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Abstract:

Chain ladder (CL) is still one of the most popular and most used reserving method for
the insurance practice. In 1993 Mack [7] presented the distribution-free CL-model and
derived a formula for the uncertainty of the CL-reserves , which refers to the ultimate
prediction uncertainty measured by the mean square error of prediction. For calculating
the reserve risk and the cost-of-capital loading in solvency (SST and solvency II) one also
needs estimators for the one-year prediction uncertainty of all future accounting years
until final development.

In a recent paper [11] Merz and Wiithrich considered the different prediction uncer-
tainties, that is the ultimate prediction uncertainty as well as the one year prediction
uncertainties for all future accounting years until final development within the frame-
work of a specific Bayesian-CL. model. Taking a non-informative prior and after a first
Taylor approximation they received the already existing result of Mack for the ultimate
prediction uncertainty and formulas for the one-year run-off uncertainties for all future
accounting years until final settlement of the run-off. However the Bayesian-CL model
and the distribution free CL-model of Mack are two different pairs of shoes. Thus the
results derived in [11] are results with regard to a different model and we do not know,
whether they are also appropriate in the classical chain ladder model of Mack.

In this paper we derive the different kinds of prediction uncertainties strictly within the
framework of the distribution-free CL model of Mack. By doing so, we gain more insight
into the differences between the two model approaches and find the following main results:
a) the formulas for the one-year prediction uncertainty in the classical Mack-model are
different to the Merz-Wiithrich formulas, b) the Merz-Wiithrich formulas are obtained by
a first order Taylor expansion, ¢) the Mack formula as well as the Merz-Wiithrich formulas
for the total over all accident years can be written in a simpler way, d) we can see "behind
the formulas", as they can be interpreted in an intuitive and understandable way.

Keywords: claims reserving, distribution free chain-ladder model, Bayesian chain-ladder
model, conditional mean square error of prediction, ultimate run-off uncertainty, one-year
run-off uncertainties, Mack’s formula, Wuethrich-Merz formulas , cost of capital loading,
market value margin.



1 Introduction

Accurate claims reserves are essential for an insurance company. It is by far the most
important item on the liability side of the balance sheet and has a big impact on the
profit and loss (P&C) account. A change of the reserves by a small percentage might well
turn a positive year result into a negative one and vice versa. When non-life insurance
companies went bankrupt, insufficient reserves were mostly one of the main reasons.

Chain Ladder (CL) and Bornhuetter Ferguson (BF) are still the most used and most
popular reserving methods in the insurance practice. In this paper we concentrate on the
CL-method.

CL has been used for decades for calculating reserves. In its origin it is a pure pragmatic
method without an underlying mathematical model. As long as one is only interested in
the reserve estimate, there is no need for a mathematical model. But as soon as one is also
interested in the accuracy of the CL-reserves, one needs an underlying stochastic model.

Under run-off risk we understand the risk of an adverse claims development. It can
be defined as minus the claims development result (CDR). As common in the actuarial
literature (see for instance [9]), we will take the conditional mean square error of prediction
(msep) as a measure of the reserve uncertainties. For best estimate reserves this msep is
equal to the conditional expectation of the square of the CDR. Thereby we distinguish
between the ultimate run-off risk referring to the ultimate claims development result
(CDR) and the one-year run-off risks referring to the CDR resulting in one accounting
year.

It was only in 1993 when Mack [7] presented a stochastic CL model and derived a
formula for estimating the msep of the ultimate run-off risk (see Theorem A.1 in appendix
A).

With the emergence of the new solvency regulation (Swiss solvency test and solvency
IT), there arose the need to assess another kind of reserve risk. The risk considered is
the change of risk bearing capital within the next year (one-year time horizon). Hence
the reserve risk relevant for solvency purposes is the one-year run-off risk in the next
accounting year instead of the ultimate run-off risk considered in Mack. This risk is
reflected under the position "claims development result" or "loss experience previous
years" in next year’s P&L account. A formula for estimating this one year uncertainty
of the next accounting year was first published in a paper by Merz and Wiithrich [10] in
2008.

As the new solvency regulations are based on a market consistent valuation, the best
estimate reserves have to be complemented by a market value margin corresponding to
the discounted costs of capital needed for the entire run-off. For this purpose one also
needs estimators of the uncertainty of the one-year run-off risk in later accounting years
until the end of the claims development.

In a recent paper [11] of end 2014 Merz and Wiithrich reconsidered all the different
CL reserve uncertainties within a specific Bayesian CL model (with Gamma-priors for the
CL factors and with conditionally Gamma distributed observations (observed individual
CL-factors)), which is very similar to a model which was earlier considered in [4]. In
this model they derived formulas for all the different kind of CL-uncertainties inclusive
the one-year run-off uncertainties in future accounting years. For the distribution-free
case, the authors derive the formulas for the reserve uncertainties obtained by taking a



non-informative prior followed by a first order Taylor approximation. These formulas can
be found in appendix A.

However the Bayesian CL-model is different to the distribution free CL model of Mack.
Thus we do not know whether the results derived in [11] are also appropriate for the
classical Mack model. For instance, in the model considered in [11], the mean square error
of prediction (msep) does only exist, if the observed triangle fulfils certain properties (see
Theorem 3.8 and condition (4.3) in [11]). But in the Mack-model the msep does always
exist.

In this paper we derive the different kinds of prediction uncertainties strictly within the
framework of the distribution-free CL model of Mack. By doing so, we gain more insight
into the differences between the two model approaches and find the following main results:

a) The formulas derived for the one-year prediction uncertainty in the classical Mack-
model are different to the Merz-Wiithrich formulas.

b) The Merz-Wiithrich formulas are obtained by a first order Taylor expansion.

c) The Mack formula as well as the Merz-Wiithrich formulas for the total over all
accident years can be written in a much simpler way.

d) We can see "behind the formulas", as they can be interpreted in an intuitive and
understandable way.

e) The derivation of the formulas is straightforward. The mathematics is simple and
easy to understand and makes use of two basic tools, the telescope formula 3.5 and
the estimation principle 3.6.

In this connection it is also worthwhile to remember a discussion in 2006 with regard
to the estimation error in the Mack formula. In [2] the authors suggested a different
estimator, which we call the BBMW estimator. There was quite some discussion about
these estimators (see [2], [8], [4]). Reconsidering this discussion we come to the conclusion
that the Mack formula for the estimation error is the appropriate one, whereas the BBMW
estimator is the adequate formula in the CL-Bayes model, but not in the Mack-model.
More details about this side result of the paper can be found in appendix B

At this point we should also mention the most recent paper [12] of Ancus Rohr. He
starts with a first order Taylor approximation of the claims development result (CDR)
and calculates the prediction uncertainty of this modified CDR. He then also obtains the
Mack as well as the Merz-Wiithrich results.

Organisation of the paper: In section 2 we introduce some notation and the data
structure. In section 3 we review the CL-reserving method and the stochastic CL-model
of Mack. At the end of this section the telescope formula and the estimation principle are
presented. In section 4 we derive the formula for the ultimate run-off uncertainty (Mack-
formula). In section 5 we consider the run-off uncertainty of the next accounting year,
whereas in section 6 the formulas for the one-year uncertainties for all future accounting
years until final claims development are derived. These results can be compared with the
Wiithrich-Merz formulas. Finally, a numerical example is presented in section 7.



2 Notation and Data Structure

The starting point of claims reserving are observations D; from accident periods i =
19, - .., 1 and development periods j = jg,...,J arranged in a table with ¢z on the vertical
axes and j on the horizontal axes. In the following we will call D; a data triangle, also in
the case, where the shape is a trapezoid.

The data in the triangle are denoted by C;; > 0 and represent the cumulative claim
figures (usually claim payments or incurred losses) of accident year i € {ig,..., I} at the
end of development year j € {jo,...,J). We further assume that the number of accident
years is bigger or equal to the number of development years, that is J — jo > [ — 1.
The index jp is introduced because in the actuarial literature the first development year
is sometimes denoted by zero and sometimes by 1, hence j, is either zero or one.

devolopment®ears
jo Jotl j J

i+ observations
Dy

accident@years

claims@levelopmentiriangle

At time I, the data C;; € D; in the upper left part are known, whereas the data
C;; € Df in the lower right part are future observations we want to predict. We assume
that all claims are settled after development year J and that therefore C; ; denotes the
ultimate claim of accident year .

