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Abstract

We review the claims run-off uncertainty analysis derived for the chain-ladder reserving
method. In a first step, we consider the total prediction uncertainty using the conditional
mean square error of prediction. In a second step, we describe how this total prediction
uncertainty is released dynamically over time. This provides a run-off of uncertainty pattern
which allows to determine a market-value margin that can be used for market-consistent
valuation and for risk-based solvency considerations.

Keywords. Chain-ladder method; claims reserving uncertainty; claims development result;
Mack’s formula; Merz-Wüthrich’s formula; conditional mean square error of prediction; run-
off.

1 Introduction

The aim of this contribution is to review the claims run-off uncertainty analysis derived for the
chain-ladder (CL) reserving method. Originally, the CL method was introduced as an algorithm
to set reserves for outstanding loss liabilities in insurance. This algorithm is simple and can be
calculated in a spread sheet. The resulting CL reserves then serve as a point predictor for the
outstanding loss liabilities. In order to quantify the prediction uncertainty in these CL reserves
one needs a stochastic model foundation for the CL algorithm. Mack’s [7] contribution in 1993
is considered to be a cornerstone in stochastic claims reserving modeling. It introduces the
distribution-free CL model which gives a stochastic model foundation to the CL algorithm and
it allows to quantify prediction uncertainty within these stochastic model assumptions. The
main achievement of Mack was that he provided a conditional mean square error of prediction
(MSEP) formula for the total prediction uncertainty in the CL reserves over the entire run-off
of the outstanding loss liabilities. We call this the static long-term view.
During the financial crisis 2000-2001 (recession in European Union, dot-com bubble, 9/11 ter-
rorist attack) insurance supervision has started new initiatives with the aim of improving the
financial stability and risk management practice in the insurance industry. During these de-
velopments it became apparent that the static long-term view is not sufficient because claims
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reserves are updated periodically, for instance, whenever insurance companies close their balance
sheets claims reserves are updated according to the latest available information. This viewpoint
has generated a whole stream of new research, we refer to contributions [3, 4, 1, 8, 5, 9, 11].
These contributions study the change in claims prediction when additional information of a new
accounting year becomes available. The updated prediction will (hopefully) fluctuate around
the previous one and this new literature determines the potential size of these fluctuations. This
viewpoint is called the short-term view or the one-year view and its consideration is motivated
by the fact that it describes an important risk bearing position in the profit-and-loss statements
of insurance companies. These days the 2008 paper [9] is a crucial module of solvency testing
and in a 2014 industry discussion article [2] it is stated that almost all questions are solved for
the CL method.
Is it really the case that almost all questions are solved for the CL method? Do we understand
how the short-term view is related to the static long-term view? Two recent contributions [13, 10]
show that this has not been the case and the aim of this review is to discuss the latest results for
the CL method. The two papers [13, 10] show that claims prediction should be understood as a
dynamic process. The sum over all innovations of this dynamic process exactly leads to the static
long-term view, and the first innovation of this dynamic process to the short-term (one-year)
view. Having this picture in mind, paper [10] shows how the total prediction uncertainty of the
static long-term view is allocated to the different run-off periods. We call this the dynamic view
and, in particular, it provides a run-off of uncertainty pattern which is a central component in
market-consistent valuation of insurance products and should be contrasted to the run-off of
expected reserves pattern.

Outline. In the next section we formally introduce the static long-term view, the short-term
view and the dynamic view. Corollary 2.1 explains the connection between these three views.
In Section 3 we introduce the gamma-gamma Bayesian chain-ladder (BCL) model. This model
produces the CL reserves in the non-informative prior limit. For this model we provide the
three uncertainty views and we compare them to Mack’s formula (static-long term view) and to
Merz-Wüthrich’s (MW’s) formula (short term view). Moreover, in Subsection 3.3 we complete
this picture by the dynamic view. In Section 4 we provide a numerical example and we explain
the R library ChainLadder [6]. Finally, in Section 5 we conclude.

