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COHERENT INCURRED PAID (CIP)MODELS FOR CLAIMS
RESERVING

Abstract

In this paper we first propose a statistical model, called Coherent Incurred
Paid (CIP) model, to predict future claims, using simultaneously the infor-
mation contained in incurred and paid claims. This model does not assume
log-normality of the levels (or normality of the growth rates) and is semi-
parametric since it only specifies the first and the second moments. Correla-
tions between growth rates of incurred and paid claims are allowed and the
tail development period is estimated. We also propose methods for comput-
ing the Claim Development Results (CDR) and their Values at Risk (VaR) in
this semi-parametric framework. Moreover we show how to take into account
the updating of the estimation in the computation of the CDR’s. An applica-
tion highlights the practical importance of relaxing the normality assumption
and of updating the estimation of the parameters.

Keywords : Incurred and paid claims, simultaneous estimation, corre-
lation, semi-parametric approach, tail development, prediction, updating,
CDR, VaR.

JEL : C14, C15, C51, C52, C53.
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1 INTRODUCTION

One of the more important problems that non-life insurance companies have
to solve is the evaluation of the reserve risk. Such an evaluation necessitates
a two step modelling. The first step requires a method of prediction of the
ultimate claims. The second one has to define a measure of the reserve risk
based on these predictions. Let us consider more precisely these two steps.

There exists a large literature dealing with the first step. Most meth-
ods are based either on cumulated payments or on incurred losses. However
there are important works proposing models using both sources of informa-
tion. Halliwell (1997, 2009) and Venter (2008) used a regression approach.
Quang and Mack (2004) introduced the Munich Chain Ladder involving a
modification the chain Ladder development factors based on incurred-paid
ratios. Postuma, Cator, Veerkamp and van Zwet (2008) suggested a multi-
variate model conditioned on equality of the total paid and incurred losses.
Merz and Wuthrich (2010a) proposed a probabilistic model, the Paid In-
curred Chain (PIC) model, combining in a rigorous way the two kinds of
information. This work has been followed by several extensions incorpo-
rating new features : tail development factors [Merz and Wuthrich (2010b)],
claim development results [Happ, Merz and Wuthrich (2011)]] or dependence
[Happ and Wuthrich (2011)].

The second step of the modelling is the definition and the computation
of the reserve risk. Following recommendations of regulatory authorities, the
more popular measure is based on the Claim Development Result (CDR)
defined as the difference between the prediction of the ultimate claims to
day and in one year time. More precisely the measure of the reserve risk is
the 99, 5% quantile of the opposite of the CDR, viewed as evaluating under-
provisioning : this is the so-called Value at Risk (VaR) notion. [see Wuthrich
and Merz (2008)].

In the present paper we consider both steps of the modelling strategy.
We propose a statistical method, the Coherent Incurred Paid (CIP) method,
using simultaneously information based on paid and incurred claims. This
method may be parametric or semi-parametric. In the parametric case we
make a Gaussian assumption and we use a conditional approach in the spirit
of Posthama et al. (2008) ; in the semi-parametric case, we only propose
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parametric specifications of the expectations and of the variance-covariance
matrix of the bidimensional vector composed of the rates of increase of the
cumulated payments and incurred losses, and the whole distribution is esti-
mated by non-parametric kernel methods.

This approach has several advantages. First, since the number of pa-
rameters do not increase with the number of observations, we can use the
standard asymptotic theory of the Maximum Likelihood (ML) method (in
the parametric case) or the Pseudo-Maximum Likelihood (PML) method (in
the semi-parametric case) and, in particular, we can test the significativity of
the estimators. Second, this approach is flexible enough to incorporate a cor-
relation between the two sources of informations and to estimate the date at
which predictions of the ultimate claims based on both kinds of information
become equal. Third, the computation of risk measures, namely the VaR’s
based on the CDR’s, can be made with or without the normality assumption
and with or without incorporating the uncertainty on the estimation of the
parameters. An application on incurred claims and cumulated payments cor-
responding to a line of business Motor Body Liability-Insurance highlights
several points. First, our CIP method is easily implementable. Second the
projected values of the incurred claims and cumulated payments correspond-
ing to the largest observed development years are very different. Third these
values are also very different from the ones provided by the Chain Ladder
method, and the CIP method provides a unique ultimate value which is lo-
cated between the ultimate values of the Chain Ladder method. Fourth in
the computation of the VaR’s of the CDR’s it is crucial to take into account
the non-gaussianity of the rates of increase and the updating of the estima-
tions.

