Longevity assets and pre-retirement consumption/portfolio decisions

F. Menoncin1 L. Regis2

1Department of Economics and Management
University of Brescia (IT)

2IMT Institute for Advanced Studies (IT)

AFFI Paris, 2015
Outline

1 First Part
 - Co-Author
 - Motivation
 - The Framework
 - Investor’s Problem

2 Main Results
 - Optimal Consumption/Portfolio

3 Numerical Simulation
 - State Variables
 - Assets and Calibration
Outline

1 First Part
 • Co-Author
 • Motivation
 • The Framework
 • Investor’s Problem

2 Main Results
 • Optimal Consumption/Portfolio

3 Numerical Simulation
 • State Variables
 • Assets and Calibration
1 First Part
 - Co-Author
 - Motivation
 - The Framework
 - Investor’s Problem

2 Main Results
 - Optimal Consumption/Portfolio

3 Numerical Simulation
 - State Variables
 - Assets and Calibration
The Longevity Risk

- **Definition**: risk of unexpected changes in the mortality of a group of individuals
- Still illiquid market: lack of standardization, information asymmetries, basis risk
- More and more transfer of longevity risk from pension funds to re-insurers (OTC)
The Longevity Risk

- **Definition**: risk of unexpected changes in the mortality of a group of individuals
- **Still illiquid market**: lack of standardization, information asymmetries, basis risk
- **More and more transfer of longevity risk from pension funds to re-insurers (OTC)**
The Longevity Risk

- **Definition**: risk of unexpected changes in the mortality of a group of individuals
- Still illiquid market: lack of standardization, information asymmetries, basis risk
- More and more transfer of longevity risk from pension funds to re-insurers (OTC)
Our Contributions

- Closed form solution to the consumption/portfolio problem (finite horizon – before retirement)
- HARA preferences (with both consumption and final wealth subsistence levels)
- Any number of risky assets and state variables
- Limits: market completeness and no basis risk
Closed form solution to the consumption/portfolio problem (finite horizon – before retirement)

HARA preferences (with both consumption and final wealth subsistence levels)

Any number of risky assets and state variables

Limits: market completeness and no basis risk
Our Contributions

- Closed form solution to the consumption/portfolio problem (finite horizon – before retirement)
- HARA preferences (with both consumption and final wealth subsistence levels)
- Any number of risky assets and state variables
- Limits: market completeness and no basis risk
Our Contributions

- Closed form solution to the consumption/portfolio problem (finite horizon – before retirement)
- HARA preferences (with both consumption and final wealth subsistence levels)
- Any number of risky assets and state variables
- Limits: market completeness and no basis risk
Outline

1. First Part
 - Co-Author
 - Motivation
 - The Framework
 - Investor’s Problem

2. Main Results
 - Optimal Consumption/Portfolio

3. Numerical Simulation
 - State Variables
 - Assets and Calibration
State Variables

- s state variables $z(t) \in \mathbb{R}^s$ ($z(t_0)$ deterministic)

\[
dz(t) = \mu_z(t, z) dt + \Omega(t, z)' dW(t)
\]

- force of mortality $\lambda(t) \in z(t)$

- survival probability between t and T: $\mathbb{E}_t^P \left[e^{-\int_t^T \lambda(u)du} \right]$
State Variables

- s state variables $z(t) \in \mathbb{R}^s$ ($z(t_0)$ deterministic)

$$dz(t) = \mu_z(t, z)dt + \Omega(t, z)'dW(t)$$

- force of mortality $\lambda(t) \in z(t)$

- survival probability between t and T: $\mathbb{E}_t^P \left[e^{-\int_t^T \lambda(u)du} \right]$
State Variables

- \(s \) state variables \(z(t) \in \mathbb{R}^s \) (\(z(t_0) \) deterministic)

\[
dz(t) = \mu_z(t, z) dt + \Omega(t, z)' dW(t)
\]

- force of mortality \(\lambda(t) \in z(t) \)

- survival probability between \(t \) and \(T \):

\[
\mathbb{E}_t^P \left[e^{-\int_t^T \lambda(u)du} \right]
\]