Some notations:

- diagonal functions
To simplify notation and as already done by Ancus Rohr in [12] it is convenient to
introduce the diagonal functions

Definition 2.1 diagonal functions

Ji = max{j such that C;; € Dy}, (1)
i; = max{i such that C;; € D;}. (2)

Note that C; j, is the diagonal element in row ¢ and that C;; ; is the diagonal element
in column j.

- The set of observations at time I is given by

D[:{Oi,j:i:i(h”'a]) ]S]z}



- Later we will also need the set of observations known at the end development year
J, which we denote by

Bj = {Cz,k : C@k € Dy, k< j} (3)

- coeflicient of variation
We denote the coefficient of variation of a random variable (r.v.) X by

Var (X)

CoV (X) := “EIX]

- In this paper empty sums and empty products are defined by

Definition 2.2 (empty sum and empty product)
Zj xr = 0 ifu<l,
Hk:l ry = 1 ifu<l|.

- We will later in the paper use the following weights:

Definition 2.3 The weights w; ; are defined by

Cij, if Cij €Dy
Wy = N . (4)
Cer if Ol',j € Dy

z?] ’

3 The chain ladder method

3.1 The chain ladder method

The CL method is a pragmatic method which has been used for decades for estimating
reserves. The basic assumption behind CL is that, up to random fluctuation, the columns
in the development triangle are proportional to each other, i. e. there exist constants f;,
J=1Jo,---,J — 1, such that

Ci,j—i—l ~ fjcz',j~ (5)
The constants f; are called claims-development factors, CL factors or age to age factors.
Given the information Dy it is natural to estimate these unknown constants by

ij—1
fCL — Z’LJ:lO Civj+1 (6)
j i1 :
Zi]:io Cij
Due to (5), the ultimate claim of accident year i is predicted by

J—1
Cop=Cii | L " (7)

J=Ji



and the C;; in the lower right part of the triangle are estimated by
7j—1
COl = Cog T FE" for i =g, 1, j=ji+1,...,J (8)
k=ji
(8) are called the CL-predictions. It is also useful and meaningful to define
ég;L = C’iﬂ' for Ci,j € Dy. (9)
The CL reserve J/%ZCL of accident year 7 is an estimate of the outstanding liabilities
J
r=Y c, (10)
J=jit+1

and is the difference between the CL prediction @C % of the ultimate claim and the cumu-
lative claim C; ;, known at time 7, i.e.

RCH=CCf - Ciy, (11)
Finally
I
Ry => R (12)
=10

is the total reserve over all accident years.

3.2 The stochastic CL-model of Mack

The following distribution-free stochastic model underlying the CL. method was introduced
in [7] by Mack .

Model Assumptions 3.1 (Mack-model)

i) Cumulative claims C; ; of different accident years are independent.

ii) There exist positive parameters f;,, ..., fj—1 and J?O, ...,0% | such that for all i =
19,---, 1, and all j = jo,...,J —1
E[Cij+1]Cijo, Cigorr, -+, Cigl = [iCiyj, (13)
Var(Ci7j+1|C’i,j0, Ci,jo-i—lv c. 7Oi7j) = O'?Ciﬂ' (14)
It is useful to introduce the indiwvidual CL ratios
Cy it
Fj=— 15

Because of model assumptions 3.1 F; ; belonging to different accident years are indepen-
dent and it holds that

E[Fi;|Bi] = i, (16)
2

Var(Fi7j|Bj) = QZ] with wi7j:OZ"j. (17)
Y]
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We have deliberately written (17) in this more complicated way, because conditional
on C; j, the denominator C;; in Fj; is no longer a r.v., but a constant playing the role of
a Welght W;,; = Ci,j-

The following properties with regard to the estimators ijL are well known and can
easily be verified:

Properties 3.2

i) The estimators (6) can be written as a weighted mean

i;—1 ij—1
CL § { %J §
fj = w '-Fz',ja where We,j = Wy, 4, (18)
i=ig Y i=io

ii) Conditional on Bj, it holds that

E [J?J.CL( Bj] _— (19)
p i1
Var (ijL’ Bj> = U()T.j,j’ where we j = ; W; ;. (20)

and (19) has minimum variance among all linear unbiased estimators.

ii) o3 can be estimated by
ij—1
1 < i\ 2
~2
70

and it holds that
E[5]]B;] = o7,

Most of the following properties with regard to the F;; are well known. For complete-
ness a proof is given in appendix C.
Properties 3.3 It holds that

i) Conditional expectation:

E[Fx| Bl = fi forj<k<J-—1, (22)

ii) Conditional dependence structure:

{Fix|Bj : k=3j,...,J —1} are uncorrelated, (23)

ii1) Conditional coefficient of variation:

1
CoV (Fix| B;) = % E {—

BJ} forj<k<J-1. (24)



3.3 Mean square error of prediction, telescope formula and es-
timation principle

As measure for the CL reserve uncertainty we use the conditional mean square error of
prediction (msep).

Definition 3.4 The conditional mean square error of prediction (msep) of the CL pre-
diction CZCJL s defined by

msepe, ,|p, (C ) {(@CJL — C’M)Q‘ DI}

The conditional msep of other predictors and estimators are analogously defined. Note
that

pCLY\ _ ACL
msep g,|p, (Ri ) = msepe, |p, (Ci,J> ;
since RCL C’ — C;;, and since C; j, is known at time 1.

To derive estlmators of this msep we will make extensive use of the following telescope
formula.

Lemma 3.5 (Telescope Formula) For any real numbers x; and y;, j = 1,2,...,J, it
holds that ,
J
szl T — H] . Z (H xk) T — yj) ( H ym> . (25)
Jj=1 \k=1 m=i+1
Proof:

This result is well known. We show it for a product with J = 3. The extension to any
number J is self evident.

T1ToT3 — Y1Y2Y3 = T1T2T3 — T1T2Y3 + T1X2Y3 — T1Y2y3 + T1Y2Y3 — Y1Y2Y3
= (21— 1) Yoys + 1 (T2 — y2) ys + 2122 (T3 — ¥3) -
O
In the formulas of the conditional msep there appear the unknown CL factors f;. To find

an estimator for the msep we have to estimate these unknown constants. As a general
principle we replace them by the estimators f;. But we can’t do it for the quadratic

—~ 2
difference terms ( fjc L_ fj> , because this would give an estimator of zero, which is not

meaningful. To find an estimator we have to study the fluctuation of ECL around f;. For
this purpose we take into account as many observations of D; as possible and consider

the conditional r.v. ijL ‘ B; with moments

B|fH8] = 5 (26)
E[(ECL_fJY‘Bj} _ Z:“—iwj (27)

Based on (27) we will use the following estimation principle:

8



Estimation Principle 3.6

a)

~2
o

estimator of (E-CL — fj>2 =F [(F; — fj)2‘ 5| = Z”—{w (28)

b) Other functions of f; such as Hj:ji fj2 are estimated by replacing the unknown f;

by ijL .
Remarks:
- Note that
;22_;1 = (cov (77[B)))"  and hence
=10 7':.7
s - (@ () &

fCL Zz' 10 wl:j

4 The ultimate run-off prediction uncertainty

The ultimate claims development results (CDR) are defined by

CDR,; uitimate = @C JL — ;5 for single accident years ¢ = 1,...,1,
CDRyot uitimate = @Cof 7 — Clor,y for the total over all accident years,

where , ,
ACL ACL
CtotJ = E ey C@J» Otot,J: E o Ci,J-
1=10 1=10

In this section we derive the ultimate run-off uncertainties defined as the msep of the
CDR in a slightly different way than in Mack (see [7]).

a) single accident year i

msep ., Jlon (C’ ) {(C’M — CfJL)Q DI]

= E | (Cis — E[Ciy| D1))| D | + E (E [Cy s D] — Ciy ) Dy | .(30)
- A L[ 1 ’
process v;rriance PVi ) estimatior:,error EFE; i




Process Variance PV :
J—1 J—1
A = Cyy, (H Fy-11 fj> :
J=Ji J=Ji

where the diagonal element C; ;, is a multiplicative constant playing the role of a

By applying the telescope formula (25) we obtain

J—1 Jj-1 J—1
A = wz‘,ji{(Fz‘,ji—fji) IT H+ + 115 Es -1 ] £

J=Jji+1 k=j; I=k+1

J-2
o+ H Fip(Fijo1— fJ—1)} .

kijL
J-1
= Z 1] ’Lj f] H fk
J=ji k=j+1

Hence

PV, =E[A}| D] = <Z( ~)HZ_;+1fk)> Dr|.  (31)

J=Ji
The cross terms vanish since

E[C;;Cijk (B fa)( ijtk — fir)| Dr] =
=E[E [CuCsz( — i) (Fijox — five)| Bisa]| Dr] = 0 for k > 0,(32)

where we have used that {Fi,ﬂk : k> 0} are conditionally unbiased given B;y.
Hence

J-1
PVi = Y E|Cy(Fy =1y (szj+1 i) 'DI]
j=Ji -
—1 B J—1 2
= ZE E <Ci,j (Fij — f) H fk) Bj| Dy
J=Ji i k=j+1
J—1 J—1
j:jz k=j+1
= ZE 7“]|,Z)[ 2;- (34)
= fi E[Ci;| D1l
By applying the estimation principle 3.6 we obtain
- R 9 J—1 8’2 1
PV, = (Cf}) Yo , (35)

w. .
=i (f jCL> "
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where w; ; are the weights as defined in (4).
Remarks:

— (35) is the same formula as in Mack [7].