The paper is organized as follows. Section 2 describes the Gaussian CIP
model, the estimation of its parameters and of the tail development year, the
computation of prediction as well as CDR’s and their VaR’s. Section 3 gen-
eralizes these results to a semi-parametric framework in which Gaussianity
is no longer assumed. Section 4 proposes an application. Section 5 provides
concluding remarks. Proofs and data are gathered in appendices.
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2 A GAUSSIAN CIP MODEL

2.1 Notations

We denote respectively by Pi,j and Ii,j, the cumulated payments and incurred
losses for accident year i and development year j. The calendar year is i+ j.
We will also use the following notations :

X1,i,j = Log Pi,j
X2,i,j = Log Ii,j

Xi,j =

(
X1,i,j

X2,i,j

)
Y1,i,j = X1,i,j −X1,i,j−1 = Log

Pi,j

Pi,j−1

Y2,i,j = X2,i,j −X2,i,j−1 = Log
Ii,j
Ii,j−1

Yi,j =

(
Y1,i,j
Y2,i,j

)
We assume that Xi,j is observed for :

i = 1, ..., n
j = 0, ..., n− 1
1 ≤ i+ j ≤ n

and, consequently, Yi,j is observed for :

i = 1, ..., n− 1
j = 1, ..., n− 1
2 ≤ i+ j ≤ n

We also introduce the notations :

Yi = (Y ′i,1, ..., Y
′
i,n−i)

′ of size 2(n− i)
Y1,i = (Y1,i,1, ..., Y1,i,n−i)

′ of size n− i
Y2,i = (Y2,i,1, ..., Y2,i,n−i)

′ of size n− i

A key assumption, throughout the paper, is that there is an ultimate
development year N ≥ n − 1, in general not observed, such that X1,i,N =
X2,i,N for all i, and the models proposed will have to satisfy this constraint.
We also introduce the notations :
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Ỹi = (Y ′i,1, ..., Y
′
i,N)′ of size 2N

Ỹ1,i = (Y1,i,1, ..., Y1,i,N)′ of size N

Ỹ2,i = (Y2,i,1, ..., Y2,i,N)′ of size N

2.2 A conditional Gaussian model

A first Coherent Incurred Paid (CIP) model is obtained by starting from a
Gaussian model and imposing the conditioning constraints :

X1,i,N = X2,i,N , i = 1, ..., n− 1.

More precisely we assume that Xi,0 is fixed and that :

Yi,j = m(i, j, θ) + ξi,j (1)

where the m(i, j, θ) are bidimensional deterministic functions and the ξi,j
are bidimensional vectors following independently the Gaussian distribution
N [0,Ω(i, j, θ)], where θ is an unknown vector of parameters. Note that
Ω(i, j, θ) is not assumed to be diagonal and, therefore, a correlation between
Y1,i,j and Y2,i,j is allowed.

Then we impose the new information :

X1,i,N = X2,i,N , i = 1, ..., n− 1 (2)

In other words we assume that the Ỹi, i = 1, ..., n − 1 are independently
distributed and that the distribution of Ỹi is the conditional distribution ob-
tained from the initial Gaussian model (1) by imposing X1,i,N = X2,i,N or,
equivalently, d′Xi,N = 0 with d′ = (1,−1)
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Proposition 1

The conditional distribution of Ỹi given d′Xi,N = 0 is the Gaussian
distribution :

N

(
m̃i −

c̃iai
bi
, Ω̃i −

c̃ic̃
′
i

bi

)
where :

m̃i = [m′(i, 1, θ), ...,m′(i, N, θ)]′

c̃i = [d′Ω(i, 1, θ), ..., d′Ω(i, N, θ)]′

Ω̃i =

 Ω(i, 1, θ) 0
. . .

0 Ω(i, N, θ)


ai = d′Xi,0 + d′

N∑
j=1

m(i, j, θ)

bi = d′
N∑
j=1

Ω(i, j, θ)d

Proof : see appendix 1
Note that using the notation FN = (I2, ..., I2)

′ where the identity matrix
of size 2 is repeated N times, we have

c̃i = Ω̃iFNd

ai = d′(Xi,0 + F ′Nm̃)

bi = d′F ′N Ω̃iFNd = d′F ′N c̃i

In particular we deduce the conditional distribution of the observed vector
Yi.
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Corollary 1
The conditional distribution of Yi given d′Xi,N = 0 is the Gaussian
distribution :

N

(
mi −

ciai
bi
,Ωi −

cic
′
i

bi

)
where :

mi = [m′(i, 1, θ), ...,m′(i, n− i, θ)]′

ci = [d′Ω(i, 1, θ), ..., d′Ω(i, n− i, θ)]′

Ωi =

 Ω(i, 1, θ) 0
. . .

0 Ω(i, n− i, θ)


Proof : we just have to take the marginal distribution of the first n− i com-
ponents of the joint distribution given in proposition 1. �

Note that the Gaussian distribution of proposition 1 is degenerated since
the components of Ỹi have to satisfy the linear constraint :

d′Xi,0 + d′
N∑
j=1

Yi,j = 0

or :
d′(Xi,o + F ′N Ỹi) = 0.