Menoncin-Regis Portfolio/Longevity assets
Continuously open and friction-less financial market over the time set \([t_0, +\infty]\)

- \(n\) risky assets \(S(t) \in \mathbb{R}_+^n\) (\(S(t_0)\) deterministic):

\[
I_S^{-1}dS(t) = \mu(t, z)dt + \Sigma(t, z)'dW(t)
\]

- one risk-less asset \(G(t) \in \mathbb{R}_+\):

\[
G(t)^{-1}dG(t) = r(t, z)dt
\]
Financial Market

- Continuously open and friction-less financial market over the time set $[t_0, +\infty[$
- n risky assets $S(t) \in \mathbb{R}^n_+$ ($S(t_0)$ deterministic):
 \[l_S^{-1} dS(t) = \mu(t, z)dt + \Sigma(t, z)'dW(t) \]
 \[n \times 1 \quad n \times 1 \quad n \times n \quad n \times 1 \]
- one risk-less asset $G(t) \in \mathbb{R}_+$:
 \[G(t)^{-1} dG(t) = r(t, z)dt \]
Financial Market

- Continuously open and friction-less financial market over the time set \([t_0, +\infty[\]
- \(n\) risky assets \(S(t) \in \mathbb{R}_+^n\) \(S(t_0)\) deterministic:

\[
I_S^{-1}dS(t) = \mu(t,z)dt + \Sigma(t,z)'dW(t)
\]

- one risk-less asset \(G(t) \in \mathbb{R}_+\):

\[
G(t)^{-1}dG(t) = r(t,z)dt
\]
Completeness

- The market is complete:

\[\exists ! \xi(t,z) : \Sigma(t,z)' \xi(t,z) = \mu(t,z) - r(t,z) 1 \]

- (under suitable condition on \(\xi \)) there exists \(Q \):

\[dW^Q(t) = \xi(t,z) \, dt + dW(t) \]
The market is complete:

\[\exists! \xi(t, z) : \sum(t, z)' \xi(t, z) = \mu(t, z) - r(t, z)1 \]

(under suitable condition on \(\xi \)) there exists \(Q \):

\[dW^Q(t) = \xi(t, z) dt + dW(t) \]
Longevity Bonds (two examples)

- An asset which pays $\Xi(t)$ if an agent is still alive in t:
 $$
 \mathbb{E}_t^Q \left[\Xi(t) e^{-\int_{t_0}^t r(u,z)+\lambda(u,z)du} \right]
 $$

- An asset which pays $\Xi(\tau)$ at the death time τ:
 $$
 \mathbb{E}_t^Q \left[\int_{t_0}^{\infty} \lambda(s) \Xi(s) e^{-\int_{t_0}^{s} r(u,z)+\lambda(u,z)du} ds \right]
 $$

- Any other combination is possible
- The longevity asset $\Lambda(t) \in S(t)$
Longevity Bonds (two examples)

- An asset which pays $\Xi(t)$ if an agent is still alive in t:

$$E^Q_{t_0} \left[\Xi(t) e^{-\int_{t_0}^{t} r(u,z) + \lambda(u,z) du} \right]$$

- An asset which pays $\Xi(\tau)$ at the death time τ:

$$E^Q_{t_0} \left[\int_{t_0}^{\infty} \lambda(s) \Xi(s) e^{-\int_{t_0}^{s} r(u,z) + \lambda(u,z) du} ds \right]$$

- Any other combination is possible
- The longevity asset $\Lambda(t) \in S(t)$
Longevity Bonds (two examples)

- An asset which pays $\Xi(t)$ if an agent is still alive in t:
 \[
 \mathbb{E}^{Q}_{t_0} \left[\Xi(t) e^{-\int_{t_0}^{t} r(u,z)+\lambda(u,z) du} \right]
 \]

- An asset which pays $\Xi(\tau)$ at the death time τ:
 \[
 \mathbb{E}^{Q}_{t_0} \left[\int_{t_0}^{\infty} \lambda(s) \Xi(s) e^{-\int_{t_0}^{s} r(u,z)+\lambda(u,z) du} ds \right]
 \]

