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Abstract

The paper studies the one-year estimation uncertainty associated with
using credibility-based loss reserving methods, when claim development
can be described by the models of Bühlmann-Straub or Hesselager-Witting.

1 Introduction

The Solvency II regime requires specification of the one-year uncertainty of es-
timates of outstanding claims, or to be more precise, the uncertainty associated
with one year’s development of estimated ultimate claim cost.
For a given cohort of claims, the estimated ultimate claim cost at any valu-

ation date is the sum of

1. claim payments already made since the cohort came into existence, plus

2. an estimate of outstanding claim payments needed to settle all claims of
the cohort.

A cohort of claims normally consists of the claims attached to an underwrit-
ing year or the claims incurred during an accident year, but other periods of
origin may also be envisaged (e.g., reporting year).
The development of estimated ultimate claim cost between two valuation

dates is the sum of

1. claim payments made between the two valuation dates, plus

2. the change in the estimate of outstanding claim payments.

If the sum is positive, the estimated ultimate claim cost for the cohort of
claims has increased between the valuation dates; if it is negative, the esti-
mated ultimate claim cost has decreased. Insurers refer to the negative of the
development of estimated claim cost, as the run-off result.
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Some mathematical results exist about the uncertainty associated with the
estimate of outstanding claim payments needed to settle the cohort, or the
ultimate uncertainty. The most influential paper by Mack (1993) studies the ul-
timate uncertainty associated with using the chain ladder method, albeit within
a restrictive model. Norberg (1986) studies ultimate uncertainty associated with
several estimation methods in a random parameter model. More recent papers
exist, too.
Moro & Lo (2014) have recently challenged the actuarial community to de-

velop new models that will allow calculation of the one-year uncertainty when
using different estimation methods, to comply with the Solvendy II regime. This
author believes that no new models are required; it is quite feasible to assess the
variability of the one-year claim development when using different methods, an-
alytically or by simulation, within the framework of existing models. However,
the author also believes that the quest for one-year uncertainty is misguided
and can lead to perverse conclusions.
This paper shows how one can calculate the variance of the one-year claim

development, when using a credibility-based loss reserving method at the be-
ginning and at the end of the development year, under the assumption that
the stochastic mechanism of claim development can be described by the mod-
els of Bühlmann-Straub or Hesselager-Witting. Credibility-based loss reserving
methods are commonly used and include, as limiting cases, the standard chain
ladder and Bornhuetter-Ferguson methods. The models of Bühlmann-Straub
and Hesselager-Witting seem to provide a reasonable description of the uncer-
tainties one faces when charged with estimation outstanding claims.

2 The models

The Bühlmann-Straub model was originally presented in a paper on loss ratios
(Bühlmann&Straub, 1970). The model combines the notion of a known risk
exposure with the notion of an à priori unknown claim rate. Bühlmann and
Straub model the unobserved claim rate as a random variable and derive an
optimal credibility estimator to estimate the claim rate in the light of emerging
claim experience.
Hesselager & Witting (1988) later extended the model to comprise not only

an à priori unknown claim rate, but also an à priori unknown claim development
pattern. One of the important results of the paper is that the credibility assigned
to the claim experience in the optimal credibility estimator, decreases when the
claim development pattern is random. The Hesselager-Witting model includes
the Bühlmann-Straub model as a limiting case, in which the claim development
pattern is known and fixed.
This paper is not concerned with the quest for an optimal credibility esti-

mator of the ultimate claim cost, but with calculating the mean squared error
of prediction (MSEP) of arbitrary credibility estimators of outstanding claims,
under the assumptions of those models.
Ample literature exists on the Bühlmann-Straub model, for which reason it
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will be presented quite briefly here.