2 Static long-term view, short-term view and dynamic view

We assume that the cumulative claim of accident year i ∈ {1, . . . , I} and development year
j ∈ {0, . . . , J} is denoted by Ci,j . Throughout we assume that I > J are fixed and that
cumulative claims have finite first moments. Accident year i denotes the year of claims occurrence
and development year j refers to the settlement delay of these cumulative claims. A general
assumption is that there is a maximal settlement delay J within which all claims are settled, thus,
the ultimate claim Ci,J denotes the total claim amount of accident year i. At time t = 0, . . . , I+J
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we have observed cumulative claims

Dt = {Ci,j ; i+ j ≤ t, 1 ≤ i ≤ I, 0 ≤ j ≤ J} ,

and we aim at predicting the future cumulative claims

Dct = {Ci,j ; i+ j > t, 1 ≤ i ≤ I, 0 ≤ j ≤ J} .

For detailed background information on this prediction problem and the meaning of cumulative
claims we refer to [14].
The observed cumulative claims Dt, 0 ≤ t ≤ I + J , define a flow of information. Based on the
latest available information Dt at time t we predict the ultimate claim Ci,J of accident year
1 ≤ i ≤ I by the conditional expectation

Ĉ
(t)
i,J = E [Ci,J | Dt] . (2.1)

This predictor Ĉ(t)
i,J of the ultimate claim Ci,J is optimal at time t in the sense that it minimizes

the conditional MSEP among all σ(Dt)-measurable predictors, and its conditional MSEP is given
by

msepCi,J |Dt

(
Ĉ

(t)
i,J

)
= E

[(
Ci,J − Ĉ(t)

i,J

)2
∣∣∣∣Dt] . (2.2)

Here, we additionally assume existence of the right-hand side of (2.2). Conditional MSEP (2.2)
gives a risk measure of the total prediction uncertainty at time t of Ĉ(t)

i,J over the entire lifetime
of the claim Ci,J . This exactly corresponds to the static long-term view because it measures
prediction uncertainty over the entire settlement period from t to i+J (supposed that t < i+J ,
otherwise the ultimate claim Ci,J is fully settled and observed at time t).
If we understand prediction as a dynamic process with periodic updates we obtain a sequence
of predictors (Ĉ(t)

i,J)0≤t≤I+J . The sequence of predictors defined by (2.1) has the martingale
property which implies that for all 0 ≤ t ≤ I + J − 1

E
[
Ĉ

(t+1)
i,J

∣∣∣Dt] = Ĉ
(t)
i,J . (2.3)

This martingale property (2.3) has the interpretation that in average tomorrow’s prediction
Ĉ

(t+1)
i,J meets today’s value Ĉ(t)

i,J (unbiasedness). The short-term view aims at studying the
fluctuation in this one-period update. Therefore, we introduce the claims development result at
time t+ 1 of accident year i defined by

CDRi,t+1 = Ĉ
(t)
i,J − Ĉ

(t+1)
i,J .

This claims development result refers to a position in the profit-and-loss statements of insurance
companies. They are facing a loss in this position in case of a negative claims development result
and a gain for a positive claims development result. Martingale property (2.3) implies that

E [CDRi,t+1| Dt] = 0.
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Therefore, we predict the claims development result CDRi,t+1 at time t by 0 and its prediction
uncertainty is analyzed by the following conditional MSEP (short-term view)

msepCDRi,t+1|Dt
(0) = E

[
(CDRi,t+1 − 0)2

∣∣∣Dt] . (2.4)

This was state-of-the-art of risk-based solvency analysis at the end of 2013, and [7, 9] provide
the relevant analytical formulas of the conditional MSEPs (2.2) and (2.4) for the CL method,
see also [2]. Recent work [10] studies the relationship between (2.2) and (2.4). This leads to
the dynamic view of prediction uncertainty. At time t = i + J the ultimate claim Ci,J is fully
observed and we have Ĉ(i+J)

i,J = Ci,J . This allows to rewrite the total prediction error at time
t < i+ J as a telescoping sum

Ĉ
(t)
i,J − Ci,J = Ĉ

(t)
i,J − Ĉ

(i+J)
i,J =

i+J−1∑
s=t

Ĉ
(s)
i,J − Ĉ

(s+1)
i,J =

i+J−1∑
s=t

CDRi,s+1.

This identity expresses the total prediction error as a sum of innovations described by the
claims development results CDRi,s+1, t ≤ s ≤ i+J − 1. Or in other words, it allocates the total
prediction error at time t < i + J to the different future accounting periods t + 1 ≤ s + 1 ≤
i+ J . This gives a dynamic interpretation how prediction errors manifest over time. Moreover,
martingale property (2.3) has the nice consequence that these innovations (claims development
results) are uncorrelated, which immediately implies the following corollary.

