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Abstract 

Nowadays, cyber risks are an important point on the business agenda in every 

company, but they are difficult to analyze due to the wide absence of reliable data and 

profound analyses. To improve this situation, we identify cyber losses from an operational 

risk database and analyze these with methods from the field of actuarial science. Specifically, 

we apply models from operational risk in order to yield consistent risk estimates, depending 

on country, industry, size, and other variables. We also test whether cyber risks are 

structurally identical to other operational risks or exhibit distinct characteristics. Our results 

show that human behavior is the main source of cyber risk and that cyber risks are very 

different compared to other operational risk. The results of the paper are useful for 

practitioners, policymakers and regulators in order to provide a better understanding of this 

new and important type of risk. 
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1 Introduction 
Although cyber risk has become a crucial topic for the whole economy and society, and is 

reported in the media every day,1 it has been subject of very limited academic research. This 

is most likely due to the wide absence of reliable data. In this paper we go one step forward 

and provide a thorough empirical analysis of cyber risks. For this purpose we extract cyber 

risk data from an operational risk dataset and analyze it with actuarial methods. We use 

models from operational risk on a dataset of 994 cyber risk incidents that occurred in the time 

period from 1971 to 2014. 

The existing literature on cyber risk is mostly limited to papers from the field of technology. 

Within risk and insurance, our paper is closest to Biener, Eling, and Wirfs (2015) who provide 

an overview of existing literature, analyze the insurability of cyber risk and illustrate their 

statistical properties using descriptive statistics. We build upon and extend their data and 

analyze it with a longer coverage period and a more thorough empirical analysis that goes 

beyond descriptive statistics. 

The aim of the paper is to test whether models which prove to be useful for operational risk 

can also be applied to an analysis of cyber risk or whether other tools are needed. We are 

interested in the question whether cyber risks are structurally identical to other operational 

risks or exhibit distinct characteristics. Our results show that human behavior is the main 

source of cyber risk and that cyber risks are very different compared to other operational risk 

from an actuarial point of view. 

These results are important for (the CFO and CRO of) every company in order to get a better 

understanding of cyber risks and their consequences. In the financial services sector, they are 

especially important since regulators require banks and insurance companies to hold risk 

capital for operational losses which might result from cyber risks. Also for firms outside the 

financial services sector, our results are important not only for internal risk management, but 

also in light of recent regulatory reforms (see, e.g., the regulatory approaches for new data 

protection such as in European Commission, 2012). Moreover, our results are useful for 

insurance companies which are developing cyber insurance policies and do not have enough 

data and experience with cyber risks. We illustrate the usefulness of our results for 

policymakers, regulators and practitioners in two applications on risk management and 

pricing. For the academic audience we present effective and contemporary modeling and 

solution approaches for the novel application area of cyber risk. 
                                                           
1  Cyber attacks were denoted by the G20 group as a threat to the global economy (see Ackermann, 2013); the 

World Economic Forum (2014) estimates the probability of a critical information infrastructure breakdown 
with 10 percent and the financial consequences after a few days to about US$ 250 billion. 
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The remainder of this paper is structured as follows. In Section 2 we define the term “cyber 

risk” and introduce our data and methodology. Then, in Section 3 the empirical analysis is 

presented. We conclude in Section 4. 

2 Material and Methods 
Cyber risk is a dynamic loss category that has not been thoroughly discussed in academic 

literature yet (Biener, Eling, and Wirfs, 2015). An efficient data collection for cyber risks is 

just emerging. Typically, information on cyber risk is not publicly available since affected 

companies tend to not report it.2 Another problem that hampers the collection of cyber risk 

data is the absence of a clear-cut definition. 

The definition we employ here is based on how banking supervisors categorize operational 

risk and goes back to Cebula and Young (2010), who define cyber risk as “operational risks to 

information and technology assets that have consequences affecting the confidentiality, 

availability or integrity of information or information systems”. Linking cyber risk to 

operational risk has several advantages: Firstly, it allows distinguishing cyber risk from other 

established risk categories. For instance, in banking supervision (e.g. BIS, 2006) market, 

credit, liquidity, legal and operational risks are separated. Insurance supervisors (e.g., 

CEIOPS, 2009) typically consider market, insurance, credit and operational risks. Secondly, 

in structuring cyber risk we can use the established subcategories from operational risk (see 

Table 1). And thirdly, linking cyber risks to operational risks allows to clearly identifying 

relevant data. 

The latter argument is exactly the empirical strategy of this paper: Having defined cyber risk 

as a subgroup of operational risk, we use the world’s largest collection of publicly reported 

operational losses – the SAS OpRisk Global data – and extract cyber risk events using the 

search and identification strategy described in Appendix 1. The database consists of 30’173 

observations between March 1971 and March 2014. All losses are given in USD and adjusted 

for inflation to make them comparable.3 

  

                                                           
2  Both in the EU and the US there is a discussion on mandatory reporting requirements. If these become 

reality, then more data and information would be available. 
3  The dataset attempts to provide an estimate of the complete costs of operational risk events (both direct as 

well as indirect effects); however, reputational loss due to an operational risk event is not covered since this 
sort of loss is typically excluded from operational risk. In this first draft of the paper, we only analyze data 
until 2009 (as done in Biener, Eling, and Wirfs, 2015), since we are in the process of finishing the data 
identification and analysis. 
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Table 1 Categories of cyber risk (see Cebula and Young, 2010) 
Category Description Elements 
Actions of people 
1.1 Inadvertent unintentional actions taken without malicious  

or harmful intent 
mistakes, errors, omissions 

1.2 Deliberate actions taken intentionally and with intent to  
do harm 

fraud, sabotage, theft, and vandalism 

1.3 Inaction lack of action or failure to act upon a given 
situation 

lack of appropriate skills, knowledge, guidance, and 
availability of person to take action 