The matrix :

Ω̃i −
c̃ic̃
′
i

bi
is of rank 2N − 1. However as soon as n is strictly smaller than N + 1 the
variance-covariance matrix of Yi namely :

Ωi −
cic
′
i

bi

is of full rank 2(n− i) for all i including i = 1.

2.3 Estimation of a Gaussian CIP model

As soon as the functions m(i, j, θ) and Ω(i, j) have been specified (see section
4 for a discussion of these specifications) the parameter θ can be estimated by
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the Maximum Likelihood (ML) method. Indeed from corollary 1 we deduce
that the log-likelihood function of the model is :

Proposition 2

Ln(θ) = −1

2

n−1∑
i=1

[
LogdetΣi(θ) + (yi − µi(θ))′Σ−1i (θ)(yi − µi(θ))

]
with :

µi(θ) = mi(θ)−
ci(θ)ai(θ)

bi(θ)

Σi(θ) = Ωi(θ)−
ci(θ)c

′
i(θ)

bi(θ)

Proof : it is a direct consequence of the expression of the probability density
function of a multivariate Gaussian distribution. �

Moreover the computation of Σ−1i (θ) is simple thanks to the following
proposition (omitting θ for notational simplicity).

Proposition 3

Σ−1i = Ω−1i +
Ω−1i cic

′
iΩ
−1
i

bi − c′iΩ−1i ci

with :

Ω−1i =

 Ω−1i,1 0
. . .

0 Ω−1i,n−i


Proof : see appendix 2

In particular the previous proposition implies that the term (yi−µi)′Σ−1i (yi−
µi) in the log-likelihood is simply :
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n−i∑
j=1

(yi,j − µi,j)′Ω−1i,j (yi,j − µi,j) +
[(yi,j − µi,j)′Ω−1i,j ci,j]2

bi −
n−i∑
j=1

c′i,jΩ
−1
i,j ci,j


Starting values for the parameters appearing in the m(i, j, θ) can be ob-

tained by the ordinary least squares (OLS) method and from the residuals
of this method for the parameters appearing in the Ω(i, j, θ) [see section 4]

The ML estimator of θ will be denoted by θ̂n. Note that it is based on
(n− 1) + (n− 2) + ...+ 1 = n(n−1)

2
observations Yi,j of size 2.

The whole testing and confidence region methods based on ML estima-
tors apply. In particular the variance-covariance matrix of θ̂n can be approx-
imated by :

−

[
∂2Ln(θ̂n)

∂θ∂θ′

]−1

2.4 Tail development

As mentioned in section 2.1, the ultimate development year N is, in general,
larger than the latest development year j where observations of Yi are avail-
able, namely j = n − 1. It is the so called ”tail development” problem. In
the context of chain ladder approaches, this problem has been reduced to
the computation of an ultimate development factor called ”tail development
factor”. A review of there methods is available in Boor (2006). The tail de-
velopment problem has also been considered by Merz and Wuthrich (2010)
within their PIC method; in particular their bayesian approach allows for a
tail development factor covering several development periods beyond the last
column of the claim development triangle.

In our approach we consider N as an unknow parameter. It is clear that
the previous log-likelihood depends on N through the a′is and the b′is. There-
fore we can use recent results on the estimation of discrete parameter models
(see Choirat and Seri (2012)) showing that maximizing the log-likelihood
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function with respect to all the parameters, including N , provides a consis-
tent estimator of N . This gives us not only coherent estimates of the ultimate
values Pi,N = Ii,N , for any i, but also an estimate of the length of the tail
development period.

2.5 Prediction

Once the parameters are estimated, we have to predict Y ∗i = (Y ′i,n−i+1, ..., Y
′
i,N)′,

or, equivalently, X∗i = (X ′i,n−i+1, ..., X
′
i,N)′ for each i, given the observations

Xi,0, Yi,1, ..., Yi,n−i or, equivalently Xi = (X ′i,0, ..., X
′
i,n−i)

′.
The conditional distribution of X∗i given Xi (without conditioning by

d′Xi,N = 0) is the same as the conditional distribution of X∗i given Xi,n−i
since for any k ∈ {1, ..., N − n+ i} :

Xn−i+k = Xi,n−i +
k∑
j=1

Yi,n−i+j

and the Yi,n−i+k are independent of Xi. Therefore the conditional distribu-
tion of X∗i given Xi and d′Xi,N = 0 is the same as the conditional distribution
of X∗i given Xi,n−i and d′Xi,N = 0 (since d′Xi,N is function of X∗i ).

This implies that we have to solve the same problem as in section 2.2, just
replacing Xi,0 by Xi,n−i and Ỹi by Y ∗i , and we get the following proposition.
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Proposition 4
The conditional distribution of Y ∗i given Xi,n−i and d′Xi,N = 0 is
the Gaussian distribution :

N

(
m∗i −

c∗i a
∗
i

b∗i
,Ω∗i −

c∗i c
′∗
i

b∗i

)
with :

m∗i = [m′(i, n− i+ 1, θ), ...,m′(i, N, θ)]′

c∗i = [d′Ω(i, n− i+ 1, θ), ..., d′(Ωi, N, θ)]
′

Ω∗i =

 Ω(i, n− i+ 1, θ) 0
. . .