Corollary 2.1. Choose t < i + J . Assume that the second conditional moment of Ci,J , given
Dt, exists. We have for the ultimate claim predictors defined by (2.1)

msepCi,J |Dt

(
Ĉ

(t)
i,J

)
=

i+J−1∑
s=t

Var (CDRi,s+1| Dt) =
i+J−1∑
s=t

E
[
msepCDRi,s+1|Ds

(0)
∣∣∣Dt] .

Corollary 2.1 combines the three views: on the left-hand side we have the total prediction un-
certainty of the static long-term view; the right-hand side describes how it needs to be allocated
to the different future accounting periods which gives the dynamic view; and the first term on
the right-hand side exactly describes the prediction uncertainty in the short-term view. The aim
here is to compute all single terms under the sum on the right-hand side. This then provides
the run-off of uncertainty picture. The following formula is useful for this analysis: under the
assumptions of Corollary 2.1 we have for t ≤ s ≤ i+ J − 1

E
[
msepCDRi,s+1|Ds

(0)
∣∣∣Dt] = Var

(
Ĉ

(s+1)
i,J

∣∣∣Dt)−Var
(
Ĉ

(s)
i,J

∣∣∣Dt) .
For the proof we refer to formula (1.20) in [14]. In the next section we provide the relevant
formulas for the CL method.

3 Gamma-gamma Bayesian chain-ladder model

In this section we analyze all terms of Corollary 2.1 for the CL method. As mentioned in the
introduction, the CL method was originally introduced as an algorithm which was not based
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on a stochastic model. Only later actuaries defined stochastic models which produce the CL
reserves as predictors. Not surprisingly, there are different stochastic models that lead to the
CL reserves. The two most popular ones are the distribution-free CL model introduced in [7]
and the over-dispersed Poisson (ODP) model, see [12]. We use a different stochastic model here,
namely, the gamma-gamma Bayesian chain-ladder (BCL) model. The reason for this different
model choice is that we would like to preserve martingale property (2.3) because this simplifies
many considerations, in particular, Corollary 2.1 only holds true under (2.3). In general, this
martingale property holds true in a Bayesian context but it fails in a frequentist’s set-up as soon
as one needs to estimate parameters (and parameter estimation error is involved). This is the
case in the distribution-free CL model and also in the ODP model, but it is not the case in the
gamma-gamma BCL model. Reassuring, often the numerical results of the gamma-gamma BCL
model and of the distribution-free CL model are rather close; this will be stated and analyzed
more precisely in the next subsections.

3.1 Model assumptions and claims prediction

Model Assumptions 3.1 (gamma-gamma BCL model). Assume σj > 0 are given fixed con-
stants for 0 ≤ j ≤ J − 1.

(a) Conditionally, given vector Θ = (Θ0, . . . ,ΘJ−1), (Ci,j)0≤j≤J are independent (in accident
year i) Markov processes (in development year j) with conditional distributions

Ci,j+1 |{Ci,j ,Θ} ∼ Γ
(
Ci,jσ

−2
j ,Θjσ

−2
j

)
,

for all 1 ≤ i ≤ I and 0 ≤ j ≤ J − 1.

(b) The components Θj of Θ are independent and Γ(γj , fj(γj−1))-distributed with given prior
parameters fj > 0 and γj > 1 for 0 ≤ j ≤ J − 1.

(c) Θ and C1,0, . . . , CI,0 are independent and Ci,0 > 0, P-a.s., for all 1 ≤ i ≤ I.

These model assumptions allow for an explicit calculation of the claims predictors given by the
conditional expectations (2.1). This is stated in the next theorem.

Theorem 3.2 (BCL predictor). Under Model Assumptions 3.1 the BCL predictor for Ci,n with
t ≥ I ≥ i > t− n ≥ t− J is given by

Ĉ
BCL(t)
i,n = E [Ci,n| Dt] = Ci,t−i

n−1∏
j=t−i

f̂
BCL(t)
j ,

with BCL factors f̂BCL(t)
j for 0 ≤ j ≤ J − 1 given by

f̂
BCL(t)
j = E

[
Θ−1
j

∣∣∣Dt] = ω
(t)
j f̂

CL(t)
j + (1− ω(t)

j )fj ,

where we set

f̂
CL(t)
j =

∑(t−j−1)∧I
`=1 C`,j+1∑(t−j−1)∧I
`=1 C`,j

and ω
(t)
j =

∑(t−j−1)∧I
`=1 C`,j∑(t−j−1)∧I

`=1 C`,j + σ2
j (γj − 1)

.
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For the proof we refer to Theorem 2.10 in [14]; and we use notation a ∧ b = min{a, b}.