- Any other combination is possible
 - The longevity asset $\Lambda (t) \in S(t)$
Longevity Bonds (two examples)

- An asset which pays $\Xi(t)$ if an agent is still alive in t:
 \[
 \mathbb{E}_{t_0}^Q \left[\Xi(t) e^{-\int_{t_0}^t r(u,z) + \lambda(u,z) du} \right]
 \]

- An asset which pays $\Xi(\tau)$ at the death time τ:
 \[
 \mathbb{E}_{t_0}^Q \left[\int_0^\infty \lambda(s) \Xi(s) e^{-\int_{t_0}^s r(u,z) + \lambda(u,z) du} ds \right]
 \]

- Any other combination is possible

- The longevity asset $\Lambda(t) \in S(t)$
Outline

1 First Part
 - Co-Author
 - Motivation
 - The Framework
 - Investor’s Problem

2 Main Results
 - Optimal Consumption/Portfolio

3 Numerical Simulation
 - State Variables
 - Assets and Calibration
Wealth, Consumption, Income

- Investor’s wealth is
 \[
 R(t) = \theta_S(t)' S(t) + \theta_G(t) G(t)
 \]

- Accumulated labor income (state variable)
 \[
 dL(t) = w(t, z) dt + \sigma_L(t, z)' dW(t)
 \]

- Instantaneous consumption is (control variable)
 \[
 c(t) dt
 \]
Wealth, Consumption, Income

- Investor’s wealth is
 \[R(t) = \theta_S(t)' S(t) + \theta_G(t) G(t) \]

- Accumulated labor income (state variable)
 \[dL(t) = w(t, z) dt + \sigma_L(t, z)' dW(t) \]

- Instantaneous consumption is (control variable)
 \[c(t) dt \]
Wealth, Consumption, Income

- Investor’s wealth is

\[R(t) = \theta_S(t)' S(t) + \theta_G(t) G(t) \]

- Accumulated labor income (state variable)

\[dL(t) = w(t, z) \, dt + \sigma_L(t, z)' \, dW(t) \]

- Instantaneous consumption is (control variable)

\[c(t) \, dt \]
Dynamic Budget Constraint

- Wealth differential:

\[
dR(t) = \theta_S(t)' dS(t) + \theta_G(t) dG(t) \\
+ d\theta_S(t)' (S(t) + dS(t)) + d\theta_G(t) G(t) \\
\]

\[
dR_a(t)
\]

- (non-self) Financing condition:

\[
dR_a(t) = -c(t) dt + dL(t) + \lambda(t,z) R(t) dt
\]

- Dynamic budget constraint

\[
dR(t) = (R(t) (r(t,z) + \lambda(t,z)) + \theta_S(t)' I_S (\mu(t,z) - r(t,z) 1) + w(t,z) - c(t)) dt \\
+ (\theta_S(t)' I_S \Sigma(t,z)' + \sigma_L(t,z)') dW(t)
\]
Dynamic Budget Constraint

- Wealth differential:

\[
dR(t) = \theta_S(t)'dS(t) + \theta_G(t)dG(t) + d\theta_S(t)'(S(t) + dS(t)) + d\theta_G(t)G(t)
\]

\[dR_a(t)\]

- (non-self) Financing condition:

\[
dR_a(t) = -c(t)dt + dL(t) + \lambda(t,z)R(t)dt
\]

- Dynamic budget constraint

\[
dR(t) = (R(t)(r(t,z) + \lambda(t,z)) + \theta_S(t)'l_S(\mu(t,z) - r(t,z)1) + w(t,z) - c(t))dt + (\theta_S(t)'l_S\Sigma(t,z)' + \sigma_L(t,z)')dW(t)
\]
Dynamic Budget Constraint

- Wealth differential:

\[dR(t) = \theta_S(t) dS(t) + \theta_G(t) dG(t) + d\theta_S(t) (S(t) + dS(t)) + d\theta_G(t) G(t) \]

- (non-self) Financing condition:

\[dR_a(t) = -c(t) dt + dL(t) + \lambda(t, z) R(t) dt \]

