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Abstract

We maximize the accumulated expected present value of dividends
under the constraint that the with dividend risk process has a ruin prob-
ability not exceeding a small number. This problem is considered in the
de Finetti model and in the Lundberg model. From the solution in the de
Finetti model given in Hipp (2003) we learn that one can use a modified
dynamic equation in two state variables: the current surplus and the run-
ning ruin probability. The dynamics of the second variable constitutes a
martingale which – in the Lundberg model with constant barriers between
claims – is a function of present surplus, number of claims and surplus
after the last claim. We first maximize dividend payments up to the first
claim, and derive an iteration scheme from this initial solution. There are
cases with exponential claims in which the optimal barriers are constant;
for these, the resulting value function dominates the solution computed
with the heuristic improvement procedure presented in Hipp (2016); it is
close to the value function in the unconstraint case: ruin constraints are
cheap!

1 Introduction

Starting with de Finetti’s famous article [5], many papers have been written on
dividend maximization for insurers in which the stock holder’s interest is seen as
the only objective; the interests of policyholders are neglected. The correspond-
ing optimal dividend strategies lead – in most actuarial models – to certain ruin
for the with dividend process. Here, we consider dividend maximization under
the constraint that the probability of the with dividend risk process is limited
by some small number. Similar problems have been considered by Albrecher
and Thonhauser [1], and Hernandez and Junca [10]. For dividend strategies
without certain ruin see [4] and [7].

We shall first reconsider the de Finetti model in which time and space are dis-
crete, for which earlier results can be found in [8] and [9] in which a modified
Hamilton-Jacobi-Bellman equation is derived and used for numerical calcula-
tions. This modified HJB equation involves running ruin probabilities which
form a martingale. In this note we study these martingales in the Lundberg
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model and arrive at a characterization of the optimal strategy of the problem
which leads to an efficient numerical procedure.

This is work in progress; many problems, e. g., solutions for other risk processes,
are still open.

2 The de Finetti model

Let X1, X2, ... be independent identically distributed random variables with

P{Xi = 1} = 1− P{Xi = −1} = p > 1/2,

and for an integer s define

S(t) = s+X1 + ...+Xt, t = 0, 1, 2, ... (1)

In this most simple model Bruno de Finetti has investigated the problem of
optimal dividend payment in his fundamental 1957 paper (see [5]). We shall
thus call the model the de Finetti model. The random variables S(t) can be seen
as the time t surplus of a company with initial surplus s, losing 1 or earning
1 in each period. It might be an insurer who insures claims of size 2 which
occur with probability q = 1 − p for a premium 1. Our assumption p > 1/2
implies that S(t) → ∞ for t → ∞; otherwise, ruin would be certain. The ruin
probability for initial surplus s ≥ 0 is

ψ(s) = P{S(t) < 0 for some t ≥ 0|S(0) = s} = (q/p)s+1, s ≥ −1.

It is a solution of the linear difference equation

f(s) = pf(s+ 1) + (1− p)f(s− 1), s ≥ 0, (2)

which is considered for functions f(s), s ≥ −1. Equation (2) is linear, its solution
space is spanned by the two functions 1 and ψ(s), and a solution can be identified
by its values at two points.

2.1 Dividend problem

We allow for dividend payment in the de Finetti model, i.e. for non-decreasing
D(t), t ≥ 0, with D(t) – depending on X1, ..., Xt – being the sum of dividends
d(n), n = 0, ..., t, paid until time t, we consider

SD(t) = S(t)−D(t), t ≥ 0.

For a discount rate 0 < r < 1 we define the expected present value of dividends

vD(s) = E

τD−1∑
n=0

rnd(n)|S(0) = s

 ,
2



where τD = min{t : S(t)D < 0} is the ruin time for SD. The maximal possible
present value

v(s) = sup vD(s), s ≥ 0, (3)

is often coined the value of the company. The supremum is taken over all
dividend functions D with D(t) non-decreasing and depending on X1, ..., Xt. We
may restrict the maximization over all dividend functions with d(t) an integer
for all t ≥ 0, see [11], p. 11, Lemma 1.9.