Remarks 3.3.

• Theorem 3.2 states that we obtain a CL structure for the ultimate claim prediction of Ci,J ,
which for t ≥ I ≥ i > t− J is given by

Ĉ
BCL(t)
i,J = Ci,t−i

J−1∏
j=t−i

f̂
BCL(t)
j .

This ultimate claim predictor is obtained by multiplying the latest observation Ci,t−i of
accident year i at time t with the BCL factors f̂BCL(t)

t−i , . . . , f̂
BCL(t)
J−1 , which project this

observation Ci,t−i to the ultimate claim. This is often called CL structure or link ratio
structure.

• The BCL factor f̂BCL(t)
j is a credibility weighted average between the purely observation

based estimate f̂CL(t)
j and the prior estimate fj . The corresponding credibility weight

is given by ω
(t)
j ∈ (0, 1). It crucially depends on γj > 1 which quantifies the degree of

information contained in the prior distribution of Θj .

• The observation based estimate f̂CL(t)
j is the classical CL factor that is used in the original

CL algorithm; and it is also used in the distribution-free CL model and in the ODP model.

• Define γ = (γ0, . . . , γJ−1). The limit γ → 1 means that every component of γ converges
to 1. In the case of non-informative priors we let γ → 1 and obtain for all 0 ≤ j ≤ J − 1

lim
γ→1

f̂
BCL(t)
j = f̂

CL(t)
j .

That is, in the non-informative prior limit the BCL factor f̂BCL(t)
j and the CL factor f̂CL(t)

j

coincide. Therefore, we obtain in the non-informative prior limit the classical CL predictor
for t ≥ I ≥ i > t− J given by

Ĉ
CL(t)
i,J = lim

γ→1
Ĉ
BCL(t)
i,J .

It is exactly this analogy that allows us to use the non-informative prior gamma-gamma
BCL model as a stochastic model that supports the CL algorithm, and we use this stochas-
tic representation to analyze the prediction uncertainty in the CL method.

3.2 Prediction uncertainty: static long-term view

Under Model Assumptions 3.1 we can explicitly calculate the prediction uncertainty of the static
long-term view given by (2.2). Here, we benefit of having a Bayesian model with conjugate priors.
We define the second order terms for 0 ≤ j ≤ J − 1 and t > j + 1, subject to existence (we will
further comment on this below), by

Ψ(t)
j =

σ2
j

σ2
j (γj − 2) +

∑(t−j−1)∧I
`=1 C`,j

,
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and their non-informative prior limits by

Ψ(t)
j

def.= lim
γ→1

Ψ(t)
j =

σ2
j∑(t−j−1)∧I

`=1 C`,j − σ2
j

.

Note that these second orders term are observable at time t−1. We have the following theorem.

Theorem 3.4 (static long-term view). Under Model Assumptions 3.1 the BCL predictors satisfy
in the non-informative prior limit γ → 1 for t ≥ I ≥ i > t− J

msepCi,J |Dt

(
Ĉ
CL(t)
i,J

)
= Ĉ

CL(t)
i,J

J−1∑
j=t−i

σ2
j

J−1∏
m=j

(
f̂CL(t)
m

(
1 + Ψ(t)

m

))

+
(
Ĉ
CL(t)
i,J

)2
 J−1∏
j=t−i

(
1 + Ψ(t)

j

)
− 1

 ,
under the assumption that

∑t−j−1
`=1 C`,j/σ

2
j > 1 for all t − i ≤ j ≤ J − 1; otherwise the second

moment is infinite. For aggregated accident years the conditional MSEP is given by

msep∑I

i=t−J+1 Ci,J |Dt

 I∑
i=t−J+1

Ĉ
CL(t)
i,J

 =
I∑

i=t−J+1
msepCi,J |Dt

(
Ĉ
CL(t)
i,J

)

+ 2
∑

t−J+1≤i<n≤I
Ĉ
CL(t)
i,J Ĉ

CL(t)
n,J

 J−1∏
j=t−i

(
1 + Ψ(t)

j

)
− 1

 .
Proof of Theorem 3.4. The proof follows from Theorem 3.8 in [10] by letting γ → 1.