- Dynamic budget constraint

\[dR(t) = (R(t) (r(t, z) + \lambda(t, z)) + \theta_S(t) I_S (\mu(t, z) - r(t, z)) 1) + w(t, z) - c(t) dt + (\theta_S(t) I_S \Sigma(t, z) + \sigma_L(t, z)) dW(t) \]
Maximization

- The agent solves:

\[
\max_{\theta S(t), c(t)} \mathbb{E}_{t_0} \left[\int_{t_0}^{T} \left(\frac{(c(t) - c_m)^{1-\delta}}{1-\delta} e^{-\int_{t_0}^{t} \rho(u,z) + \lambda(u,z) du} \right) dt + \mathbb{E}_{t_0} \left[\frac{(R(T) - R_m)^{1-\delta}}{1-\delta} e^{-\int_{t_0}^{T} \rho(u,z) + \lambda(u,z) du} \right] \right]
\]

- under the constraint

\[
R(t_0) = \mathbb{E}_{t_0}^Q \left[\int_{t_0}^{T} (c(t) - w(t,z) + \sigma_L(t,z)' \xi(t,z)) e^{-\int_{t_0}^{t} r(u,z) + \lambda(u,z) du} dt \right] + \mathbb{E}_{t_0}^{Q} \left[R(T) e^{-\int_{t_0}^{T} r(u,z) + \lambda(u,z) du} \right]
\]
Maximization

- The agent solves:

\[
\max_{\theta_S(t), c(t)} \mathbb{E}_{t_0} \left[\int_{t_0}^{T} \frac{(c(t) - c_m)^{1-\delta}}{1 - \delta} e^{-\int_{t_0}^{t} \rho(u,z) + \lambda(u,z) du} dt \right]
\]

\[
+ \mathbb{E}_{t_0} \left[\frac{(R(T) - R_m)^{1-\delta}}{1 - \delta} e^{-\int_{t_0}^{T} \rho(u,z) + \lambda(u,z) du} \right]
\]

- under the constraint

\[
R(t_0) = \mathbb{E}_{t_0}^{Q} \left[\int_{t_0}^{T} (c(t) - w(t,z) + \sigma_L(t,z)\xi(t,z)) e^{-\int_{t_0}^{t} r(u,z) + \lambda(u,z) du} dt \right]
\]

\[
+ \mathbb{E}_{t_0}^{Q} \left[R(T) e^{-\int_{t_0}^{T} r(u,z) + \lambda(u,z) du} \right]
\]
Outline

1 First Part
 • Co-Author
 • Motivation
 • The Framework
 • Investor’s Problem

2 Main Results
 • Optimal Consumption/Portfolio

3 Numerical Simulation
 • State Variables
 • Assets and Calibration
Optimal Consumption

The optimal consumption at any time \(t \) is:

\[
c^*(t) = c_m + \frac{R(t) - H(t, z)}{F(t, z)}
\]

Function \(H(t, z) \) is a sum of discounted cash flows:

\[
H(t, z) = \mathbb{E}_t^Q \left[\int_t^T \frac{c_m - w(s, z) + \sigma_L(s, z)' \xi(s, z)}{e^{\int_t^s r(u, z) + \lambda(u, z)du}} ds + \frac{R_m}{e^{\int_t^T r(u, z) + \lambda(u, z)du}} \right]
\]

Function \(F(t, z) \) is a kind of discount factor

\[
F(t, z) = \mathbb{E}_t^{Q_\delta} \left[\int_t^T e^{-\int_t^s \left(\frac{\delta-1}{\delta} r(u, z) + \frac{1}{\delta} \rho(u, z) + \lambda(u, z) + \frac{1}{2} \frac{\delta-1}{\delta} \xi(u, z)' \xi(u, z) \right) du} ds + e^{-\int_t^T \left(\frac{\delta-1}{\delta} r(u, z) + \frac{1}{\delta} \rho(u, z) + \lambda(u, z) + \frac{1}{2} \frac{\delta-1}{\delta} \xi(u, z)' \xi(u, z) \right) du} \right]
\]
The optimal consumption at any time t is:

$$c^*(t) = c_m + \frac{R(t) - H(t,z)}{F(t,z)}$$

Function $H(t,z)$ is a sum of discounted cash flows:

$$H(t,z) = \mathbb{E}^Q_t \left[\int_t^T \frac{c_m - w(s,z) + \sigma_L(s,z)' \xi(s,z)}{e^{\int_t^s r(u,z) + \lambda(u,z) du}} ds + \frac{R_m}{e^{\int_t^T r(u,z) + \lambda(u,z) du}} \right]$$