Systems and technology failures 
2.1 Hardware risks traceable to failures in physical  

equipment 
failure due to capacity, performance, maintenance, 
and obsolescence 

2.2 Software risks stemming from software assets of all 
types, including programs, applications, and 
operating systems 

compatibility, configuration management, change 
control, security settings, coding practices, and 
testing 

2.3 Systems failures of integrated systems to perform as 
expected 

design, specifications, integration, and complexity 

Failed internal processes 
3.1 Process design 

and/or execution 
failures of processes to achieve their desired 
outcomes due to poor process design or 
execution 

process flow, process documentation, roles and 
responsibilities, notifications and alerts, information 
flow, escalation of issues, service level agreements, 
and task hand-off 

3.2 Process controls inadequate controls on the operation of the 
process 

status monitoring, metrics, periodic review, and 
process ownership 

3.3 Supporting 
processes 

failure of organizational supporting processes 
to deliver the appropriate resources 

staffing, accounting, training and development, and 
procurement 

External events 
4.1 Hazards events, both natural and of human origin,  

over which the organization has no control  
and that can occur without notice 

weather event, fire, flood, earthquake, unrest 

4.2 Legal issues risk arising from legal issues regulatory compliance, legislation, and litigation 
4.3 Business issues risks arising from changes in the business 

environment of the organization 
supplier failure, market conditions, and economic 
conditions 

4.4 Service 
dependencies 

risks arising from the organization’s 
dependence on external parties 

utilities, emergency services, fuel, and 
transportation 

To analyze the statistical properties of cyber risk and to identify the model that describes the 

data best we use the standard toolbox from actuarial science. After presenting descriptive 

statistics, we fit the cyber loss data using extreme value theory. In particular, we implement 

the loss distribution approach (e.g., peak-over-threshold method), which is standard in 

modelling operational risk. We also present an extended version of this approach where the 

loss data depends on covariates (following Chavez-Demoulin, Embrechts, and Hofert, 2013) 

and fit the loss data to various other distributions which have proven to be useful for actuarial 

loss analysis (e.g., the g-and-h family of distributions, the Generalized Beta distribution of the 

second kind, and skewed distributions; see, e.g., Dutta and Perry, 2007, and Eling, 2012). To 

identify the model that works best, we apply standard goodness of fit tests and also more 

tailored tests for the advanced measurement approaches. 

After having identified the best modelling approach, we present two applications: Firstly, a 

numerical study to estimate the risk measures value at risk and tail value at risk. These 

measures are especially relevant for regulatory purposes in banking and insurance (Basel II, 

Solvency II) and show how much capital a company needs to cover the losses with a given 

confidence level (see Eling and Tibiletti, 2010, for definitions of the risk measures). Secondly, 



5 
 

we use the numerical results for pricing of a typical cyber insurance policy. Here we use 

results from a recent market survey (Biener et al., 2015) and standard pricing methods from 

actuarial science (see, e.g., Bowers et al., 1997). A detailed description of the methodology is 

presented in Appendix 2. 

3 Results 
3.1 Descriptive Statistics 

Table 2 provides a summary of the cyber risk sample and compares its characteristics with 

non-cyber risk. All descriptive statistics for cyber risk are significantly smaller than those for 

non-cyber risk, i.e., the other operational risks. Mean and median are close to estimations of 

average losses found in the literature: the Ponemon Institute (2013) finds that security and 

data breaches result in an average financial impact of US$ 9.4 million. Average losses from 

the theft of data are estimated at US$ 2.1 million by KPMG (2013). The maximal loss in our 

sample is US$ 13 billion compared to US$ 89 billion for non-cyber risk.4 The loss amounts 

for cyber risk are thus much smaller than for other operational risks. Sorting into cyber risk 

subcategories (Panel B of Table 2) shows that most of the cyber risk incidents occur in the 

“actions of people” subcategory. Hacking attacks, physical information thefts, human failures, 

and all incidents where employees manipulate data (un-/intentionally) are included here. It 

thus seems that human behavior is the main source of cyber risk, while the other categories, 

such as external disasters, are very rare. The average losses across the different subcategories 

are relatively similar. 

Table 2 Losses per risk type (in million US$) 
Category N Mean Std. dev. Min. Quantiles VaR TVaR Max. 
     25%  50%  75%  (95%) (95%)  
Panel A: Cyber versus non-cyber risk   
Cyber risk 994 40.53 443.88 0.10 0.56 1.87 7.72 89.56 676.88 13,313 
Non-cyber risk 21,081 99.65 1,160.17 0.10 1.88 6.20 25.37 248.97 1595.27 89,143 
Panel B: Cyber risk subcategories   
Actions of people 903 40.69 463.25 0.10 0.55 1.83 6.87 84.36 679.04 13,313 
Systems and 
technical failure 37 29.07 77.33 0.10 1.10 5.03 11.65 168.95 329.04 370 

Failed internal 
processes 41 47.72 205.92 0.14 0.42 2.04 9.05 158.65 743.40 1,311 

External events 13 39.40 115.73 0.28 0.56 1.03 13.77 192.88 422.71 422 

Table 3 further separates the cyber and non-cyber risk loss data into several subcategories. 

The geographic separation (Panel A) shows that Northern American companies experience 

more than twice as many (51.9%) cyber risk incidents than do European firms (23.2%) and 
                                                           
4  The largest cyber risk case occurred at the Bank of China in February 2005 when US$ 13,313.51 million 

were laundered through one of its branches, which was possible because the bank’s internal money 
laundering controls were manipulated by employees. The largest non-cyber risk case involves the U.S. 
tobacco company Philip Morris, which, in November 2001, was ordered to pay US$ 89,143.99 million in 
punitive damages to sick smokers. 
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even more than twice as many as firms located on other continents. For loss severity, we find 

that Northern America has some of the lowest mean cyber risk and non-cyber risk losses, 

whereas Europe and Asia have much higher average losses. This situation may be due to 

North American firms being more capable of and willing to invest in risk mitigating measures 

for extreme losses, which results from a longer tradition of recognizing and managing cyber 

risks as compared to Europe or Asia. 

