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1 Introduction

We consider the classical risk model where an insurance company has an opportunity
to apply a franchise and a liability limit. Let (Ω,F,P) be a probability space satisfying
the usual conditions, and let all the stochastic objects we use be defined on it.

In the classical risk model (see, e.g., [1–4,7,8]) claim sizes form a sequence (Yi)i≥1 of
nonnegative i.i.d. r.v.’s with c.d.f. F (y) = P[Yi ≤ y] and finite expectation µ > 0. The
number of claims on the time interval [0, t] is a Poisson process (Nt)t≥0 with constant
intensity λ > 0. The r.v.’s Yi, i ≥ 1, and the process (Nt)t≥0 are mutually independent.
Thus, the total claims on [0, t] equal

∑Nt

i=1 Yi. We set
∑0

i=1 Yi = 0 if Nt = 0.
The insurance company has a nonnegative initial surplus x and receives premiums

with constant intensity c > 0. In what follows, let the net profit condition hold, i.e.
c > λµ. Moreover, we assume that the insurance company uses the expected value
principle for premium calculation, which means that c = λµ(1 + θ), where θ > 0 is a
safety loading.

Let Xt(x) be the surplus of the insurance company at time t provided that its initial
surplus is x. Then the surplus process

(
Xt(x)

)
t≥0

follows

Xt(x) = x+ ct−
Nt∑
i=1

Yi, t ≥ 0. (1)

The infinite-horizon ruin probability is given by

ψ(x) = P
[
inft≥0 Xt(x) < 0

]
,

and the corresponding infinite-horizon survival probability equals

ϕ(x) = 1− ψ(x).

It is well known that ϕ(x) is a solution to the integro-differential equation

cϕ′+(x) = λϕ(x)− λ
∫ x

0

ϕ(x− y) dF (y), (2)

where ϕ′+(x) is the right derivative of ϕ(x). The question concerning the differentiability
of ϕ(x) is investigated in [5] and [7, pp. 162–163] in different ways. Equation (2) has
a unique solution such that limx→+∞ ϕ(x) = 1 provided that the net profit condition
holds, otherwise ruin on an infinite horizon occurs with probability 1. Moreover, it is
known that the condition limx→+∞ ϕ(x) = 1 is true for ϕ(x) if and only if the condition
ϕ(0) = 1 − λµ/c, which is equivalent to ϕ(0) = θ/(1 + θ), holds. So if we find any
solution to (2) with ϕ(0) = θ/(1 + θ), then we can be sure that this solution is the
survival probability.

If the claim sizes are exponentially distributed, then the closed form solution to (2)
can be found and

ϕ(x) = 1− 1

1 + θ
exp

(
− θx

µ(1 + θ)

)
. (3)
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In this paper we deal with the classical risk model under the additional assumption
that the insurance company uses a franchise and a liability limit. A franchise is a
provision in an insurance policy whereby an insurer does not pay unless damage exceeds
the franchise amount. It is applied to prevent a large number of trivial claims. A liability
limit determines the maximum amount that is paid by an insurer. It is used to restrict
the insurer’s liability to the insured.

Let d and L be franchise and liability limit amounts, respectively. We choose them
at the initial time and do not change them later. The problem of optimal control by
the franchise amount is solved in [6] in the dynamic setting from viewpoint of survival
probability maximization. We make the following natural assumption concerning these
amounts: 0 ≤ d < L ≤ +∞. In particular, if d = 0, then a franchise is not used;
if L = +∞, then a liability limit is not used. Let Y

(d, L)
i , i ≥ 1, denote an insurance

compensation for the ith claim provided that the franchise and liability limit amounts
are d and L. We let F (d, L)(y) stand for the c.d.f. of Y

(d, L)
i .

Normally, a franchise and a liability limit also imply reduction of insurance premiums.
We suppose that the safety loading θ > 0 is constant. Thus, the premium intensity is
given by

c(d, L) = λ(1 + θ)E
[
Y

(d, L)
i

]
provided that the insurance company uses the expected value principle for premium
calculation.

Let X
(d, L)
t (x) be the surplus of the insurance company at time t provided that its

initial surplus is x, and the franchise and liability limit amounts are d and L, respectively.
Then (1) for the surplus process

(
X

(d, L)
t (x)

)
t≥0

can be rewritten as follows

X
(d, L)
t (x) = x+ c(d, L)t−

Nt∑
i=1

Y
(d, L)
i , t ≥ 0. (4)

Let ϕ(d, L)(x) denote the corresponding infinite-horizon survival probability.
In what follows, we deal only with exponentially distributed claim sizes. This is one

more of few cases where one succeeds in finding an analytic expression for the survival
probability. It is easily seen that the c.d.f. of the insurance compensation is a sum of
absolutely continuous and discrete components when the claim sizes are exponentially
distributed and the insurance company uses the franchise and liability limit. That is why
analytic expressions for the survival probability turn out different on certain intervals
as we will show later. To get them, we apply results of [5] (see also [7, pp. 162–163]).
Furthermore, we investigate how a franchise and a liability limit change the survival
probability for small and large enough initial surpluses.

The rest of the paper is organized as follows. In Section 2 we consider the case where
the insurance company establishes a franchise only. In Section 3 we suppose that the
insurance company applies a liability limit only.
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2 Survival Probability in the Classical Risk Model

with a Franchise

If the insurance company establishes a franchise only and the claim sizes are exponen-
tially distributed, then equation (2) for ϕ(d,+∞)(x) can be written as

c(d,+∞)
(
ϕ(d,+∞)(x)

)′
+

= λϕ(d,+∞)(x)− λ
∫ x

0

ϕ(d,+∞)(x− y) dF (d,+∞)(y), (5)

where

F (d,+∞)(y) =


0 if y < 0,

1− e−d/µ if 0 ≤ y < d,

1− e−y/µ if y ≥ d,

and

c(d,+∞) = λ(1 + θ)E
[
Y

(d,+∞)
i

]
= λ(1 + θ)

∫ +∞

d

y e−y/µ

µ
dy = λ(1 + θ)(µ+ d) e−d/µ.

In Section 2.1 we derive analytic expressions for ϕ(d,+∞)(x) in the case of exponen-
tially distributed claim sizes. In Section 2.2 we investigate how a franchise changes the
survival probability for small and large enough initial surpluses. Note that throughout
this paper all sums equal 0 provided that their lower summation indices are greater than
the upper ones.