Function $F(t,z)$ is a kind of discount factor:

$$F(t,z) = \mathbb{E}^{Q_\delta}_t \left[\int_t^T e^{-\int_t^s \left(\delta - 1 \delta r(u,z) + \frac{1}{\delta} \rho(u,z) + \lambda(u,z) + \frac{1}{2 \delta} \frac{\delta - 1}{\delta} \xi(u,z)' \xi(u,z) \right) du} ds \
+ e^{-\int_t^T \left(\delta - 1 \delta r(u,z) + \frac{1}{\delta} \rho(u,z) + \lambda(u,z) + \frac{1}{2 \delta} \frac{\delta - 1}{\delta} \xi(u,z)' \xi(u,z) \right) du} ds \right]$$
The optimal consumption at any time t is:

$$c^*(t) = c_m + \frac{R(t) - H(t, z)}{F(t, z)}$$

Function $H(t, z)$ is a sum of discounted cash flows:

$$H(t, z) = \mathbb{E}_t^Q \left[\int_t^T \frac{c_m - w(s, z) + \sigma_L(s, z)' \xi(s, z)}{e^{\int_t^s r(u, z) + \lambda(u, z) du}} ds + \frac{R_m}{e^{\int_t^T r(u, z) + \lambda(u, z) du}} \right]$$

Function $F(t, z)$ is a kind of discount factor

$$F(t, z) = \mathbb{E}_t^{Q, \delta} \left[\int_t^T e^{-\int_t^s \left(\frac{\delta-1}{\delta} r(u, z) + \frac{1}{2} \rho(u, z) + \lambda(u, z) + \frac{1}{2} \frac{\delta-1}{\delta} \xi(u, z)' \xi(u, z) \right) du} ds + e^{-\int_t^T \left(\frac{\delta-1}{\delta} r(u, z) + \frac{1}{2} \rho(u, z) + \lambda(u, z) + \frac{1}{2} \frac{\delta-1}{\delta} \xi(u, z)' \xi(u, z) \right) du} \right]$$
A New Probability

- The new subjective probability Q_δ is such that

$$dW(t)^{Q_\delta} = \frac{\delta - 1}{\delta} \xi(t, z) dt + dW(t)$$

- which is a weighted mean

$$dW(t)^{Q_\delta} = \left(1 - \frac{1}{\delta}\right)dW(t)^{Q} + \frac{1}{\delta}dW(t)$$
A New Probability

- The new subjective probability Q_δ is such that

$$dW(t)^{Q_\delta} = \frac{\delta - 1}{\delta} \xi(t, z) \, dt + dW(t)$$

- which is a weighted mean

$$dW(t)^{Q_\delta} = \left(1 - \frac{1}{\delta}\right) dW(t)^Q + \frac{1}{\delta} dW(t)$$
The optimal portfolio at any time \(t \) is:

\[
I_{S} \theta_{S}^{*}(t) = \frac{R(t) - H(t, z)}{\delta} \Sigma(t, z)^{-1} \xi(t, z) \\
- \Sigma(t, z)^{-1} \sigma_L(t, z) \\
+ \frac{R(t) - H(t, z)}{F(t, z)} \Sigma(t, z)^{-1} \Omega(t, z) \frac{\partial F(t, z)}{\partial z} \\
+ \Sigma(t, z)^{-1} \Omega(t, z) \frac{\partial H(t, z)}{\partial z}
\]
Interest Rate & Force of Mortality