2.1 Motivation

This small preamble is only intended to motivate the structure of the models
that follow.
Let us start with one claim cohort that we denote by j. The claim payments

emanating from that cohort, let us denote by {Xje : e = 0, 1, · · · }, where e is
the development period. Let the quantity πe denote the expected proportion
of ultimate claim cost that will be paid in development period e, and assume
that

∑∞
e=0 πe = 1. Let the quantity pj denote an observed measure of the risk

exposure that is generating claim payments in cohort j.
We start with a compound Poisson distribution. Imagine that claim pay-

ments Xje have a compound Poisson distribution with frequency parameter
pjπef and severity distribution F (·). Then, using the well-known properties of
the compound Poisson distribution, we find that

E (Xje) = pjπef

∫
ydF (y) =: pjπeb (1)

and

Var (Xje) = pjπef

∫
y2dF (y) =: pjπev. (2)

In these two equations, the risk exposure pj should be a known quantity. One
can think of pj as the number of similar risks that generate claims in cohort j.
Bühlmann and Straub take pj to be the earned premium pertaining to claim
cohort j. Risk exposure can be measured in a variety of ways, as long as one
measures consistently over time. The payment proportion πe will normally have
to be estimated. Also the parameters b and v will be unknown quantities, as
they depend on the claim frequency and claim severity.
The compound Poisson process being a standard model of collective risk

theory, this seems to be a reasonable description of the payment distribution.
The only exception that one could take to the assumptions is that the severity
distribution F (·) ought to be allowed to vary with the payment delay e. But
let’s not complicate things more than necessary.

2.2 The Bühlmann-Straub model

The assumptions of Bühlmann-Straub’s model are:
Pertaining to claim cohort j is a risk parameter that we denote by Θj . Given

Θj , the claim payments {Xje : e = 0, 1, · · · } are stochastically independent with
conditional mean

E (Xje|Θj) = pjπeb (Θj) (3)

and variance
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Var (Xje|Θj) = pjπev (Θj) . (4)

The unobserved risk parameter Θj is taken to be the outcome of a random
variable. We denote the mean and variance of the function b (Θj) by

β = E (b (Θj)) (5)

and

λ = Var (b (Θj)) . (6)

Let us further denote the mean of the function v (Θj) by

ϕ = E (v (Θj)) . (7)

Using these definitions it is easy to express the unconditional first and second
order moments of the payments:

E (Xje) = pjπeβ (8)

and

Cov (Xje, Xjd) = δe,d · pjπeϕ+ p2jπeπdλ. (9)

We assume that the delay probabilities {πe : e = 0, 1, · · · } and the distribu-
tion moments (β, λ, ϕ) are known. If they have been estimated aforehand, we
treat the estimates as if they were the true values.
Assume that the payments {Xje : e = 0, 1, · · · , D(j)} have been observed for

cohort j. Without any ado, let us postulate that a predictor of future payments
Xje for e > D(j), should be of the form

Xje = pjπebj , (10)

where bj is an estimator of b (Θj) . This form unifies many commonly used
estimation methods for outstanding claims. Schmidt and Zocher (2008) call
(10) the Bornhuetter-Ferguson principle.
We restrict the estimator bj to be a linear combination of a chain-ladder

estimate and the à priori mean:

b̄j = zj b̂j + (1− zj)β (11)

where the chain-ladder estimate is

b̂j =
Xj,≤D(j)

pjπ≤D(j)
. (12)

An inequality in a subscript signifies summation of terms for the values of
the subscript that satisfy the inequality.
It is easy to verify that for an arbitrary choice of zj , the mean squared error

of the estimator b̄j is
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Q (zj) = E
(
b̄j − b (Θj)

)2
= z2j

ϕ

pjπ≤D(j)
+ (1− zj)2 λ. (13)

The mean squared error of the predictor (10) for e > D(j) is

E
(
Xje −Xje

)2
= (pjπe)

2
Q (zj) + pjπeϕ. (14)

An estimator of the total outstanding claim payments is

Xj,>D(j) = pj b̄jπ>D(j), (15)

with mean squared error

E
(
Xj,>D(j) −Xj,>D(j)

)2
=
(
pjπ>D(j)

)2
Q (zj) + pjπ>D(j)ϕ. (16)

Minimising (13) , is easy to see that the optimal choice of zj is

ζj =
pjπ≤D(j)λ

pjπ≤D(j)λ+ ϕ
. (17)

This is the famous Bühlmann-Straub credibility factor.