2.1 Analytic Expression for the Survival Probability

To formulate the next theorem, introduce the constants

γ = (1 + θ)(µ+ d),

C1, 1 =
θ

1 + θ
,

A2, 0 = − θ

(1 + θ)(γ + µ)
e−d/γ,

C2, 1 =
θ

1 + θ

(
1 +

γµ+ d(γ + µ)

(γ + µ)2
e−d/γ

)
,

C2, 2 = − θγµ

(1 + θ)(γ + µ)2
ed/µ.

Moreover, let the constants An+1, j, 0 ≤ j ≤ n − 1, be given in a recurrent way by
formulas

An+1, n−1 = − An, n−2

n(γ + µ)
e−d/γ, n ≥ 2, (6)

An+1, j = − 1

γ + µ

[
(j + 2)γµAn+1, j+1 +

1

j + 1

( n−2∑
i=j−1

An, i (−d)i−j+1

(
i+ 1

j

))
e−d/γ

]
,

1 ≤ j ≤ n− 2, n ≥ 3,

(7)
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An+1, 0 = − 1

γ + µ

[
2γµAn+1, 1 +

(
Cn, 1 +

n−2∑
i=0

An, i (−d)i+1

)
e−d/γ

]
, n ≥ 2. (8)

Next, let the constants Bn+1, j, 0 ≤ j ≤ n−2, be given in a recurrent way by formulas

B3, 0 =
C2, 2

γ + µ
ed/µ,

Bn+1, n−2 =
Bn, n−3

(n− 1)(γ + µ)
ed/µ, n ≥ 3, (9)

Bn+1, j =
1

γ + µ

[
(j + 2)γµBn+1, j+1 +

1

j + 1

( n−3∑
i=j−1

Bn, i (−d)i−j+1

(
i+ 1

j

))
ed/µ

]
,

1 ≤ j ≤ n− 3, n ≥ 4,

(10)

Bn+1, 0 =
1

γ + µ

[
2γµBn+1, 1 +

(
Cn, 2 +

n−3∑
i=0

Bn, i (−d)i+1

)
ed/µ

]
, n ≥ 3. (11)

Finally, let the constants Cn+1, 1 and Cn+1, 2 be given by formulas

Cn+1, 1 = Cn, 1 +
γµ(An, 0 − An+1, 0)

γ + µ

+
n−3∑
i=0

(
An, i − An+1, i +

(i+ 2)γµ(An, i+1 − An+1, i+1)

γ + µ

)
(nd)i+1

+

(
An, n−2 − An+1, n−2 −

nγµAn+1, n−1

γ + µ

)
(nd)n−1 − An+1, n−1 (nd)n

+
γµ

γ + µ

(n−3∑
i=0

(i+ 1)(Bn, i −Bn+1, i)(nd)i − (n− 1)Bn+1, n−2 (nd)n−2

)
× exp

(
−nd γ + µ

γµ

)
, n ≥ 2,

(12)

C3, 2 = C2, 2 +
γµB3, 0

γ + µ
− 2dB3, 0 +

γµ(A3, 0 − A2, 0 + 4dA3, 1)

γ + µ
exp

(
2d
γ + µ

γµ

)
,

Cn+1, 2 = Cn, 2 +
γµ(Bn+1, 0 −Bn, 0)

γ + µ

+
n−4∑
i=0

(
Bn, i −Bn+1, i +

(i+ 2)γµ(Bn+1, i+1 −Bn, i+1)

γ + µ

)
(nd)i+1

+

(
Bn, n−3 −Bn+1, n−3 +

(n− 1)γµBn+1, n−2

γ + µ

)
(nd)n−2 −Bn+1, n−2 (nd)n−1

+
γµ

γ + µ

(n−2∑
i=0

(i+ 1)(An+1, i − An, i)(nd)i + nAn+1, n−1 (nd)n−1

)
× exp

(
nd

γ + µ

γµ

)
, n ≥ 3.

(13)
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Note that to compute the constants by the formulas above for any n ≥ 2, we have
to know all the constants for n − 1. Moreover, for any fixed n ≥ 2, we start from the
computation of An+1, j for j from n− 1 to 0, Bn+1, j for j from n− 2 to 0, and after that
we can compute Cn+1, 1 and Cn+1, 2. We introduced all the constants only to formulate
the next theorem. We will get them in the proof of this theorem.

Theorem 1. Let the surplus process
(
X

(d,+∞)
t (x)

)
t≥0

follow (4) under the above assump-
tions with 0 < d < +∞ and L = +∞, and the claim sizes be exponentially distributed
with mean µ. Then

ϕ(d,+∞)(x) = ϕ
(d,+∞)
n+1 (x) for all x ∈ [nd, (n+ 1)d), n ≥ 0,

where
ϕ

(d,+∞)
1 (x) = C1, 1 e

x/γ, (14)

ϕ
(d,+∞)
2 (x) =

(
C2, 1 + A2, 0 x

)
ex/γ + C2, 2 e

−x/µ, (15)

ϕ
(d,+∞)
n+1 (x) =

(
Cn+1, 1 +

n−1∑
j=0

An+1, j x
j+1

)
ex/γ

+

(
Cn+1, 2 +

n−2∑
j=0

Bn+1, j x
j+1

)
e−x/µ, n ≥ 2.

(16)

Proof. Substituting c(d,+∞) and F (d,+∞)(y) into (5) yields

(1 + θ)(µ+ d)
(
ϕ(d,+∞)(x)

)′
+

= ϕ(d,+∞)(x), x ∈ [0, d), (17)

and

µ(1 + θ)(µ+ d)
(
ϕ(d,+∞)(x)

)′
+

= µϕ(d,+∞)(x)− ed/µ
∫ x

d

ϕ(d,+∞)(x− y) e−y/µ dy , x ∈ [d,+∞).
(18)

By the results of [5], ϕ(d,+∞)(x) is continuously differentiable on R+ (see also [7,

pp. 162–163]). Let us introduce the functions ϕ
(d,+∞)
n+1 (x), n ≥ 0, in the following way:

ϕ
(d,+∞)
n+1 (x) is defined on [nd, (n+ 1)d) and coincides with ϕ(d,+∞)(x) on this interval.