Panel B of Table 3 provides a separation into financial and nonfinancial services industries. 

78.6% of all cyber risk incidents occur in the financial services industry. This is not surprising 

since financial services firms, such as banks and insurance firms, store a significant amount of 

critical personal data.5 However, the average loss resulting from cyber risk for firms in 

nonfinancial services industries is about twice as high as for financial services firms. This 

finding might be explained by financial services firms having a higher awareness regarding 

critical data and better protection against cyber risk. For non-cyber risks, firms in the 

nonfinancial services industries face higher average losses than firms in the financial services 

sector; however, the difference is not as substantial as it is for cyber risk. 

Table 3 Cyber and non-cyber risk losses (in million US$) 
 Cyber risks  Non-cyber risks 
 N Share of cyber 

risk incidents 
Mean  Median  N Share of non-cyber 

risk incidents 
Mean Median 

Panel A: Region of domicile      
Africa 19 1.91% 38.99 3.20  165 0.78% 74.47 3.11 
Asia 180 18.11% 122.18 2.63  2,284 10.83% 161.97 5.71 
Europe 231 23.24% 28.06 1.85  3,931 18.65% 132.75 6.35 
North America 516 51.91% 19.86 1.68  14,126 67.01% 81.11 6.30 
Other 48 4.83% 17.18 1.38  359 1.73% 88.34 5.93 
Panel B: Industry      
Nonfinancial 213 21.40% 61.74 5.00  12,697 60.20% 105.29 7.33 
Financial 781 78.60% 34.75 1.44  8,384 39.80% 91.10 4.49 
Panel C: Relation to losses in other firms      
One firm affected 827 83.20% 44.51 1.83  15,804 74.97% 92.62 6.20 
Multiple firms 
affected 167 16.80% 20.84 2.04  5,277 25.03% 120.71 6.20 

Panel D: Company size by number of employees*      
Small 40 4.02% 27.81 1.30  443 2.10% 51.30 2.22 
Medium 51 5.13% 10.33 1.33  800 3.79% 26.81 2.50 
Large 754 75.86% 46.39 1.50  14,019 66.50% 124.94 6.88 
*: Small: Less than 50 employees; Medium: Less than 250, Large: More than 250. The total in each size group 
does not add up to the total sample, since for a few incidents, the number of employees is not available. 

An important aspect of cyber risk is contagion, and thus our next separation of the data is 

between incidents affecting only one single firm and those affecting multiple firms (Panel C 

of Table 3). If just one firm is involved (83.2% of the cyber risk cases), the average loss per 

firm per case is more than twice as high as if more than one firm is involved. This result may 

                                                           
5  The market survey of potential customers in the financial services industry (Biener et al., 2015) shows that 

banks are especially prone to cyber risk, i.e., the respondents from the banking sector had significantly more 
experience with cyber risk than the respondents from other financial service sectors. 
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appear counterintuitive; however, in the event more than one firm is affected, cyber attacks 

are identified earlier and thus losses can be limited. Also, there may be economies of scale in 

solving the problems created by cyber incidents when multiple firms are involved (e.g., 

forensic investigation costs). 

Panel D of Table 3 separates the sample based on firm size. With increasing size, the number 

of incidents increases, i.e., firms with more than 250 employees have more cyber losses. 

Interestingly, we observe a U-shaped pattern in the mean losses both for cyber and non-cyber 

risk.6 It may be that smaller firms do not have the awareness and resources to protect against 

cyber risk, while large firms have diseconomies of scale due to complexity. We also analyzed 

the development of cyber risks over time and found that the number of cyber risk incidents 

was relatively small before 2000. After that point, however, the number of incidents 

continuously increased and in the last years accounts for a substantial part of all operational 

risk incidents. These findings again emphasize the increasing economic importance of cyber 

risk in recent years. The average loss, however, has decreased over the last several years, 

which might indicate the increasing use of self-insurance measures that reduce the loss 

amount in the event of a cyber attack. Detailed results are available from the authors upon 

request. 

3.2 Modelling Results and Goodness of Fit 

To more closely analyze the distributional characteristics of cyber risk compared to other 

operational risk, we implement methods from extreme value theory when estimating the loss 

severity distribution (e.g., Peaks-over-Threshold method; POT). In this approach, losses 

above a predefined threshold are modeled by a generalized Pareto distribution (GPD) while 

losses below the threshold are modeled with a distribution common in loss modelling (e.g., 

the Exponential distribution as in Hess, 2011). We apply the bootstrap goodness of fit test by 

Villaseñor-Alva and González-Estrada (2009) and, based on this, choose a threshold at the 

90% percentile. For purposes of comparison, we also computed results for a 92.5% threshold, 

with findings similar to those with 90% threshold; thresholds below reveal a non-fit for non-

cyber risks according to Villaseñor-Alva and González-Estrada (2009); raising thresholds 

much higher makes the sample used for the fit in cyber risk too small. The estimated 

distributions for cyber and non-cyber risk are shown in Figures 1. 

 

                                                           
6  The results are robust with regard to the size categorization. We estimated the values for a separation into 

Small: less than 100, Medium: less than 1,000, and Large: more than 1,000 employees and find no 
differences in this pattern. 
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Figure 1 Estimated distribution and density function 

  
In addition, we model losses with other parametric distributions common in actuarial science, 

such as the Exponential, Gamma, GPD, Log-normal, or Weibull distribution (see, e.g., Eling, 

2012). Results of the goodness of fit analysis are presented in Table 4. 