- Interest rate is mean reverting ($\xi_r = \phi_r \sqrt{r(t)}$):

 $$dr(t) = \alpha_r (\beta_r - r(t)) dt + \sigma_r \sqrt{r(t)} dW_r(t)$$

- Force of mortality is mean reverting too ($\xi_{\lambda} = \phi_\lambda \sqrt{\lambda(t)}$):

 $$d\lambda(t) = \alpha_\lambda \left(\frac{1}{\alpha_\lambda} \frac{\partial \gamma(t)}{\partial t} + \gamma(t) - \lambda(t) \frac{\beta_\lambda(t)}{\beta_\lambda(t)} \right) dt + \sigma_\lambda \sqrt{\lambda(t)} dW_\lambda(t)$$

- but towards a divergent mean (Gompertz-Makeham):

 $$\gamma(t) = \phi_0 + \frac{1}{b} e^{\frac{t-m}{b}}$$
Interest Rate & Force of Mortality

- Interest rate is mean reverting ($\xi_r = \phi_r \sqrt{r(t)}$):

 \[
dr(t) = \alpha_r (\beta_r - r(t)) \, dt + \sigma_r \sqrt{r(t)} \, dW_r(t)
 \]

- Force of mortality is mean reverting too ($\xi_\lambda = \phi_\lambda \sqrt{\lambda(t)}$):

 \[
d\lambda(t) = \alpha_\lambda \left(\frac{1}{\alpha_\lambda} \frac{\partial \gamma(t)}{\partial t} + \gamma(t) - \lambda(t) \right) \beta_\lambda(t) \, dt + \sigma_\lambda \sqrt{\lambda(t)} \, dW_\lambda(t)
 \]

 - but towards a divergent mean (Gompertz-Makeham):

 \[
 \gamma(t) = \phi_0 + \frac{1}{b} e^{\frac{t-m}{b}}
 \]

Interest Rate & Force of Mortality

- Interest rate is mean reverting ($\xi_r = \phi_r \sqrt{r(t)}$):

 \[
dr(t) = \alpha_r (\beta_r - r(t)) \, dt + \sigma_r \sqrt{r(t)} \, dW_r(t)
 \]

- Force of mortality is mean reverting too ($\xi_\lambda = \phi_\lambda \sqrt{\lambda(t)}$):

 \[
d\lambda(t) = \alpha_\lambda \left(\frac{1}{\alpha_\lambda} \frac{\partial \gamma(t)}{\partial t} + \gamma(t) - \lambda(t) \right) \beta_\lambda(t) \, dt + \sigma_\lambda \sqrt{\lambda(t)} \, dW_\lambda(t)
 \]

 - but towards a divergent mean (Gompertz-Makeham):

 \[
 \gamma(t) = \phi_0 + \frac{1}{b} e^{\frac{t-m}{b}}
 \]
Interest Rate & Force of Mortality

- Interest rate is mean reverting \((\xi_r = \phi_r \sqrt{r(t)})\):
 \[
dr(t) = \alpha_r (\beta_r - r(t)) \, dt + \sigma_r \sqrt{r(t)} \, dW_r(t)
 \]

- Force of mortality is mean reverting too \((\xi_\lambda = \phi_\lambda \sqrt{\lambda(t)})\):
 \[
d\lambda(t) = \alpha_\lambda \left(\frac{1}{\alpha_\lambda} \frac{\partial \gamma(t)}{\partial t} + \gamma(t) - \lambda(t) \right) \, dt + \sigma_\lambda \sqrt{\lambda(t)} \, dW_\lambda(t)
 \]

- but towards a divergent mean (Gompertz-Makeham):
 \[
 \gamma(t) = \phi_0 + \frac{1}{b} e^{\frac{t-m}{b}}
 \]
Outline

1 First Part
 - Co-Author
 - Motivation
 - The Framework
 - Investor’s Problem

2 Main Results
 - Optimal Consumption/Portfolio

3 Numerical Simulation
 - State Variables
 - Assets and Calibration
Assets

- Stock:

\[A(t)^{-1} dA(t) = \mu dt + \sigma_A dW_A(t) + \sigma_{Ar} dW_r(t) \]

- rolling Bond:

\[B(t) = \mathbb{E}_t^Q \left[e^{-\int_t^{T_B} r(u) du} \right] \]