Set γ = (1 + θ)(µ + d). Solving (17) gives (14), where the constant C1, 1 can be

found from ϕ
(d,+∞)
1 (0) = θ/(1 + θ), which guarantees us that the solution is the survival

probability. Thus, C1, 1 = θ/(1 + θ).
By (18), the function ϕ(d,+∞)(x) is easily seen to have the second derivative, which is

continuous. Moreover, integro-differential equation (18) can be reduced to the differential
one

γµ
(
ϕ(d,+∞)(x)

)′′
+ (γ − µ)

(
ϕ(d,+∞)(x)

)′ − ϕ(d,+∞)(x)

= −ϕ(d,+∞)(x− d), x ∈ [d,+∞),
(19)

in a standard way (see, e.g., [1–4,7]).
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If x ∈ [d, 2d), then 0 ≤ x − d < d and the right-hand side of (19) has already been
found. So we only need to solve the linear differential equation

γµ
(
ϕ

(d,+∞)
2 (x)

)′′
+ (γ − µ)

(
ϕ

(d,+∞)
2 (x)

)′ − ϕ(d,+∞)
2 (x) = − θ

1 + θ
e(x−d)/γ (20)

on [d, 2d) by standard techniques. Furthermore, since ϕ(d,+∞)(x) and its first derivative
are continuous at the point x = d, the following conditions must hold to guarantee that
the solution is the survival probability:

lim
x↑d

ϕ
(d,+∞)
1 (x) = ϕ

(d,+∞)
2 (d),

lim
x↑d

(
ϕ

(d,+∞)
1 (x)

)′
=
(
ϕ

(d,+∞)
2 (d)

)′
.

(21)

The solution to (20) can be found by writing

ϕ
(d,+∞)
2 (x) = ϕ

(d,+∞)
2, gen (x) + ϕ

(d,+∞)
2,part1 (x),

where ϕ
(d,+∞)
2, gen (x) is a general solution to the linear homogeneous equation corresponding

to (20), and ϕ
(d,+∞)
2, part1 (x) is a particular solution to linear heterogeneous equation (20).

Note that ϕ
(d,+∞)
2, part1 (x) can be written as

ϕ
(d,+∞)
2, part1 (x) = A2, 0 x e

x/γ,

where A2, 0 is a constant. Substituting ϕ
(d,+∞)
2, part1 (x) into (20) and applying the method of

undetermined coefficients yield A2, 0. Moreover, we can write ϕ
(d,+∞)
2, gen (x) as

ϕ
(d,+∞)
2, gen (x) = C2, 1 e

x/γ + C2, 2 e
−x/µ,

where the constants C2, 1 and C2, 2 are such that ϕ
(d,+∞)
2 (x) satisfies the conditions (21).

Thus, ϕ
(d,+∞)
2 (x) is defined by (15) and the constants A2, 0, C2, 1, and C2, 2 are given

before the assertion of the theorem. It is easy to check that the second classical derivative
of ϕ(d,+∞)(x) does not exist at the point x = d.

If x ∈ [2d, 3d), then d ≤ x− d < 2d and the right-hand side of (19) has already been

found. Therefore, ϕ
(d,+∞)
3 (x) is a solution to

γµ
(
ϕ

(d,+∞)
3 (x)

)′′
+ (γ − µ)

(
ϕ

(d,+∞)
3 (x)

)′ − ϕ(d,+∞)
3 (x)

= − θ

1 + θ

(
1 +

γµ+ d(γ + µ)

(γ + µ)2
e−d/γ − 1

γ + µ
e−d/γ (x− d)

)
e(x−d)/γ

+
θµ(µ+ d)

(γ + µ)2
e2d/µ e−x/µ.

(22)

Furthermore, the continuity of ϕ(d,+∞)(x) and its derivative at the point x = 2d
implies 

lim
x↑2d

ϕ
(d,+∞)
2 (x) = ϕ

(d,+∞)
3 (2d),

lim
x↑2d

(
ϕ

(d,+∞)
2 (x)

)′
=
(
ϕ

(d,+∞)
3 (2d)

)′
.

(23)
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We can write ϕ
(d,+∞)
3 (x) as

ϕ
(d,+∞)
3 (x) = ϕ

(d,+∞)
3, gen (x) + ϕ

(d,+∞)
3, part1 (x) + ϕ

(d,+∞)
3,part2 (x),

where ϕ
(d,+∞)
3, gen (x) is a general solution to the linear homogeneous equation corresponding

to (22), and ϕ
(d,+∞)
3, part1 (x) and ϕ

(d,+∞)
3, part2 (x) are particular solutions to the equations

γµ
(
ϕ

(d,+∞)
3 (x)

)′′
+ (γ − µ)

(
ϕ

(d,+∞)
3 (x)

)′ − ϕ(d,+∞)
3 (x)

= − θ

1 + θ

(
1 +

γµ+ d(γ + µ)

(γ + µ)2
e−d/γ − 1

γ + µ
e−d/γ (x− d)

)
e(x−d)/γ

(24)

and

γµ
(
ϕ

(d,+∞)
3 (x)

)′′
+ (γ − µ)

(
ϕ

(d,+∞)
3 (x)

)′ − ϕ(d,+∞)
3 (x)

=
θµ(µ+ d)

(γ + µ)2
e2d/µ e−x/µ,

(25)

respectively.
Next, ϕ

(d,+∞)
3,part1 (x) and ϕ

(d,+∞)
3, part2 (x) can be written as

ϕ
(d,+∞)
3, part1 (x) = (A3, 0 + A3, 1 x)x ex/γ

and
ϕ

(d,+∞)
3, part2 (x) = B3, 0 x e

−x/µ,

where A3, 0, A3, 1, and B3, 0 are constants. Substituting ϕ
(d,+∞)
3,part1 (x) and ϕ

(d,+∞)
3,part2 (x)

into (24) and (25), respectively, and applying the method of undetermined coefficients

yield A3, 0, A3, 1, and B3, 0. Moreover, we can write ϕ
(d,+∞)
3, gen (x) as

ϕ
(d,+∞)
3, gen (x) = C3, 1 e

x/γ + C3, 2 e
−x/µ,

where the constants C3, 1 and C3, 2 are such that ϕ
(d,+∞)
3 (x) satisfies the conditions (23),

which guarantees us that the solution is the survival probability.
All the constants are given before the assertion of the theorem. In particular, A3, 1,

A3, 0, and C3, 1 are given by (6), (8), and (12), respectively, with n = 2.