2.3 The Hesselager-Witting model

The assumptions of Hesselager-Witting’s model are:
Pertaining to claim cohort j is a risk parameter that we denote by Θj and

a payment pattern that we denote by Πj = {Πje : e = 0, 1, · · · } .Given Θj and
Πj , the claim payments {Xje : e = 0, 1, · · · } are stochastically independent with
conditional mean

E (Xje|Θj ,Πj) = pjΠjeb (Θj) (18)

and variance

Var (Xje|Θj ,Πj) = pjΠjev (Θj) . (19)

The unobserved risk parameter Θj is taken to be the outcome of a ran-
dom variable. As in the Bühlmann-Straub model, we define β =E(b (Θj)) ,
λ =Var(b (Θj)) and ϕ =E(v (Θj)) .
Let D denote the maximum payment delay. The payment pattern Πj =

{Πj0, · · · ,ΠjD} is taken to be the outcome of a random vector that is sto-
chastically independent of Θj , and with a Dirichlet distribution. The Dirichlet
distribution with parameters α0, · · · , αD ≥ 0 is a generalisation of the beta
distribution to D dimensions, with a density function in D-space, of

f(x0, · · · , xD) =
Γ (α)

Γ (α0) · · ·Γ (αD)
xα0−10 · · ·xαD−1D ·I (x0 + · · ·+ xD = 1) . (20)
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Using similar calculations as in the beta distribution, one can verify that the
first and second order moments in a Dirichlet distribution are

E (Πje) = πe (21)

and

Cov (Πje,Πjd) =
δe,d · πe − πeπd

α+ 1
, (22)

where we have defined α =
∑D
e=0 αe and

πe = αe/α. (23)

It requires a fair amount of algebraic manipulation to express the uncondi-
tional first and second order moments of the payments, and those operations
will not be repeated here. The result is as follows:

E (Xje) = pjπeβ (24)

and

Cov (Xje, Xjd) = δe,d · pjπeϕj(α) + p2jπeπdλ(α), (25)

where we have defined

ϕj(α) = ϕ+ pj

(
λ+ β2

α+ 1

)
(26)

and

λ(α) =
λα− β2

α+ 1
. (27)

The important observation is that the first and second order moment struc-
ture of the payments in the Hesselager-Witting model (24)− (25) is isomorphic
to the first and second order moment structure in the Bühlmann-Straub model
(8)−(9) , if one makes the transformation ϕ→ ϕj(α) and λ→ λ(α). That means
that the results about the Bühlmann-Straub model (10)− (17) , which only in-
volve first and second order moments, also apply in the Hesselager-Witting
model, mutatis mutandis. In particular, the optimal choice of credibility factor
in a credibility estimator of the form (11)− (12) becomes

ζj(α) =
pjπ≤D(j)λ(α)

pjπ≤D(j)λ(α) + ϕ(α)
(28)

in the Hesselager-Witting model. It is easy to verify that λ(α) ≤ λ and
ϕj(α) ≥ ϕ, so that

ζj(α) ≤ ζj . (29)
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This formalises the untuitively obvious result, that one ought to assign less
credibility to the emerging payments if there less certainty about the payment
pattern. Indeed one can show that the optimal credibility factor (28) can turn
negative.
The Bühlmann-Straub model is a limiting case of Hesselager-Witting’s (larger)

model that one arrives at by letting αe/α→ πe while α→∞.

3 One-year uncertainty of estimates

In this paper we are not concerned with the optimal estimators in either model.
In what follows, our focus will be on calculating the uncertainty associated with
one year’s development of estimated claim cost, when

• using a credibility method of the form (10)− (12) , and

• assuming that the claim development mechanism behaves in accordance
with a Hesselager-Witting model.

Note that the form (10)−(12) includes the chain ladder method (zj = 1) , the
Bornhuetter-Ferguson method (zj = 0) and Benktander’s method

(
zj = π≤D(j)

)
.

