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Abstract

Replacing Value-at-Risk (VaR) by Expected Shortfall (ES) in Basel 3 is under current
discussion, as ES is in general a better risk measure than VaR, more reliable tool for
risk management. Hence the question of providing a backtest for ES, as handy in
practice as the popular binomial backtest based on a violation process, used for the
VaR. It is what we propose in this study. Following the idea by Emmer et al. of
considering an empirical approach that consists in replacing ES by a set of a small
number of quantiles for the backtesting, comes the natural proposition of a simple
multinomial backtest for ES. It turns out to give reasonable results, certainly much
better than with the binomial backtest, helping to distinguish between models.
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1 Introduction

Much literature has been devoted to propose and study risk measures, as they constitute
an essential tool in terms of risk management and model validation. Without reducing
the rich literature on this topic, it is worth mentioning a few studies with a big impact in
practice. We can start with the work by Artzner et al. ([2]) who formalize mathematically
the properties that should be expected from a risk measure, defining the coherence, one
of its axioms being the subadditivity. If the subadditivity is clearly needed to be able
to measure the diversification benefit of a risk portfolio, another big issue at the heart
of a risk strategy, is about deciding the capital allocation among the various risks of the
portfolio. Here, Tasche ([14], [15], [16]) provides an optimal solution in terms of capital
allocation for coherent risk measures. For a given choice of risk measure, the next question
is then to evaluate it properly, and to check if the realized losses, observed ex post, are
in line with the ex ante forecasts. The set of statistical procedures designed to compare
realizations with forecasts is known under the name of backtesting. It is an inescapable
step in model validation, as emphasized by the new regulation.

The two main risk measures used so far in financial institutions and regulation are the
Value-at-Risk (VaR) and Expected Shortfall (ES; named also Tail Value-at-Risk, TVaR),
with a domination of the VaR in banks and regulation. The main usage of these risk
measures is to compute, from the probability distribution of the firm’s value, the Risk
Adjusted Capital in its different forms: Solvency Capital Requirements (SCR) of Solvency
II: yearly VaR(99.5%), SCR for the Swiss Solvency Test: yearly ES(99%), Basel II: daily
VaR(99%).
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Although Expected Shortfall (ES) is in general a better risk measure than Value-at-Risk
(VaR) because of its mathematical properties (in particular its coherence), it has also been
proved by Gneiting ([10]) to be non elicitable, leading to less straightforward backtesting
methods than, e.g., for VaR. It gave rise to a debate, but, as pointed out recently by
Acerbi & Székely ([1]), elicitability (or lack of elicitability) is not relevant for backtesting
of risk measures but rather for comparing the forecast performance of different estimation
methods.

In practice, in order to assess the quality of the VaR predictions, a popular and direct
procedure has been proposed, namely a binomial test on the proportion of violations (see
[7], [6]). Under the hypothesis of independence between the components of the violation
process (It(α)) defined by It(α) = 1{

L(t)>V aRα(L(t))
}, replacing VaR by its estimates, we

test if this estimated process behaves like independent and identically distributed Bernoulli
random variables with violation (success) probability close to 1− α.

This paper is a prelude to a more developed study on the construction of a multiomial
backtest for ES, as simple and costless as it is for the VaR, in order to get a regular
backtest routine, as it is done usually for the VaR with the binomial backtest.

For this construction, we proceed via an approximation of ES and introduce a multinomial
approach. The idea came naturally from the following approximation of ES proposed by
Emmer et al. ([9]:

ESα(L) ≈ 1

4
[ q(α) + q(0.75α+ 0.25) + q(0.5α+ 0.5) + q(0.25α+ 0.75) ] (1.1)

where q(γ) = V aRγ(L). Hence, if the four q(aα+ b) are successfully backtested, then also
the estimate of ESα(L) might be considered reliable. We can then build a procedure based
on simultaneously backtesting multiple VaR estimates evaluated within the same method
as the one used to compute the ES estimate.