Remarks 3.5.

• The second order terms Ψ(t)
j and Ψ(t)

j were only defined subject to existence. In fact, we
require that their denominators are strictly positive, which is exactly the necessary and
sufficient condition for having finite conditional MSEPs.

• Theorem 3.4 provides the prediction uncertainty of the static long-term view in the non-
informative prior limit γ → 1. The results for informative priors are completely similar,
one only needs to replace all variables ĈCL(t)

i,J , f̂CL(t)
m and Ψ(t)

j by ĈBCL(t)
i,J , f̂BCL(t)

m and
Ψ(t)
j , respectively.

• Obviously, our conditional MSEP formula differs from Mack’s formula [7]. Our uncertainty
formula is exact in the non-informative prior gamma-gamma BCL model and Mack’s for-
mula is an estimate in the distribution-free CL model. In the next step we are going to
show, how the two uncertainty formulas are related to each other.

In the sequel we make the following assumption (second relationship “�”): for t ≥ I and all
0 ≤ j ≤ J − 1

(t−j−1)∧I∑
`=1

C`,j ≥
I−j−1∑
`=1

C`,j � σ2
j . (3.1)
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Note that the first inequality always holds true for non-negative cumulative claims. This as-
sumption is sufficient for having finite conditional MSEPs in Theorem 3.4 for all time points
t ≥ I. Moreover, (3.1) implies for t ≥ I relationship

0 <
σ2
j∑(t−j−1)∧I

`=1 C`,j
< Ψ(t)

j ≤
σ2
j∑I−j−1

`=1 C`,j − σ2
j

� 1. (3.2)

Applying this to the first term in Theorem 3.4 gives approximation

Ĉ
CL(t)
i,J

J−1∑
j=t−i

σ2
j

J−1∏
m=j

(
f̂CL(t)
m

(
1 + Ψ(t)

m

))
≈ ĈCL(t)

i,J

J−1∑
j=t−i

σ2
j

J−1∏
m=j

f̂CL(t)
m =

(
Ĉ
CL(t)
i,J

)2 J−1∑
j=t−i

σ2
j

Ĉ
CL(t)
i,j

.

In fact, the right-hand side is a lower bound for the left-hand side. For the second term in
Theorem 3.4 we have under (3.1) the following approximation

(
Ĉ
CL(t)
i,J

)2
 J−1∏
j=t−i

(
1 + Ψ(t)

j

)
− 1

 ≈ (ĈCL(t)
i,J

)2 J−1∑
j=t−i

Ψ(t)
j ≈

(
Ĉ
CL(t)
i,J

)2 J−1∑
j=t−i

σ2
j∑t−j−1

`=1 C`,j
.

The right-hand side is again a lower bound for the left-hand side. In [7] one uses a slightly
different parametrization for the variance parameters σ2

j , namely, one considers s2
j/(f̂

CL(t)
j )2

instead. Therefore, we identify for 0 ≤ j ≤ J − 1

σ2
j = s2

j/(f̂
CL(t)
j )2. (3.3)

Making this change of variables we exactly obtain Mack’s formula [7] which provides approxi-
mation under (3.1) and lower bound (in any case)

msepCi,J |Dt

(
Ĉ
CL(t)
i,J

)
≈ msepMack

Ci,J |Dt

(
Ĉ
CL(t)
i,J

)
(3.4)

=
(
Ĉ
CL(t)
i,J

)2 J−1∑
j=t−i

s2
j/(f̂

CL(t)
j )2

Ĉ
CL(t)
i,j

+
s2
j/(f̂

CL(t)
j )2∑t−j−1

`=1 C`,j

 .
Exactly the same arguments apply for aggregated accident years and one finds approximation
under (3.1) and lower bound (in any case)

msep∑I

i=t−J+1 Ci,J |Dt

 I∑
i=t−J+1

Ĉ
CL(t)
i,J

 ≈ msepMack∑I

i=t−J+1 Ci,J |Dt

 I∑
i=t−J+1

Ĉ
CL(t)
i,J


=

I∑
i=t−J+1

msepMack
Ci,J |Dt

(
Ĉ
CL(t)
i,J

)
(3.5)

+2
∑

t−J+1≤i<n≤I
Ĉ
CL(t)
i,J Ĉ

CL(t)
n,J

J−1∑
j=t−i

s2
j/(f̂

CL(t)
j )2∑t−j−1

`=1 C`,j
.