The reason for selecting the Hesselager-Witting model is that it provides a
reasonable description of the uncertainties one faces when trying to estimate
outstanding claim payments.
Before we start, let us introduce some new notation.
We shall consider the development of only one cohort of claims and omit the

subscript j that was used previously to denote the cohort. We shall study the
passing from development period e to development period e + 1, while using a
certain credibility formula. The credibility formula is written as

b̄e = zeb̂e + (1− ze)β (30)

where

b̂e =
X≤e
pπ≤e

, (31)

and similarly at development stage e+ 1.

Remark 1 Note that b̄e, ze and b̂e in this section are indexed with the develop-
ment stage e, whereas in the previous section they were indexed with the cohort
number j, that we omit in this section. The relabelling has the purpose of saving
some notation in the lengthy equations that follow.

The development of estimated claim cost in period e + 1 is the sum of the
incremental claim payments in period e + 1, and the change in the estimated
outstanding claim payments:

Re+1 = Xe+1 + p
(
be+1π>e+1 − beπ>e

)
. (32)

Let us derive an expression for the mean squared claim development cost.
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Proposition 2 In the Hesselager-Witting model, the mean squared claim de-
velopment cost (38) can be expressed in the following form:

E
(
R2e+1

)
= Var (Re+1) = p2L · λ(α) + pF · ϕ(α), (33)

where
L = (ωe+1 − ωe + πe+1)

2
, (34)

F = πe+1 +
ωe+1
π≤e+1

(ωe+1 − 2ωe + 2πe+1) +
ω2e
π≤e

, (35)

and we have defined the abbreviations

ωe = zeπ>e, ωe+1 = ze+1π>e+1. (36)

Similar equations apply in the Bühlmann-Straub model, with the argument (α)
omitted from (33).

Proof. We start by writing:

Re+1 = Xe+1 + p
((
ze+1b̂e+1 + (1− ze+1)β

)
π>e+1 −

(
zeb̂e + (1− ze)β

)
π>e

)
(37)

It is easy to verify that E(Re+1) = 0. As a consequence, the mean squared claim
development cost is

E
(
R2e+1

)
= Var (Re+1) . (38)

Ignoring the non-stochastic terms in (37), we find the variance:

Var (Re+1) = Var
(
Xe+1 + pωe+1b̂e+1 − pωeb̂e

)
(39)

= Var (Xe+1) + (pωe+1)
2Var

(
b̂e+1

)
+ (pωe)

2Var
(
b̂e

)
+2pωe+1Cov

(
Xe+1, b̂e+1

)
−2pωeCov

(
Xe+1, b̂e

)
−2p2ωeωe+1Cov

(
b̂e, b̂e+1

)
.

We now calculate the variances and covariances in the above expression (see the
appendix for some more detail). The first three variance terms are simple:

Var (Xe+1) = (pπe+1)
2
λ(α) + pπe+1ϕ(α), (40)

Var
(
b̂e+1

)
= λ(α) +

ϕ(α)

pπ≤e+1
, (41)

Var
(
b̂e

)
= λ(α) +

ϕ(α)

pπ≤e
, (42)
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Next, the covariances:

Cov
(
Xe+1, b̂e

)
= pπe+1λ(α), (43)

Cov
(
Xe+1, b̂e+1

)
= pπe+1λ(α) + (πe+1/π≤e+1)ϕ(α) (44)

Cov
(
b̂e, b̂e+1

)
= λ(α) +

ϕ(α)

pπ≤e+1
(45)

Collecting all the terms (40)− (45) in (39) and re-grouping them, we find

E
(
R2e+1

)
= Var (Re+1) = p2L · λ(α) + pF · ϕ(α) (46)

where L and F are defined in (34)-(35).