Note that the Basel Committee on banking Supervision suggests a variant of this ES-
backtesting approach based on testing level violations for two quantiles at 97.5% and 99%
level (see [3]). However we will see that using only one quantile after the VaR is still not
enough to provide a good test.

In this paper we examine the relevance of this type of approximations (1.1), and so, of the
multinomial test, answering the following main questions: does a multinomial test work
better than a binomial one for model validation? what is the optimal number of quantiles
that should be used for such a test to perform well? looking at three possible forms of the
multinomial test, is it one that would be more recommandable? to help us answering these
questions, we proceed to two experiments, and compute for each, size and power of the
corresponding multinomial test. First we take a static view and test distributional forms
that might be typical for the trading book. We check if the multinomial test distinguishes
well between them, in particular between their tails. Then, we turn to a dynamic view,
looking at a time series setup in which the forecaster may misspecify both the conditional
distribution of the returns and the form of the dynamics, in different ways.

2 Multinomial Test

Suppose we have a series of observed loss (Lt, t = 1, . . . , n), and a predictive model that
produces the corresponding ESα forecast (at threshold α). We wish to test whether the
predictive model is adequate in modelling the tail distribution of the loss.
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In [9], it has been suggested to approximate ES via (1.1), but we can investigate how many
and which quantiles would be needed for a better model validation, varying the number
of quantiles in (1.1).

Let N be the number of quantiles that will be used to approximate ES, namely

ESα(L) ' 1

N

N∑
j=1

qj where qj = q(αj) = V aRαj (L), α1 := α < . . . < αN < αN+1 := 100% .

(2.1)

Then we build a multinomial test which tests simultaneously the N VaR’s, introducing,
as for the VaR backtest (see [7], [6]), the so-called violation process (It(α))t of VaR as

It(α) = 1(
Lt>V aRα(Lt)

) (2.2)

1 denoting the indicator function and Lt the loss at time t.

Forecasting the VaR at time t+ 1 by the VaR at time t:

q̂α,t+1 := V̂ aRα(L(t+ 1)) := V aRα(L(t)),

Christoffersen ([6]) showed that VaR forecasts are valid if and only if the violation process
It(α) satisfies two conditions:

• the unconditional coverage hypothesis : E [It(α)] = 1− α, and

• the independence condition: It(α) and Is(α) are independent for s 6= t

under which the number of violations has a binomial distribution with success (violation)
probability 1− α.

Here, testing simultaneously N VaR’s (with N > 1) then leads to a multinomial distribu-
tion (under the same assumptions) and we can set the null hypothesis of the multinomial
test as

(H0) : pj := E [1(Lt>q̂j,t)](= P [Lt > q̂j,t]) = pj,0 := 1− αj , ∀ j = 1, · · · , N . (2.3)

to validate the VaR forecasts, then the ES by approximation. To judge the relevance
of this test, we compute its size γ = P (reject H0)|H0 true] (type I error) and its power
1− β = 1− P [(accept H0)|H0 wrong] (1- type II error).

Various test statistics can be used to describe the event (reject of H0). In [4], Cai and
Krishnamoorthy provided a relevant numerical study of the properties of five possible
tests for testing the multinomial proportions. Here we propose to use three of them, quite
standard, namely the Pearson chi-square ([13]), and two of its possible modifications, the
Nass ([12]) and the LR (asymptotic Likelihood Ratio; see e.g. [5]) tests, for comparison.

The schema of the general procedure is as follows:

• We compute a series of qj = VaRαj , j = 1, . . . , N , with α1 = α < . . . < αN+1 = 1.
The choice of N depends on the available amount of data and will be chosen as
N = 2k, with k = 0, 1, · · · , 6 to be discussed in terms of the obtained results.

• We count the number of observations in each quantile-based cell (qj ; qj+1), introduc-
ing, for j = 1, . . . , N ,

Oj =
∑
t

1(qj<Lt<qj+1) .