0 Ω(i, N, θ)


a∗i = d′

(
Xi,n−i +

N∑
j=n−i+1

m(i, j, θ)

)

b∗i = d′
N∑

j=n−i+1

Ω(i, j, θ)d

We also will also use the notations :

µ∗i = m∗i −
c∗i a
∗
i

b∗i
,Σ∗i = Ω∗i −

c∗i c
′∗
i

b∗i

and µ∗i = [µ∗
′
(i, n− i+ 1, θ), . . . , µ∗

′
(i, N, θ)]′

The best prediction of Y ∗i is µ∗i and the best prediction of Xn−i+k, k =

{1, . . . , N − n+ i} is Xi,n−i +
k∑
j=1

µ∗(i, n− i+ j, θ)

2.6 Claim Development Results (CDR)

Denoting by En the estimation of the conditional expectation operator with
respect to the true conditional distribution given the information at the cal-
endar date n :

Jn = {Xi,0, i = 1, ..., n− 1, Yi,j, i = 1, ..., n− 1, j = 1, ..., n− i}
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evaluated at θ̂n, the Claim Development Result for the accounting calendar
period (n, n+ 1) and accident year i is :

CDRi(n+ 1) = En(X1,i,N)− En+1(X1,i,N) (3)

or, equivalently :

CDRi(n+ 1) = En(X2,i,N)− En+1(X2,i,N) (4)

since in our model we automatically have X1,i,N = X2,i,N .
Choosing X1,i,N , we can write :

X1,i,N = X1,i,n−iexp

(
N∑

j=n+1−i

Y1,i,j

)
= X1,i,n−iexp(f

′
iY
∗
i ) (5)

Where f ′i is the row vector of size 2 (N −n+ i) equal to (1, 0, 1, 0, ..., 1, 0)
picking the components Y1,i,j, j = n− i+ 1, ..., N in Y ∗i .

Therefore the true conditional expectation (evaluated at θ0) of X1,i,N is :

X1,i,n−i exp[f
′
iµ
∗
i (θ0) + 1/2f ′iΣ

∗
i (θ0)fi] (6)

where θ0 is the true value of θ.

Replacing θ by the maximum likelihood estimator θ̂n we get :

En(X1,i,N) = X1,i,n−iexp
[
f ′iµ
∗
i (θ̂n) + 1/2f ′iΣ

∗
i (θ̂n)fi

]
(7)

Similarly we have :

En+1(X1,i,N) = X1,i,n−i+1exp
[
f ′∗i µ

∗∗
i (θ̂n+1) + 1/2f ′∗i Σ∗∗i (θ̂n+1)f

∗
i

]
(8)

where f ∗i and µ∗∗i are obtained from fi and µ∗i , respectively, by deleting the
first two components and Σ∗∗i is obtained from Σ∗i by deleting the first two
rows and the first two columns.

X1,i,n−i+1 is random at date n and is equal to X1,i,n−iexp(Y1,i,n−i+1) with :

Y1,i,n−i+1 = µ∗1,i(θ
∗
0) + σ∗1,i(θ0)ε1,i,n−i+1
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where µ∗1,i(θ0) is the first component of µ∗i (θ0), σ
∗
1,i(θ0) the square root of the

(1, 1) term of Σ∗i (θ0) and ε1,i,n−i+1 is following N(0, 1).

It is natural to view CDRi(n+1) from the calendar date n and, therefore,

to replace θ0 by θ̂n in the expression above of Y1,i,n−i+1.

Finally we get the evaluation of CDRi(n+ 1) :

ĈDRi(n+ 1) = X1,i,n−i

{
exp

[
f ′iµ
∗
i (θ̂n) +

1

2
f ′iΣ

∗
i (θ̂n)fi

]
(9)

−exp[µ∗1,i(θ̂n) + σ∗1,i(θ̂n)ε1,i,n−i+1 + f ′∗i µ
∗∗
i (θ̂n+1) + 1/2f ′∗i Σ∗∗i (θ̂n+1)f

∗
i ]
}

At date n, ĈDRi(n + 1) is random through ε1,i,n−i+1 and through the
ε1,k,n−k+1, k = 1, ..., n − 1 (containing ε1,i,n−i+1) and ε2,k,n−k+1 appearing in
the new observations Yi,n−i+1 at calendar date n + 1 which are used in the

estimation of θ̂n+1. The global CDR is approximated by ĈDR(n + 1) =∑n
i=1 ĈDRi(n+ 1).

2.7 Value at Risk (VaR) of the ĈDRi(n+ 1)

The Value at Risk V aRi(α) associated with ĈDRi(n+ 1), or rather with the

under-provisioning measure −ĈDRi(n+ 1), is defined by :

P [−ĈDRi(n+ 1) < V aRi(α)] = α

where α is close to 1, for instance 0.995.