The dynamic equation for the dividend problem reads

v(s) = max{r(pv(s+ 1) + (1− p)v(s− 1)), 1 + v(s− 1)}, s ≥ 1. (4)

The second term in the brackets stands for a dividend of size 1 paid immediately,
and the first for future dividend payments. For initial surplus s = 0 immediate
dividend payment is forbidden, and for this case the dynamic equation is v(0) =
rpv(1).

The dynamic equation in (4)

v(s) = r(pv(s+ 1) + (1− p)v(s− 1)) (5)

is linear, its solution space has dimension 2, and its solutions can be identified
by their values at one point s > −1.

The optimal dividend strategy for the problem is a barrier strategy, i.e. for some
integer M ≥ 0 we pay dividends as soon as we are above M. For a proof and a
method for computation see [11], p. 16, Example 1.13. The value function will
be denoted by V0(s). If v(s) is the solution of the dynamic equation (5) with
v(−1) = 0 and v(0) = 1, then the barrier M equals

M = arg min{v(s+ 1)− v(s) : s ≥ 0},

and with

W0(s) =
v(s)

v(M + 1)− v(M)
, s ≥ 0

we have

V0(s) = W0(s), s ≤M,V0(s) = V0(M) + s−M, s > M.

2.2 Dividend payment with ruin constraint

When we maximize dividend payment, we generally generate certain ruin, and
on the other hand maximizing survival probability leads to no dividend payment.
One might instead try to maximize dividend payment under a ruin constraint:
maximize

vD(s) = E

τD−1∑
n=0

rndn|S(0) = s
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under the constraint P{τD < ∞|S(0) = s} ≤ α. To simplify the notation
we shall assume that all dividend strategies D(t) = d(1) + ... + d(t) satisfy
d(t) = 0 whenever t ≥ τD. For the constraint we need that the no dividend ruin
probability ψ(s) satisfies ψ(s) ≤ α. In line with this we define

v(s, α) = sup
D
vD(s) = 0

whenever α ≤ ψ(s). The dynamic equation for this problem reads

v(s, α) = max{1 + v(s− 1, α), r[pv(s+ 1, β1) + (1− p)v(s− 1, β2)]}, (6)

where the maximum is taken over all 0 ≤ β1 ≤ ψ(s + 1), 0 ≤ β2 ≤ ψ(s − 1)
satisfying

pβ1 + (1− p)β2 = α. (7)

Here the maximum with 1 + v(s− 1, α) is omitted whenever ψ(s− 1) > α. The
maximum over the empty set is equal to zero. The maximizers β1, β2 define the
process bD(t) of running ruin probabilities for the with dividend process SD(t)
which is an SD(t)− martingale. At state α this process goes down to β1 if SD(t)
goes up, and it goes up to β2 if SD(t) goes down. When dividends are paid,
then the value α remains unchanged. The condition (7) implies that bD(t) is an
SD(t)−martingale.

From equation (6) we obtain an iteration procedure which converges monoton-
ically to the value function of the problem:

Vn+1(s, α) = max{1 + Vn+1(s− 1, α), r[pVn(s+ 1, β1) + (1− p)Vn(s− 1, β2)]},

with initial function V1(s, α) = 0 or, more sophisticated,

V1(s, α) = V0(s− s(α)),

where V0(x) is the time value of dividends without ruin constraint, and s(α) =
min{x : ψ(x) ≤ α}. This method, however, is not efficient, in each step we have
to compute an array V (s, α), s ≥ 0, ψ(s) ≤ α ≤ 1, for a fine grid of α’s.

Numerical results for the example with p = 0.7 and r = 1/1.03 can be found in
[8], section 3, p. 263-264; and in [9].