In the general case, if we know ϕ
(d,+∞)
n (x), n ≥ 2, we can find ϕ

(d,+∞)
n+1 (x) solving the

equation

γµ
(
ϕ

(d,+∞)
n+1 (x)

)′′
+ (γ − µ)

(
ϕ

(d,+∞)
n+1 (x)

)′ − ϕ(d,+∞)
n+1 (x) = −ϕ(d,+∞)

n (x− d). (26)

By the above, applying an induction argument yields

ϕ(d,+∞)
n (x) = ϕ(d,+∞)

n, gen (x) + ϕ
(d,+∞)
n, part1 (x) + ϕ

(d,+∞)
n, part2 (x), (27)

where
ϕ(d,+∞)
n, gen (x) = Cn, 1 e

x/γ + Cn, 2 e
−x/µ,

7



ϕ
(d,+∞)
n, part1 (x) =

(n−2∑
i=0

An, i x
i

)
x ex/γ,

ϕ
(d,+∞)
n, part2 (x) =

(n−3∑
i=0

Bn, i x
i

)
x e−x/µ.

Thus, (27) can be rewritten as

ϕ(d,+∞)
n (x) =

(
Cn, 1 +

n−2∑
i=0

An, i x
i+1

)
ex/γ +

(
Cn, 2 +

n−3∑
i=0

Bn, i x
i+1

)
e−x/µ. (28)

Therefore, we get

ϕ
(d,+∞)
n+1 (x) = ϕ

(d,+∞)
n+1, gen(x) + ϕ

(d,+∞)
n+1, part1(x) + ϕ

(d,+∞)
n+1, part2(x),

where
ϕ

(d,+∞)
n+1, gen(x) = Cn+1, 1 e

x/γ + Cn+1, 2 e
−x/µ,

ϕ
(d,+∞)
n+1,part1(x) =

(n−1∑
i=0

An+1, i x
i

)
x ex/γ, (29)

ϕ
(d,+∞)
n+1,part2(x) =

(n−2∑
i=0

Bn+1, i x
i

)
x e−x/µ, (30)

which gives (16).

We now assume that we have already found ϕ
(d,+∞)
n (x), n ≥ 2, which means that

we know all the constants in (28). We will now derive formulas to find the constants
in (16).

If x ∈ [nd, (n+ 1)d), then (n− 1)d ≤ x− d < nd and

−ϕ(d,+∞)
n (x− d) =−

(
Cn, 1 +

n−2∑
i=0

An, i (x− d)i+1

)
e(x−d)/γ

−
(
Cn, 2 +

n−3∑
i=0

Bn, i (x− d)i+1

)
e−(x−d)/µ.

(31)

Applying the binomial theorem in (31) yields

− ϕ(d,+∞)
n (x− d)

= −
[
Cn, 1 +

n−2∑
i=0

An, i

( i+1∑
j=0

(
i+ 1

j

)
xj (−d)i−j+1

)]
e(x−d)/γ

−
[
Cn, 2 +

n−3∑
i=0

Bn, i

( i+1∑
j=0

(
i+ 1

j

)
xj (−d)i−j+1

)]
e−(x−d)/µ.

(32)
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Interchanging the order of summation in (32) gives

− ϕ(d,+∞)
n (x− d)

= −
[(
Cn, 1 +

n−2∑
i=0

An, i (−d)i+1

)
+

n−1∑
j=1

( n−2∑
i=j−1

An, i (−d)i−j+1

(
i+ 1

j

))
xj
]
e(x−d)/γ

−
[(
Cn, 2 +

n−3∑
i=0

Bn, i (−d)i+1

)
+

n−2∑
j=1

( n−3∑
i=j−1

Bn, i (−d)i−j+1

(
i+ 1

j

))
xj
]
e−(x−d)/µ.

(33)

To derive formulas for An+1, j, 0 ≤ j ≤ n − 1, we calculate
(
ϕ

(d,+∞)
n+1, part1(x)

)′
and(

ϕ
(d,+∞)
n+1, part1(x)

)′′
using (29), and substitute them, as well as (33), into (26). Thus, we get

µ

[
(2An+1, 0 + 2γAn+1, 1)

+
n−2∑
j=1

(
An+1, j−1

γ
+ 2(j + 1)An+1, j + (j + 2)(j + 1)γAn+1, j+1

)
xj

+

(
An+1, n−2

γ
+ 2nAn+1, n−1

)
xn−1 +

An+1, n−1

γ
xn
]

+ (γ − µ)

×
[
An+1, 0 +

n−1∑
j=1

(
An+1, j−1

γ
+ (j + 1)An+1, j

)
xj +

An+1, n−1

γ
xn
]

−
n∑
j=1

An+1, j−1 x
j = −

[(
Cn, 1 +

n−2∑
i=0

An, i (−d)i+1

)

+
n−1∑
j=1

( n−2∑
i=j−1

An, i (−d)i−j+1

(
i+ 1

j

))
xj
]
e−d/γ.

(34)

To find An+1, j, 0 ≤ j ≤ n − 1, from (34), we apply the method of undetermined
coefficients. To be more precise, we equate the expressions of xn−1, xj, 1 ≤ j ≤ n − 2,
and x0 in (34), and get (6), (7), and (8), respectively.

Thus, to find An+1, n−1, it suffices to know An, n−2. The constants An+1, j, 1 ≤ j ≤
n− 2, are expressed in a recurrent way in terms of An+1, j+1 and An, i, j− 1 ≤ i ≤ n− 2.
Finally, An+1, 0 can be found in terms of An+1, 1, Cn, 1, and An, i, 0 ≤ i ≤ n− 2.

Similarly, to derive formulas for Bn+1, j, 0 ≤ j ≤ n− 2, we calculate
(
ϕ

(d,+∞)
n+1, part2(x)

)′
and

(
ϕ

(d,+∞)
n+1, part2(x)

)′′
using (30), and substitute them, as well as (34), into (26). Thus,
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we obtain

γ

[
(−2Bn+1, 0 + 2µBn+1, 1)

+
n−3∑
j=1

(
Bn+1, j−1

µ
− 2(j + 1)Bn+1, j + (j + 2)(j + 1)µBn+1, j+1

)
xj

+

(
Bn+1, n−3

µ
− 2(n− 1)Bn+1, n−2

)
xn−2 +

Bn+1, n−2

µ
xn−1

]
+ (γ − µ)

×
[
Bn+1, 0 +

n−2∑
j=1

(
−Bn+1, j−1

µ
+ (j + 1)Bn+1, j

)
xj − Bn+1, n−2

µ
xn−1

]

−
n−1∑
j=1

Bn+1, j−1 x
j = −

[(
Cn, 2 +

n−3∑
i=0

Bn, i (−d)i+1

)

+
n−2∑
j=1

( n−3∑
i=j−1

Bn, i (−d)i−j+1

(
i+ 1

j

))
xj
]
ed/µ.