4 Minimising the one-year uncertainty

Since the Solvency II regulation defines the one-year uncertainty of estimates of
outstanding claims as a risk to be measured and controlled, and having derived
a formula for it, what seems more natural than trying to minimise that risk?
Superficially, minimising the one-year uncertainty appears to be just as sensible
as minimising the ultimate uncertainty (16) by the Bühlmann-Straub credibility
factor (17) or its counterpart (28) for the Hesselager-Witting model.
The author is of the opinion that focus on the one-year uncertainty is mis-

directed, and will explain that view later. With this disclaimer in mind, let us
notwithstanding consider what results one achieves when minimising the one-
year uncertainty with a credibility formula.
Two forms of minimisation will be considered:

1. Univariate minimisation of (33) as a function of ze+1, when ze is fixed.

2. Bivariate minimisation of (33) as a function of both ze and ze+1.

The first scenario mimics the situation where initial estimates of claim cost
have been calculated by a credibility formula of the form (30)−(31) with a known
value of ze, and the actuary is pondering how to select ze+1 when updating the
claim cost estimates with one more year of claim statistics, with the view to
minimising the "risk".
The second scenario mimics the situation where actuary à priori wants to

determine credibility factors to use at the end of development years e and e+ 1,
with the objective of minimising the one-year uncertainty in development year
e+ 1.
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4.1 Univariate minimisation

Assume that the ultimate claim cost of the cohort has been estimated at the end
of development year e with a credibility formula of the form (30)− (31) . Using
a similar formula at the end of development year e + 1, with an arbitrary but
fixed value ze+1, one incurs one-year uncertainty given by (33) .We differentiate
(33) by ωe+1 to find the minimising value.

∂Var (Re+1)

∂ωe+1
= p2λ(α)

∂L

∂ωe+1
+ pϕ(α)

∂F

∂ωe+1
(47)

Then we find that the derivatives of L and F are identical up to a multi-
plicative factor:

∂L

∂ωe+1
= 2 (ωe+1 − ωe + πe+1) (48)

and

∂F

∂ωe+1
=

2

π≤e+1
(ωe+1 − ωe + πe+1) (49)

The derivative (47) is zero and non-decreasing if, and only if,

ωe+1 = ωe − πe+1. (50)

This translates to the "optimal" credibility factor

ze+1 = ze − (1− ze)
πe+1
π>e+1

= 1− (1− ze)
π>e
π>e+1

, (51)

which can also be expressed in the following way

(1− ze+1) = (1− ze)
π>e
π>e+1

. (52)

Note that ze+1 ≤ ze if 0 ≤ ze ≤ 1, and that ze+1 does not depend on λ(α)
and ϕ(α). This behaviour is at odds with the evolution of the optimal credibility
factors (17) and (28) for estimating the ultimate claim cost.
Using the credibility estimator with ze+1 as credibility factor, we obtain the

following estimate of outstanding claims at the end of development period e+1:

X>e+1 = pbe+1π>e+1 (53)

= p
(
ze+1b̂e+1 + (1− ze+1)β

)
π>e+1

= p

((
ze − (1− ze)

πe+1
π>e+1

)
b̂e+1 + (1− ze)

π>e
π>e+1

β

)
π>e+1

= p
(
zeb̂e+1π>e+1 + (1− ze)

(
βπ>e − b̂e+1πe+1

))
. (54)

The one-year claim cost development in development period e+ 1 becomes
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Re+1 = Xe+1 + pbe+1π>e+1 − pbeπ>e (55)

= Xe+1 + p
(
zeb̂e+1π>e+1 + (1− ze)

(
βπ>e − b̂e+1πe+1

))
− p

(
zeb̂e + (1− ze)β

)
π>e

= Xe+1 + p
(
ze

(
b̂e+1π>e+1 − b̂eπ>e

)
− (1− ze) b̂e+1πe+1

)
.

Note that the prior mean disappears from the equation for the one-year claim
cost development.
Let us next consider a few special cases.

4.1.1 Starting with the Bornhuetter-Ferguson method

Bornhuetter-Ferguson’s method is characterised by ze = 0. The one-year uncer-
tainty is minimised by selecting

ze+1 = 1− π>e
π>e+1

= − πe+1
π>e+1

, (56)

a negative credibility factor. The equations (53) − (55) reduce to X>e+1 =

p
(
βπ>e − b̂e+1πe+1

)
and Re+1 = Xe+1 − pb̂e+1πe+1.