3 Lundberg model

Here we consider the classical model for non-life insurance claims, the Lundberg
model, in which

S(t) = s+ ct−
N(t)∑
i=1

Yi, , t ≥ 0, (8)

where s is the initial surplus, c the constant premium per time unit, N(t), t ≥
0, a homogenous Poisson process with intensity λ, and independent claims

4



Y, Y1, Y2, ... which are independent from the claims process N(t). In this model,
the ruin probability ψ(s) for initial surplus s satisfies the dynamic equation

0 = λE[v(s− Y )− v(s)] + cv′(s), s ≥ 0. (9)

For exponential claims with density 1/µ exp(−x/µ), x ≥ 0, the function g(s) =
E[v(s−Y )] satisfies g′(s) = (v(s)−g(s))/µ, so (9) leads to the second order lin-
ear differential equation with constant coefficients, and ψ(s) = λµ/c exp(−Rs),
where R = (c − λµ)/(cµ). Notice that for all solutions v(s) of (9) satisfying
v(s) = 1 for s < 0 we have λ(1− v(0)) = cv′(0), so the subspace of these func-
tions has dimension 1. Similar linear differential equations for g(s) are valid for
claims having phase-type distributions.

3.1 Dividend problem

For optimal dividend payment without ruin constraint, we obtain the dynamic
equation in the no action region

0 = −δv(s) + λE[v(s−X)− v(s)] + cv′(s), s ≥ 0. (10)

The value function for the optimal dividend problem now is derived with the
solution v(s) of (10) satisfying v(0) = 1 and v′(0) = 1 and with barrier M =
arg min v′(s) :

W0(s) = v(s)/v′(M), s ≥ 0,

and V0(s) with slope 1 for s ≥M.

3.2 Dividend payment with ruin constraint

We consider dividend payments D(t) accumulated up to time t, with no pay-
ments at or after ruin. The problem to maximize the present value of future
dividends under a ruin constraint has value function

V (s, α) = sup
D
vD(s),

where τD is the ruin time of the with dividend process,

vD(s) = E

[∫ τD

0

exp(−δt)dD(t)|S(0) = s

]
,

and the supremum is taken over all dividend payments satisfying

P{τD <∞|S(0) = s} ≤ α.

Also here, we will consider a process b(t) of running ruin probabilities which
is a martingale with mean α. But before we study these processes in detail,
we mention a heuristically defined iteration scheme which leads to good sub-
solutions of our problem.
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3.3 Heuristic iteration scheme

The following iteration scheme for the computation of good suboptimal value
functions is given in [9]. Assume we have a suboptimal dividend function
Vn(s, α). For U ≥ s and α > ψ(s) define a(B) as the solution to

α =
ψ(s)− ψ(U)

1− ψ(U)
+ a(U)

1− ψ(s)

1− ψ(U)
. (11)

Then a better suboptimal value function Vn+1(s, α) is given by

Vn+1(s, α) = max{max
U≥s

v(s)Vn(U, a(U))/v(U), Vn+1(s− 1, α) + 1}, (12)

where the outer maximum is taken only if ψ(s − 1) ≤ α. The strategy behind
this heuristic iteration is: start at s and wait without paying dividends until
you reach U. When you reach U, then use an optimal dividend strategy starting
at U and allowed ruin probability a(U). The ruin probability for this strategy
is the probability to be ruined before reaching U, plus the probability for reach-
ing U before ruin, multiplied by a(U). The dividend value of the strategy is
the dividend value V (U, a(U)), discounted over the time τ until U is reached.
The equation (12) results from the fact that (ψ(s) − ψ(U))/(1 − ψ(U)) is the
probability for ruin before reaching U, and

E[exp(−δτ)] = v(s)/v(U),

where v(s) is the solution to (10) with v(0) = v′(0) = 1.