— From (24) follows that
1
COV(EJ’|D1) f2E |:—‘D[:| .

Hence the summands in (35) have the following intuitively accessible interpre-

tation
~2
0 1 — 9
———— = CoV (Fi;|Dr)”. (36)
™
J

Estimation error FE; :
The estimation error EE; as defined in (30) is given by

EE; = E[B}| D], (37)
where

B = (E[CID)-Cy)

J—-1 J—1
W j, (H fj - H ]/C;CL> . (38)

J=Ji J=Ji

By use of the telescope formula (25) we obtain

J—1
Bi =Y E[Ciy| D) (f; - [*) H - (39)
J=Ji k=j+1

Conditional on D;, B; is an unknown constant and by applying the estimation
principle 3.6 we obtain

— ~

EE;, = B2

A kS 1
(CH) Y o (40)
3= (f]CL) Zi:io wi,j

Remarks:

— (40) is the same estimator as in Mack [7].
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— In (41) we have seen hat

2
-CL‘ Bj) : (41)
which is an intuitively accessible interpretation of the summands in (40) .

b) Total over all accident years

Process Variance PV,
Since different accident years are independent it follows that

1 I

ﬁ‘\/tot - Z f‘\/z - Z ﬁ‘\/Z
1=10 1=15+1
I R 9 J—1 82 1
- > (@) (T2
.= ’ — ( rCL Wi ;
1=iy+1 J=Ji <f] )

By changing the order of summation between i and j we obtain

_— J=1 52 ! 1 2
ACL
PV =3 2y o (CF) (42)
=40 <fj ) i=ij b

Estimation Error EE,,

where
1 1
Bw = ) Bi= ) B
i=ig i=iy+1
I J-1 J—-1 N
= ¥ (ZE[CMDI] II f,fL>.
i=ig+1 \j=j k=j+1

Changing the order of summation between i and j yields

J—1 I J—1
B =Y | S ELC I T 50 ) (1 - 7).
J=Jo =1, k=j+1

By by applying the estimation principle 3.6 we find

N2
_ R I CL
ooz (X o)

EFE = E Y 2 i—i—1 .
. - ..

j=io (ijL> (Zi:io ww)

12




Remarks:

— Note that
Loz 2L (%)
EEtot > ZEEz = Z R : 2 izji~—1 7
= ) )
c) result

The results in the following Theorem except formula (46) are a summary of (30) , (35) ,
(40), (42), (43).

Theorem 4.1 The msep of the ultimate run-off risk can be estimated by

a) single accident year i

mser OCL oL 2 JX_E 832‘ 1 1 (44)
msepci D ( i,]) = < i,J) Y 2 + i—1 44
|1 = <ijL) (I Zl]:m W

where the weights w; j are defined in (4);

b) total over all accident years

~ 2 - 2
oa e (a@) (L)
e~ CL J 9 - ] b
msep C = E E + :
Ctot,J|DI t0t7‘] ~ W; = Zj—l
17]

2
J=Jo <ijL> i=t; Zi:io Wi,j

(45)
Aor )’ Zf:ij CZCJL 8? 1
= (Ctot,.]> ACL N 2 i;—1 ) (46)
Clot.y (f.CL> Ditip Wiy
J
where ,
thotL J = ZHO CZC JL
Remarks:

— The first summand in (44) and (45) represent the process variance and the
second one the estimation error.

— (44) is the same formula as the Mack formula (95) in appendix A. However,
(45) and (46) look different to the Mack formula (96) in appendix A. The
covariance terms have disappeared, they are much simpler and have an intu-
itively understandable interpretation (see the second last bullet point of these
remarks). But they give the same results as (96) .

— Formula (46) was already found by Ancus Rohr in [12]. But his derivation is less
stringent, as he did not calculate the msep of the ultimate claims development

result CDR,;;, but the msep of 65?%%, where C'DR,,;; is a first order Taylor
expansion of CDR,;.

13



— For the process error the uncertainties due to the F;; sum up, whereas for
the estimation error several accident years are affected simultaneously by the
uncertainty of f; FOL. This is the reason why

1 1
F‘\/tot = ZF‘\/“ but l/;Etot > ZE/‘EZ

=10 =10

— intuitively accessible interpretation
From (36) and (29) we see that (44) and (45) can be written as

5ho, o, (CF) = (65})2 {JZ (cw( Figl B)? + CoV (7] @)2) } ,

J=Ji (47)

@Ctot,J|D1 <6t€fj> = <Ctot J>2 (Zj ]1 qj <COV (fCL‘ ))2) ; (48)

I AcL
> i, Ci

where ¢; = —=o s the fraction of Ctot 7, which is affected
tot,J
by the uncertainty of f}jL . (49)

(47) and (48) give a good intuitive understanding of (44) and (46), as the
coefficients of variation CoV (F; ;| B;) and CoV <ECL‘ Bj> are good intuitive

measures for the relative deviation of F; ; and ijL from the "true" CL-factors
f;j. In particular, (48) is a very intuitive formula.

— Instead of distinguishing between the process variance and the estimation error
we could apply the telescope formula (25) directly to the ultimate run-off risk

ACL
Zi,ult = Cz J — C

J—1
= Wiy <H Fij— H ECL>

- ST (- 57) 1 50}
J=Jji \k=j; m=j+1
J-1 J-1 J-1
= N oy Fy -1 I] Wuzm( S7) TT Fa-s0)
Z:ji m=j+1 B z]l m=j-+1 .
A; B;

However the summands in (50) are correlated, such that the calculation of
E [Zzult‘ Dy] is rather complicated. But note that the C;; in B; play the role
of "stochastic weights", which are not yet known. A natural procedure is to

14



replace them by the forecasted weights w; ; = @CJL and to consider

J-1 J-1 J-1 J-1
Lt = d CiiFy— 1) 1] ok + > wi (fj—J?jCL> 11 ok (1)

J=1Ji m=j+1 J=Ji m=j+1

Then we immediately get,

~ T ~ ~ o |22 52 1 1
B2 D] = (CF) A s [+ =5 ,
i=ii (fch> Wig ity Wi

which is the same result as the one found in Theorem 4.1. Hence by replacing
the not yet known stochastic weights in B; by the forecasted weights w; ; and
then calculating the msep of the modified r.v. Zi,ult we end up with the "cor-
rect" estimator (44) .

Proof of Theorem 4.1:
It only remains to prove that (45) can be expressed by (46) .

( N2 N2
-1 ~ I CL I CL
o g (cr) (2L,
— W + i,—1
3=jo ( ijL> i=i; vJ D itio Wi

\

no
|

~

J—-1 ~2 J—1 I I  AcL
9 el Z ACL 2ii; Cila
= 3 H fk Cz 7 1+ 1 A7
7oL ’ S CCk
Jj=jo f] k=j =1 i=tg ~i,J
\
(
J-1 ~2 J—1 I ACL
_ 9; For ocr Clotr
= N2 k iJ -1 AL
=40 <fJCL> k=3 i=i, Zi:io i,
\
J-1  ~2 I AcL
_ (aer ) 0; 1 2y, Ci
- tot,J ~ 2 i;—1 aCL
j=jo < ijL> Doilip Wi tot,

The one-year run-off prediction uncertainty of the
next accounting year

In the new solvency regulation (SST, Solvency II), a time horizon of one year is considered.
Therefore the reserve risk relevant for solvency purposes is the one-year run-off risk of the
next accounting year.