4.1.2 Starting with the chain ladder method

The chain ladder method is characterised by ze = 1. The one-year uncer-
tainty is minimised by selecting ze+1 = 1. Expressed in words this means "if
you have used the chain-ladder once, you must continue using the chain-ladder
method, if minimising one-year uncertainty is your governing criterion". The
equations (53) − (55) reduce to X>e+1 = pb̂e+1π>e+1 and Re+1 = Xe+1 +

p
(
b̂e+1π>e+1 − b̂eπ>e

)
that we know from the chain ladder method.

4.1.3 Starting with the Benktander method

Benktander’s method is characterised by ze = π≤e = 1 − π>e. The one-year
uncertainty is minimised by selecting ze+1 = 1− π2>e

π>e+1
. The equations (53)−(55)

reduce to

X>e+1 = p
(

(1− π>e) b̂e+1π>e+1 + π>e

(
βπ>e − b̂e+1πe+1

))
(57)

= p
(
b̂e+1

(
π>e+1 − π2>e

)
+ βπ2>e

)
= p

(
b̂e+1

(
1− π2>e

)
+ βπ2>e − b̂e+1π≤e+1

)
and

Re+1 = Xe+1 + p
(
ze

(
b̂e+1π>e+1 − b̂eπ>e

)
− b̂e+1πe+1π>e

)
(58)
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4.2 Bivariate minimisation

Let us briefly consider the bivariate minimisation of (33) as a function of both ze
and ze+1. This mimics the situation where actuary à priori wants to determine
credibility factors to use at the end of development years e and e+ 1, with the
objective of minimising the one-year uncertainty in development year e+ 1.
From (47)− (50) we already know that ∂Var(Re+1)

∂ωe+1
= 0 if, and only if ωe+1 =

ωe − πe+1. Next, consider

∂Var (Re+1)

∂ωe
= p2λ(α)

∂L

∂ωe
+ pϕ(α)

∂F

∂ωe
, (59)

with

∂L

∂ωe
= −2 (ωe+1 − ωe + πe+1) (60)

and

∂F

∂ωe
= −2

(
ωe+1
π≤e+1

− ωe
π≤e

)
. (61)

Inserting ωe+1 = ωe−πe+1 makes the first term (60) vanish and reduces the
second term (61) to

∂F

∂ωe
= 2πe+1

(
ωe − π≤e
π≤eπ≤e+1

)
. (62)

Thus ∂Var(Re+1)
∂ωe

= ∂Var(Re+1)
∂ωe+1

= 0 if, and only if ωe = π≤e and ωe+1 =

ωe − πe+1, which translates to

ze =
π≤e
π>e

, (63)

ze+1 =
π≤e − πe+1
π>e+1

.

Not a great deal can be said about these formulas, except the following:

• The minimising pair (63) does not depend on the structural parameters
λ(α) and ϕ(α).

• Early in the development while π>e ≈ 1, the credibility factor ze is near
Benktander’s.

• The "optimal" ze+1 at the end of development period (e, e + 1] is not
equal to the optimum starting value for subsequent development period
(e+1, e+2].Thus it is not possible to form a coherent sequence of "optimal"
credibility factors for development periods e = 0, 1, · · · , with the criterion
of minimising the one-year uncertainty.
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5 Conclusion

Beauty is the first test: there is no permanent place in the world for
ugly mathematics. (G.H. Hardy)

By a small tour de force, we have derived formulas for the one-year uncer-
tainty of credibility-based estimates of outstanding claims, within the models of
Bühlmann-Straub and Hesselager-Witting. We have also derived the "optimal"
credibility factors that could, if required, minimise the one-year uncertainty.
Unfortunately, the formulas (33) − (36) for the one-year uncertainty are

unsightly and unenlightening, and the "optimal" credibility factors with respect
to one-year uncertainty have an evolution that is at odds with the evolution
of the optimal credibility factors for estimating the ultimate claim cost. To
the author this confirms that mathematics has an uncanny ability to inform its
disciple that "if you ask a stupid question, you get an ugly answer".
In the view of this author, the quest for the one-year uncertainty of estimates