Table 4 Goodness of Fit Analysis 
Model  Cyber Risk (N = 994)  Non-Cyber Risk (N = 21,081) 
  Log-

likelihood 
AIC Kolmogorov-

Smirnov-Test 
 Log-

likelihood 
AIC Kolmogorov-

Smirnov-Test 
POT (threshold 90%)  -1,993.81 3,989.82 TC   -62,836.99 125,676.16 TC  
Exponential  -4,673.87 9,349.75 0.582 ***  -118,088.10 236,178.10 0.535 *** 
Gamma  -3,430.25 6,864.50 0.243 ***  -95,081.78 190,167.60 0.220 *** 
GPD  -2,925.01 5,854.03 0.435 ***  -86,226.42 172,456.80 0.218 *** 
Log-normal  -2,938.64 5,881.28 0.062 ***  -86,256.49 172,517.00 0.030 *** 
Weibull  -3,122.09 6,248.19 0.147 ***  -89,246.14 178,496.30 0.088 *** 
Note: In the Kolmogorov-Smirnov-Test the first column represents the distance and the second the significance 
level of rejecting the null hypothesis (H0: the given distribution is equal to the sample distribution). *, **, ***, 
indicate confidence levels of 10%, 5%, and 1%, respectively. AIC = Akaike information criterion, TC = to come 
soon. To the best of our knowledge, there exists no closed-form approach to evaluate the overall Log-likelihood 
value, or the AIC in the POT model. The numbers presented for the first two values are computed on a weighted 
sum of Log-likelihood and AIC values, respectively. The terms of the sum are weighted by the amount of 
observations used for the computation in each part (body 90%, under the threshold; excess, over the threshold 
10%). 

The results from the Kolmogorov-Smirnov-Tests (K-S tests) indicate that none of the five 

single parametric distributions models the cyber risk loss data adequately. Furthermore, these 

distributions also do not fit the non-cyber risk data, which motivates the use of more advanced 

modelling approaches. From the five distributions, the GPD provides the best results, but also 

for this model the null hypothesis in the K-S test is rejected at a 1% confidence level. Looking 

at the POT approach, we observe the best fit – for cyber risk and non-cyber risk – under all 

models in Table 4. This motivates the use of EVT and the further extension of this approach. 

In the following version of the paper we will also present an extended version of this POT 

approach where the loss distribution depends on covariates (following Chavez-Demoulin, 

Embrechts, and Hofert, 2013; preliminary results are attached in Appendix 3) and fit the loss 

data to various other distributions which have proven to be useful for actuarial loss analysis 
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(e.g., the g-and-h family of distributions, the Generalized Beta distribution of the second kind, 

and skewed distributions; see, e.g., Dutta and Perry, 2007, and Eling, 2012). 

3.3 Applications 

We first conduct a numerical study to estimate the risk measures value at risk and tail value at 

risk. These measures are especially relevant for regulatory purposes in banking and insurance 

(Basel II, Solvency II). Table 5 presents the risk measurement results for cyber and non-cyber 

risk for the POT models and the five parametric distributions. 

Table 5 Risk Measurement 
Model  Cyber Risk (N = 994)  Non-Cyber Risk (N = 21,081) 
  VaR TVaR  VaR TVaR 
POT (threshold of 90%)  90.71 1,026.25  245.04 2,332.72 
Exponential  121.45 162.11  298.06 398.64 
Gamma  197.00 320.95  472.03 759.73 
GPD  81.80 115,792.30  246.73 428,691.10 
Log-normal  60.95 209.92  198.84 709.35 
Weibull  83.13 176.63  229.75 471.68 
Empirical  89.56 676.88  248.97 1,595.27 
Note: Value at risk (VaR) and tail value at risk (TVaR) at 95% confidence level. 

The VaR estimator for cyber risk, applying the Exponential, Gamma, and Log-normal 

distribution, is significantly different from the empirical VaR, which indicates that the 

distribution assumption does not fit the data well in the tails. The result for the Weibull 

distribution is much closer to the empirical VaR than the other four parametric distributions. 

However, the estimate from the POT provides the best fit for the VaR. Similar results can be 

observed for the TVaR. The Exponential, Gamma, Log-normal, and Weibull distribution 

significantly underestimate the TVaR, which suggests that they are not modelling the tail-

behavior appropriately. Although overestimating the tail-losses, the POT approach again 

provides the best fit. Moreover, a more conservative estimation might be appropriate for 

regulatory purposes. In the comparison of non-cyber risks, GPD and the POT approach 

provide the best fit for VaR, while again the POT approach shows the best approximation of 

the TVaR. Furthermore, the results show that the distribution of cyber risk differs 

significantly from the distribution of other operational risks. For example, the distribution of 

the non-cyber risk sample shows much higher VaR and TVaR than that of the cyber risk 

sample, explaining in part the much higher maximal losses in these categories (the modeled 

VaR for non-cyber risk is more than twice as high as for cyber risk). This finding implies that 

when modeling operational risk, cyber risk needs to be considered separately. 
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Secondly, we will use the numerical results to yield a price for a standard cyber insurance 

policy. This will help to get a sense for the economic relevance of these risks. The results will 

be contained in the next draft of the paper. 

4 Conclusions 
Insurance firms start to sign cyber risk policies and might not have a lot experience with cyber 

risks. For the pricing process of insurance contracts and the estimation of security capitals, a 

good understanding of the properties and behavior of the risk is vital. Furthermore, regulatory 

approaches for new data protection and regulation schemes are expected to come (see, e.g., a 

proposal for the EU; European Commission, 2012). Our findings can provide insight what 

parts it is most important to look at and what security levels they have to postulate in the risk 

management processes of their supervised companies. The results of the paper might thus 

offer important insights for the management of cyber risks, about their insurability and might 

also provide guidance for the pricing of cyber insurance policies. They are relevant for 

policymakers and regulators that need to develop sound policies for the treatment of this new, 

dynamic risk category. For the academic audience we present effective and contemporary 

modeling and solution approaches for the novel application area of cyber risk. 