If we do not take into account the updating of θ̂n and set θ̂n+1 = θ̂n, the
only random term in (9) is ε1,i,n−i+1 distributed as N(0, 1). In other words,

with obvious notations,ĈDRi(n + 1) is of the form βi − γiexp(δiε1,i,n−i+1)
with βi > 0, γi > 0, δi > 0.

The V aRi(α) is easily seen to be :

γiexp[δiΦ(α)]− βi (10)
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If we want to take into account the updating of θ̂n into θ̂n+1, we might
use the Newton-Raphson approximation :

θ̂n+1 = θ̂n −

[
∂2Ln(θ̂n)

∂θ∂θ′

]−1
∂Ln+1

∂θ
(θ̂n) (11)

where ∂2Ln

∂θ∂θ′
(θ̂n) is a by-product of the estimation procedure and ∂Ln+1

∂θ
(θ̂n)

can be computed numerically as a function of the εk,n−k+1, k = 1, ..., n− 1.
Then V aRi(α) can be evaluated by simulation. More precisely let us

consider M simulations of ĈDRi(n+ 1) and let us order them in increasing
order, then −V aRi(α) is taken equal to the value with index [Mα] (where [.]
is a notation for the integer).

Note that for the computation of the V aR(α) of the global ĈDR(n+1) =∑n
i=1 ĈDRi(n + 1) such a simulation method is required even when we do

not update θ̂n.

3 A GENERAL CLASS OF CIP MODELS

3.1 Semi-parametric models

In the Gaussian model the vectors Yi, of size 2(n − i), follow independently
the distribution :

N(µi,Σi)

with :

µi = mi −
ciai
bi
,Σi = Ωi −

cic
′
i

bi

(see Corollary 1)

Let us denote by Ti the lower triangular matrix, or Cholesky matrix,
such that Σi = TiT

′
i (imposing positive diagonal terms for Ti implies its

uniqueness) we can write :

Yi = µi + Tiεi (12)
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εi ∼ N(0, I2(n−i)) or

εi,k ∼ IIN(0, 1), k = 1, ..., 2(n− i)
A natural extension of this model consists in still assuming Yi = µi +Tiεi

but only imposing that the εi,k are identically, independently distributed with
zero mean and unit variance :

Yi = µi + Tiεi (13)

εi,k ∼ II(0, 1)

In other words we no longer assume that the εi,k are Gaussian and we
do not make any assumption about their common distribution. The model
becomes semi-parametric and the maximum likelihood method is no longer
available.

3.2 Estimation

It can be shown [see Gourieroux-Monfort-Trognon (1984)] that if we esti-
mate θ0 by the pseudo ML estimator obtained by maximizing Ln(θ) given in
proposition we still obtain a consistent and asymptotically Gaussian estima-
tors for any true distribution of the ε′i,ks.

We can then estimate the εi by :

ε̂i = T̂−1i (Yi − µ̂i) (14)

where T̂i and µ̂i are Ti and µi evaluated at θ̂n.

The unknown distribution of the ε′i,ks can be estimated by the Gaussian
kernel method and we get the following mixture of Gaussian distributions :

1

n(n− 1)h

n−1∑
i=1

2(n−i)∑
k=1

ϕ

(
ε− ε̂i,k
h

)
where ϕ is the p.d.f of N(0, 1) and h is equal to [n(n − 1)]−1/5 according to
Silverman’s rule. The mean and the variance of this mixture of Gaussian
distributions are :

ε =
1

n(n− 1)
Σi,kε̂i,k
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σ2 = h2 +
1

n(n− 1)
Σi,kε̂

2
i,k − ε2

and, in order to get a distribution which is exactly zero mean and unit
variance we can use :

σ

n(n− 1)h
Σi,kϕ

(
σε+ ε− ε̂i,k

h

)
Also note that a preliminary test of gaussianity of the ε′i,ks can be made

with the Jarque-Bera procedure which rejects the gaussianity at level α (for
instance α = 5%) if :

n(n− 1)

(
S2

6
+

(K − 3)2

24

)
≥ χ2

1−α(2) (15)

where S and K are respectively the empirical skewness and hurtosis of
the ε̂i,k.

3.3 The CDRi and their VaR

From proposition 4 we know that, in the Gaussian case, the conditional
distribution of Y ∗i = (Y ′i,n+1−i, ..., Y

′
i,N)′ given Xi,n−i and d′Xi,N = 0 is :

N(µ∗i ,Σ
∗
i ) with :

µ∗i = m∗i −
c′∗i a

∗
i

b∗i
,Σ∗i = Ω∗i −

c∗i c
′∗
i

b∗i

Denoting by T ∗i the Cholesky matrix satisfying T ∗i T
′∗
i = Σ∗i we have :

Y ∗i = µ∗i + T ∗i ε
∗
i (16)

where the components ε∗i,k of ε∗i follow independently N(0, 1). In the general
case we can make the assumption that these components ε∗i,k follow indepen-
dently a distribution estimated by the one obtained in section 3.2. At this
stage it is important to stress the following property.

