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• The choice of risk measure has much impact in terms of risk
management and model validation.

• Various usages of risk measures

. The main usage of risk measures is to compute, from the
probability distribution of the firm’s value, the Risk Adjusted Capital
in its different forms :

1. Solvency Capital Requirements (SCR) of Solvency II : VaR (99.5%
yearly)

2. Target capital for the Swiss Solvency Test : ES (99% yearly)
3. Basel II : VaR (99% daily)
4. In the future Basel III : ES (97.5% daily for market risk)

. Heart of a risk/reward strategy :
1. to measure the diversification benefit of a risk portfolio
2. to allow capital allocation among the various risks of the portfolio (very

important role of the risk measure to optimize companies value)
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• What are the main properties we should expect in practice from a
”good” risk measure ?

1. the subadditivity and comonotonic additivity, to measure the
diversification benefit

2. good estimates and possibility of backtesting

• Popular / regulatory risk measures :
↪→ Value-at-Risk (VaRα) = quantile q(α) ;

↪→ Expected Shortfall (ES) =Tail VaR (TVaR) :

ESα(L) =
1

1− α

∫ 1

α

qβ(L) dβ =
FL cont

E[L | L ≥ qα(L)]
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Backtesting

1 - VaR

(a) Optimal point forecast

VaR is elicited by the weighted absolute error scoring function

s(x, y) = (1{x≥y} − α)(x− y), 0 < α < 1 fixed

(Thomson (79), Saerens (00), or Gneiting (11)for details)
⇒ VaR : optimal point forecast
↪→ this allows for the comparison of different forecast methods.

However, in practice, we have to compare VaR predictions by a
single method with observed values, in order to assess the
quality of the predictions.
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(b) A popular procedure : a binomial test on the proportion of
violations

• Assuming a continuous loss distribution, P[L > VaRα(L)] = 1− α
⇒ the probability of a violation of VaR is 1− α

• We define the violation process of VaR as

It(α) = 1{
L(t)>VaRα(L(t))

}.
VaR forecasts are valid iff if the violation process It(α) satisfies the

two conditions (Christoffersen, 03) :

(i) E[It(α)] = 1− α (ii) It(α) and Is(α) are independent for s 6= t

• Under (i) & (ii), It(α)’s are iid B(1− α) ⇒
n∑

t=1

It(α)
d∼ B(n, 1− α)
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In practice, it means :
• to estimate the violation process by replacing VaR by its

estimates
• check that this process behaves like iid Bernoulli random

variables with violation (success) probability p0 ' 1− α
• Test on the proportion p of VaR violations,

estimated by
1
n

n∑
t=1

It(α) :

H0 : p = p0 = 1− α against H1 : p > p0

If the proportion of VaR violations is not significantly different from
1− α, then the estimation/prediction method is reasonable.

Note :
• Convenient procedure because it can be performed

straightforwardly within the algorithms estimating the VaR
• Condition (ii) might be violated in practice⇒ various tests on the

independence assumption have been proposed in the literature, as
e.g. one developed by Christoffersen and Pelletier (04), based on
the duration of days between the violations of the VaR thresholds.
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2 - ES

(a) Backtesting distribution forecasts

Testing the distribution forecasts could be helpful, in particular for
tail-based risk measures like ES.

Ex : method for the out-of-sample validation of distribution forecasts,
based on the Lévy-Rosenblatt transform, named also Probability
Integral Transform (PIT). (see Diebold et al. ; based on the fact that
F(X) d

= U(0, 1))
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(b) A component-wise optimal forecast for ES

ES : example of a risk measure whose conditional elicitability (see
Emmer et al.) provides the possibility to forecast it in two steps.

1. We forecast the quantile (VaRα) as

q̂α(L) = arg min
x

EP[s(x, L)]

with s(x, y) = (1{x≥y} − α)(x− y) strictly consistent scoring function

2. Fixing this value q̂α, E[L|L ≥ q̂α] is just an expected value.
Thus we can use strictly consistent scoring function to forecast

ESα(L) ≈ E[L|L ≥ q̂α].

If L is L2, the score function can be chosen as the squared error :

ÊSα(L) ≈ arg min
x

EP̃[(x− L)2] where P̃(A) = P(A|L ≥ q̂α).
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(c) An implicit backtest for ES : a simple multinomial test

. Idea came from the following (Emmer et al.) :

ESα(L) =
1

1− α

∫ 1

α

qu(L) du

≈ 1
4
[ qα(L) + q0.75α+0.25(L) + q0.5α+0.5(L) + q0.25α+0.75(L) ] .

where qα(L) = VaRα(L). Hence, if the four qaα+b(L) are successfully
backtested, then also the estimate of ESα(L) might be considered
reliable.

