = \{1, \ldots, n\}\} \)
- \(k \) untradeable assets \(\mathbf{y}(t) = \{y_i(t)|i = \{1, \ldots, k\}\} \)
- Bank account \(dx_0 = r x_0 dt \)

\[
\begin{align*}
 d \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} &= \begin{pmatrix} \mu_x(t, x) \\ \mu_y(t, y) \end{pmatrix} dt + \Sigma^{1/2}(t) \begin{pmatrix} dW_x(t) \\ dW_y(t) \end{pmatrix}
\end{align*}
\]
Model (2)

\[\bar{\theta}(t) = [\theta_0(t), \theta_1(t), ..., \theta_n(t) 0, ..., 0] \]

- Hedging portfolio \(A(t, x_t) \)
- Liability \(L(t, x_t, y_t) \)

Optimisation by Hamilton-Jacobi-Bellman

\[\max_{\theta(t)} \min_{\epsilon(t)} \mathbb{E}[A(T) - L(T, z_T)|\mathcal{F}_t] = \nu(t, A, x, y) \]

Indifference pricing:

- No contract \(\nu(t, A, x, y) = A(t)e^{r(T-t)} \)
- Extra cash needed to make agent indifferent

\[\nu(t, A, x, y) = (A(t) + \pi(t, x, y))e^{r(T-t)} - w(t, x, y) \]

- Solves for \(\pi(t, x, y) = e^{-r(T-t)}w(t, x, y) \)

- Represent price \(\pi() \) as semi-linear PDE
Theorem (Intuitive representation of Theorem)

The indifference price π is given by the PDE

$$\pi_t + \mathcal{L}_{\mu,\sigma} \pi - r \pi + c \sqrt{\pi'_y S \pi_y} = 0$$

where $\mathcal{L}_{\mu,\sigma} \pi$ is the Feynman-Kač part, with terminal value $\pi(T, x, y) = L(T, x, y)$ and where $c = \sqrt{k^2 - q_x' \Sigma_{xx}^{-1} q_x}$

The term $c \sqrt{\pi'_y S \pi_y}$ is the k-dimensional generalisation of “$k|b|$”.
Lemma (Optimal hedging portfolio and robustness adjustments)

The agent’s optimal dynamic hedging portfolio is

\[\theta^* = \left[\pi_x + \Sigma_{xx}^{-1} \Sigma_{xy} \pi_y + h \Sigma_{xx}^{-1} q_x \right] \]

Mother nature’s optimal drift adjustments are

\[\epsilon^* = \left[\Sigma h^{-1} \pi_y - \Sigma_{xy}' \Sigma_{xx}^{-1} q_x \right] \]

where

\[h = \sqrt{\frac{\pi_y' S \pi_y}{k^2 - q_x' \Sigma_{xx}^{-1} q_x}}. \]
Example: Pure hedgeable risk

- Let $k = 0$
- Complete market

$$\pi_t + \mathcal{L}_{\mu,\sigma} \pi - r\pi + 0 = 0$$

- Risk-neutral pricing
Example: Uncorrelated non-traded asset

- Liability function $L(T, S, N) = \max(S_T, g)N_T$
- Unit-linked contract with N_T survivors
- The stochastic processes are

$$d \begin{bmatrix} S_t \\ N_t \end{bmatrix} = \begin{bmatrix} \mu S_t \\ -\alpha N_t \end{bmatrix} dt + \begin{bmatrix} \sigma S_t & 0 \\ 0 & \beta N_t \end{bmatrix} \begin{bmatrix} dW_S \\ dW_N \end{bmatrix}$$

- Price in our model:

$$\pi(t, S_t, N_t) = \left(S_t \Phi(d_1) - e^{-r(T-t)}g \Phi(d_2) + e^{-r(T-t)}g \right) \times N_t e^{\left(-\alpha + \beta \sqrt{k^2 - ((\mu-r)/\sigma)^2} \right) (T-t)}$$

- This is actuarial prudence with adjusted drift $-\alpha + \beta \sqrt{\cdots}$
Graphical Representation of Model Ambiguity
Conclusion

Based on minimal assumptions
- Agent maximising surplus
- Uncertain about model
- Able to hedge

Complete market \Rightarrow risk-neutral measure
Incomplete \Rightarrow pricing with actuarial prudence
Hedgeable $+$ unhedgeable risk \Rightarrow MC and TC pricing and hedging
Multivariate \Rightarrow unique solution

References II

An example of indifference prices under exponential preferences.
Finance and Stochastics, 8(2):229–239.

Time-consistent and market-consistent evaluations.