In the previous section, claims reserving was considered from a static perspective. For
solvency purposes, the claims reserving has to be seen as a dynamic process, where the

15



predictions are updated based on new information which become available during the
run-off process. At the end of the next accounting year I + 1 there will be available the
data D;y1. The CL-factors and the prediction of the ultimate claim will then be made
on the basis of Dy, ;.

developmentiyear

1 Dy 1 Dyt

observations G j

¢ =CL() e L)
b | Gijat | G ¢l

: ’—,I CL-predictions ¢! ’
! !

As in the previous sections we denote by ECL and @C;L the CL factors and CL forecasts at
time /. But for the future accounting year I 4 1 we will indicate by a superscript the time-
point of the corresponding estimates, e.g. J/”]-CL(IH) and @C JL(IH). Note that, conditional
on Dy, ijL(Hl) and @C JL(IH) are r.v., whereas ]?]-CL and @CJL are given constants.

In the following we derive the msep of this one-year run-off risk strictly within the
classical model of Mack.

a) single accounting year
The claims development result of accident year ¢ in the P&L statement of the next
accounting year I + 1 is given by

I+1 =~ NCL(I+1
CDR"™Y = ¢t — oY
and

70D _ _oppUty

J-1 J-1
SOL(I+1) R
= wi,ji{-Fi,j,- H fj ( )_fj(jL H ijL}- (52)
J=gi+1 J=gi+1
With the telescope formula (25) we can write (52) as
(a+y _ oL J-1 ACL}’ o < JoU oy oyl ”CL))
Z; = fUZ,]i { <E7ji i ) Hj:jﬁ_l J; l+wai Fij, Hj:ji—i-l I Hj:jﬁ_l J; A

-~

-~
Ai Bi

By definition of best estimate reserves we forecast a C DR of 0. Hence the msep of
the one-year run-off risk of the next accounting year is given by

2
msepCDR(zH)’DI(O) = E|:<ZZ(I+1)> ‘D[:|

= E[A|D/| +E|[B}| D] +2E[ABi|D;].  (53)
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For the first summand in (53) we get
~ 2 J-1 ~ 2
2 2 2 CL CL
E [AZ | DI] = Wiy {E [(E:Jz - sz) |D1] + (sz —Jg > }szjiJrl < J >

J—1 —~ 2 ~ 2 J—1 2
_ 2 CL 2 . FCL TCL
— wz,giO'ji Hj:ji-i-l (fj ) + wZJz <f]l 7 ) Hj:ji+1 <fj > )
which, by use of the the estimation principle 3.6, is estimated by

~2
B4 D] = (CF) g d 1

N2 — + i1
CL Wi j; E Wi 5.
Ji k=iq 3Ji

For estimating the second and the third summand in (53) we first note that

(54)

i ij—1
oL+ oL Daisio WigFig Dol wiiFi
f J —f J - i; - i1
Zi:io Wi, j Zi:io Wi, j
*CL
— o (B - 1), (55)
where
W
4= (56)

>oilio Wi

Since the observations of different accident years are independent it follows that

{Fm, ffff”l), . f—L1([+1)} are independent, (57)
{J?J‘CL(IH)’ fygi(llﬂ), o ,ffff””} are independent. (58)

From the model assumptions 3.1 and from (55) and (57) follows that

2 2 05
_ Ji
B [Fi,ji /DI} - Ju wi,ji7
E []?]QL(IH) D[] _ }}’JL +a (fj . ]CL> ’
2CL(I+1) 2 Ui
Var ( f; Dy) = aq; ,
wiv]z
2oL(1+1)) 2 (7oL o\, 2 05
E {1 Dr| = \fi"+afi— T T
2,74
and, by applying the estimation principle 3.6,
~2
~ —~ 2 o
B[Ry = (FF) + .- (59)
B [ijL(Hl) Dz] _ fAjCL7 (60)
~ 2 N2 R 1 1
B [ J?jCL(IJrl)) D[} _ <ijL> n G]Q-UJQ' — I
Zigzio Wi,j Wi ji
N2
= (F5) + 0 (61)
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where

With the estimation principle 3.6 we immediately obtain that
E[A;B;|D;] =0, (63)

o~ I opa+ny U/t CL))‘ }_
E [(Hj=j¢+1 fj HJ =Jji+1 Di| =0.

From (57) and (59) follows that the second summand in (53) can be estimated by

£ 5] _wiﬁ{«?)gi) ( JH (@cL>2+bﬁ§-) - h (ECL>2>}

Jj=Jji+1 Jj=Ji+1

since

J— 1 8’2 J-1 8’2
_ WH(f“) 1+ i L4b—2— | =1 }.(64)

~ 2
- Wy 5, CL T CL
( Ji J=gitl j

By plugging (54), (63), (64) into (53) we get

M

7 (1+1)) 2 Aor)? 7; 1 1
E (Zi ) D,| = (CM) h = + (65)
< jg’L) 2,74 Zk:io wk,ji
) R 5
+(CCF) S {1+ e N I R
Wi ( fL> j=iitl (fJ-CL>
Remarks:
— From (60) and (61) we see that
CF 2
bj—d = CoV ( FOHTHD DI> , (66)

()

which is an intuitively accessible interpretation.

— Note the difference between

CoV (fA]CL Bji> = measure, how much f will deviate from f;, if only
the data B;, are considered as known and non random

and

CoV (ijL(]H)‘ D[> = measure how much ]?CL(IH will deviate from J/”\CL if

all data D; are considered as known and non random.
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b) total over all accident years

We complement the observed triangle by filling up the lower right not yet observed
part with the CL-forecasts Clcf and take the total over each column, that is we

define
I

ACL . _ E
Ctot,j T wt0t7.7: ’L:ZO witj’

where the weights w; ; are defined in (4). Analogously we define

~ I

CL(I+1 I+1

C (+):—E”w§7j+),
1=10

tot,j

where

g ACL(I+1 .
” Ci; D otherwise

(I+1) _ { Ci.g if Ci; € D

By definition of ]?jCL and ]?jCL(IH) and of the CL-forecasts it holds that

7—1
~CL 7CL
Ctot,j = Wiot,jo | | fj 5

J=jo

7—1
ANCL(I+1) 2CL(I+1)
Ctot,j = Wiot,jo H fj .

J=jo

The C'DR of the next accounting year for the total over all accident year is given
b
Y C’DREItH) _ atctLJ _ eI+

tot,J
and
Zi' = —CDRy™
J-1 J-1
- ~
= Wiot,jo (H fj R _ H ijL> .
J=jo J=Jo
From the independence property (58) and from (61) we immediately get
R T 2 N 2 | It G2
E [(Zt(of )) ‘D[} - (C%) I1[1+6-—] -1 (67)
i=jo ( ijL>

result
The following Theorem is a summary of (65) and (67).
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Theorem 5.1 The msep of the one year run-off risk in the next accounting year
I+1 can be estimated by

a) single accident year

~2
60L 9 1 1
MSEP ppUI+1) D,(O) iJ — - + i—1 +
| COREEN e
Ji k=ig ¢
~2 J-1 ~2

0. (o
wi i 7oL\ H bj o)\ 2
b ( jz.L> j=ji+1 <fj )

where
b= E , (69)
<Zi]:ig wi,j) <Zi]:io wi,j)
w; ; as defined in (4).
b) total over all accident years
. 9 J—-1 6_\2
@CDR%?M‘DI(O) - (C%) IT [+ el RN S

where b; is given by (69) .
Remarks:

— The first summand in (68) reflects the risk that the observation on the next
diagonal will deviate from the forecast at time I.

— The second summand in (68) reflects the risk of updating the forecasts of later
development years due to an update of the estimated CL-factors from time [
to time 7 + 1.

— The estimator (70) is surprisingly simple and even simpler than the estimator
(71) for a single accident year .

— intuitively accessible interpretation
From (29), (36) and (66) we see that

2
o 1 —
— = CoV (F,|B))’,
( CL) iji
Ji
52 1 . 2
- p——) = CoV <ijL‘Bj> 5
S
< Ji ) k=ig kodi

bi—3 = C/(W(J?J-CL’DI)Z,



where the right hand side are easily understandable and intuitively accessible
interpretations of the items on the left-hand side.