- rolling Longevity Bond:

\[\Lambda(t) = \mathbb{E}_t^Q \left[e^{-\int_t^{T_\Lambda} r(u) + \lambda(u) du} \right] \]
Assets

- Stock:
 \[A(t)^{-1} dA(t) = \mu dt + \sigma_A dW_A(t) + \sigma_r dW_r(t) \]

- rolling Bond:
 \[B(t) = \mathbb{E}_t^Q \left[e^{-\int_t^{t+T_B} r(u) du} \right] \]

- rolling Longevity Bond:
 \[\Lambda(t) = \mathbb{E}_t^Q \left[e^{-\int_t^{t+T_\Lambda} r(u) + \lambda(u) du} \right] \]
Assets

- **Stock:**

\[A(t)^{-1} dA(t) = \mu dt + \sigma_A dW_A(t) + \sigma_{Ar} dW_r(t) \]

- **rolling Bond:**

\[B(t) = \mathbb{E}_t^Q \left[e^{-\int_t^{t+T_B} r(u)du} \right] \]

- **rolling Longevity Bond:**

\[\Lambda(t) = \mathbb{E}_t^Q \left[e^{-\int_t^{t+T_\Lambda} r(u)+\lambda(u)du} \right] \]
Calibration

<table>
<thead>
<tr>
<th>Rate/Bond</th>
<th>Stock</th>
<th>Wealth/Pref.</th>
<th>Mort./Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_r = 0.0904668$</td>
<td>$\sigma_A = 0.14926$</td>
<td>$R_0 = 100$</td>
<td>$\alpha_\lambda = 0.561$</td>
</tr>
<tr>
<td>$\beta_r = 0.0621328 = r_0$</td>
<td>$\sigma_{Ar} = 0.0046306$</td>
<td>$w = 10$</td>
<td>$\sigma_\lambda = 0.0352$</td>
</tr>
<tr>
<td>$\sigma_r = 0.0543625$</td>
<td>$\xi_A = 0.1108301$</td>
<td>$T = 65$</td>
<td>$\phi_0 = 0.0009944$</td>
</tr>
<tr>
<td>$\phi_r = -0.5590635$</td>
<td></td>
<td>$\rho = 0.01$</td>
<td>$b = 12.9374$</td>
</tr>
<tr>
<td>$T_B = 10$</td>
<td></td>
<td>$R_m = 100$</td>
<td>$m = 86.4515$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$c_m = 0$</td>
<td>$t_0 = 60$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\delta = 2.5$</td>
<td>$T_L = 10$</td>
</tr>
</tbody>
</table>
Numerical Results

- Consumption/Wealth
- Wealth
- Equity share
- Bond share
- Longevity asset share
- Risk-free asset share
100 Paths

- Consumption/Wealth vs. Age
- Wealth vs. Age
- Equity share vs. Age
- Bond share vs. Age
- Longevity asset share vs. Age
- Risk-free asset share vs. Age

Menoncin-Regis
Portfolio/Longevity assets
First Part
Main Results
Numerical Simulation
Summary

State Variables
Assets and Calibration

Portfolio/Longevity assets
$R_m = 0$
First Part
Main Results
Numerical Simulation
Summary

Menoncin-Regis
Portfolio/Longevity assets
Main Results

- If there is (no) need for a minimum final wealth then optimal consumption % is decreasing (increasing) over time.

- Portfolio volatility is first increasing and then decreasing over time.

- Equity share is always decreasing over time.

- Bond share has a parabolic convex behaviour over time.

- Risk free asset share is increasing over time.

- Longevity asset share is decreasing over time, its level heavily depends on ϕ_λ and has a very low volatility.
Main Results

- If there is (no) need for a minimum final wealth then optimal consumption % is decreasing (increasing) over time.
- Portfolio volatility is first increasing and then decreasing over time.
- Equity share is always decreasing over time.
- Bond share has a parabolic convex behaviour over time.
- Risk free asset share is increasing over time.
- Longevity asset share is decreasing over time, its level heavily depends on ϕ_λ and has a very low volatility.
Main Results

- If there is (no) need for a minimum final wealth then optimal consumption % is decreasing (increasing) over time.