For optimal performance of the multinomial test, we choose αj such that E (Oj) is
a constant, independent of j
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• Replace VaRαj by its estimates

• Test simultaneously the VaR’s, with null hypothesis (H0) defined in (2.3). The
alternative hypothesis (H1) is an unrestricted one for the χ2 and Nass tests. For the
LRT, (H1) is based on the normal distribution with parameters µ1 and σ21 distinct
from the mean µ0 and variance σ20 under the null

• Introduce the test statistic of your choice (the standard χ2 statistic, or an improved
approximation to it given by Nass, or another type defined as the LR statistics) for
testing multinomial proportions

• Compute the size γ and the power 1− β of the test

• Comparison and discussion

Then we devise a multi-steps experiment on simulated data, with both static and dynamic
views, to judge the performance of multinomial tests via their size and power, the ultimate
goal being to design the best possible multinomial test for model validation.

3 Application on simulated data

To answer the main questions given in the introduction on the relevance of the multinomial
approach we suggested, we consider two experiments. First, taking a static view, we test
distributional forms that might be typical for the trading book, and see if the multinomial
test distinguishes well between them, in particular between their tails. Then, we turn to a
dynamic view, looking at a time series setup in which the forecaster may misspecify both
the conditional distribution of the returns and the form of the dynamics, in different ways.
We compare if this multinomial approach offers better results in terms of model validation
than the binomial one, or that based on two quantiles only.

3.1 Static view

Here we consider typical distributions for the trading book, and look at the ability to
distinguish between the distributional forms, in particular between their tails. We compute
the size of the test, corresponding to the type I error assuming the forecaster works with
the right returns distribution. Then, in the case he would work with the wrong model, we
want to see if the test would detect it, so compute the test power.

We generate data from a standard normal distribution, as a benchmark, then from a variety
of heavy-tailed and skewed distributions. We consider for instance Student distributions
with 5 and 3 degrees of freedom (t5 and t3) to have moderate heavy and heavy tails
respectively, and the skewed Student with 3 degrees of freedom (denoted skt3).

Note that we assume that the mean and variance of the benchmark normal data match the
ones of the fitted model, assuming they are known, in order to focus on misspecification
of kurtosis and skewness.

We choose as null hypothesis (H0) that our data are drawn from a standard normal dis-
tribution, and define N quantile-based cells under this hypothesis, where N = 2k, with
k = 0, 1, · · · , 6. The goal is then to use the multinomial approach to backtest simultane-
ously the N quantiles from various data which are normal, t5, t3 and skt3 respectively, to
calculate size and power of the test.

It means that for each data set, we count data in each cell and use the multinomial test
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to compare with expected numbers under the null hypothesis of normality.

We choose different lengths n1 for the sample of backtest, namely n1 = 250, 500, 1000, 2000.

We calculate then the size and the power for a backtest of length n1, estimating the
rejection probability for the null hypothesis (H0) using 10’000 replications, changing seeds.
We present the obtained results in Table 1. The green color indicates good results (< 6%
for the size; ≥ 70% for the power); the red one, bad ones (> 9% for the size; < 30% for
the power), and the dark red, very bad ones (> 25% for the size; < 10% for the power).

Table 1: Rejection rate for the null hypothesis (H0) on a sample size of length n1, using a
multinomial approach with 3 possible tests (χ2, Nass, LR) to backtest simultaneously the N = 2k,
1 ≤ k ≤ 6, quantiles VaRαj

, 1 ≤ j ≤ N , with α1 = α = 0.95, on data simulated from various
distributions (normal, Student t3, t5 and skewed t3)

!
!
!
!

!
!
!

!

(i) Size of the tests

The size of the 3 tests introduced to judge the performance of the simultaneous
backtest of the N V aRαj (1 ≤ j ≤ N) can be read in the first row ”Standard
Normal” of Table 1. In Figure 1, we plot for each test, the size as a function of N ;
we do it for all the sample sizes we consider.

