Guarantee valuation in Notional Defined Contribution pension systems

Jennifer Alonso García
(joint work with Pierre Devolder)

Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA)
Université Catholique de Louvain
Voie du Roman Pays, 20 bte B-1348-Louvain-la-Neuve, BELGIUM
Phone: +32 (0)10 47 08, Fax +32 (0)10 47 30 32
E-mail: jennifer.alonso@uclouvain.be

09/06/2015
Outline

1 Introduction
 - Aim
 - Pension Systems in a nutshell
 - Notional Defined Contribution
 - Issue

2 The Model
 - The Setting
 - The Methodology
 - The Results

3 Numerical illustration
 - Graphics
 - Interpretation

4 Conclusion
The aim of this presentation is to:

- describe the notional defined contribution (NDC) pension scheme with its advantages and shortcomings;
- develop a pricing framework for guarantees in NDC first pillar pension systems;
- and compare it to the insurance and financial markets framework.
Overview of pension systems

- Basic financing techniques
 - Pay as you go (PAYG): current contributors pay current pensioners (Unfunded schemes)
 - Funding: contributions are accumulated in a fund which earns a market return (Funded schemes)

- Benefit formulae
 - Defined Benefit: Pension is calculated according to a fixed formula which usually depends on the members salary and the number of contribution years.
 - Defined Contribution: Pension is dependent on the amount of money contributed each year and their return.

⇒ Notional Accounts: Mix of PAYG and Defined Contribution!
Notional Defined Contribution

What’s NDC?

- A pension scheme managed by the State,
- with Pay-as-you-go (PAYG) as financing technique: 'current contributors pay current pensioners'.
- The pension formula depends on the amount contributed and the return which equal to the notional rate.
- At retirement age: Accumulated capital \Rightarrow Annuity which takes into account:
 - Life expectancy of the individual
 - The indexation of pensions and technical interest rate
- We assume that the notional rate is equal to the rate of increase of the total contributions.
Mathematically, the pension for someone retiring at age x_r at time t can be stated as:

$$P(x_r, t) = \frac{NDC(x_r, t)}{a(x_r, t)}$$

where:

$$NDC(x_r, t) = \sum_{x=x_0}^{x_r-1} C(x, t - x_r + x) \prod_{i=t-x_r+x}^{t} (1 + nr_i)$$

and $a(x_r, t)$ is the whole time annuity at time t for age x_r.

⇒ It is crucial to have an **appropriate capital** in order to have an adequate pension!
Advantages of NDC

- It's *more or less* actuarially fair (takes into account life expectancy and contributions)
- Portability of pension rights between jobs, occupations and sectors is permitted.
- It promises to deal with the effects of population ageing more or less automatically.
- Arbitrariness in benefit indexation rules and adjustment factors is avoided.
Challenge faced

Disadvantages of a pure NDC system (w/out guarantees):

- The return risk is fully borne by the participants.
- The amount of pension at retirement is unknown!
- The notional rate depends on demography’s and salary’s rate of increase: it can be close to 0% or negative!

Why should we consider guarantees?

- We offer a minimum value for each contribution at retirement.
- **However**, which is the price for the guarantee provider?
- ...and how can we price the option on an asset which is not traded in the market?

Answer: pricing in incomplete markets techniques!
Utility indifferent pricing

Definition

The indifference price on an option is defined as the function price which makes these two situations equivalent:

- **hold a financial portfolio** (which maximizes capital and hedges the option) and **hold (resp. sell)** the written option at time t and receive (resp. pay) the payoff at maturity;
- **only** hold the financial portfolio.

We are in an incomplete market, so the price will depend on
- the utility function used
- and the risk aversion γ.

In our case, we use the exponential utility:

$$U(x) = -e^{-\gamma x}, \gamma > 0$$ (2)
The pension system

- The working population pays a contribution rate $\pi \in (0, 1)$ of their income to the pension system;
- each contribution earns a rate of return (notional rate) based on the total contribution base at time t.

The total contribution base is then: $Y(t) = \pi P(t)L(t)$, where:

- $P(t)$ represents the working population
- and $L(t)$ is the mean salary earned by the workers.
- Their evolution is driven by a Geometric Brownian Motion (\to lognormally distributed)
The pension system (C’td)

For the **pension system provider** or state, the guarantee scheme entails:

- holding the contribution base which represents the returns of contribution,
- a loss of \(K - \frac{Y(T)}{Y(t)} \) if the contribution base performed badly

Mathematically, it becomes the put option:

\[
g(Y(T)) = \left(K - \frac{Y(T)}{Y(t)} \right)^+ \tag{3}
\]

with

\[
dY(t) = d(\pi P(t)L(t)) = (g + \alpha_P + \rho_{L,P}\sigma_L\sigma_P) Y(t) \, dt + \sigma_L Y(t) dW_L(t) + \sigma_r Y(t) dW_P(t) \tag{4}
\]

\(d \) is the drift, \(\sigma \) the salary risk, and \(\rho \) the demographic risk.
Reminder: The salary and population risks are not traded in the market → the market is incomplete!