We need to highlight some limitations of the paper, which yield avenues for future research 

opportunities. For example, the identification strategy should not be interpreted as more as a 

first step towards a more thorough analysis of cyber risk. What we do is extracting cases with 

a predefined criteria catalogue; collecting an own database with cyber risk would be a useful 

avenue for future research. Also our risk estimates are only a first indication of the true cyber 

risk; e.g. since reputational risks are not incorporated. If the models from operational risk 

prove to be useful for an analysis of cyber risks, then recent papers from this field can also be 

used to estimate the potential reputational effect (see, e.g., Cannas, Masala, and Micocci, 

2009, or Cummins, Lewis, and Wei, 2006). We will either directly integrate this issue in the 

paper or, alternatively, place it in the conclusion of the paper as an avenue for future research 

as it is right now. 
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Appendix 1: Search and Identification Strategy 
To be categorized as a cyber risk incident, a loss event must meet three criteria: (1) a critical 

asset such as a company server or database needs to be affected, (2) a relevant actor needs to 

be involved in the cause of the cyber risk incident (e.g., hackers, employees, system, nature), 

and (3) a relevant outcome such as the loss of data or misuse of confidential data needs to be 

present (see Table A1.1 for more information). For each category we defined a 

comprehensive set of keywords, which we then systematically scanned for in the incident 

descriptions of our SAS OpRisk Global Data database (see Table A1.2). The resulting dataset 

includes a total of 994 cyber risk incidents, or about 4.5% of the total sample of operational 

risks. 

Table A1.1 Data Search Strategy 
Step Description 
1.  For all three criteria – critical asset, actor, and outcome – we identify keywords that describe 

terms in the appropriate group 
2.  We searched the descriptions of each observation in our sample data for a combination of 

keywords, where each combination consisted of one word from each group (three-word 
combinations) 

3.  We checked all identified observations individually (reading each description) for their 
affiliation to cyber risk or non-cyber risk and if necessary we excluded the incidents from the 
cyber risk term; while checking the observations we also decided in which of the cyber risk 
categories they fit best 

4.  For all observations that were not identified by one of our keyword combinations we checked 
randomly chosen incidents and included them if necessary; furthermore, if we could identify 
keyword combinations that we missed in the first round, we started all over at Step 2 with 
these new words 
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Table A1.2 Keywords per Criteria 
Critical Asset Actor Actor (cont.) Outcome 
account (1) Actions by people (2) Systems and technical failure availability 
accounting system administrator defect available 
address deadline hardware breach 
code denial of service, DoS loading breakdown 
communication destruction malicious code confidential 
computer devastation software congestion 
computer system employee stress constrain 
confidential extortion system crash control 
confidential document forgot, forget, forgotten  delete 
consumer information hacker, hacked (3) Failed internal processes deletion 
data hacking unauthorized access disclosure 
disk human error  disorder 
document infect (4) External events disruption 
file infection Blizzard disturbance 
hard-disk infiltrate Earthquake encryption 
hard-drive infiltrated Eruption espionage 
homepage key logger Explosion failure 
info(rmation) lapse Fire false 
information system logic bomb Flood falsification 
internet site maintenance Hail falsified 
names malware heat wave falsifying 
network manager Hurricane incompatibility 
numbers manipulate Lightning incompatible 
online banking miscommunication natural catastrophe incomplete 
payment system mistake Outage integrity 
PC misuse pipe burst interruption 
personal information omission Riot limit 
phone online attack Smoke lose 
purchase information oversight Storm loss 
record phish Thunder lost 
reports phishing Tornado malfunction 
server spam Tsunami missing 
site Trojan Typhoon modification 
social security number vandalism Unrest modified 
stored information virus Utilities modify 
tablet worm War overload 
trade secret  Weather publication 
webpage  Wind restrict 
website   sabotage 
   steal 
   stole 
   theft 

Note: We used regular expressions to ensure that different spellings were captured (e.g., “homepage” and “home page”). 
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Appendix 2: Methodology 

Fitting of Single Parametric Distributions 

As a first insight on the distributional properties and because of its easy implementation, the 

data can be fitted by single parametric distributions. For operational risk, literature suggests 

the use of more advanced methodologies (mostly from extreme value theory) to model these 

kind of losses, since simple distributions were found to provide no perfect fit for the extreme 

events in operational risk (e.g. Moscadelli, 2004). In Section 3.1, we observed that cyber risk 

losses are much smaller than operational losses. Thus, there might be reasons to believe that 

the simple parametric distributions can provide a better fit for cyber risk than for operational 

risk. Thus, we fit parametric distributions first, for instance, Log-normal, Exponential, 

Gamma, Weibull, Log-Weibull, GPD, Burr, symmetrized alpha-stable, Log-alpha-stable (see 

Giacometti et al., 2007). 

Approaches from Extreme Value Theory (EVT) 

If the distribution fitting is used to compute risk capitals (e.g. required in Basel II and 

Solvency II for operational risks) the single estimation of severity distributions is not 

adequate, since the distribution of events over time is neglected. Furthermore, the extreme 

events that can occur in operational risk might not be modelled adequately. For these 

purposes, methods from EVT have proven to be the right choice in operational risk modelling 

(see, e.g., McNeil, Frey, and Embrechts, 2005; Embrechts, Klüppelberg, and Mikosch, 2003; 

Reiss and Thomas, 2007, for an introduction). In this area the loss distribution approach 

(LDA) has become the most common model, where a loss-frequency distribution and a loss-

severity distribution are fitted separately on historical data. The first describes the occurrence 

of losses over time, while the latter provides information on the potential size of the losses. 

Afterwards these two distributions are combined to an aggregated loss distribution (see, e.g., 

McNeil, Frey, and Embrechts, 2005). Since in most of these models there are no closed-form 

formulas for the aggregates available, the aggregation is typically done by Monte Carlo 

Simulation.7 For the modeling of frequency and severity distributions a variety of different 

approaches exist that we briefly introduce in the following parts. 