Figure 1: Size of the multinomial tests (χ2 (in
green), Nass (in yellow), LRT (in blue)) as a function
of N , for sample sizes n1 = 500, 1000 and 2000

Comments on Figure 1 :

- Results are more or less stable for Nass
test and LRT, increasing slightly with
N (for N ≥ 2) for the Nass test and de-
creasing very slightly for the LRT from
N = 4 (the difference is negligeable)

- For the χ2-test, there are numerical
problems to estimate the far extreme
quantiles (with probability more or less
0) whenever N ≥ 16

(ii) Power of the tests

In Figure 2, we present a set of three graphs of the power test results as a function
of N for various models:

• On the left graph, we consider a Student t5. We know that by nature it is
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Figure 2: Power of the multinomial tests (χ2 (in green), Nass (in yellow), LRT (in blue)) as a function
of N and for sample sizes n1 = 500, 1000 and 2000. From left to right, samples come from t5, t3 and
skewed t3 distributions, respectively.

more difficult to distinguish from the normal case, than when testing other
distributions with heavier tails. We observe that:

- for the 3 tests, we need n1 large enough (n1 = 2000) to distinguish between
normal and t5 distributions, in order to reject the normal hypothesis;

- for the LRT, it starts to reject the normal hypothesis at n1 = 1000 but for
large N (≥ 16), which makes sense as we need more information in the tail
to be able to distinguish it from a normal one (as already noticed in the
general comments).

• When considering on the middle graph a heavier tail, namely a Student t3, we
observe that:

- when comparing the power with that obtained for t5, it is larger, as ex-
pected. Results are more relevant;

- to have a power larger than 70%, we need to take n1 = 2000 for the χ2

and Nass tests; for the LRT, we can consider n1 = 1000 for N ≥ 4, and
n1 = 500 for N ≥ 32.

• On the right graph, we consider a skewed Student t3. Here, we obtain very
powerful tests, even from n1 = 500, whenever N ≥ 4. This is due to the fact
that the skewness pushes the tail on the right hand side.

To conclude, we can observe that:

- For all non normal distributions, considering only the VaR (1 point) does not reject
the normal hypothesis, for all tests. The VaR does not capture enough the heaviness
of the tail. The mulinomial approach gives certainly much better results than the
traditional binomial backtest

- The heavier the tail of the tested distribution, the more powerful is the multinomial
test

- For all the distributions, increasing the number n1 of observations improves the
power of all tests

- The LR test seems to be the most powerful and the Nass the less one

- In general, taking n1 = 250 does not provide satisfactory results, so we will not base
our discussion on this sample size.
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Let us look at the results to determine an ’optimal’ N , such that N is the smallest possible
to provide a combination of reasonable size and power of the backtest, in order to have a
backtest comparable with the one of the VaR in terms of simplicity and speed of procedure.

- We consider the values of N such that the size of the 3 corresponding tests lies below
6%.

- For n1 ≥ 500, the size varies between 4.2% and our threshold 6%. For the first two
tests (chi-square and Nass), the size increaes with N , whereas, for the LRT, it is
more or less stable (slightly nonincreasing with increasing N)

- The power increases with N and the sample size n1, for the 3 tests. It makes sense as
the more information we have in the tail, the easier it will be to distinguish between
light and heavy tails

Taking into account these observations on both the size and the power of the three tests,
N = 4 or 8 seems an overall reasonable choice.

3.2 Dynamic view

Here we use a similar strategy as before to compute size and power of the multinomial
test, choosing for instance the χ2 one, and design the same experiment as for the static
view, considering now a time series setup. We consider a Garch-t model with given pa-
rameters, as a benchmark model, and fit models of the various types: nonparametric (HS),
or semiparametric (GARCH-HS) to avoid having to specify model fully, or parametric, in
order to compare their test power.