- Portfolio volatility is first increasing and then decreasing over time.

- Equity share is always decreasing over time.

- Bond share has a parabolic convex behaviour over time.

- Risk free asset share is increasing over time.

- Longevity asset share is decreasing over time, its level heavily depends on ϕ_λ and has a very low volatility.
Main Results

- If there is (no) need for a minimum final wealth then optimal consumption % is decreasing (increasing) over time.

- Portfolio volatility is first increasing and then decreasing over time.

- Equity share is always decreasing over time.

- Bond share has a parabolic convex behaviour over time.

- Risk free asset share is increasing over time.

- Longevity asset share is decreasing over time, its level heavily depends on ϕ_λ and has a very low volatility.
Main Results

- If there is (no) need for a minimum final wealth then optimal consumption % is decreasing (increasing) over time.
- Portfolio volatility is first increasing and then decreasing over time.
- Equity share is always decreasing over time.
- Bond share has a parabolic convex behaviour over time.
- Risk free asset share is increasing over time.
- Longevity asset share is decreasing over time, its level heavily depends on ϕ_λ and has a very low volatility.
Main Results

- If there is (no) need for a minimum final wealth then optimal consumption % is decreasing (increasing) over time.

- Portfolio volatility is first increasing and then decreasing over time.

- Equity share is always decreasing over time.

- Bond share has a parabolic convex behaviour over time.

- Risk free asset share is increasing over time.

- Longevity asset share is decreasing over time, its level heavily depends on ϕ_λ and has a very low volatility.
Sensitivity Analysis

- With increasing ϕ_λ there is a strong re-allocation from the longevity asset to the bond
- Sex: women should invest more in longevity (about 100% at first, decreasing to 37%)
- Time horizon ($t_0 = 55$): first 3-year period consumption/wealth is almost constant (and then start decreasing)
- Risk aversion: stock is the most reactive, then longevity (the lower δ the higher the shares)
- Subsistence consumption: a more conservative strategy is adopted (less stock and bond, more riskless), while longevity is almost unaffected
With increasing ϕ_λ there is a strong re-allocation from the longevity asset to the bond.

Sex: women should invest more in longevity (about 100% at first, decreasing to 37%).

Time horizon ($t_0 = 55$): first 3-year period consumption/wealth is almost constant (and then start decreasing).

Risk aversion: stock is the most reactive, then longevity (the lower δ the higher the shares).

Subsistence consumption: a more conservative strategy is adopted (less stock and bond, more riskless), while longevity is almost unaffected.
Sensitivity Analysis

- With increasing $\phi\lambda$ there is a strong re-allocation from the longevity asset to the bond.
- Sex: women should invest more in longevity (about 100% at first, decreasing to 37%).
- Time horizon ($t_0 = 55$): first 3-year period consumption/wealth is almost constant (and then start decreasing).
- Risk aversion: stock is the most reactive, then longevity (the lower δ the higher the shares).
- Subsistence consumption: a more conservative strategy is adopted (less stock and bond, more riskless), while longevity is almost unaffected.
Sensitivity Analysis

- With increasing ϕ_{λ} there is a strong re-allocation from the longevity asset to the bond

- Sex: women should invest more in longevity (about 100% at first, decreasing to 37%)

- Time horizon ($t_0 = 55$): first 3-year period consumption/wealth is almost constant (and then start decreasing)

- Risk aversion: stock is the most reactive, then longevity (the lower δ the higher the shares)

- Subsistence consumption: a more conservative strategy is adopted (less stock and bond, more riskless), while longevity is almost unaffected
Sensitivity Analysis

- With increasing ϕ_λ there is a strong re-allocation from the longevity asset to the bond.
- Sex: women should invest more in longevity (about 100% at first, decreasing to 37%).
- Time horizon ($t_0 = 55$): first 3-year period consumption/wealth is almost constant (and then start decreasing).
- Risk aversion: stock is the most reactive, then longevity (the lower δ the higher the shares).
- Subsistence consumption: a more conservative strategy is adopted (less stock and bond, more riskless), while longevity is almost unaffected.