(35)

Equating the expressions of xn−2, xj, 1 ≤ j ≤ n − 3, and x0 in (35) yields (9), (10),
and (11), respectively.

Since the continuity of ϕ(d,+∞)(x) and its derivative at the point x = nd implies
lim
x↑nd

ϕ(d,+∞)
n (x) = ϕ

(d,+∞)
n+1 (nd),

lim
x↑nd

(
ϕ(d,+∞)
n (x)

)′
=
(
ϕ

(d,+∞)
n+1 (nd)

)′
,

the constants Cn+1, 1 and Cn+1, 2 can be found by solving the system of linear equations(
Cn+1, 1 +

n−1∑
i=0

An+1, i (nd)i+1

)
end/γ +

(
Cn+1, 2 +

n−2∑
i=0

Bn+1, i (nd)i+1

)
e−nd/µ

=

(
Cn, 1 +

n−2∑
i=0

An, i (nd)i+1

)
end/γ +

(
Cn, 2 +

n−3∑
i=0

Bn, i (nd)i+1

)
e−nd/µ
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and [
Cn+1, 1

γ
+ An+1, 0 +

n−2∑
i=0

(
An+1, i

γ
+ (i+ 2)An+1, i+1

)
(nd)i+1

+
An+1, n−1

γ
(nd)n

]
end/γ +

[
−Cn+1, 2

µ
+Bn+1, 0

+
n−3∑
i=0

(
−Bn+1, i

µ
+ (i+ 2)Bn+1, i+1

)
(nd)i+1 − Bn+1, n−2

µ
(nd)n−1

]
e−nd/µ

=

[
Cn, 1
γ

+ An, 0 +
n−3∑
i=0

(
An, i
γ

+ (i+ 2)An, i+1

)
(nd)i+1

+
An, n−2

γ
(nd)n−1

]
end/γ +

[
−Cn, 2

µ
+Bn, 0

+
n−4∑
i=0

(
−Bn, i

µ
+ (i+ 2)Bn, i+1

)
(nd)i+1 − Bn, n−3

µ
(nd)n−2

]
e−nd/µ,

which guarantees us that the solution is the survival probability. Thus, Cn+1, 1 and
Cn+1, 2 are given by (12) and (13), which completes the proof.

Remark 1. Theorem 1 gives the analytic expression for ϕ(d,+∞)(x) for all x ≥ 0. However,
the computations become too tedious for large initial surpluses. So this theorem is useful
when the initial surpluses are not too large, otherwise it is reasonable to use the Cramér-
Lundberg approximation (see, e.g., [1–4,7, 8]).

2.2 Case of Small and Large Enough Initial Surpluses

We now investigate how a franchise changes the survival probability for small and large
enough initial surpluses.

Theorem 2. Let the surplus processes
(
Xt(x)

)
t≥0

and
(
X

(d,+∞)
t (x)

)
t≥0

follow (1) and (4),
respectively, under the above assumptions with 0 < d < +∞ and L = +∞. Moreover,
let ϕ(x) and ϕ(d,+∞)(x) be the corresponding survival probabilities, and the claim sizes
be exponentially distributed with mean µ.

(i) If

x ∈
[
0, min

{
µ(1 + θ)

θ
ln

(
1 +

θd

µ(1 + θ)

)
, d

}]
, (36)

then ϕ(d,+∞)(x) < ϕ(x) for any 0 < d < +∞.

(ii) For

d ∈
(

0,
µ(1 + θ) ln(1 + θ)

θ

)
(37)

and large enough initial surpluses, we have ϕ(d,+∞)(x) > ϕ(x).
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Proof. We now prove assertion (i) of the theorem. Introduce the function

g1(x) =
ϕ(x)

ϕ(d,+∞)(x)
(38)

for x ∈ [0, d]. Substituting (3) and (14) into (38) yields

g1(x) =
1 + θ − exp

(
− θx
µ(1+θ)

)
θ

exp

(
− x

(1 + θ)(µ+ d)

)
.

Taking the derivative gives

g′1(x) =
1

θ(µ+ d)
exp

(
− x

(1 + θ)(µ+ d)

)
×
(
µ(1 + θ) + θd

µ(1 + θ)
exp

(
− θx

µ(1 + θ)

)
− 1

)
.

Since
µ(1 + θ) + θd

µ(1 + θ)
exp

(
− θx

µ(1 + θ)

)
− 1 > 0

for all x given by (36), we have g′1(x) > 0 for these x. Furthermore, g1(0) = 1, which
gives g1(x) > 1 for these x. Thus, assertion (i) of the theorem follows, and we now prove
assertion (ii).

By the Cramér-Lundberg approximation (see, e.g., [1–4,7, 8]), we have

ϕ(d,+∞)(x) ∼ 1− θ

(1 + θ)R(d,+∞) µ(d,+∞)
e−R

(d,+∞) x, (39)

where R(d,+∞) is a unique positive solution (if it exists) to∫ +∞

0

eR
(d,+∞) y

(
1− F (d,+∞)(y)

)
dy = (1 + θ)(µ+ d) e−d/µ, (40)

and

µ(d,+∞) =
1

(1 + θ)(µ+ d) e−d/µ

∫ +∞

0

y eR
(d,+∞) y

(
1− F (d,+∞)(y)

)
dy, (41)

if the improper integral in the right-hand side of (41) is finite.
First, we show that there is a unique positive solution R(d,+∞) to (40) such that

the integral in the right-hand side of (41) is finite. If R(d,+∞) < 1/µ, then substituting
F (d,+∞)(y) into (40) and doing elementary computations yield

edR
(d,+∞)

= (1 + θ)(µ+ d)R(d,+∞) + 2 +
1

µR(d,+∞) − 1
. (42)

If R(d,+∞) ≥ 1/µ, then the integral in the left-hand side of (40) is infinite. So in what
follows, we consider the case R(d,+∞) < 1/µ only.
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For R ∈ [0, 1/µ), introduce the functions

g2(R) = edR

and

g3(R) = (1 + θ)(µ+ d)R + 2 +
1

µR− 1
.