Proposition 5
For any distribution of the ε∗i,k, the model Y ∗i = µ∗i + T ∗i ε

∗
i implies

X1,i,N = X2,i,N .

Proof : Since the model Y ∗i = µ∗i + T ∗i ε
∗
i implies, for any distribution of the

ε∗i,k, the same first and second order moments of Y ∗i and X∗i as in the Gaussian
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model, we have in particular E(X1,i,N−X2,i,N) = 0 and V (X1,i,N−X2,i,N) = 0
and therefore X1,i,N = X2,i,N for any distribution of the ε∗i,k. �

Since the conditional expectation of Y ∗i given Xi,n−i and d′Xi,N = 0,
remains equal to µ∗i , the best prediction of Xn−i+k, k ∈ {1, . . . N − i + i},

remains Xi,n−i +
k∑
j=1

µ∗(i, n− i+ j; θ)

The CDRi(n+ 1) is :

CDRi(n+ 1) = X1,i,n−iEn[exp(f ′iY
∗
i )]−X1,i,n−i+1En+1[exp(f

′∗
i Y

∗∗
i )]

with :
Y ∗∗i = (Y ′i,n−i+2, ..., Y

′
i,N)′

or :

CDRi(n+1) = X1,i,n−i[Enexp(f
′
iY
∗
i )−exp(Y1,i,n−i+1)En+1exp(f

′∗
i Y

∗∗
i )] (17)

From (16) we get :

Y1,i,n−i+1 = µ∗i,1 + T ∗i,11ε
∗
i,1

and replacing the true value of θ0 appearing in µ∗i,11 and T ∗i,11by θ̂n we get :

Y1,i,n−i+1 = µ̂∗i,1 + T̂ ∗i,11ε
∗
i,1

and :

ĈDRi(n+ 1) = Xi,n−i[Enexp(f
′
iY
∗
i )− exp(µ̂∗i,1 + T̂ ∗i,11ε

∗
i,1)En+1exp(f

′∗
i Y

∗∗
i )]

If we do not take into account the estimation updating we can easily simu-

late ĈDRi(n + 1) by simulating ε∗i,1 in the distribution estimated in section
3.2 and by approximating both expectations by Monte Carlo using the values
θ̂n in the relevant components of µ∗i and T ∗i .

If we want to take into account the estimation updating, for each simu-
lation of Yi,n+1−i based on :

Yi,n−i+1 =

(
µ∗i,1
µ∗i,2

)
+

(
T ∗i,11 0
T ∗i,21 T ∗i,22

)(
ε∗i,1
ε∗i,2

)
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we must update θ̂n into θ̂n+1 and, then compute the second expectation in
(17) by Monte Carlo, replacing θ0 by θ̂n+1 in the equations :

Y ∗∗i = µ∗∗i + T ∗∗i ε
∗∗
i

The estimations of the V ari(α)′s and the global V aR(α) are obtained from

the empirical quantiles of M simulations of the ĈDRi(n+ 1)′s or :

ĈDR(n+ 1) =
n∑
i=1

ĈDRi(n+ 1).

4 An application

We consider incurred claims and cumulated payments corresponding to a
line of business Motor Body Liability-Insurance (the unit is 103 euros) [see
appendix 3 ]. This line of business is highly volatile and therefore, not easy
to model.

4.1 Estimation of the parameters

We begin with separate modellings of the rates of growth of cumulated pay-
ments and of incurred claims. For each variable we estimate by the nonlinear
least square method a mean function, i.e. the corresponding component of
m(i, j, θ), and a variance function i.e. the corresponding diagonal term of
Ω(i, j, θ). The mean function is assumed to be an affine function, with un-
known coefficients (the components of θ) of basic functions of i and j, namely
the identity function, the square function, the logarithmic function and the
exponential. These mean functions are also assumed to be equal to zero if j
is larger than a threshold J . The best set of basic functions and the optimal
thresholds are selected according to the Akaike’s criterion.

The basic functions retained, the estimation of their coefficients, the t-
ratio statistics, and J are given in Tables 1 and 2. The variances, i.e. the
diagonal terms of Ω(i, j), are assumed to be affine functions of the square
of the corresponding mean. The estimation of the coefficients of this affine
functions and the associated t-ratios are also given in Tables 1 and 2.