The following Theorem is obtained by taking a first order Taylor expansion of (68)
~2

and (70). It is a good approximation, if b;

practical situations.

g

()

J

<< 1,which is the case in most

Theorem 5.2 The msep of the one year run-off risk in the next accounting year
I+1 can alternatively (Taylor approximation) be estimated by

a) single accident year

—

MSEP ¢ p i+ o, (0)

where

by =

b) total over all accident years

@CDRg(I):Fl) ’DI (O) = <Ctot,J

Remarks

(Zi

w;; as defined in (4).

2 (.
/\CL 2 wlj + 1—1 +
<ji > 7 Zk:io kg
= 2 ( J-1 52
SR GRS ey (71)
=ji+1 ( ]CL>
\
. : (72)
wm‘) <Zij:io wz}j)
. 9 J—1 82
) Db (73)

— (71) is the Merz-Wiithrich formula (see (97) in appendix A). Hence the Merz-
Wiithrich formula is obtained by a first order Taylor approximation from (68) .
In practical applications the numerical results of the two estimators are very
often so close to each other that the difference is negligible for practical pur-

poses.

— (73) can directly be compared with the corresponding Merz-Wiithrich formula
(99) in appendix A. It looks much nicer, since all the covariance terms occurring

in (99) have disappeared.
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— intuitively accessible interpretation
Analogously as in Theorem 5.1 we can look behind the formulas and we can
write (71) and (73) as

TSm0 = (68) { GV (R, 4 Gov (7048, | +
+ (@?})2 {Jilﬁ/ ( jos 91)2}, (74)
DI>2} ; (75)

which are intuitively accessible interpretations of (71) and (73).

9 (/-1
— ~ ~~7r [ 7C
msepCDR(Hl)‘DI (0) = (CgtI:J> { E CoV (fj L{+1)

tot —
J=Jo

6 The one-year run-off prediction uncertainty in fu-
ture accounting years

In the SST and in solvency II, the market value margin corresponding to the run-off
risk equals the discounted cost of capital, which is needed at the end of each accounting
year for the one year run-off risk in the next accounting year. For this purpose we need
estimates of the one year run-off risk for the accounting years I + k, k =1,...,J — 1,
evaluated at time I.

6.1 The Compatibility Condition
Note that the one-year CDR in the accounting years I + k, k =1,...,J are given by

C’DREIHC) _ 65;(1%—1) _ aff(l+k)7
I+k NCL(I+k—1 NCL(I+1+k
ODRI(Eot )= Otot,g )~ Otot,f] )'

Note also that accident year i is already fully developed in the accounting years {I + k : k > J — j; }
and that therefore R
CSJL(I+k) = CZ‘,J for k Z J —]z

The sum of the one year claims development results over all future development years

is equal to the ultimate claims development result. Hence the one-year run-off risks
Zl.(”k) = —CDRZUHC) satisfy

J—j; ~
St = ¢, -C (76)

J ~

k=1 Zt(gtJrk) = Otot,J - Ct%i}a (77)

and hence

E {(Z;l Zz'(Hk))Q’ DI} _ . {(6«20} B Ci7]>2
)

DI] =msepg, |p, (@ff) . (78)

J I+k ~ 2 .
E{(Zkzl Zi4 DI] — E[(Cgtfj—c,,J) DI] = msenc,,, ip, (Clats) (79)
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By definition of best estimate reserves the forecast of the claims development result
in future periods is always zero. For this reason it is often argued that the process of

best estimate forecasts {@B f(”k) ck=0,...,J } is a martingale and that therefore the

one-year CDR, which are the increments of this process, are independent. Based on this
martingale argument it is then required that the estimators of the one-year run-off risk
should satisfy the following "splitting" property:

Definition 6.1 (splitting property) FEstimators of the msep of the one year run-off
risk fulfil the "splitting property” if

g o ~c
Zk—l MSEP o p R0 p, (0) = msePe, ,|p; (CZ J> fori=1ig,.... I , (80)

S - /\ ~
Zk— mSepCDR(I+k)|DI (0) = msepctot,J|DI (Cgtljj> ’ (81)

=1 tot

where the right hand side of (80) and (81) are given by Theorem 4.1.

Remarks:

e The "splitting property" means that the ultimate run-off prediction uncertainty is
split over all future accounting years until final development.

However best estimate forecasts are usually not a martingale, which is also the case for
the CL-forecasts. The CL forecasts fulfil

B [60L(I+k+1)

i, J i, J i,J )

60L([+k)] _ 60L(I+k)

but they do not satisfy the martingale condition

[ OCLU+k+1) ‘ CCL (I+k) ] _ (CLU+k)
= Vi )

because the unknown CL factors f; are replaced in the CL-forecasts by its estimates ]?jCL
and fCL(HHk)respectively.

Assume, that the required capital (risk margin) for the run-off risk is calculated by a
fixed percentage of the msep (variance risk measure) and that we consider only nominal
cash-flows (no interest income). The requirement, to have enough capital for the ultimate
run-off risk is a weaker condition than the requirement, that this capital is also sufficient
to meet, from a today’s perspective, the capital requirement for the one-year run-off risk
at the beginning of each future accounting year until final claims development. Therefore
the msep for the ultimate run-off risk is a lower bound for the sum of the msep of the
one-year run-off risk. For this reason the estimators for the one-year run-off risk should
satisfy the following "compatibility" condition:

Condition 6.2 (compatibility) Estimators of the msep of the one year run-off risk
fulfil the "compatibility condition"” if for i = ig,..., I and for the total over all accident
years it holds that

J —_— —_— o . .

E oo 5D p R+, 0) > MSEP g, o, (CZCJL> fori=r1ig,...,1I, (82)
J N

Zk:O msepCDRg:rk)\DI <O> > msepotot,J‘DI (CtOt:J> ) (83)

where the right hand side of (82) and (83) are given by Theorem 4.1.
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6.2 Estimators of the msep of the one-year run-off risk in future
accounting years

It holds that

msepCDREH;M)’DI(O) = LK _(Zi(1+k+1))2 DI}

- F _E {(Z(I+k+1)>2‘ Dl+k:| DI:| : (84)
msepCDjokH))Dl(O) = F :(Zg;rkﬂ))? DI]

_ glE {(Zﬁj’“*”)g‘pw} D[] . (85)

The following estimator of the inner expected value of (84) is immediately obtained
with Theorem 5.1.

~2
~ 2 o 1 1
mSGpCDREI+k+1)‘DI+k(O) = (Ci,J) 1 \2 ) Corir + Zi_l o + (86)
Jit+k I=io Ljithk
o) ? (I+k) G o (I+k) CH
"‘(OEJL) 1+ B, H L+ B W ——5 | —1
(fffk> =gtk (ijL)
where
U _ Ciyris )
’ (S ) (S o)
ij+k—1 c ijth-1
J’L;C’L(I—i-k) _ Z ﬁFm’ where C, ; = Z w; ;, (88)
i=ig i=io
J-1
~NCL(I+k SCL(I+k
Cr = G I FHY. (89)
Jj=Jji+k

Note that the C;; appearing in (86) play the role of a "weight". The only difference
to (68) is that some of these "weights" are "stochastic weights" and not exactly known
at time /. A natural procedure is to replace them with the weights w; ; defined in (4),
which are either the already known weights C; ; € D or the forecasts @Cf at time [.
As mentioned in the remarks to Theorem 4.1 on page 13 in the last bullet point, this
procedure has given there the correct Mack-result.

We do the same here and check then whether the resulting estimators fulfil the com-
patibility condition 6.2.
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Theorem 6.3 The msep of the one-year run-off risk in future accounting years can be
estimated by

i) single accident year i, accounting years [ +k+1, k=0,...,J —j; —1

~2
~ 2 o5 1 1
— C itk
msepCDREHkH)‘DI(O) = <C’ZJL) AéL) 2 B + == + (90)
<fji+k‘> o Zl:io Wi, ji+k
Acr)? 1 0 0 un 0
+(Czj) ].+ Ji D) H ]-+b] J P} _1
’ Wi j+k ( 7OL - for
i < ]L+k) J=Jjit+k+1 < j >
where
b([+k) _ ]*HC,J (91)

J ij4+k—1 ij+k ’
7 L. J ..
(Zi:io ww) (Zi:ig Wi,

weights w; j as defined in (4).

i) total over all accident years, accounting years [ +k+ 1, k=0,...,J —1

9 J—1 8’2
- R e
5D gz, (0) = (G Hk 1+b; )<fci ;| -1p. (92
=it ; )

iii) The estimators (90) and (92) fulfil the compatibility condition.
Remarks:

- For k =0 (90) and (92) are of course the same as (68) and (70) in Theorem 5.1.