                                                           
7  In banking this approach is applied on a yearly basis and for each business line an aggregated loss 

distribution is estimated. From those an overall annual loss distribution is estimated by a copula approach 
that enables to account for diversification effects between business lines (see, e.g., Gourier, Farkas, and 
Abbate, 2009). This final distribution is then used for the calculation of capital requirements. For an example 
in the industry we refer to Soprano et al. (2009) for UniCredit Group, or Aue and Kalkbrener (2006) for 
Deutsche Bank. 
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Loss-frequency Distribution 

The loss-frequency distribution is commonly modeled as a homogeneous Poisson process. It 

is assumed that the mean number of events occurring in a fixed time interval is constant over 

time. In practice this could not be confirmed for operational risk (Giacometti et al., 2007). 

Thus, if it is assumed that the mean number of events in a given time period changes over 

time, non-homogeneous Poisson processes are used (Giacometti et al., 2007). Those processes 

assume that the intensity parameter (which defines the average number of events) can be 

expressed by a mathematical function depending on time. Giacometti et al. (2007) assumes 

the intensity functions to be Log-normal or Log-Weibull. 

Loss-severity Distribution 

For the loss-severity distributions, a variety of different approaches are discussed in the 

literature. For instance, the severity can be modeled by a simple parametric distribution (e.g., 

Pareto, Log-normal, etc.; Giacometti et al., 2007). However, those approaches do not cover 

the extreme events of operational risk adequately (Moscadelli, 2004). Thus, an approach that 

is often applied is the Peak-over-threshold (POT) approach (Embrechts, Klüppelberg, and 

Mikosch, 2003), in which the extreme values (losses above a predefined threshold u) of the 

severity distribution are modeled separately from the main body of the losses. The approach is 

based on the Balkema-de Haan-Pickands Theorem, which states that if the threshold u is 

chosen reasonably high, the distribution above the threshold can be modeled by a GPD 

(Pickands, 1975, and Balkema and de Haan, 1974). The body is then fitted on one of the 

simple parametric distributions discussed before, e.g., exponential (Hess, 2011) or Log-

normal distribution (Moscadelli, 2004). In Biener, Eling, and Wirfs (2015) we provide a first 

analysis of the loss-severity distribution using POT following Hess (2011). 

More Advanced Methods from EVT 

In literature, several limitations in the estimation of operational losses by the standard EVT 

approaches are discussed. Those in particular occur, if external data is used. Wilson (2007), 

for instance, provides a review on biases inherent in external operational risk loss data and 

discusses potential correction techniques: 

• Reporting bias: occurs when different thresholds are used to report losses (e.g. the SAS 

OpRisk Global data covers losses above US$ 100’000 only, overestimating the losses since 

it has been fitted to a too large number of higher losses). An approach to correct for 

reporting bias is proposed in De Fontnouvelle et al. (2006). In our case, we know the 

reporting threshold and can apply the method used in Hess (2011). 
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• Control bias: occurs because data is generated by institutions with different control 

mechanisms. Some losses might be irrelevant for some firms, thus not collected, while they 

might for others, which then cannot be used. We assume that this poses not a problem for 

our dataset, since we look at publicly reported incidents, reported in media. 

• Scale bias: occurs because data is generated by institutions with different sizes (i.e., the 

loss severity of firms in external databases depends on the size of the firm). This problem 

can be incorporated, e.g. by adjusting the loss height depending on firm size and further 

covariates (e.g. business line, and event type; see Ganegoda and Evans, 2013). 

Since, Ganegoda and Evans (2013) only adjust the loss-severity distribution by covariates, 

Chavez-Demoulin, Embrechts, and Hofert (2013) discuss an approach for loss-frequency and 

loss-severity. In addition, they add a time-dependence to their model, such that changes in 

loss-frequency / -severity can be modelled appropriately. One of the advantages of this 

approach is, that data can be pooled (data does not need to be separated into different groups, 

e.g., business lines, for which the fitting of the distribution must be done separately to figure 

out differences in the distributions across business lines), and by that sample size does not 

reduce. Furthermore, interactions between different covariates can be measured (e.g. an 

interaction between type of loss and change in frequency can be analyzed). The following 

covariates can and should be modelled by our approach: 

• Time: For operational losses Chavez-Demoulin, Embrechts, and Hofert (2013) observed 

changes in loss-severity and loss-frequency over time. Chavez-Demoulin, Embrechts, and 

Nešlehová (2006) find a significant relationship between loss-frequency and time. 

Cyber risk’s economic importance increased heavily in recent years and thus suggests that 

cyber risk losses developed over time also. In Biener, Eling, and Wirfs (2015) we observe 

a relatively small amount of cyber risk incidents before 2000; however, a continuous 

increase in the last years was shown. For loss severity, average losses decreased over the 

last years and gave reason to believe that increased use of self-insurance measures reduced 

the losses occurred. 

• Size: The relationship between firm size and the loss severity is extensively discussed in 

the literature. For instance, Shih et al. (2000), Cope and Labbi (2008), and Ganegoda and 

Evans (2013) all discuss this relationship and find a positive correlation between size and 

loss height. This phenomenon is also called the scaling problem or scale bias, which occurs 

when data is collected from institutions with different sizes. 

For our analysis of cyber risk, firm size might also have an influence, in particular on 

severity AND frequency. The larger the firm, the more sensitive data might be available, 
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the higher the potential losses. The larger the company, the more complex the operations 

and the more often mistakes and incidents happen. In the descriptive analyses of Section 

3.1 we observed an increasing number of incidents with increasing size (measures by 

number of employees). For the mean losses we observe a u-shape, which makes the 

inclusion of non-linear size variables in the approach appropriate. 

• Business Line: The relation between business lines and loss severity has been analyzed in 

Dahen and Dionne (2010), Ganegoda and Evans (2013), and Chavez-Demoulin, 

Embrechts, and Hofert (2013). In the latter paper, the relationship has been analyzed also 

for the loss-frequency. The results show significant differences for business lines and 

suggest the analysis also for our approach. 