Recall that the the standard unconditional historical-simulation method, named HS-method,
can be thought of as estimating the distribution of the loss operator under the empirical
distribution of the historical losses. It is the most popular method used by banks for the
trading book.

So we generate a sample data path of length 3000 using a GARCH(1,1) model with
Student-t innovations; it will be our benchmark model, denoted by GARCH-t in Table 2.

Then we fit to the benchmark sample, the following models, which aim at representing the
various possible types of models (even if the list could, of course, be completed):

- a GARCH(1,1) model with residuals obtained by the standard unconditional historical-
simulation (named HS) method; it will denoted by GARCH HS

- an ARCH(1) model with student-t innovations, denoted ARCH-t

- a model obtained by the HS method, denoted HS

- a GARCH(1,1) model with standard normal innovations, denoted GARCH normal

- an ARCH(1) model with standard normal innovations, denoted by ARCH normal

from which we deduce the respective VaRt
αj , j = 1, . . . , N, using a rolling window size of

1000.

The previous experiment (static view) has shown that N needs to be not too large to
obtain a reasonable test size (N = 4 or 8), hence for this experiment, it seems reasonable
to investigate the various cases with N ≤ 16. Next, we backtest the obtained sets of VaRαj

using our multinomial approach with the χ2 test.

We estimate the rejection probability for the null hypothesis (H0) using 3500 replications.
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In Table 2, we provide the obtained results when considering α = 95%, N taking the values
1, 4, 8 or 16. Recall that the column N = 1 corresponds to the binomial test performed
to backtest VaRα.

Table 2: Rejection rate of the χ2 test, with α = 0.95, N = 1, 4; 8, 16, performed on data simulated
from historical (HS), or GARCH / ARCH with innovations chosen from 3 different distributions:
empirical (HS), normal and Student (t).

χ2

Model 1 4 8 16

GARCH-t 2.8% 4.0% 4.0% 6.6%
(benchmark)

GARCH HS 0.8% 1.2% 2.0% 1.8%
ARCH-t 36.4% 35.0% 31.6% 30.8%
HS 42.2% 47.6% 43.4% 43.0%
GARCH normal 63.4% 69.6% 76.0% 79.8%
ARCH normal 75.4% 100.0% 100.0% 100.0%

On Table 2, we observe that:

- we have a reasonable size whenever N ≤ 8 (see the results indicated in green when
fitting the right model, 2nd row of the table)

- The GARCH HS is not rejected as we would expect, since it is very close to the
benchmark model. The HS method aplied to the innovations gives naturally a good
approximation of the Student innovations.

- the multinomial test accepts when the tails are treated correctly and strongly rejects
the wrong models

- this test discriminates better the tails of the models than the types respectively,
having the same tail or being HS model.

- it is a very powerful test when both the model and the innovation assumptions are
wrong

- Compared to the Binomial test, the χ2 test has a much higher power in detecting
misspecification in the innovation assumption of the predictive distribution

- Taking into account both the size and the power of the χ2-test leads to select N =
4 or 8. The value N = 4 would discriminate more the model assumption than the
innovation assumption, whereas for N = 8, it would be reverse (which makes sense
as we would consider more points in the tail).

4 Conclusion

In this study, we developed a multinomial approach to discriminate between models, and
applied it on simulated data. In an extended version of this work, we complet the tests,
and carry out the method on real recent data.

As expected, the multinomial test distinguishes much better between good and bad models,
than the standard binomial exception test. Backtesting simultaneously four quantiles
seems an optimal choice in terms of simplicity and speed of the procedure, as well as in
terms of reasonable size and power of the backtest.
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This multinomial backtest could be used for ES as a regular routine, as it is done usually
for the VaR with the binomial backtest, giving even more arguments to move from VaR
to ES in the future Basel III.

For sharper results, other backtests may complement this one, as the PIT already used
for distribution forecasts ([8]), or new ones, like the one suggested recently by Acerbi and
Székely ([1]) relying on Monte-Carlo simulation.
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