- The msep for accounting years with £ > 0 can also be calculated by filling up the
next k diagonals with the chain ladder forecasts to get an arificial new data set Dy
and by applying Theorem (70) on the remaining triangle in Dy, but by keeping
the estimators 8]2- from the original triangle Dj.

- (92) is again a surprisingly simple formula.

- intuitively accessible interpretation
Analogously as in Theorem 5.1 the expressions appearing in Theorem 6.3 can be
interpreted in the following easily understandable and intuitively accessible way:
2

- = CoV (F;; x|D ,
sk (701’ (Bt Drss)
Jit+k
1 82*+k ~ 7 FCL 2
i—1 . 2 - CoV <fj-+k‘8j+k> s
> v (72 |
1=io R\ itk
~2
(I+k) 9 A [ FCL(I+1) 2
by " ———= = CoV fj Drir) -

i
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Proof of Theoerm 6.3:

The derivation of the estimators in i) was already explained. ii) is obtained analogously.
iii) follows from the next Theorem 6.4 and the fact, that the estimators (90) and (92) are
greater than the estimators (93) and (94). O

As in section 5 the estimators in Theorem 6.3 can again be approximated by a first
Taylor approximation.

Theorem 6.4 The msep of the one-year run-off risk in future accounting years can al-
ternatively (Taylor approximation) be estimated by

i) single accident year i, accounting years [ +k+1, k=0,...,J—j;—1

_ ~cr\2 O, 1 1
msep(JDR(”’““)‘DI 0) = (OZCJL> % Wy i—1 ™
0 L Z'7 ji
< ]z+k> i Zl* l;]z"l‘k)
J—1 ~2
ACL (I+k)__ %5
+(CF) Y (93)
J=jith+1 (ijL>
where bg-”k) are given by (91).
i) total over all accident years, accounting years [ +k+1, k=0,...,J—1
o2 | &2, 6
msepCDjok“)‘DI (0) = <C££J> Z bg‘ ’ )—]2 (94)

Jj=jo+k (fA]CL>
where bg-”k) is given by (91).
iii) the estimators (93) and (94) fulfil the splitting property.
Remarks:

- The first bullet point in the remarks after Theorem 6.3 is analogously valid here.

- (93) and (94) are different to the Merz-Wiithrich formulas (100) and (101) . However
they give the same numerical results. This cannot be a pure coincidence. Thus they
must be same just written differently.

- The first summand in (93) reflects again the risk that the observation on the next
diagonal will deviate from the forecast at time I, whereas the second summand
entails the risk of updating the forecasts of the later development years. The first
summand looks similar to the one in Merz-Wiithrich, but note, that there is a
difference even in this first summand.

- (94) is again a surprisingly simple formula compared to the rather complicated
expression with all the covariance terms in (101).
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- intuitively accessible interpretation
Analogously as in Theorem 5.1 (93) and (94) can be written as

~ 2 — 2 — —~ 2
mS@pCDREI+k+1)‘DI (0) = (Cﬁ%) (COV (F%,J'H-k| Bji+k>> + CoV (f]?—j&:—lk sz'-i-k) +

N2 Jo 2
e 3 aw (e o),

J=Jjitk+1
2 [ & SOL(I+k+1) 2
—— ~ SIRY +k+
mSGPCDRg;LkH)‘DI(O) - <OgtLJ> Z CoV <fj ‘ D1+k> 3
J=Jjit+k
which are intuitively accessible and understandable formulas.
Proof of Theorem 6.4:

(93) and (94) are obtained by a straightforward first order Taylor approximation from
(90) and (92) .The proof of the splitting property iii) is given in appendix D O

7 Numerical example

Table 1 shows in the upper left part the data of a claims development triangle of medical
costs in accident insurance and in the lower right part the chain-ladder forecasts. Column
20 contains the CL-forecasts of the ultimate claims (in red) and the corresponding chain-
ladder reserves. The total reserves at the end of 2010 for this line of business amounts to
CHF 66.697 mio.

Table@ :@riangel®f@umulative@ayments@nEHFEA'000ZndTLforecasts

0 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 16 17 18 19 20 Reserves
1984 | 1'324 2230 2373 2465 2505 2'559 2'503  2'683 2755 2'849 2968 2999 3096 3'333 3420 3532 3678 3724 3797 3875 3'966
1985 | 1430 2796 3042 3136 3231 3400 3526 3582 3872 3905 3966 4'064 4'388 4'586 4914 5'394 5495 5597 5719 5824 6003
1986 | 1612 2970 3244 3352 3412 3469 3568 3618 3659 3680 3698 3729 3751 3787 3793 3799 3815 3824 3837 3851 3'858
1987 | 20075 3458 3724 3820 3864 3938 3974 3997 4017 4048 4059 4100 4'120 4'127 4144 4157 4201 4222 4233 4246 4253
1988 | 2673 4457 4'866 4'960 5055 5087 5135 5171 5258 5407 5431 5451 5465 5485 5497 5507 5519 5541 5568 5582 5'604
1989 | 2918 4730 5138 5302 5'359 5437 5501 5550 5569 5%600 5%605 5608 5610 5'653 5'672 5703 5742 5771 5776 5794 5804
1990 | 3052 4'900 5371 5600 5734 5'812 5'865 5932 5980 6058 6118 6141 6217 6264 6309 6354 6391 6408 6429 6447 6501
1991 | 2'649 4340 4'805 4'995 5097 5'163 5'315 5'375 5'500 5'586 5%35 5%97 5731 5758 5'804 5'834 5'859  5'880 591 61
1992 | 2779 4834 5283 5498 5%29 5670 5738 5'808 5'835 5935 6028 6059 6092 6111 6143 6169 6186 6321 105
1993 | 2492 4334 4782 4'968 5033 5107 5191 5230 5266 5349 5388 5399 5431 5459 5466 5471 5475 5'548  5'605| 128
1994 | 3026 5403 5%820 6063 6137 6197 6254 6512 6610 6750 6851 6910 6977 7059 7156 7217 7348 739 7473 210
1995 | 4'154 7574 8418 8836 9099 9276 9'440 9'591 9'825 100038 10187 10'361 10'479 10'564 10'647 10'776| 10'865 10'923 10'993 11'065 11'179| 403
1996 | 3490 6266 7052 7375 7505 7646 7746 7809 7'860 7'894 7922 7947 7976 8046 8110 8221 8289 8334 8387 8442 8529 419
1997 | 3557 7089 7812 8065 8303 8445 8542 8616 8697 8744 83816 8874 8946 9108 9233 9309 9'359 9'419 9481 9'579| 570
1998 | 4742 85819 9'821 10'355 10'662 11000 11283 11'509 11'650 11771 11'890 11'983 12'087[ 12'225 12'361 12530 12633 12701 12'783 12'866 12'999| 912
1999 | 6'508 11'826 13199 13'889 14'277 14'574 14'855 15140 15332 15469 15628 15'758| 15'930 16'112 16291 16’514 16'650 16740 16'847 16956 17'132| 1'374
2000 | 6708 13'382 15155 15797 16130 16'389 16'658 16'865 17'040 17205 17'321[ 17461 17'652 17853 18051 18299 18'450 18'549 18'668 18789 18'983| 1'662
2001 | 6283 11'983 13'552 14280 14'625 14'956 15'180 15281 15'364 15'474| 15%624 15750 15'922 16'104 16283 16'506 16'642 16732 16'839 16948 17'123| 1'649
2002 | 6297 12'810 14'166 14'883 15326 15'568 15'731 15'973 16'062[ 16253 16411 16'543 16724 16915 17'103 17'337 17'480 17’574 17687 17802 17'986| 1'924
2003 | 6369 12'594 14'450 15191 15'S61 15'902 16'050 16'186| 16'386 16'581 16742 16'878 17062 17'257 17'443 17'687 17'833 17'929 18044 18'161 18'349| 2'163
2004 | 7'735 15'339 17274 18177 18783 19'247 19'584[ 19'850 200096 20335 20532 20698 20'925 21'163 21'398 21'691 21'870 21'988 22129 22272 22'503| 2918
2005 | 9022 17415 19'896 21'148 22'027 22'522| 22'874 23'184 23471 23751 23'981 24'175 24'439 24'718 24'992 25'335 25'544 25'681 25'846 26014 26'283| 3761
2006 | 10'311 21215 24'530 26'123 27'200| 27'736 28'170 28551 28'905 29250 29'533 29'772 30098 30'441 30778 31201 31458 31'627 31'829 32036 32'368| 5'168
2007 | 10'945 21'346 23'646 24'651| 25341 25'841 26'245 26'600 26'930 27251 27'515 27738 28041 28361 28675 29'069 29'308 29'466 29'654 29'847 30'156| 5'505
2008 | 12073 22274 25'170| 26390 27129 27664 28096 28'477 28'830 29173 29456 29'694 30019 30'361 30'698 31'119 31'376 31544 31'746 31'953 32'283| 7113
2009 | 10'667 21'295| 23'857 25'013 25'714 26221 26'631 26'991 27'326 27'652 27'920 28'145 28453 28'778 29'097 29'496 29'739 29'899 301090 30286 30'599| 9'304
2010 | 12'385| 23'476 26299 27'574 28'346 28'905 29'357 29'755 301123 301483 30778 31'027 31366 31'724 32076 32'516 32'784 32'960 33171 33387 33'732| 21347
Total 66'697
£ 1.89% 1120 1048 1028 1.020 1016 1014 1012 1012 1010 1008 1011 1011 1011 1014 1008 1005 1006 1.007 1.010
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Table 2 shows the square root of the estimated msep for the ultimate run-off and for
the one year run-off in the next accounting year where the latter is calculated with the
"exact" estimator according to Theorem 5.1 as well as with the Taylor approximation
according to Theorem 5.2. We see, that in this example the numerical results of the two
estimators differ not more than in the second digit after the decimal point and that the
results with the "exact" estimator are greater, but only very minor in the second digit
after the decimal point.