It is seen that all these estimations are highly significant. They will be
used as starting values for the (pseudo) maximum likelihood method de-
scribed above for the estimation of the CIP model. In this second stage the
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correlation function ρ(i, j) appearing in Ω(i, j), i.e. the correlation between
the two components of Yi,j (or ξi,j), has been taken into account; different
specifications have been tested and a constant function has been retained.
The estimations of the parameters and the corresponding t-ratio of the CIP
model are also given in tables 1 and 2. It is interesting to see that these esti-
mations are, in general, rather different from the initial values and this shows
the importance of jointly taking into account the information contained in
the cumulated payments and the incurred claims. It is also worth noting that
all the coefficients are highly statistically significant. As mentioned in section
2.4, the CIP method also allows to propose an estimation for the ultimate
development year N and we check that when some development profils are
highly volatile like in the data considered here, the estimation of N may be
large. In our case we find N = 31.

4.2 Values at the ultimate development year

In the CIP model the predicted values of the cumulated payments and of the
incurred claims at the ultimate development date are, by construction, the
same. It is interesting to compare these estimated ultimate values with the
one provided by the Chain Ladder method applied to the cumulated

Table 1 : Cumulated payments (J = 11)

Separate modeling CIP modeling
Mean Function Estimation t-ratio Estimation t-ratio

Intercept -5.19 5.61 -3.51 4.59
j -0.24 3.34 -0.15 3.49

log(j) -7.19 8.68 -5.25 5.97
log(1 + j) 10.10 6.92 7.17 5.38

Variance Intercept 0.01 1.15 0.009 6.22
m2 0.06 6.21 0.09 2.30
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Table 2 : Incurred claims (J = 4)

Separate modeling CIP modeling
Mean Function Estimation t-ratio Estimation t-ratio

Intercept -0.23 3.14 -0.24 4.41
i 0.08 4.72 0.06 5.97
i2 -0.005 4.09 -0.004 5.39
j 0.24 3.84 0.24 4.82

log(j) -0.63 4.76 -0.56 5.32
Variance Intercept 0.004 2.16 0.002 6.79

m2 0.32 4.21 0.784 3.22
rho 0.28 0.26 3.41

payments, by the Chain Ladder method applied to the incurred claims
and by the Munich-Re method. These values are displayed in table 3. The
two Chain Ladder provide very different results, the total over the accident
years being 73877.103 for the cumulated payments and 97954.103 for the
incurred claims. The Munich Re method is similar to the Chain Ladder
method for incurred claims. The CIP method provides, in general, values
which are between the two chain ladders. In particular the total is 93471.103.
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Table 3 : Values at the ultimate development year (103 euros)

Chain Ladder Chain Ladder Munich Re CIP
Payment Incurred

1997 5909 7177 7177 7026
1998 3698 4711 4711 4588
1999 5688 9002 9038 8793
2000 5082 7040 7046 6960
2001 8803 9167 8908 9527
2002 6662 6976 6818 7146
2003 7344 11226 11281 10755
2004 5548 4427 4114 4565
2005 5842 4611 4123 4795
2006 7039 18770 20812 16839
2007 3441 3847 3631 3782
2008 3428 3980 3756 3600
2009 3365 4178 4070 3384
2010 2022 2836 2916 1704
Total 73877 97954 98405 93471

Figure 1 (resp.2) shows the predictions of the cumulated payments and
of the incurred claims provided by the Chain Ladder and the CIP methods
for accident year 2004 (resp 2008). In both cases the Chain Ladder method
provides very different values for the two variables at the largest observed
development horizon i.e. 14, and the ultimate common value proposed by
the CIP method is between these two values.
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Figure 1 : Prediction of the incurred and paid claims : year 2004.
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Figure 2 : Prediction of the incurred and paid claims : year 2008.
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Figures 3 and 4 provides the whole prediction surfaces of the cumulated
payments and of the incurred claims. By construction the profiles at the
ultimate development horizon are identical.

Figure 3 : Prediction surface of the cumulated payments.
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Figure 4 : Prediction surface of the incurred claims.

4.3 Values at risk of the CDR’s

In a previous study only based on incurred claims [see Koenig, Le Moine,
Monfort, Ratiarison (2015)] we have stressed the importance of two elements
in the computation of the VaR’s of CDR namely: the non-Gaussiarity of
the distributions and the updating of the estimations. As we shall see, the
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importance of these features are strongly confirmed by the CIP method.

First let us test the normality of the components of the normalized vectors
εi defined in equation (13) and estimated by ε̂i defined in equation (14). Since
n = 14 the Jarque-Bera statistic, given in (15), becomes :

91(
S2

3
+

(K − 3)2

12
)

where S and K are respectively the empirical skewness and kurtosis of
the ε̂i,k.

If the errors are Gaussian the Jarque-Bera statistic is asymptotically dis-
tributed as χ2(2) and the null hypothesis of normality should be rejected if
the numerical value of this statistic is larger than the critical values, which
are 4.6, 6.0, 9.2 for the 10%, 5% and 1% levels, respectively. Since the value
found is 80.5 the normality assumption is very strongly rejected. This non-
normality is confirmed by figure 5 showing the kernel based estimation of
the density of the εi compared with the standard Gaussian density : a much
ticker right tail is observed.
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Figure 5 : Estimated density function of the residuals.