A possible initial function is V1(s, α) = 0, a more sophisticated starting point is

V1(s, α) = V0(s− s(α)), (13)

where E[ψ(s − s(α))] = α. This iteration scheme does, however, not seem to
converge to the value function, and actually the numerics is quite inefficient.
Again, in each step we have to compute an array V (s, α), s ≥ 0, ψ(s) ≤ α ≤ 1,
for a fine grid of α’s.
The following figure shows the heuristic improvement procedure for exponential
claims with mean 1, for λ = 1, c = 2 and δ = 0.03. The initial function (smallest
values ) is the one given in (13). The improvements Vn(s, 0.2) seem to converge,
but the computation time for each step is too long for more than 200 iterations.
Furthermore, a large number of iterations involves so many operations, that the
results are no longer reliable.
We see that a first guess for the true value V (2, 0.2) would be approximately
17.
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V (s), Vn(s, 0.2) for 0 ≤ s ≤ 7 and n = 1, ..., 30.

3.4 A promising classical approach

For fixed s and α we consider the dividend maximization problem in which we
stop paying dividends after the n−th claim. This certainly leads to a sequence
of value functions (for easier problems!) which converge to the value function of
the given problem. We will first show that the optimal solution to these partial
problems is easy: They can be solved using a sequence of barriers Mi(Z), i =
1, ..., n, which are constant between claims i − 1 and i; they are affine linear
in the state Z just after claim i − 1. In an example with exponential claims
which has optimal constant barriers we show numerically that this approach
gives better results than the above heuristic iteration.

We first consider the case of dividend payment until the first claim, and then
show in the case n = 2 that the optimal solution has constant barriers between
claims i−1 and i which are of the form M(Z) = ρZ+H, where H is a constant
and Z the state at which claim i− 1 happens.

3.5 Dividend payment until the first claim

This problem is solved as follows: let B0(x) = E[ψ(x− Y )]; if B0(s) < α, then
we can find M1 < s satisfying B0(M1) = α, and we pay a lump sum s −M1

immediately, and after that we pay out all incoming premia. If B0(s) ≥ α or
s < M1, then we wait until we reach M1, and then we again pay out all premia.
The present value of dividends for this strategy for s ≤M1 is

E

[∫ ∞
(M1−s)/c

λ exp(−(λ+ δ)u)cdu

]
=
λc exp(−(λ+ δ)(M1 − s)/c)

λ+ δ
. (14)

The running ruin probabilities bD(t) for this optimal strategy are also easily
computed: Since after the first claim no dividends are paid, bD(t) = B(SD(t))
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will be given by the dynamic equation (martingale property)

0 = λE[ψ(x− Y )−B(x)] + cB′(x),

with initial condition B(s) = α which has a solution of the form

B(x) = −λ
c

∫ x

0

E[ψ(u− Y )] exp(−λu/c)du exp(−λx/c) + C exp(λx/c), (15)

where C is chosen such that the initial condition holds. Since B(x) should be
decreasing (and of course bounded by 1), we obtain that SD(t) should have
an upper bound which defines the optimal barrier M1 which is given by the
smallest solution of

B(x) = E[ψ(x− Y )].

This simple structure looks promising; its properties can be used generally (for
all n).

3.6 Dividend payment after the n−th claim

The optimal dividend value up to the n+1−th claim is obtained using the results
for n = 1, in particular the above optimal strategy and formulas (15) and (14).
Assume that claim n happens at time T and the position after this claim equals
Z. Then we should maximize the dividends paid after time T and stop paying
dividends at the next claim. For this we will choose a barrier M(Z) and obtain
a function B(x) from equation (15) and a value V (Z) form equation (14) in
which M is replaced by M(Z). In order to simplify the notation we will restrict
in the following to exponential claims with mean µ = 1. Notice that V (Z) does
not depend on the claim size distribution, but B(x) in the exponential case
simplifies to

B(x,M) = ψ(x) +R exp(−R(2M − x)),

where R = λ/c − 1 is the adjustment coefficient for which we have ψ(x) =
(1 − R) exp(−Rx). To identify the dependence of M(Z) from Z we use the
Lagrange multiplier approach, i.e. we look at V (Z)− LB(Z,M) which is