Table®2
Reserves ultimate@unibff oneearFuniff
msepl/2 inBo@eserves next@ccounting®ear
msepu2 indoeserves
exact Taylor@ppr

1991 61 71 116% 70.74 70.74 116%
1992 105 87 82% 47.58 47.58 45%
1993 128 92 72% 45.87 45.87 36%
1994 210 115 55% 40.51 40.51 19%
1995 403 169 42% 88.48 88.48 22%
1996 419 238 57% 190.98 190.98 46%
1997 570 289 51% 139.94 139.94 25%

. 1998 912 378 41% 163.51 163.51 18%
S 1999 1'374 482 35% 198.78 198.78 14%
%. 2000 1'662 517 31% 106.76 106.76 6%
% 2001 1'649 493 30% 110.51 110.51 7%
'S 2002 1'924 516 27% 120.35 120.35 6%
° 2003 2'163 549 25% 187.36 187.36 9%
2004 2'918 632 22% 155.02 155.02 5%
2005 3'761 703 19% 160.31 160.31 1%
2006 5'168 814 16% 201.54 201.54 4%
2007 5'505 798 14% 224.48 224.48 4%
2008 7'113 862 12% 265.29 265.29 4%
2009 9'304 930 10% 437.82 437.81 5%
2010 21'347 1'795 8% 1'507.37 1'507.36 7%
Total 66'697 5'033 8% 2'435.88 2'435.86 4%

Table 3 shows the results obtained for the square-root of the one-year msep in future
accounting years until final development together with the ingoing reserves. The numerical
results obtained with the "exact" formula and with the Taylor approximation are again
practically the same with differences only in the second digit after the decimal point.
From the table we can also the splitting property of the Taylor-approximation.

In the current formula for calculating the risk margin in solvency II it assumed that
the required capital for the remaining one-year run-off risk in future accounting years
decreases proportionally to the remaining reserves. This was due to the lack of formulas
to calculate the prediction uncertainty for future accounting years. But now the formulas
have been developed and are here. Comparing the development pattern of the reserves
with the development pattern of the msep we see, that the latter decreases much slower.
This is not a surprise. Complex and complicated claims such as severe bodily injury
claims stay open for a long time, whereas "normal" claims can be settled much quicker.
Hence the proportion of the reserves stemming from complex claims is bigger in later
development years. But the prediction uncertainty of this kind of claims is bigger as for
the "normal" claims. But it also means that one will need more capital in solvency II
with this new formulas, since the risk margin will become bigger.
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Table®

total®verliGccident®ears

oneyear@unbff
msepll 2
"exact" Taylor@ppr.

2'435.88 2'435.86
1'801.67 1'801.67
1'661.06 1'661.05
1'564.28 1'564.27
1'426.15 1'426.14
1'250.72 1'250.71
1'163.14 1'163.14
1'099.81 1'099.81
1'027.23 1'027.23
953.60 953.60
874.67 874.67
788.65 788.65
692.48 692.48
602.20 602.20
518.85 518.85
341.16 341.16
274.70 274.70
244.81 244.81
198.87 198.87
162.87 162.87

sumBBearinsep 25'326'904

ingoingReserves

ind'000 dev.Battern
2011 66'697 100%
2012 48'513 73%
2013 40919 61%
2014 35'786 54%
2015 31'614 47%
2016 27'960 42%
_ 2017 24'694 37%
g 2018 21'662 32%
& 2019 18791 28%
£ 2020 16'067 24%
§ 2021 13'531 20%
S 2022 11'164 17%
® 2023 8'933 13%
2024 6930 10%
2025 5164 7.7%
2026 3648 5.5%
2027 2494 3.7%
2028 1'611 2.4%
2029 874 1.3%
2030 345 0.5%
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Appendices

A  Formulae of Mack and Merz-Wiithrich

A.1 Formula of Mack

Written in the notation of this paper Mack [7] has found the following formulas for esti-
mating the total run-off uncertainties for the CL reserves.

Theorem A.1 (Mack) The msep can be estimated by
i) single accident year i

o ~NCL ~NCL 2 — 83 1 1
msepci,J Dr (Ci"]> - <Civj) Z )2 w] + Zijflw (95)
?, . Z,]

J=1Ji (f]CL i=ig

where @C]L are the CL-forecasts and where w; ; are as defined in (4) .

it) total over all accident years

I
msepotot,J’DI (Ct0t7J> - Z msepCi,J

i=iy+1

o, (CF) (96)

I N I N J—1 6_\2 1
L2y cff(z C;?,?)Z b

i=ig+1 k=i+1 =3 (ijL m=io Wm.,j

A.2 Formulae of Merz-Wiithrich

In [10] Merz and Wiithrich found the following formula for the msep of the one year
run-off risk in the next accounting year (see formulas (1.2) and (2.3) in [11]).

Theorem A.2 The msep of the one-year run-off risk in the next accounting year can be
estimated by

i) single accident year i

_— ~onn\? Oy 1 1
msepCDRi7I+1|DI (0) = (Cz',J( )> ’ >2 < + i— ) (97)

where
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i) total over all accident years

I
mS€pODRtot,I+1|DI (O> - Z msepCDRi,I+l|DI <O> (99)
i=i 41
5 1 - 0 1
2y 3 e ) Sy RO
i=i;+1 m=i+1 (jfL D) Zl =ig Wi, j; J=Ji+1 (f/;CL(I)> ;5:1-0 Wk, j

In [11] Merz and Wiithrich also derived the following formulas for estimating the msep
of the one year run-off risk in future accounting years (see formulas (1.4) and (2.4) in

[11]).

Theorem A.3 The msep of the one-year run-off risk of future accounting years [ +1+k
can be estimated by

i) single accident year i (fork=1,...,J—j,—1)

o~

MSEPCpp, ;i D (0) =

:(aCL)Q 3§i+k ( 1 +ﬁ (1—04(1) > 1 ) (100)
i,J <ACL )2 GCL Jitm Ziflfk

m=ip Wm.ji+k

Jitk
OCL 2 8? () - 1 () 1
+\Cig Z PN Ak H — Qi -1 BE
j=jitk+1 (fj L) m=0 m=io Wm,j

ii) total over all accident years (fork=1,...,J —1)

1

o~

—
mS€pCDRtot,I+k+1|DI (0) - Z mS€pCDRi,I+k+1|DI (O>
i=iy+k+1
52

k
CL ANCL ji+k (I) 1
+2 E E C é—L | | (1 _%Z+m> pya (101)

i,J mJ 2 w
_ . itk
i=ty+k+1 m=i+1 ( iy m=1 m=ig m,j;+

J—1 /O_\Q k—1 1
j I I
2 3y eness ST (o] (- o) )
Lj

2
i=ij+k+1 m=i+1 j=Ji+k+1 (fJCL> m=0 I=ig
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B Discussion on the Estimation Error in 2006:
comparison between BBMW estimator and Mack
estimator

As mentioned in the introduction, there was was quite some discussion how to estimate
the estimation error in the classical Mack model (see [2], [8], [4]). In [4] Gisler introduced
the Bayesian CL-model. He then considered two specific Bayesian models, where one of
them was essentially the same as the model, which is considered in [11]. By taking a
non-informative prior he obtained the BBMW estimator for the estimation error. Thus
the Bayesian approach seemed to speak in favour of the BBMW estimator.