of outstanding claims is misguided. The Solvency II regulation’s focus on the
one-year uncertainty is probably due to two reasons: the first being that its
architects have been hidebound to a period accounting view, as opposed to a
balance sheet view. The other reason is that, unfortunately, many actuaries are
generating a surfeit of one-year uncertainty by using methods that magnify the
impact of what may be random fluctuations.
Hesselager (1995) has shown that the standard discretisation involved in

determining the claim cohort (accident year) and development period (calendar
year minus accident year) leads to spurious randomness in the development
patterns, that could be avoided with continuous time modelling. Discretisation
makes modelling more complex than it needs to be, as anyone who has tried to
change the discretisation (for example from yearly to quarterly) can attest to.
Now add to that discretisation a requirement to pay special attention to one
year of future claim development.
In the claim development of a line of insurance, one year is a totally arbi-

trary time period. In a short-tailed line of insurance, one year’s development
reveals the ultimate claim cost; any prior estimates will be wide of the mark to
a larger or lesser extent, and one can see it. Thus, a short-tailed line crystallises
uncertainty. In a long-tailed line of insurance, one may hardly know any more
after one year has passed; the ultimate cost estimate will be more or less un-
changed. Does that mean that a long-tailed line of insurance is less risky than a
short-tailed line? That is exactly what the one-year focus of Solvency II seems
to imply. Drawing the example to extremes, one could say that it is easy to
minimise one-year uncertainty in a long-tailed line of insurance: simply don’t
revise the estimates.
The fact that something can be calculated does not imply that it should be

calculated.
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Appendix. First and second order moments

To assist the unprepared reader and for the author’s own peace of mind, the
first and second order moments in the Bühlmann-Straub and Hesselager-Witting
models are briefly calculated here.

Bühlmann-Straub model

Equation (8) :

E (Xje) = E (E (Xje|Θj)) = E (pjπeb (Θj)) = pjπeβ.

Equation (9) :

Cov (Xje, Xjd) = E (Cov (Xje, Xjd|Θj)) + Cov (E (Xje|Θj) ,E (Xjd|Θj))

[use conditional independence of Xje and Xjd, given Θj ]

= E (δe,d ·Var (Xje|Θj)) + Cov (pjπeb (Θj) , pjπdb (Θj))

= E (δe,d · pjπev (Θj)) + Cov (pjπeb (Θj) , pjπdb (Θj))

= δe,d · pjπeϕ+ p2jπeπdλ.

Preparing for equation (13) :

E
(
b̂j |Θj

)
= E

(
Xj,≤D(j)

pjπ≤D(j)
|Θj

)
=

pjπ≤D(j)b (Θj)

pjπ≤D(j)

= b (Θj) .

Var
(
b̂j |Θj

)
= Var

(
Xj,≤D(j)

pjπ≤D(j)
|Θj

)
=

pjπ≤D(j)v (Θj)(
pjπ≤D(j)

)2
=

v (Θj)

pjπ≤D(j)
.
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Equation (13) :

Q (zj) = E
(
b̄j − b (Θj)

)2
= E

(
zj b̂j + (1− zj)β − b (Θj)

)2
= E

(
zj

(
b̂j − b (Θj)

)
+ (1− zj) (β − b (Θj))

)2
= z2jE

(
b̂j − b (Θj)

)2
+ (1− zj)2 E (β − b (Θj))

2

+2zj (1− zj)E
((
b̂j − b (Θj)

)
(β − b (Θj))

)
= z2jE

(
E
((

b̂j − b (Θj)
)2
|Θj

))
+ (1− zj)2Var (b (Θj))

+2zj (1− zj)E
(
E
((
b̂j − b (Θj)

)
(β − b (Θj)) |Θj

))
= z2jE

(
Var

(
b̂j |Θj

))
+ (1− zj)2 λ+ 2zj (1− zj) · 0

= z2j
ϕ

pjπ≤D(j)
+ (1− zj)2 λ.