. We can then build a backtest based on that intuitive idea of
backtesting ES via simultaneously backtesting multiple VaR
estimates evaluated with the same method as the one used to
compute the ES estimate.

Note : the Basel Committee on banking Supervision suggests a
variant of this ES-backtesting approach based on testing level
violations for two quantiles at 97.5% and 99% level (Jan. 2016).
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Building an implicit backtest for ES

Main questions :

• Does a multinomial test work better than a binomial one for model
validation ?

• What is the ’optimal’ number of quantiles that should be used for such
a test to perform well ?

To answer these questions, we build a multi-steps experiment on
simulated data.

• Static view : we test distributional forms (typical for the trading book)
to see if the multinomial test distinguishes well between them, in
particular between their tails, assuming :

• mean and variance of the distributions match, to focus on
misspecification of kurtosis and skewness

• we might be subject to estimation error, as in practice.

• Dynamic view : looking at a time series setup in which the forecaster
may misspecify both the conditional distribution of the returns and the
form of the dynamics, in different ways.
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A multinomial test

Testing simultaneously N VaR’s (with N > 1) leads to a multinomial
distribution ; we can set the null hypothesis of the multinomial test as

(H0) : pj := E[1(Lt>VaRj,t)](= P[Lt > VaRj,t]) = pj,0 := 1− αj, ∀ j = 1, · · · ,N

Assuming the n observations come from a loss variable L with
continuous distribution F, introduce the observed cell counts between

quantile levels qα = F←(α) as Oj =

n∑
t=1

I(qj−1<Lt≤qj), for j = 1, ...,N + 1.

Then (O1, . . . ,ON+1) follows a mutinomial distribution :

(O1, . . . ,ON+1) ∼ MN(β1 − β0, . . . , βN+1 − βN)

for parameters β1 < · · · < βN with β0 = 0 and βN+1 = 1.
Hence the test can be rewriten as∣∣∣∣ H0 : βj = αj for j = 1, . . . ,N

H1 : βj 6= αj for at least one j ∈ {1, . . . ,N}.
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To judge the relevance of the test, compute :
its size γ = P(reject H0)|H0 true] (type I error)
and its power 1− β = 1− P[(accept H0)|H0 wrong] (1- type II error).

• Checking the size of the multinomial test : straightforward, by
simulating data from a multinomial distribution under the null
hypothesis (H0). This can be done by simulating data from any
distribution (such as normal) and counting the observations between
the true values of the αj-quantiles, or simulating from the multinomial
distribution directly.

• To calculate the power : we have to simulate data from multinomial
models under the alternative hyp. (H1). Here we chose to simulate
from models coming from a distribution G, with G 6= F, where the
parameters are given by

βj = F (G←(αj)) , with βj 6= αj .

Ex : F= true distribution of Lt, so that the true quantiles = F←(αj).
However a modeller chooses the wrong distribution G and makes
estimates G←(αj) of the quantiles. The probabilities associated with
these quantile estimates are s.t. βj = F(G←(αj)) 6= αj.
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Various test statistics can be used to describe the event (reject of H0)
small (see e.g. Cai and Krishnamoorthy for five possible tests for
testing the multinomial proportions).

Here we use : the Pearson chi-square :

SN =

N∑
j=0

(Oj − n(αj+1 − αj))
2

n(αj+1 − αj)

d∼
H0

χ2
N

and two of its possible modifications : the Nass and the LR
(asymptotic Likelihood Ratio) tests, for comparison.

Careful when using the LRT, as it cannot be used with an unrestricted
alternative hypothesis (because it could lead to to an undefined test
statistic when there are no observation in some of the cells). We need
in such a case a parametric form. In our applications, we consider the
alternative hypothesis (H1) such that the cell probabilities are based
on a normal distribution with two parameters µ1 and σ1, where
µ1 6= µ0 = 0 and σ1 6= σ0 = 1.
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. Static view

• Simulate multinomial data where F is normal (benchmark) and G of
various types : t5, t3 and skewed t3

• Count the simulated observations lying between the N quantiles of G,
where N = 1, 2, 4, 8, 16, 32, 64

• Choose different lengths n1 for the sample of backtest, namely
n1 = 250, 500, 1000, 2000, and estimate the rejection probability for the
null hypothesis (H0) using 10 000 replications (changing seeds)

• Two cases :

(i) mean and variance of the benchmark normal data match the ones of the
fitted model

(ii) mean and variance are estimated, involving estimation errors

• Additional question for (ii) : how much data for the estimation of the
models to make sure size an power remain reasonable ? We will try
n2 = 250, 1000, 2000.
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Example when no parameter estimation error

TABLE: Rejection rate for the null hypothesis (H0) on a sample size of length n1, using
a multinomial approach with 3 possible tests (χ2, Nass, LR) to backtest simultaneously
the N = 2k, 1 ≤ k ≤ 6, quantiles VaRαj , 1 ≤ j ≤ N, with α1 = α = 97.5%, on data
simulated from various distributions (normal, Student t3, t5 and skewed t3)

!
!
!
!

