“Approach to recalibrating undertaking-specific parameters for incapacity and disability risks within Solvency II framework” Jean-Samuel, my 13 years old son

Approach to recalibrating undertaking-specific shocks parameters for the risks of incidence, recovery or non-recovery in health insurance within the framework of Solvency II

IAA Colloquia Oslo, 7- 10th of June 2015

Anani OLYMPIO (Head Actuary R&D Group at CNP Assurances, Qualified and IA-certified actuary, ERM CERA expert)
Jeremy ZOZIME (Actuary R&D Group at CNP Assurances, IA associate actuary)

The study and the views expressed here are solely those of the author. Please denote that for confidentiality reasons actual figures have been modified.
AGENDA

► Context

► Theoretical aspects
 ■ Main components and models
 ■ Notion of credibility

► Case study: application on a loan insurance portfolio
 ■ Studied portfolio: guarantees, specificities and data
 ■ Undertaking Specific Parameters estimation
 ■ Solvency Capital Requirement calculation: USP vs Standard Formula

► Conclusion
AGENDA

► Context

► Theoretical aspects
 ■ Main components and models
 ■ Notion of credibility

► Case study: application on a loan insurance portfolio
 ■ Studied portfolio: guarantees, specificities and data
 ■ Undertaking Specific Parameters estimation
 ■ Solvency Capital Requirement calculation: USP vs Standard Formula

► Conclusion
Context
What problems do we face?

► Parameters proposed by Standard Formula (Solvency 2) are limited and inadequate…:

- Problems of heterogeneity of the risks in the module Health module similar to life (Health SLT):
 - Problems of anti selection in insurance (Group / Individual contracts)
 - Impact of medical selection on the quality/severity of the risks (with selection / without selection on entry)
 - Difference of the duration of the liabilities of insurance (Incapacity and disability risks of loan insurance / Entreprise Healthcare contracts …)
 - …

► Consequence:
“Fixed” shocks proposed by Standard Formula seem unsuitable to take into account the heterogeneity of the underlying risks in the calculation of the economic capital.
Context
What framework of case study do we propose?

► Partial Internal Model and ORSA implementation within Solvency 2 framework

► Case study: loan insurance portfolio

- Main guarantees ➔ Death (mortality risk) and Incapacity and Disability (incidence and recovery risks)

- To avoid Standard Formula parameters ➔ because too severe and inadequate in this case!

 ● Standard Formula shocks levels are:
 ✓ Incidence shocks: +35% (first year) vs +25% (following years)
 ✓ Recovery (or non-recovery) shocks: +20% (2 cases: on rate of non-recovery if level < 50%, on rate of recovery if not)

 ● Application of the multiplicative shocks jointly on incidence rates and recovery (or non-recovery) rates

► Consequence:
We developed methods and approaches of recalibration Undertaking Specific Parameters (USP) for incapacity and disability risks.
Context
What preliminary questions?

- **Focus on incapacity/disability guarantees**
 - Which risks?
 - Incidence and recovery (non recovery)

- **Focus on data**
 - How to use company experience?
 - To use available data to quantify entity specifics shocks (portfolio, business unit, business line…)

- **Focus on economic values**
 - For which economic values?
 - To calculate Solvency Capital Requirement (SCR), ORSA capital…
AGENDA

► Context

► Theoretical aspects
 ■ Main components and models
 ■ Notion of credibility

► Case study: application on a loan insurance portfolio
 ■ Studied portfolio: guarantees, specificities and data
 ■ Undertaking Specific Parameters estimation
 ■ Solvency Capital Requirement calculation: USP vs Standard Formula

► Conclusion
Two main sources of errors

- Error of estimation
- Process variance or error of process

Error of estimation:
- Difference between the estimated law and the intrinsic law (to reflect sampling fluctuations)

Process variance or error of process:
- Fluctuation of claims rates over time due to endogenous or exogenous conditions...
- Examples:
 - Changes in internal underwriting, medical selection, claims compensation… conditions,
 - Changes in the general state of health,
 - Changes in external and statutory rules,
 - Changes in the structure of the insured population…
Theoretical aspects

Main components and models

<table>
<thead>
<tr>
<th>Error of estimation calculation</th>
<th>Error process models</th>
</tr>
</thead>
</table>

- **Incidence rates calibration**: actuarial (vs Hoem) estimator
 - Number of incidence follows a binomial law \(\rightarrow \text{Variance of Binomial law} \)