K exp(−γ(M − Z))− L[(1−R) exp(−RZ) +R exp(RZ) exp(−2RM)]

and maximize it with respect to M. Here, K = λc/(λ + δ) and γ = (λ + δ)/c.
We obtain for γ < 1 (which is true in most cases) that M(Z) − ρZ with ρ =
(R − γ)/(1 − γ) is a constant Hn which might depend on n. The form of the
barrier

M(Z) = ρZ +Hn

is intuitive since in most cases ρ < 0; this means that for small initial surplus Z
we will choose a barrier which is larger that in the case of a large surplus. And
this form of barrier we find in each time period of claims. This can be used to
approximate the value function of the problem dividend payment until the n−th
claim with an appropriate choice of the constants Hi, i = 1, ..., n.
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3.7 Special case of constant barriers

We have ρ = 0 for exponential claims with mean 1 under the condition R =
ρ which is equivalent to c = 2λ + δ. For given barriers M1 ≥ ... ≥ Mn we
sequentially compute the running ruin probabilities Bi(x) and the dividend
values Vi(x) with the dynamic equations

0 = λE[Bi−1(x− Y )−Bi(x)] + cB′i(x),

0 = −δVi(x) + λE[Vi−1(x− Y )− Vi(x)] + cV ′i (x),

with the boundary values B′i(x) = 0 for x ≥ Mi, and V ′i (x) = 1 for x ≥ Mi.
Here, Mn is the barrier until the first claim, Mn−1 is the barrier for the time
between the first and the second claim, and so on. B1(x) is the running ruin
probability before the n−th claim, so

0 = λE[ψ(x− Y )−B1(x)] + cB′1(x),

and B2(x) is the running ruin probability between claim number n − 1 and n.
V1(x) is the present time Tn−1 value of dividend payments over the last period,
where Ti is the time for claim i. V1(x) can be obtained with formula (14), where
the barrier is M1.

For exponentially distributed claims with mean 1 the functions

Gi(x) = E[Bi(x− Y )] and Hi(x) = E[Vi(x− Y )]

are computed with the useful differential equations

G′i(x) = (Bi(x)−Gi(x),

H ′i(x) = (Vi(x)−Hi(x)),

together with the boundary values

Gi(0) = 1, Hi(0) = 0.

It is surprising that the optimal strategies are all barrier strategies, while in the
case of unconstraint optimal dividend payment band strategies show up (see [6]
and [3]).

3.8 Numerical results

Our numerical work is done for exponential claims with mean µ = 1, with
λ = 1, δ = 0.03 and c = 2.03. The first test shows that the number n of claims
considered should be large, but not too large. You see the computed values
for various n and for barriers Mi, i = 1, ..., n which are all equal to M. The
computations are done for s = 2 and α = 0.2, which is a region in which the
true value function of the problem is very steep (we have ψ(2) = 0.1839 and
hence V (2, 0.1839) = 0 while V (2, 0.2) is seen to be approximately 17 or larger
in our figure above.
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In the table below you see some suboptimal values for V (2, 0.2) with barriers
Mi = M which are all equal, and for various n. You can see that n should be
large, but not too large.

n Vn(2, 0.2) M
20 7.6025 11.77
50 15.2775 13.56
120 19.6333 15.27
150 19.8397 15.71
180 19.8263 16.07

Better results are possible when we take n = 150 and Mi which vary with i :

• M1 = 17,Mi+1 = Mi − ε, ε = 0.0157 : V (2, 0.2) = 20.0594.

• M1 = 19,Mi+1 = Mi − ε, ε = 0.03615 : V (2, 0.2) = 20.1750.

• M1 = 20,Mi+1 = Mi/ε, ε = 1.00265 : V (2, 0.2) = 20.1816.

• without ruin constraint: V0(2) = 20.6058.

• ruin constraints are cheap, they lead to small reductions of the company
value.

4 Conclusions

Above we wrote that this note is work in progress, many problems are still open,
e. g. the solution for diffusion models for which heuristic improvements can be
defined and calculated (see [9]). Others are:

• numerical computations for non-constant barriers;

• fast iteration schemes for other than exponential claims (phase-type);

• efficient methods for the calculation of optimal barriers;
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