!
!
!

!
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Synopsis for the static view

- For all non normal distributions, considering only the VaR (1 point)
does not reject the normal hypothesis, for all tests. The VaR does not
capture enough the heaviness of the tail. The mulinomial approach
gives certainly much better results than the traditional binomial
backtest

- The heavier the tail of the tested distribution, the more powerful is the
multinomial test

- For all the distributions, increasing the number n1 of observations
improves the power of all tests

- The LR test seems to be the most powerful and the Nass the less one

- The LR test is very sensitive to the estimation error, due to (H1)

- In general, taking n1 = 250 does not provide satisfactory results, so
we will not base our discussion on this sample size.
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Determining an ’optimal’ N, s.t. N the smallest possible to provide a
combination of reasonable size and power of the backtest (to have a
backtest comparable with the one of the VaR in terms of simplicity
and speed of procedure) :

- Select N s.t. the size of the 3 corresponding tests lies below 6%.

- For n1 ≥ 500, the size varies between 4.2% and our threshold 6%. For
the first two tests (chi-square and Nass), the size increases with N,
whereas, for the LRT, it is more or less stable (slightly nonincreasing
with increasing N)

- The power increases with N and the sample size n1, for the 3 tests. It
makes sense : the more information we have in the tail, the easier it is
to distinguish between light and heavy tails

↪→ N = 4 or 8 : overall reasonable choice.
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. Dynamic view

Numerical application : we devise a multisteps experiment to see how
the multinomial test performs :

1. Generate a sample data path of length 3000 using a GARCH(1,1)
model with student-t innovations (our benchmark model)

2. Tested models (using a rolling window size of 1000) :

• GARCH(1,1) model with student-t innovations
• GARCH(1,1) model with standard normal innovations
• GARCH(1,1) model with historical simulation method applied to the

residuals (i.e. dynamic historical simulation method)
• ARCH(1) model with student-t innovations
• ARCH(1) model with standard normal innovations
• Historical simulation method.

3. Backtest the obtained sets of VaRuj using the multinomial test.

4. Repeat step 1 to 3 500 times to estimate the rejection rate of each
test.
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TABLE: Rejection rate of the χ2 goodness of fit test, with
κ = 97.5%, N = 1, 4, 8, 16

Model N=1 4 8 16

GARCH-t 2.8% 4.0% 4.0% 6.6%
(benchmark)
GARCH HS 0.8% 1.2% 2.0% 1.8%
ARCH-t 36.4% 35.0% 31.6% 30.8%
HS 42.2% 47.6% 43.4% 43.0%
GARCH normal 13.4% 69.6% 76.0% 79.8%
ARCH normal 75.4% 100.0% 100.0% 100.0%

- Reasonable size whenever N ≤ 8
- The GARCH HS is not rejected as we would expect (since very close to the benchmark

model). The HS method aplied to the innovations gives naturally a good approximation
of the Student innovations

- the multinomial test accepts when the tails are treated correctly and strongly rejects the
wrong models

- this test discriminates better the tails of the models than the types respectively, having
the same tail or being HS model

- it is a very powerful test for both wrong model and innovation assumptions
- Compared to the Binomial test, the χ2 test has a much higher power in detecting

misspecification in the innovation assumption of the predictive distribution
- Size and the power of the χ2-test leads to select N = 4 or 8. For N = 4, the model

assumption is more discriminated than the innovation assumption ; for N = 8, reverse
(makes sense as we would consider more points in the tail).
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Conclusion

• We developed a multinomial test to discriminate between models ; it
gives an implicit backtest for ES.

• Evaluation of this approach on simulated data ; it has been carried out
on real data (preprint on arXiv soon)

• The multinomial test distinguishes much better between good and
bad models, than :

- the standard binomial exception test
- a multinomial test based on two quantiles, as suggested in Basel 2016

• Backtesting simultaneously 4 quantiles seems an optimal choice in
terms of simplicity and speed of the procedure, as well as in terms of
reasonable size and power of the backtest.

• This multinomial backtest could be used for ES as a regular routine,
as done usually for the VaR with the binomial backtest, giving even
more arguments to move from VaR to ES in the future Basel III.

• For sharper results, other backtests may complement this one, as the
PIT already used for distribution forecasts, or more recent ones (e.g.
Acerbi and Székely)
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