Unfortunately, in our approach we consider all industries and are not focused on the 

banking industry as the existing studies. Thus, a separation into the business lines, as, e.g. 

in Chavez-Demoulin, Embrechts, and Hofert (2013), is not applicable in our case. 

However, we can differentiate into firms from the financial and nonfinancial industry. In 

Section 3.1 we observed essential differences for this covariate in cyber losses (most 

incidents occur in the financial industry group, however, the average losses are just about 

half of those from the nonfinancial industry). 

• Event type: The approaches in Dahen and Dionne (2010) and Ganegoda and Evans (2013) 

incorporate the event category for operational losses coming from the Basel regulations. 

As before for business lines, this was modelled for the banking industry specifically. We 

can easily adjust this to the cyber risk event types discussed in Cebula and Young (2010). 

In Section 3.1 we identified most of the incidents to fall in the category “Actions of 

people”, and by that showed that the human behavior is the main source of cyber risk. The 

average losses per category however, are very similar. 

• Geographical region: To the best of our knowledge, we would be the first to differentiate 

by a geographical covariate. We believe that for cyber risk it is essential, since 

regulatory / legal responsibilities are completely different for different areas in the world 

and self-protection standards might be different or regulated differently. In Section3.1 we 

show that Northern American companies experience more than twice as many cyber risk 

incidents than European firms, however, for loss severity they show one of the smallest 

average losses. It could be worthwhile to incorporate this covariate into our analysis. 

• For potential further macroenvironmental determinants, see Cope, Piche, and Walter 

(2012) (e.g., executive power, prevalence of insider trading, shareholder protection laws, 
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restrictions on banking activity, supervisory power, per capita activity, and a government 

index). 

In the further work, we might identify additional covariates that could be interesting to 

analyze and which could be covered by our dataset. 

Further Approaches Beyond Operational Risks 

In the paper we will also go beyond standard operational risk models and look at recent 

developments in the field of actuarial science in order to identify the model which best 

describes the cyber risk data. 

For instance, Dutta and Perry (2007) fitted the g-and-h family of distributions and the 

Generalized Beta distribution of the second kind (GB2) to operational losses. These 

approaches were found to provide reasonable fits for non-EVT approaches. Both distributions 

can be used as approximations for many of the previously mentioned one- and two-parameter 

distributions and accommodate a wide variety of tail-thicknesses and permit skewness as well 

(see Dutta and Perry, 2007). Thus, on the one hand, the approach from Dutta and Perry (2007) 

could provide new insights on the distributional behavior of cyber risk, but on the other hand 

could serve as a robustness test of the results found earlier. Degen, Embrechts, and 

Lambrigger (2007) extend Dutta and Perry (2007)’s approach by discussing some 

fundamental properties of the g-and-h distribution and their link to EVT. They show that 

under some instances the quantile estimation by EVT approaches might be inaccurate if data 

is well modelled by a g-and-h distribution. 

Another approach that has been applied to operational losses in literature is the one explained 

in Gustafsson et al. (2006). The approach is based on a non-parametric smoothing technique, 

utilizing the Generalized Champerowne distribution (GCD). The advantage of his approach is 

that the tail behavior can be modelled adequately, but unlike EVT, the modelling is done by 

data from the full distribution (the POT approach models body and tail separately, not 

considering information from the other part of the distribution). Finally, we fit skewed 

distributions to the loss data (e.g. skew-normal and skew-student), that have proved to be 

adequate in describing property-liability insurance claims (Eling, 2012). All the approaches 

discussed before, are based in their estimation procedure on maximum-likelihood estimation. 

Shevchenko (2010) describes an alternative to maximum likelihood based on Bayesian 

Inference. This approach could be worth to implement since previous knowledge could be 

incorporated in this approach (e.g., properties of operational risk could be interesting for 

cyber risks). 
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Methodology for Comparison of Models 

To compare the different fitting approaches with each other, and identify the one that works 

best, we first apply goodness-of-fit tests that compare the fitted distributions with the 

empirical data (Kolmogorov-Smirnov and Anderson-Darling test). These tests are standard in 

the fitting of parametric distributions (Moscadelli, 2004). More tailored tests, in particular for 

the POT approach, are given in Davison (1984), and Reiss and Thomas (2007). Further tests 

that provide insights about the appropriateness of estimations are severity VaR performance 

analyses (Moscadelli, 2004), which we will conduct in a second step. Since most of the fitting 

algorithms are based on maximum likelihood estimation, we can also compare Log-likelihood 

values and ground our analysis on the Akaike information criterion (AIC) or the Bayesian 

information criterion (BIC). A variety of further tests might come up during our 

implementation period. For the approach in Chavez-Demoulin, Embrechts, and Hofert (2013), 

further comparison techniques are needed. To identify the best combination of covariates (that 

model the cyber losses best) and to find the best model specification, Chavez-Demoulin, 

Embrechts, and Hofert (2013) compare models via likelihood-ratio tests. Furthermore, 

Ganegoda and Evans (2013) describe an information criterion that could be used to compare 

two competing models.8 

Risk Measurement and Pricing of Cyber Insurance Policies 

After we have identified the best modelling approach, we will present two applications: 

Firstly, we will conduct a numerical study to estimate the risk measures value at risk and tail 

value at risk. These measures are especially relevant for regulatory purposes in banking and 

insurance (Basel II, Solvency II). Secondly, we will use the numerical results to yield a price 

for a standard cyber insurance policy. This will help to get a sense for the economic relevance 

of these risks. 