Note that g2(0) = 1 and g3(0) = 1. Moreover, we have

g2(R) ≈ 1 + dR

and
g3(R) ≈ 1 + g′3(0)R ≈ 1 + (d+ θd+ θµ)R

for small enough R > 0. Consequently, g3(R) > g2(R) in some right semi-neighbourhood
of the point R = 0.

The function g2(R) is increasing on [0, 1/µ). The function g3(R) is increasing on
[0, R∗) and decreasing on (R∗, 1/µ), where

R∗ =
1

µ

(
1−

√
µ

(1 + θ)(µ+ d)

)
.

Thus, (42) has the unique solution R(d,+∞) on (0, 1/µ). Note that R(d,+∞) is the unique
positive solution to (40). It is evident that µ(d,+∞) is finite in this case.

Next, from (3) and (39) we conclude that ϕ(d,+∞)(x) > ϕ(x) for large enough initial
surpluses provided that

R(d,+∞) >
θ

µ(1 + θ)
.

Let g4(R) = g2(R)−g3(R) on [0, 1/µ). The function g4(R) is negative on (0, R(d,+∞))
and positive on (R(d,+∞), 1/µ). Moreover, g4(0) = g4(R(d,+∞)) = 0 and

g4

(
θ

µ(1 + θ)

)
= exp

(
θd

µ(1 + θ)

)
− θd

µ
− 1. (43)

Therefore, ϕ(d,+∞)(x) > ϕ(x) for large enough initial surpluses provided that the ex-
pression in the right-hand side of (43) is negative.

Let

g5(d) = exp

(
θd

µ(1 + θ)

)
− θd

µ
− 1.

Taking the derivative yields

g′5(d) =
θ

µ

(
1

1 + θ
exp

(
θd

µ(1 + θ)

)
− 1

)
.

Since g5(0) = 0 and g′5(d) < 0 for d given by (37), we prove assertion (ii) of the theorem.
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3 Survival Probability in the Classical Risk Model

with a Liability Limit

If the insurance company establishes a liability limit only and the claim sizes are expo-
nentially distributed, then equation (2) for ϕ(0, L)(x) can be written as

c(0, L)
(
ϕ(0, L)(x)

)′
+

= λϕ(0, L)(x)− λ
∫ x

0

ϕ(0, L)(x− y) dF (0, L)(y), (44)

where

F (0, L)(y) =


0 if y < 0,

1− e−y/µ if 0 ≤ y < L,

1 if y ≥ L,

and

c(0, L) = λ(1+θ)E
[
Y

(0, L)
i

]
= λ(1+θ)

(∫ L

0

y e−y/µ

µ
dy+Le−L/µ

)
= λµ(1+θ)

(
1−e−L/µ

)
.

In Section 3.1 we derive analytic expressions for ϕ(0, L)(x) in the case of exponentially
distributed claim sizes. In Section 3.2 we investigate how a liability limit changes the
survival probability for small enough and large enough initial surpluses.

3.1 Analytic Expression for the Survival Probability

To formulate the next theorem, introduce the constants

γ̄1 = 1− (1 + θ)
(
1− e−L/µ

)
,

γ̄2 = µ(1 + θ)
(
1− e−L/µ

)
,

C̄1, 1 = −
θ
(
1− e−L/µ

)
γ̄1

,

C̄1, 2 =
θ

γ̄1(1 + θ)
,

Ā2, 0 = − θ

γ̄1γ̄2(1 + θ)
exp

(
−L
(

1

µ
+
γ̄1

γ̄2

))
,

C̄2, 1 =
θ

γ̄1(1 + θ)

((
1− 1

γ̄1

)
e−L/µ − (1 + θ)

(
1− e−L/µ

))
,

C̄2, 2 =
θ

γ̄1(1 + θ)

(
1 +

(
1

γ̄1

+
L

γ̄2

− 1

)
exp

(
−L
(

1

µ
+
γ̄1

γ̄2

)))
.

Moreover, let the constants Ān+1, j, 0 ≤ j ≤ n − 1, be given in a recurrent way by
formulas

Ān+1, n−1 = −Ān, n−2

nγ̄2

exp

(
−L
(

1

µ
+
γ̄1

γ̄2

))
, n ≥ 2, (45)
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Ān+1, j = −(j + 2)γ̄2Ān+1, j+1

γ̄1

− 1

j + 1
exp

(
−L
(

1

µ
+
γ̄1

γ̄2

))
×
[ n−3∑
i=j−1

(
Ān, i
γ̄2

+
(i+ 2)Ān, i+1

γ̄1

)
(−L)i−j+1

(
i+ 1

j

)
+
Ān, n−2

γ̄2

(−L)n−j+1

(
n− 1

j

)]
, 1 ≤ j ≤ n− 2, n ≥ 3,

(46)

Ān+1, 0 = −2γ̄2Ān+1, 1

γ̄1

− exp

(
−L
(

1

µ
+
γ̄1

γ̄2

))
×
[
C̄n, 2
γ̄2

+
Ān, 0
γ̄1

+
n−3∑
i=0

(
Ān, i
γ̄2

+
(i+ 2)Ān, i+1

γ̄1

)
(−L)i+1

+
Ān, n−2

γ̄2

(−L)n−1

]
, n ≥ 2.

(47)

Finally, let the constants C̄n+1, 1 and C̄n+1, 2 be given by formulas

C̄n+1, 1 = C̄n, 1 +
γ̄2

γ̄1

(n−2∑
i=0

(i+ 1)(Ān+1, i − Ān, i)(nL)i

+ nĀn+1, n−1(nL)n−1

)
enLγ̄1/γ̄2 , n ≥ 2,

(48)

C̄n+1, 2 = C̄n, 2 +
γ̄2(Ān, 0 − Ān+1, 0)

γ̄1

+
n−2∑
i=1

(
Ān, i−1 − Ān+1, i−1 +

(i+ 1)γ̄2(Ān, i − Ān+1, i)

γ̄1

)
(nL)i

+

(
Ān, n−2 − Ān+1, n−2 −

nγ̄2Ān+1, n−1

γ̄1

)
(nL)n−1

− Ān+1, n−1(nL)n, n ≥ 2.