Equation (14) and similarly (16) :

E
(
Xje −Xje

)2
= E

(
pjπebj −Xje

)2
= E

(
pjπe

(
bj − b (Θj)

)
− (Xje − pjπeb (Θj))

)2
= (pjπe)

2 E
(
bj − b (Θj)

)2
+ E (Xje − pjπeb (Θj))

2

−2pjπeE
((
bj − b (Θj)

)
(Xje − pjπeb (Θj))

)
= (pjπe)

2 E
(
bj − b (Θj)

)2
+ E

(
E
(

(Xje − pjπeb (Θj))
2 |Θj

))
−2pjπeE

(
E
((
bj − b (Θj)

)
(Xje − pjπeb (Θj)) |Θj

))
[use conditional independence of Xje and bj , given Θj ]

= (pjπe)
2
Q (zj) + pjπeϕ.
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Hesselager-Witting model

Equation (24) :

E (Xje) = E (E (Xje|Θj ,Πj)) = E (pjΠjeb (Θj)) = pjπeβ.

Preparing for equation (25) :

Cov (b (Θj) Πje, b (Θj) Πjd) = E (Cov (b (Θj) Πje, b (Θj) Πjd|Θj))

+Cov (E (b (Θj) Πje|Θj) ,E (b (Θj) Πjd|Θj))

= E
(
b2 (Θj)Cov (Πje,Πjd)

)
+Cov (b (Θj)πe, b (Θj)πd)

=
(
λ+ β2

) δe,d · πe − πeπd
α+ 1

+ λπeπd

= δe,d · πe
(
λ+ β2

α+ 1

)
+

(
λα− β2

α+ 1

)
πeπd

Equation (25) :

Cov (Xje, Xjd) = E (Cov (Xje, Xjd|Θj ,Πj)) + Cov (E (Xje|Θj ,Πj) ,E (Xjd|Θj ,Πj))

= E (δe,d · pjv (Θj) Πje) + Cov (pjb (Θj) Πje, pjb (Θj) Πjd)

= δe,d · pjϕπe + p2j

(
δe,d · πe

(
λ+ β2

α+ 1

)
+

(
λα− β2

α+ 1

)
πeπd

)
= δe,d · pjπe

(
ϕ+ pj

(
λ+ β2

α+ 1

))
+ p2jπeπd

(
λα− β2

α+ 1

)
= δe,d · pjπeϕj(α) + p2jπeπdλ(α)

Equation (42) and similarly (41) :

Var
(
b̂e

)
=

1

(pπ≤e)
2Cov (X≤e, X≤e)

=
1

(pπ≤e)
2

∑
e′≤e

∑
d′≤e

(
δe′,d′ · pπe′ϕ(α) + p2πe′πd′λ(α)

)
= λ(α) +

ϕ(α)

pπ≤e
,

Equation (43) :

Cov
(
Xe+1, b̂e

)
=

1

pπ≤e
Cov (Xe+1, X≤e)

=
1

pπ≤e

∑
d′≤e

p2πe+1πd′λ(α)

= pπe+1λ(α),
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Equation (44) :

Cov
(
Xe+1, b̂e+1

)
=

1

pπ≤e+1
Cov (Xe+1, X≤e+1)

=
1

pπ≤e+1

∑
d′≤e+1

(
δe+1,d′ · pπe+1ϕ(α) + p2πe+1πd′λ(α)

)
= pπe+1λ(α) + (πe+1/π≤e+1)ϕ(α)

Equation (45) :

Cov
(
b̂e, b̂e+1

)
=

1

pπ≤eπ≤e+1
Cov (X≤e, X≤e+1)

=
1

pπ≤eπ≤e+1

∑
e′≤e

∑
d′≤e+1

(
δe′,d′ · pπe′ϕ(α) + p2πe′πd′λ(α)

)
=

1

pπ≤eπ≤e+1

(
pπ≤eϕ(α) + p2π≤eπ≤e+1λ(α)

)
= λ(α) +

ϕ(α)

pπ≤e+1
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