Let us briefly conclude on these findings. As mentioned in Remarks 3.5 the two stochastic
models differ and also the resulting conditional MSEP formulas differ. But (3.4) and (3.5) show
that the resulting values for the prediction uncertainties are rather similar under assumption
(3.1). This assumption is often fulfilled for non-life insurance data. Below we will explicitly
analyze this difference numerically for an example.
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The distribution-free CL model looks at claims prediction from a frequentist’s viewpoint. This
viewpoint allows to separate the so-called process uncertainty (blue terms in (3.4) and (3.5))
from the parameter estimation uncertainty (red terms in (3.4) and (3.5)). This separation will
be important to understand the short-term view. For a more detailed explanation of these two
uncertainty terms we refer to Section 1.5 in [14].

3.3 Prediction uncertainty: short-term view

Under Model Assumptions 3.1 we can also explicitly calculate the prediction uncertainty of the
short-term view given by (2.4). For this we again benefit of having a Bayesian model with
conjugate priors. We define the credibility weights for 0 ≤ j ≤ J − 1 and I ≥ t− j ≥ 1 by

α
(t)
j = Ct−j,j

σ2
j (γj − 1) +

∑t−j
`=1C`,j

,

and their non-informative prior limits by

α
(t)
j = lim

γ→1
α

(t)
j = Ct−j,j∑t−j

`=1C`,j
∈ (0, 1].

We have the following theorem.

Theorem 3.6 (short-term view). Under Model Assumptions 3.1 the BCL predictors satisfy in
the non-informative prior limit γ → 1 for t ≥ I ≥ i > t− J

msepCDRi,t+1|Dt
(0) = (ĈCL(t)

i,J )2

(1 +
σ2
t−i

Ci,t−i

)(
1 + Ψ(t)

t−i

) J−1∏
j=t−i+1

(
1 + α

(t)
j Ψ(t)

j

)
− 1

 ,
where we assume that

∑t−j−1
`=1 C`,j/σ

2
j > 1 for all t− i ≤ j ≤ J − 1, otherwise the corresponding

conditional MSEP is infinite. For aggregated accident years the conditional MSEP is given by

msep∑I

i=t−J+1 CDRi,t+1|Dt
(0) =

I∑
i=t−J+1

msepCDRi,t+1|Dt
(0)

+ 2
∑

t−J+1≤i<n≤I
Ĉ
CL(t)
i,J Ĉ

CL(t)
n,J

(1 + Ψ(t)
t−i

) J−1∏
j=t−i+1

(
1 + α

(t)
j Ψ(t)

j

)
− 1

 .
Proof of Theorem 3.6. The proof follows from Theorem 3.10 and Corollary A.4 in [10] by letting
γ → 1.

Remarks 3.5 also apply to the short-term view. We compare the result of Theorem 3.6 to Merz-
Wüthrich’s (MW’s) formula which was derived in the distribution-free CL model, see [9]. We
do this under assumption (3.1) and we need a second assumption, namely, for 0 ≤ t− i ≤ J − 1

Ci,t−i � σ2
t−i. (3.6)

Assumptions (3.1) and (3.6) imply

0 <
(

1 +
σ2
t−i

Ci,t−i

)(
1 + Ψ(t)

t−i

)
− 1 ≈

σ2
t−i

Ci,t−i
+ Ψ(t)

t−i � 1,
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where again the approximation on the right-hand side provides also a lower bound on the left-
hand side. Moreover, relation (3.2) also holds true if we multiply all terms with credibility
weights α(t)

j ∈ (0, 1). This implies that the first statement of Theorem 3.6 can be approximated
and bounded below by (we use identification (3.3))

msepCDRi,t+1|Dt
(0) ≈ %

(t)
i,t+1

def.= msepMW
CDRi,t+1|Dt

(0) (3.7)

= (ĈCL(t)
i,J )2

s2
t−i/(f̂

CL(t)
t−i )2

Ci,t−i
+
s2
t−i/(f̂

CL(t)
t−i )2∑i−1

`=1C`,t−i
+

J−1∑
j=t−i+1

α
(t)
j

s2
j/(f̂

CL(t)
j )2∑t−j−1

`=1 C`,j

 .
This is exactly MW’s formula [9] of the short-term view prediction uncertainty.