(49)

Note that to compute the constants by the formulas above for any n ≥ 2, we have
to know all the constants for n − 1. Moreover, for any fixed n ≥ 2, we start from the
computation of Ān+1, j for j from n− 1 to 0, and after that we can compute C̄n+1, 1 and
C̄n+1, 2. We introduced all the constants only to formulate the next theorem and will get
them in the proof.

Theorem 3. Let the surplus process
(
X

(0, L)
t (x)

)
t≥0

follow (4) under the above assump-
tions with d = 0 and 0 < L < +∞, and the claim sizes be exponentially distributed with
mean µ. Then

ϕ(0, L)(x) = ϕ
(0, L)
n+1 (x) for all x ∈ [nL, (n+ 1)L), n ≥ 0,

where
ϕ

(0, L)
1 (x) = C̄1, 1 + C̄1, 2 e

γ̄1x/γ̄2 , (50)
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ϕ
(0, L)
2 (x) = C̄2, 1 +

(
C̄2, 2 + Ā2, 0 x

)
eγ̄1x/γ̄2 , (51)

ϕ
(0, L)
n+1 (x) = C̄n+1, 1 +

(
C̄n+1, 2 +

n−1∑
j=0

Ān+1, j x
j+1

)
eγ̄1x/γ̄2 , n ≥ 2. (52)

Proof. By the results of [5], ϕ(0, L)(x) is continuous on R+ and continuously differentiable
on this interval, except at the point x = L, where there are only one-sided derivatives
(see also [7, pp. 162–163]).

Let us introduce the functions ϕ
(0, L)
n+1 (x), n ≥ 0, in the following way: ϕ

(0, L)
n+1 (x) is

defined on [nL, (n+ 1)L) and coincides with ϕ(0, L)(x) on this interval.
If x ∈ [0, L), then substituting c(0, L) and F (0, L)(y) into (44) yields

µ(1 + θ)
(
1− e−L/µ

)(
ϕ

(0, L)
1 (x)

)′
= ϕ

(0, L)
1 (x)− 1

µ

∫ x

0

ϕ
(0, L)
1 (x− y) e−y/µ dy. (53)

This gives that ϕ
(0, L)
1 (x) has the continuous second derivative on [0, L). So integro-

differential equation (53) can be reduced to the differential one

µ(1 + θ)
(
1− e−L/µ

)(
ϕ

(0, L)
1 (x)

)′′ − (1− (1 + θ)
(
1− e−L/µ

))(
ϕ

(0, L)
1 (x)

)′
= 0 (54)

in a standard way (see, e.g., [1–4,7]).
Let γ̄1 = 1−(1+θ)

(
1−e−L/µ

)
and γ̄2 = µ(1+θ)

(
1−e−L/µ

)
. Solving (54) yields (50),

where the constants C̄1, 1 and C̄1, 2 can be found from
ϕ

(0, L)
1 (0) =

θ

1 + θ
,

(
ϕ

(0, L)
1 (0)

)′
=
ϕ

(0, L)
1 (0)

γ̄2

.

(55)

The first condition in (55) guarantees us that the solution is the survival probability,
and the second one follows from (53). Thus, the constants C̄1, 1 and C̄1, 2 are given before
the assertion of the theorem.

If x ∈ [L,+∞), then substituting c(0, L) and F (0, L)(y) into (44) yields

µ(1 + θ)
(
1− e−L/µ

)(
ϕ(0, L)(x)

)′
= ϕ(0, L)(x)− e−x/µ

µ

∫ x

x−L
ϕ(0, L)(y) ey/µ dy − e−L/µϕ(0, L)(x− L).

(56)

Note that we imply the right derivative of ϕ(0, L)(x) at the point x = L. It is easily seen
from (56) that the second classical derivative of ϕ(0, L)(x) exists on [L,+∞) except at
the point x = 2L. So integro-differential equation (56) can be reduced to the differential
one

γ̄2

(
ϕ(0, L)(x)

)′′ − γ̄1

(
ϕ(0, L)(x)

)′
= −e−L/µ

(
ϕ(0, L)(x− L)

)′
, x ∈ [L,+∞), (57)

where we imply the right second derivative of ϕ(0, L)(x) at the point x = 2L.
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If x ∈ [L, 2L), then (57) can be rewritten as

γ̄2

(
ϕ

(0, L)
2 (x)

)′′ − γ̄1

(
ϕ

(0, L)
2 (x)

)′
= − θ

γ̄2(1 + θ)
exp

(
−L
µ

+
γ̄1(x− L)

γ̄2

)
. (58)

By the results of [5], the following conditions must hold to guarantee that the solution
is the survival probability:

lim
x↑L

ϕ
(0, L)
1 (x) = ϕ

(0, L)
2 (L),

lim
x↑L

(
ϕ

(0, L)
1 (x)

)′
=
(
ϕ

(0, L)
2 (L)

)′
+

θe−L/µ

γ̄2(1 + θ)
,

(59)

(see also [7, pp. 162–163]).
The solution to (58) can be found by writing

ϕ
(0, L)
2 (x) = ϕ

(0, L)
2, gen(x) + ϕ

(0, L)
2, part(x),

where ϕ
(0, L)
2, gen(x) is a general solution to the linear homogeneous equation corresponding

to (58), and ϕ
(0, L)
2, part(x) is a particular solution to linear heterogeneous equation (58).

Since ϕ
(0, L)
2, part(x) can be written as

ϕ
(0, L)
2, part(x) = Ā2, 0 x e

γ̄1x/γ̄2 ,

where Ā2, 0 is a constant, substituting ϕ
(0, L)
2,part(x) into (58) and applying the method of

undetermined coefficients yield Ā2, 0. Furthermore, we can write ϕ
(0, L)
2, gen(x) as

ϕ
(0, L)
2, gen(x) = C̄2, 1 + C̄2, 2 e

γ̄1x/γ̄2 ,

where the constants C̄2, 1 and C̄2, 2 are such that ϕ
(0, L)
2 (x) satisfies conditions (59).