- We can’t use the classical models! (e.g. Black & Scholes)
- However, the risks linked to the contribution are correlated to those which are traded!
- We can then price the underlying non-hedgeable risks, by using the traded risks as a proxy.
Financial portfolio

We create a self-financing portfolio with the assets available in the market:

\[
\frac{dX(s)}{X(s)} = \theta_0(s) \frac{dS_0(s)}{S_0(s)} + \theta_P(s) \frac{dP(s, T)}{P(s, T)} + \theta_S(s) \frac{dS(s)}{S(s)}
\]

\[
= (r(s) + \theta_S(s) \lambda_S \sigma_S - \theta_P(s) q \sigma(s, T)) dt \\
+ \theta_S(s) \lambda_S dW_S(s) - \theta_P(s) q \sigma(s, T) dW_r(s)
\]

(5)

\[
X_t = x \quad 0 \leq t \leq s \leq T
\]

with:

- \(\theta_0(s) \) proportion invested in the bank account \(S_0(s) \);
- \(\theta_S(s) \) proportion invested in the risky asset \(S(s) \);
- \(\theta_P(s) \) proportion invested in the zero-coupon bond \(P(s, T) \).
- **Constraint**: \(\theta_0(s) + \theta_S(s) + \theta_P(s) = 1 \)
The price

Proposition

The price of a European option \(G = g \left(\frac{Y(T)}{Y(t)} \right) \) under the exponential utility in a market like the one presented is given by

\[
p(x, y, r, t) = P_Q(t, T) \frac{\delta}{\gamma} \log \left(E_{Q^T} \left[e^{\frac{\gamma}{\delta} g \left(\frac{Y(T)}{Y(t)} \right)} \big| Y(t) = y \right] \right)
\]

(6)

where:
- \(\delta \) constant which depends on the level of correlation between the pension risks and the traded risks;
- \(\gamma \) is the risk aversion;
- \(\frac{dQ^T}{dP} \) is the forward measure;
Particular cases: Independent & Complete markets

- If the notional index is totally independent we find a zero-utility insurance premium:

\[p(x, y, r, t) = P_Q(t, T) \frac{1}{\gamma} \log \left(E_P \left[e^{\gamma g\left(\frac{Y(T)}{Y(t)} \right)} \middle| Y(t) = y \right] \right) \] \hspace{1cm} (7)

- If the notional index is traded we find a complete markets price:

\[p(x, y, r, t) = P_Q(t, T) E_Q \left[g \left(\frac{Y(T)}{Y(t)} \right) \middle| Y(t) = y \right] \] \hspace{1cm} (8)

\[= \text{Black & Scholes Formula!} \]
Comparison between the intermediate price, the insurance and B&S Price

Figure: The value of a put option guaranteeing $i_G = 4\%$ (first row), $i_G = 6\%$ (second row): un-correlated exponential price (continuous line), imperfect correlation exponential price (discontinuous line) and perfect correlation B&S case (pointed line)

Source: the authors.
Link between pure insurance, intermediate price and Black & Scholes:

- For some risk aversions and guarantees we can have lower prices than Black & Scholes.
 \(\Rightarrow \) I’m ready to pay ’more’ for a better hedge.

For the other graphics:

- Price \(\uparrow \) when risk aversion \(\uparrow \).
 \(\Rightarrow \) I’m ready to pay a higher price to insure me against losses when I’m more ’afraid’ of them.

- Price \(\uparrow \) with guaranteed rate \(\uparrow \).
 \(\Rightarrow \) I’m ready to pay a higher price linked to higher guarantees.
Assume the following economy:

<table>
<thead>
<tr>
<th>Salary (Gross - Annual)</th>
<th>39.532,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary rate of increase</td>
<td>1%</td>
</tr>
<tr>
<td>Contribution rate</td>
<td>16.86%</td>
</tr>
<tr>
<td>Life expectancy at 65</td>
<td>20.02</td>
</tr>
</tbody>
</table>

Then the Monthly Minimum Pensions (MMP) and the Total Guarantee Cost (TGC) for different minimum returns are:

<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>1%</th>
<th>2%</th>
<th>3%</th>
<th>4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGC (% of capital)</td>
<td>2.26%</td>
<td>4.14%</td>
<td>6.69%</td>
<td>9.27%</td>
<td>11.53%</td>
</tr>
<tr>
<td>MMP - State</td>
<td>1.505,80</td>
<td>1.822,50</td>
<td>2.235,42</td>
<td>2.764,12</td>
<td>3.427,86</td>
</tr>
<tr>
<td>MMP - Contributors</td>
<td>1.471,70</td>
<td>1.732,05</td>
<td>2.002,60</td>
<td>2.252,07</td>
<td>2.420,45</td>
</tr>
</tbody>
</table>
We obtained a closed-form formula which prices different options written on the notional index;

- The notional index is the rate of return on the contributions and is stochastic;
- This price doesn’t depend on the initial capital!
- This tool allows to put a price on promises to the participants for a better risk management.

Issue: How can we finance this guarantees? Who should pay? Contributors? The State?
References

References (C’td)

Thank you for your attention!