- **Non recovery rates**: Kaplan-Meier
 - Non parametric estimator \(\rightarrow \text{Variance of Greenwood} \)

- **Two predictive models are proposed to measure temporal evolution**:
 - **Time series approach**: autoregressive process AR(1)

 \[
 W_{(s',t)} = \alpha_{(s')} + \beta_{(s')} \times W_{(s',t-1)} + \sigma_{(s')} \times \varepsilon_{(s',t)}
 \]

 \[
 i_{(s',t_{\text{max}}+1)} = i_{(s',t_{\text{max}})} \times \left(1 + \alpha_{(s')} + \beta_{(s')} \times W_{(s',t_{\text{max}}-1)} + \sigma_{(s')} \times \varepsilon_{(s',t_{\text{max}})}\right)
 \]

 - **Log-Normal model**:

 \[
 \ln \left(\frac{i_{(s',t)}}{i_{(s',t-1)}} \right) = \alpha_{(s')} + \sigma_{(s')} \times \varepsilon_{(s',t)}
 \]

 \[
 i_{(s',t_{\text{max}}+1)} = i_{(s',t_{\text{max}})} \times \exp(\alpha_{(s')} + \sigma_{(s')} \times \varepsilon_{(s',t_{\text{max}})})
 \]

 \(\rightarrow \text{Allows to simulate différent value of incidence or recovery rates over one year (at date } t_{\text{max}} + 1) \ldots \)
Theoretical aspects
Main components and models

Error process calculation and Global shock calibration

• Steps of calculation of the error process:
 - **Estimation** of models parameters by Least Square Error method
 - **Projection** of the time tendency of incidence (non-recovery or recovery) rates over one year ($t_{max}+1$)
 - **Deduce** variance and **coefficient of variation** associated with the distribution
 - **Calculate** the marginal shock for the error of process by multiplying the coefficient of variation estimated at $t_{max}+1$ by the incidence (non-recovery or recovery) rate calculated at t_{max}

\[\sigma_{process} = CV_{(s')}i(x, s, t_{max}) \]

• Calculation of **global shock** by aggregating **process error** and **estimation error**:
 - Assuming that the estimation errors are de-correlated from one another and from any other contingency

\[\sigma_{global}^2 = \sigma_{estimation}^2 + \sigma_{process}^2 \]
Why to introduce this notion?

Theoretical aspects

Notion of credibility and adaptation

- **Taking into account limits of the data (of experience) of the entity:**
 - Experience data constraints:
 - Bad quality ➔ Quality
 - Absence or little history available ➔ History
 - Small-size of data available ➔ Volume
 - New business ➔ No data
 - Alternative approach to include that “harsh” reality…:
 - **Define the criteria of full credibility** ➔ criteria allowing to assure a total credibility of specifics parameters
 - **Deduct the criteria of partial credibility on the basis of the available data** ➔ integrate into the evaluation of the specifics parameters part of the parameters proposed by Standard Formula (chosen as reference parameters of the industry)
Theorical aspects
Notion of credibility and adaptation

- Two main theories:
 - Theorie of the credibility based on the biggest accuracy (Théorie de la crédibilité fondée sur la plus grande exactitude ➔ TCGE)
 - Method of Buhlmann (vs Buhlmann-Straub)
 - Theory of the credibility with limited variation (Théorie de la crédibilité à variation limitée ➔ TCVL)
 - American credibility
 - Standardized method (see note éducative of ICA)
Theoretical aspects
Notion of credibility and adaptation

• Adaptation we propose is ➔ TCVL standardized method

 ✓ Criterion of full credibility
 ➔ use only specifics parameters estimate with experience base on available data set (without integration of Standard Formula parameters)
 ➔ Validate the following conditions :
 ▪ Minimal size of data
 ➔ Cochran criterion (vs minimal exposition)
 ▪ Minimal depth of data history
 ➔ Be sure that the parameter is stable (when we add one year of additional history)

 ✓ Criterion of partial credibility
 ➔ Undertaking specific parameter (USP) is the weighted sum of the specific parameter and of the Standard Formula parameter (reference of the industry)
Theoretical aspects
Principle of TCVL and limits

- Limit of TCVL:

\[X_E = z\overline{X} + (1 - z)\mu \]

- No constraint:

- TCVL doesn’t propose underlying theoretical model for the distribution of \(X_i \) (i=1,2,\ldots,m) which is in compliance with the proposed formula.