Thus, ϕ
(0, L)
2 (x) is defined by (51) and the constants Ā2, 0, C̄2, 1, and C̄2, 2 are given

before the assertion of the theorem.
In the general case, if we know ϕ

(0, L)
n (x), n ≥ 2, we can find ϕ

(0, L)
n+1 (x) applying

considerations similar to those in the proof of Theorem 1. Since

γ̄2

(
ϕ

(0, L)
n+1 (x)

)′′ − γ̄1

(
ϕ

(0, L)
n+1 (x)

)′
= −e−L/µ

(
ϕ(0, L)
n (x− L)

)′
,

we get (52) by induction on n.
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Applying the method of undetermined coefficients to

γ̄2

[(
2γ̄1Ān+1, 0

γ̄2

+ 2Ān+1, 1

)
+

n−2∑
j=1

(
γ̄2

1Ān+1, j−1

γ̄2
2

+
2(j + 1)γ̄1Ān+1, j

γ̄2

+ (j + 2)(j + 1)Ān+1, j+1

)
xj

+

(
γ̄2

1Ān+1, n−2

γ̄2
2

+
2nγ̄1Ān+1, n−1

γ̄2

)
xn−1 +

γ̄2
1Ān+1, n−1

γ̄2
2

xn
]

− γ̄1

[
Ān+1, 0 +

n−1∑
j=1

(
γ̄1Ān+1, j−1

γ̄2

+ (j + 1)Ān+1, j

)
xj +

γ̄1Ān+1, n−1

γ̄2

xn
]

= −
[(

γ̄1C̄n, 2
γ̄2

+ Ān, 0 +
n−3∑
i=0

(
γ̄1Ān, i
γ̄2

+ (i+ 2)Ān, i+1

)
(−L)i+1

+
γ̄1Ān, n−2

γ̄2

(−L)n−1

)
+

n−1∑
j=1

( n−3∑
i=j−1

(
γ̄1Ān, i
γ̄2

+ (i+ 2)Ān, i+1

)
(−L)i−j+1

(
i+ 1

j

)
+
γ̄1Ān, n−2

γ̄2

(−L)n−j+1

(
n− 1

j

))
xj
]

exp

(
−L
(

1

µ
+
γ̄1

γ̄2

))
yields the constants Ān+1, j, 0 ≤ j ≤ n − 1 in (52). Thus, they are given by (45), (46),
and (47).

To find the constants C̄n+1, 1 and C̄n+1, 2 in (52), we use the continuity of ϕ(0, L)(x)
and its derivative at the point x = nL, which implies

lim
x↑nL

ϕ(0, L)
n (x) = ϕ

(0, L)
n+1 (nL),

lim
x↑nL

(
ϕ(0, L)
n (x)

)′
=
(
ϕ

(0, L)
n+1 (nL)

)′
,

and guarantees that the solution is the survival probability. Thus, C̄n+1, 1 and C̄n+1, 2

are given by (48) and (49), respectively. The proof is complete.

3.2 Case of Small Enough and Large Enough Initial Surpluses

We now investigate how a liability limit changes the survival probability for small enough
and large enough initial surpluses.

Theorem 4. Let the surplus processes
(
Xt(x)

)
t≥0

and
(
X

(0, L)
t (x)

)
t≥0

follow (1) and (4),
respectively, under the above assumptions with d = 0 and 0 < L < +∞. Moreover, let
ϕ(x) and ϕ(0, L)(x) be the corresponding survival probabilities, and the claim sizes be
exponentially distributed with mean µ. Then ϕ(0, L)(x) > ϕ(x) for any 0 < L < +∞ and
for small enough and large enough initial surpluses.

Proof. By (3) and (50), we have

ϕ(x) ≈ θ

1 + θ
+

θx

µ(1 + θ)2
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and

ϕ
(0, L)
1 (x) ≈ θ

1 + θ
+

θx

µ(1 + θ)2
(
1− e−L/µ

)
for small enough initial surpluses. This gives the assertion of the theorem for such initial
surpluses.

By the Cramér-Lundberg approximation (see, e.g., [1–4,7, 8]), we have

ϕ(0, L)(x) ∼ 1− θ

R(0, L)µ(0, L)(1 + θ)
e−R

(0, L)x, (60)

for large enough initial surpluses, where R(0, L) is a unique positive solution (if it exists)
to ∫ +∞

0

eR
(0, L)y

(
1− F (0, L)(y)

)
dy = µ(1 + θ)

(
1− e−L/µ

)
, (61)

and

µ(0, L) =
1

µ(1 + θ)
(
1− e−L/µ

) ∫ +∞

0

y eR
(0, L)y

(
1− F (0, L)(y)

)
dy. (62)

It is obvious that the improper integral in the right-hand side of (62) is finite.
If R(0, L) = 1/µ is a solution to (61), then

L = µ(1 + θ)
(
1− e−L/µ

)
(63)

must hold.
If R(0, L) 6= 1/µ, then substituting F (0, L)(y) into (61) yields

eLR
(0, L)

= (1 + θ)
(
eL/µ − 1

)(
µR(0, L) − 1

)
+ eL/µ.

Consider the function

ḡ(R) = eLR − (1 + θ)
(
eL/µ − 1

)(
µR− 1

)
− eL/µ

on R+. It is decreasing on [0, R̄∗) and increasing on (R̄∗,+∞), where

R̄∗ =
1

L
ln

(
µ(1 + θ)

(
eL/µ − 1

)
L

)
.

Moreover, ḡ(0) = θ
(
eL/µ − 1

)
> 0, ḡ(1/µ) = 0, and limR→+∞ ḡ(R) = +∞. Note that

R̄∗ = 1/µ if and only if (63) holds.
Thus, we conclude that R = 1/µ is a unique zero of ḡ(R) if (63) is true. This

means that (61) has the unique solution R(0, L) = 1/µ. Otherwise, if (63) is not true,
then R = R(0, L) and R = 1/µ are positive zeros of ḡ(R), which means that R(0, L) is a
unique positive solution to (61) such that R(0, L) 6= 1/µ. Furthermore, in this case ḡ(R)
is negative between its zeros R = R(0, L) and R = 1/µ, otherwise it is positive.

Since

ḡ

(
θ

µ(1 + θ)

)
= exp

(
θL

µ(1 + θ)

)
− 1 > 0
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and
θ

µ(1 + θ)
<

1

µ
,

we get
θ

µ(1 + θ)
< R(0, L).

Consequently, by (3) and (60), we have the assertion of the theorem for large enough
initial surpluses.
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