If follows that the appropriate computation of the VaR’s of the CDR’s
should not assume normality and therefore should be based on the method
described in section 3.3. Moreover it is important to measure the impact of
the updating of the estimations of the parameters. Table 4 gives the results.
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Table 4 : VaR’s of the CDR’s (103 euros)

without updating with updating
Gaussian Non Gaussian Gaussian Non Gaussian

1997 914 1252 901 1281
1998 583 827 555 781
1999 1118 1610 1156 1606
2000 895 1277 916 1181
2001 1251 1751 1222 1669
2002 919 1305 942 1352
2003 1409 1929 1457 2096
2004 581 848 611 866
2005 619 894 649 871
2006 2201 3108 2451 3316
2007 1459 2187 1263 1784
2008 531 765 604 885
2009 490 709 749 1105
2010 419 612 668 1001

Sum of VaR’s 13394 19081 14150 19803
Global VaR 3779 4954 5031 6695

Let us consider the global 99.5% VaR. Wrongly assuming normality leads
to a VaR equal to 3779.103 instead of 4954.103 when there is no updating
and a VaR equal to 5031.103 instead of 6695.103 when there is updating.
The price to pay for wrongly assuming normality is very high : an under-
estimation of approximately 25% .

The price to pay for omitting updating is of the same order of magnitude.
It moves from 3779.103 to 5031.103 in the Gaussian case and from 4954.103

to 6695.103 in the non Gaussian case. Cumulating both mistakes lead to an
under-estimation of approximately 44%.

5 CONCLUDING REMARKS

We proposed a flexible statistical modelling, called the CIP method, allowing
to take into account simultaneously the payments and the incurred claims
in the prediction of future claims. This method is semi-parametric since it

28



does not assume a precise shape of the distributions but only concentrates
on the first two moments. In particular normality of the growth rates, i.e.
log-normality of the levels, is not assumed and is in fact strongly rejected
in our application. Moreover our CIP method also allows to estimate the
ultimate development year, the CDR’s (Claim Development Results) and
their VaR’s (Value at Risk) which are measures of reserve risk recommended
by the regulatory authorities. The techniques derived in this paper could be
extended in several directions. In particular it would be interesting to derive
a CIP method treating simultaneously several business lines. This kind of
development is left for future research.
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APPENDIX 1

Proof of proposition 1

Let us first consider the joint distribution of

(
Ỹi
d′Xi,N

)
. Since Xi,N =

Xi,0 +
N∑
j=1

Yi,j, this joint distribution (given Xi,0) is Gaussian.

Its mean is :  m̃i

d′Xi,0 + d′
N∑
j=1

mi,j

 =

(
m̃i

ai

)

and its variance-covariance matrix is : Ωi,1 . . . 0 c̃i
0 Ωi,N

c̃′i bi

 =

(
Ω̃i c̃i
c̃i bi

)

with :

bi = V (d′Xi,N) =
N∑
j=1

d′Ωi,jd

c̃i = cov(Ỹi, d
′Xi,N)

=

 ci,1
...
ci,N


and cij = Ωi,jd and therefore c̃i = Ω̃iFNd, with FN = (I2, ..., I2)

′.

Applying a standard formula for conditional Gaussian distributions we
see that the conditional distribution of Ỹi given d′Xi,N = 0 is :

N

(
m̃i −

c̃iai
bi
, Ω̃i −

c̃ic̃i
bi

)
. �
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APPENDIX 2

Proof of proposition 3

Lemma

Let β a vector such that ‖ β ‖6= 1 (with ‖ β ‖2= β′β), the matrix I −ββ′
is invertible and

(I − ββ′)−1 = I +
ββ′

1− ‖ β ‖2
.

Proof :

(I − ββ′)
(
I +

ββ′

1− ‖ β ‖2

)
= I − ββ′ + ββ′

1− ‖ β ‖2
− ββ′ ‖ β ‖2

1− ‖ β ‖2
= I �

Let us now consider the matrix :

Ωi −
cic
′
i

bi
= Ω

1/2
i

(
I − Ω

−1/2
i ci

b
1/2
i

c′iΩ
−1/2
i

b
1/2
i

)
Ω

1/2
i

setting βi =
Ω
−1/2
i ci

b
1/2
i

we get :

Ωi −
cic
′
i

bi
= Ω

1/2
i (1− βiβ′i)Ω1/2

and applying the lemma we get :(
Ωi −

cici
bi

)−1
= Ω

−1/2
i

(
I +

βiβ
′
i

1− ‖ βi ‖2

)
Ω
−1/2
i

= Ω−1i +
Ω−1i cic

′
iΩ
−1
i

bi

(
1− c′iΩ

−1
i ci
bi

)

= Ω−1i +
Ω−1i cic

′
iΩ
−1
i

bi − c′iΩ−1i ci
�
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