The introduction of the Bayesian CL-model turned out to be very fruitful (see [5],[3]).
It is a useful model for many situations in practice.

However, the Bayesian CL-model is a different model. It is different to the Mack model,
and in the mean-time I have come to the conclusion that the BBMW estimator is the
appropriate estimator in the Bayesian CL model, but not in the classical model of Mack.

In (37) we have seen that the Mack estimator is given by

——Mack ~ 2J71 82 1
EE, :(Cff) Yy — (102)

~ 2
= (7)Y
J=Ji <fj ) i—io 2,7

In [2] the authors suggested an alternative estimator

——BBMW g 2 G T \2
EE, =, | [I (ff‘L) +——|-11 (ijL> ., (103)
J=Ji Zi:io Wi, j J=Ji
what they called "conditional resampling". More discussions on the two estimators at
that time are found in [2], [8], [4].
We now reconsider the two estimators.
From the telescope formula we have obtained that the estimation error is given by

EE; = Bf,
where
J-1 R J-1
Bi=3CF(For=5) TI 4 (104)
J=Ji ~~ ~ k=j+1
51']'
d;

The graphics below visualises (104) for accident year i = i;_3. For simplicity we have
dropped there the index i. Note that both, the trajectory {@CL g=J-=3,..., J} as
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well as the trajectory {uj:: E[Cij|Df): j=J—-3,..., J} , are fixed and non stochastic.

To estimate B? we should have in mind that the §;; are realisations of r.v.

Ay = ijL (Fj - f]) (105)
ij—1 ij—1
W; 5
where F; = Z w ’J'E,ja We,j = Zwi,j :
i=ig oY i=io

and that
5, = E[AY|Dy] .

Since @(’;L is a known and given multiplicative factor it is obvious that one should consider

the conditional distribution of A;; given B; for estimating (5?].. This is exactly what Mack
does, and he obtains

B(a3]B) = (CoF
~2

2
Zi:io Wi
g -

~ —~ 2
= Blayls] = (0) < (106

i;—1
E Wy
1=10

Since {A,;j,,...A;;_1} are conditional on B; known constants, it follows that the r.v.
{A|B;:j=ji...,J —1} are uncorrelated. Hence {d;; : j = j;,...,J — 1} can be con-
sidered as realisations of uncorrelated r.v. which then leads immediately to the Mack
estimator (102).

In terms of the telescope formula, the BBMW estimator is obtained if one considers

the r.v. . i
B; = 25” <ﬁ] — fj) H fr (107)

=7 k=j+1

~2(Mack)

ij
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where

j—1
Cij = wiy H I, and where
k=j;
~ ~ 0'2,
the F; are independent r.v. with £ [FJ] = f; and Var (F}| B;) = J

i1 :
E . Wiy
1=10

Hence the known multiplicative constants @C]L in (104) are replaced by r.v. 5’” in
(107) ,which hardly makes sense in the classical Mack model.

However, in the Bayesian CL-model the CL factors f; are realisations of r.v. FjB (the
superscript B indicates that we are in the Bayesian model). The estimation error is then
given by

EE; = BY,

where
—CL

B = (E[Oi,J|DI]_Oi7J >

J—-1 J—-1 N
= wy, (H -1 ffL> . (108)

J=Ji J=Ji
With the telescope formula we also obtain that
R B 7CL T 2or
Br =Y O (PP =TT, (109)
where :
J
O;:j = wi,j]- H FkB
k=ji
which should be compared with (104). In the following we always refer to the Bayesian
CL-model considered in [11]. In this model the r.v. F” are conditional on D; independent.

By taking a non informative prior and in the cases where the two first moments of the
posterior distribution exist, these moments are given by

E[FP|D)] = " (110)
2
Var (FE|D;) = — 4 (111)

>
w. .
i=ig

From (108), (110), (111) and the conditional independence of the F/ we immediately see
that
J—-1 N 9 0_2 J—-1 ~ 9
2 CL L
Dl] =i, (] (fj ) t =T | - 11 (fj )
J=Ji Zi:io Wy 5 J=Ji

Hence, the BBMW estimator is the appropriate estimator in the Bayesian CL-model, but
not in the classical model of Mack.

E [Bf
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C Proof of Properties 3.3.

We have to show that

Y E[F|Bj] = fx for j<k<J-1,
b)
{Fir:k=4j,...,J —1|B;} are uncorrelated,
c)
(CoV (F | B;))? = ;:E [ t Bj:| for j<k<J-1,
Proof:
a)

E[Fix| B;] = E[E[Fii| Br]| Bj] = fu
b) Consider F;j, and F;; with j < k < [. Then
EFivFiy| Bl = E|E[FFy,| B Bj
= E[F L [Fi|B]|Bj]
—_——

fi
= NE[Fixl Bj
Jife

Var (Fz,k| B])
7
E[Var (Fix| By)| Bj] | Var (E[Fi| Bi]| B))
2 + 2
17 Ii
BJ} for j<k<J-1,

(CoV (Fixl By))* =

1
- U’fE{
fk; 'Lk

because the second summand in the second equation is equal to zero, since E [ F; x| Bi] =

Jr- O
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D Theorem 6.4: Proof of the splitting property iii)
Proof:

i) single accident year i

J—ji—1
—_—
Z msepCDR§I+"’+1)’D,(0)
k=0
J—ji—1 =2 J-1 ~2
_ (per 2 Tjisn 1 1 p+h) %
- i,J P 2 | ws ok + i—1 + J oL 2
— - 74 . P ¢
k=0 (]M) E =iy Wi, j;+k J=jit+k+1 (fg )
J—-1 = ~2 j—ji—1
I A o 1 1 I+k
— (Cck J +— + B (112)
1,J “CL 2 W s i—1 J
= t:J E w =
J=Ji ( J > - I=io 1,7 k=0 )
Bi;
By plugging (91) into (112) we obtain
1
Biji = =
w .
Zl:io L
Bij+1 = Biji+ = 2
E Wi E Wi
=1 =1
B 1 Wi—1,j
= i1 + i—1 i—2
=19 =19 =19
1 1
= i—2 = G411
E _ Wy, j E o Wiy
=19 l=19
1 1
=19 L Zl:io L
Hence
J—ji—1 J—1 ~2

— ~ 2 9; 1 1
Z msepCDR(HkH)‘DI(O): (Cff) Z AJ 5 + =i )

w4 .
k=0 7= ( ]CL> " E

which is identical to (44).
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ii) Total over all accident years

Ji—1 2 Jizl J-1 82
— _ (AcL (I+k) J
E msep CDREI;LkJrl)‘,DI (O = (Ctot,J) b] ~ 2
O
k=0 h=0 7=Jo (fJCL)
J—1 ~2 j—Jo
~ 2 ;
o OCL O-J b(1+k)
= tot,J N 2 J
J=Jo (f]CL> k=0
~—
Bj

Since j; = jo we see from (113) and the definition of B; ; in (112) that

1 1 (1)
B, = — — —b;
ij— wr J
Wy ; 5]
Zl:io ’
. 1 1 wr
- i;—1 o -1 B I—1 I—1
2. > () (X, )
I=io I=ip ) < I=ip I=io
1 1
X X
i l=ig
I
w
. Zl:ij L 1
- T ij—1
E wy E wy
lmip W Lz
I~
cet
. ZZZZ] l77.7 1
= — —
CCL ZZJ
tot,,
J I=i Ly
Hence
Ji—1 J-1 2
7 - 2 o~ 1
_— _ (AcL J :
E msepCDjoHl)’DI(O—(C’tOt,J) E o 9| (114)
k=0 j=Jo (ffL) > L, Wi
=0
where
Z[ oL
J ACL
Ctot,,j
(114) is identical to(46). O
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