  

                                                           
8  Note, that Ganegoda and Evans (2013) model only the loss-severity, and not loss-frequency AND loss-

severity as in the approach of Chavez-Demoulin, Embrechts, and Hofert (2013). Thus, some adjustments 
might be necessary. 
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Appendix 3: Preliminary Results 

In Section 3.2 we identified the POT approach to provide the best fit for the loss data (cyber 

risk and non-cyber risk), compared to the single parametric distributions and motivated the 

use of more advanced EVT models to fit (non-)cyber losses. Such an advanced model is the 

extension of the POT approach by modeling the loss data depending on covariates. Chavez-

Demoulin, Embrechts, and Hofert (2013) describe the approach in detail, and provide an 

example for operational loss data. However, the analysis in Chavez-Demoulin, Embrechts, 

and Hofert (2013) and the modelling of losses depending on covariates are restricted only to 

the distribution of the loss excesses (i.e., the distribution of the losses above a threshold). To 

be able to make comparisons with our models in Section 3.2 we implement the approach by 

Chavez-Demoulin, Embrechts, and Hofert only for the loss severity distribution, and compare 

it with the results for the excess distribution from the POT model (see, Table 4). If we can 

prove that the excess distribution under the Chavez-Demoulin, Embrechts, and Hofert (2013) 

approach provides a better fit than the excess distribution under the normal POT approach, we 

can replace the modelling of the excess and end up with a better fit of the overall loss severity 

than in Table 4 presented. 

As in the POT approach, the losses above a threshold can be modelled by a GPD when the 

threshold is chosen appropriately. The extension in Chavez-Demoulin, Embrechts, and Hofert 

(2013) for the loss severity distribution further assumes that the distribution parameters of the 

GPD (ξ = shape parameter, β = scale parameter) can each be described by a function that 

depends on covariates. The covariate which we will use in the first analysis are the region of 

domicile, the industry, the size of the firms (measured by the number of employees), the time, 

and the cyber risk subcategory (only in the analysis of cyber risk losses). The definition of the 

functions that describe the parameters best (i.e., which combination of covariates estimates 

the respective parameter best) will be based on likelihood-ratio tests. These tests prove that 

including all five covariates yields significant improvements in the Log-likelihood values for 

the estimation of the shape and scale parameter.9 The goodness of fit for the Chavez-

Demoulin, Embrechts, and Hofert (2013) model, and its comparison with the normal POT 

approach, is presented in Table A3.1. Although, the changes in the Log-likelihood values and 

the AIC are rather small, the results in Table A3.1 indicate the appropriateness of the 

approach described in Chavez-Demoulin, Embrechts, and Hofert (2013).  
                                                           
9  Only exception from this rule is covariate size that is not included in the estimation of the shape parameter ξ. 

Including size for this parameter would lead to a poorer fit overall which is why we only look at size for the 
scale parameter β. In addition, in the analysis of non-cyber risk losses we exclude covariate ‘cyber risk 
subcategory’. 
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Table A3.1 Comparison POT and extended POT 
Model  Cyber Risk (N = 994)  Non-Cyber Risk (N = 21,081) 
  Log-likelihood AIC  Log-likelihood AIC 
POT (threshold 90%)  -613.21 1,230.43  -14,606.69 29,217.39 
POT Extension (threshold 90%)  -602.35 1,208.70  -14,597.50 29,199.00 

In the following analyses, we will particularly focus on the analysis of the shape parameter, 

since its value provides an indicator for the heaviness of the tail; the higher the parameter, the 

heavier the tail (see, e.g., Gilli and Këllezi, 2006). Thus, we are able to identify distributional 

differences – in terms of tail behavior – for different covariate combinations, which we then 

compare for cyber and non-cyber losses. In the following part we will show some preliminary 

results from this analysis. 

The analysis of the shape parameter by time (see Figure A3.1) shows that in both risk 

categories – cyber risk and non-cyber risk – the tails become heavier. This shows the 

increasing importance of risk management not only for cyber risk but also for non-cyber risk. 

Moreover, Figure A3.1 also indicates that the distribution of the excesses in cyber risk seem 

to be heavier than in non-cyber risk (for the last 10 years the shape parameters in cyber risk 

were mostly above one, while those for non-cyber risk were below). This underlines the 

importance of cyber risk and the importance to think about the appropriateness of loss 

modelling approaches. Furthermore, it indicates that cyber losses are structurally different to 

other operational risks over time. 

Figure A3.1 Comparison of the shape parameter over time 

  

As for the descriptive analyses of Section 3.1, we look at the differences for the region of 

domicile (see Figure A3.2). We can observe that, in particular, Asia, Europa, and North 

America show heavier tails for the excess distribution in cyber and non-cyber risk than Africa 

and the other countries. Moreover, especially for Asia and North America be observe again 

higher shape parameters in cyber than in non-cyber risk, underlining the findings from the 

analysis over time.  
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Figure A3.2 Comparison of the shape parameter by region of domicile 

  

For the analysis of the shape parameter by industry (see Figure A3.3), we observe no 

significant distributional difference between firms from the financial services industry and 

those from the non-financial services industry in cyber risk. This is supervising because we 

identified differences for this covariate in the descriptive analysis (Table 3). For the non-cyber 

risks we prove that firms from the nonfinancial services industry exhibit heavier tails than 

those from the financial sector. This is in the line with the descriptive findings of Section 3.1. 

Figure A3.3 Comparison of the shape parameter by industry 

  
0 = Nonfinancial industry, 1 = Financial industry 

Finally, we discuss differences in the excess distribution by cyber risk subcategories. In 

Table 2 (descriptive analysis) we observe that human behavior is the main source of cyber 

risk, while the other three categories are less significant. A similar result can be found in the 

excess distribution analysis (see, Figure A3.4). The category ‘Actions of people’ is the one 

with the heaviest tails. 
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Figure A3.4 Shape parameter for cyber risk by subcategory 

 
1 = Actions of people, 2 = Systems and technical failures, 

3 = Failed internal processes, 4 = External events 

The analyses in this appendix part are preliminary results and far from being complete 

(analysis of the scale parameter by covariates). However, they already provide interesting 

findings which will be elaborated and investigated further. 
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