- Observation:

- calculate \(X_E \) by choosing a parameter of margin error \(r (r > 0) \) and a level of probability \(p (0 < p < 1) \) such as the difference between \(X_E \) and \(\mu \) is low.

\[\text{Prob}\{|X - \mu| \leq -r\delta\} \geq p \]
Theoretical aspects
Choice of « reasonable » hypotheses

- TCVL standardized method:
 - Reasonable choice of hypotheses:
 - Assume that \bar{X} follows a normal distribution allows to use the table of standard normal law (with parameters r and p)
 - Approximation of the number of claims (binomial distribution) by a Poisson distribution when the probability of emergence are low
 - Definition of the partial credibility factor:
 \[
 z = \min\left\{ \frac{n}{\sqrt{\text{Seuil}}}; 1 \right\}
 \]
 - n : number of claims observed in the available experience data
 - Seuil : required number of claims corresponding to the parameters r and p in the table of standard normal law
 - Standardized principe:
 - Taken into account by the various segmentations retained in the calibration of the rates
AGENDA

► Context

► Theoretical aspects
 ■ Main components and models
 ■ Notion of credibility

► Case study: application on a loan insurance portfolio
 ■ Studied portfolio: guarantees, specificities and data
 ■ Undertaking Specific Parameters estimation
 ■ Solvency Capital Requirement calculation: USP vs Standard Formula

► Conclusion
Case study
Application on loan insurance portfolio

► Scope

- The study concern a protfolio of loan insurance contracts which is representative of french market and mainly composed of property loans

- Some figures about this Portfolio :
 - Number of contracts : > 12 millions
 - Age of subscription (average) : 40 years
 - Insured Capital (average) : 48 000 €
 - Claim cost (average) : 12 000 €

► Guarantees

- Main guarantees :
 - « Death » : refund of remaining capital in case of death
 - « Incapacity/disability» : payment of loan terms in case of sick leave

- Same specificities of guarantees on all the scope :
 - Conditions of sale, legal framework, waiting period, exclusions, insurance selection…
Case study
Application on loan insurance portfolio

Data bases

- 3 data bases with different structures and records depth:
 - The « Individual » base: personal informations about each insured people still covered by his contracts
 - The « Class » base: global informations about class of insured people still covered by their contracts
 - The « Claims » base: personal informations for each accident

Data bases with different structures and level of details:

<table>
<thead>
<tr>
<th>Data bases \ use</th>
<th>Incidence – rates</th>
<th>Incidence – USP</th>
<th>Recovery – rates</th>
<th>recovery – USP</th>
</tr>
</thead>
<tbody>
<tr>
<td>« Individual » base</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 to 5 years of history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>« Class » base</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 years of history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>« Claims » base</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>23 years of history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Limit: No key variable to link « claims » and « individual » data bases

Data quality validation criteria

- Relevance, accuracy and exhaustiveness
Case study
Undertaking Specific Parameters estimation

► Credibility factors calibration:

- Parameters: $p = 99\%$ (confidence interval) and $r = 3\%$ (error margin)

- Extract of Table of standard normal law:

<table>
<thead>
<tr>
<th>Probability parameter (p)</th>
<th>Error margin parameter (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>90%</td>
<td>1 082</td>
</tr>
<tr>
<td>95%</td>
<td>1 537</td>
</tr>
<tr>
<td>99%</td>
<td>2 654</td>
</tr>
<tr>
<td>99,9%</td>
<td>4 331</td>
</tr>
</tbody>
</table>

- If $p = 99\%$ and $r = 3\%$ ➔ 7373 claims required to get full credibility
Case study
Undertaking Specific Parameters estimation

► Credibility factor for incidence risk

- **Incidence rates** increase with age
- **Credibility factors** also increase with age → history and volume effects on parameters
- Standardization → to obtain **final credibility factors** by taking into account segmentations (exposure)
Case study
Undertaking Specific Parameters estimation

► Credibility factors for incidence rates:

<table>
<thead>
<tr>
<th>Year</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13 and +</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>20%</td>
<td>35%</td>
<td>50%</td>
<td>60%</td>
<td>70%</td>
<td>75%</td>
<td>80%</td>
<td>85%</td>
<td>90%</td>
<td>95%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Remarks:
- Depth of history smaller than 3 years → Standard Formula parameters
- Credibility factors growing with depth of history
- History for full credibility: more than 13 years

► Credibility factors for (non) recovery rates:

<table>
<thead>
<tr>
<th>Year</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15 and +</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>30%</td>
<td>40%</td>
<td>50%</td>
<td>60%</td>
<td>70%</td>
<td>75%</td>
<td>80%</td>
<td>85%</td>
<td>90%</td>
<td>95%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Remarks:
- Depth of history smaller than 5 years → Standard Formula parameters
- Credibility factors growing with depth of history
- History for full credibility: more than 15 years
Case study
Undertaking Specific Parameters estimation

Estimation of USP for incidence rates:

- History of 16 years

- Comments
 - With both models (AR(1) or log-Normal), USP are highly related to age
 - Exposure effect: age with high exposure lead to USP lower than Standard Formula parameters
 - In our example, the log-normal approach leads to USP higher than the time series’
Case study
Undertaking Specific Parameters estimation

Estimation of USP for incidence rates:

- History of 5 years: AR(1) approach

<table>
<thead>
<tr>
<th>SHOCKS - MODELING THE ERROR PROCESS WITH AUTO REGRESSIVE MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>USP without credibility factors</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>59</td>
</tr>
</tbody>
</table>

Comments

- Calibration of USP parameters on experience data and introduction of Standard Formula by using the credibility factors (history of 5 years)
 - Using the factor credibility enables to take in consideration the alea linked to the lack of the history

- In this example, even when the use of credibility factor is required (short history), the USP remain lower than Standard Formula parameters
Case study

Undertaking Specific Parameters estimation

▶ Estimation of USP for recovery rates:

- History of 23 years

<table>
<thead>
<tr>
<th>SHOCKS – RECOVERY RISK – 3rd YEAR OF INCAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non recovery rates</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>20-30</td>
</tr>
<tr>
<td>45-50</td>
</tr>
<tr>
<td>55-65</td>
</tr>
</tbody>
</table>

- History of 7 years

<table>
<thead>
<tr>
<th>SHOCKS – RECOVERY RISK – 3rd YEAR OF INCAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non recovery rates</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>20-30</td>
</tr>
<tr>
<td>45-50</td>
</tr>
<tr>
<td>55-65</td>
</tr>
</tbody>
</table>

- Comments

- Use of credibility factors for USP with an history of 7 years
 ➔ adjust USP to a more acceptable level in comparison with USP with a long history of data (23 years)

- For this example, USP are a much lower than Standard Formula parameters
Case study
Solvency Capital Requirement calculation

- USP impacts on SCR calculation:
 - Long history of data: 16 years

<table>
<thead>
<tr>
<th>BE</th>
<th>SCR - USP</th>
<th>SCR - FS</th>
<th>Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>261</td>
<td>856</td>
<td>- 60 %</td>
</tr>
</tbody>
</table>

- Short history of data: 5 ans

<table>
<thead>
<tr>
<th>BE</th>
<th>SCR - USP</th>
<th>SCR - FS</th>
<th>Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>510</td>
<td>856</td>
<td>- 30 %</td>
</tr>
</tbody>
</table>

- Comments
 - The depth of history has a significant impact on the SCR level.
 - The SCR saving is growing with the depth of history and the volume of data
AGENDA

► Context

► Theoretical aspects
 ■ Main components and models
 ■ Notion of credibility

► Case study: application on a loan insurance portfolio
 ■ Studied portfolio: guarantees, specificities and data
 ■ Undertaking Specific Parameters estimation
 ■ Solvency Capital Requirement calculation: USP vs Standard Formula

► Conclusion
Conclusions

- Key points of available data:
 - Quality ➔ impact the estimation of error process
 - Deep history ➔ history effect
 - Large size ➔ volume effect

- Credibility approach is a good alternative to remedy the lack of a long history and produces satisfactory results

- Provide an approach to calibrate USP for Health module similar to life (Health SLT) within Solvency 2 framework (see non-life USP)

- Possibility to use these methods:
 - Calibrate parameters for ORSA capital
 - Produce sensibilities parameters to business plan and to price new products
 - Estimate risk exposure and test reinsurance program…
Bibliographie

- R. BOURDONNAIS, M. TERRAZA (2010), Analyse des séries temporelles, 3ème édition Dunod
- P. J. BROCKWELL, R. A. DAVIS (2003), Introduction to Time Series and Forecasting, 2nd Ed. Springer
- CP (2012), La revue de l'Autorité de contrôle prudentiel, octobre-novembre 2012
- M. MERZ, M. WÜTHRICH (2008), Modelling the claims development result for solvency purposes, CAS E-Forum, Fall 2008, 542-568
THANKS FOR YOUR ATTENTION!