Remark 3.7. If we compare the static long-term view (3.4) to the short-term view (3.7) we observe
that from the (blue) process uncertainty terms exactly the first term with index j = t − i of
the static long-term view appears in the short term view. For the (red) parameter estimation
uncertainty terms the picture is slightly different, the first term with index j = t − i appears
in both views and the remaining terms with indexes t − i + 1 ≤ j ≤ J − 1 are scaled in the
short-term view with credibility weights α(t)

j ∈ (0, 1] compared to the static long-term view.
These scalings reflect the reduction in parameter estimation uncertainty by the arrival of the
new observations in Dt+1 \ Dt.

For aggregated accident years we obtain completely analogously approximation and lower bound

msep∑I

i=t−J+1 CDRi,t+1|Dt
(0) ≈ %

(t)
t+1

def.= msepMW∑I

i=t−J+1 CDRi,t+1|Dt
(0) (3.8)

=
I∑

i=t−J+1
msepMW

CDRi,t+1|Dt
(0)

+ 2
∑

t−J+1≤i<n≤I
Ĉ
CL(t)
i,J Ĉ

CL(t)
nJ

s2
t−i/(f̂

CL(t)
t−i )2∑i−1

`=1C`,t−i
+

J−1∑
j=t−i+1

α
(t)
j

s2
j/(f̂

CL(t)
j )2∑t−j−1

`=1 C`,j

 .
3.4 Prediction uncertainty: dynamic view

Although the relationship between the non-informative prior gamma-gamma BCL model and
the distribution-free CL model has not been worked out so clearly in the actuarial literature,
the previous results of Subsections 3.2 and 3.3 are generally known and well-established in the
actuarial community; this is also what the industry discussion article [2] was referring to. The
interpretation in Remark 3.7 explains how the short-term view is related to the static long-term
view. But from this interpretation we can extract much more which leads to the right intuition
how these two views can be completed by the dynamic view! This exactly motivates the results
derived in [10]. Before we give these new results we would like to explain the intuition that leads
to the dynamic view.
The aim is to derive the second next term E[msepCDRi,t+2|Dt+1(0)|Dt] of the decomposition
provided by Corollary 2.1. If we compare (3.4) and (3.7) the natural guess is that it should
involve the next (blue) processes uncertainty term of the static long-term view (3.4) which is
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given by
s2
t−i+1/(f̂

CL(t)
t−i+1)2

Ĉ
CL(t)
i,t−i+1

.

From the (red) parameter estimation uncertainty terms it should involve the next term with
index j = t − i + 1, but only the part that has not been treated in the previous period t + 1,
that is, (

1− α(t)
t−i+1

)s2
t−i+1/(f̂

CL(t)
t−i+1)2∑i−2

`=1C`,t−i+1
,

and all remaining (red) parameter estimation uncertainty terms are reduced by the new incoming
information in Dt+2 \ Dt+1 which provides additional terms

J−1∑
j=t−i+2

α
(t)
j−1

(
1− α(t)

j

)s2
j/(f̂

CL(t)
j )2∑t−j−1

`=1 C`,j
.

This is what has been shown in [10] and, moreover, this idea can be iterated to all future periods
which exactly provides the dynamic (run-off) view.
We define for 0 ≤ k ≤ J − 1 and t ≥ I and I ≥ i > t− J + k

%
(t)
i,t+1+k =

(
Ĉ
CL(t)
i,J

)2
 σ2

t−i+k

Ĉ
CL(t)
i,t−i+k

+
k∏

m=1

(
1− α(t)

t−i+m

) σ2
t−i+k∑i−1−k

`=1 C`,t−i+k

 (3.9)

+
(
Ĉ
CL(t)
i,J

)2 J−1∑
j=t−i+1+k

[
α

(t)
j−k

k−1∏
m=0

(
1− α(t)

j−m

) σ2
j∑t−j−1

`=1 C`,j

]
,

and for aggregated accident years, where summations i < n run over t− J + 1 + k ≤ i < n ≤ I,

%
(t)
t+1+k =

I∑
i=t−J+1+k

%
(t)
i,t+1+k + 2

∑
i<n

Ĉ
CL(t)
i,J Ĉ

CL(t)
n,J

k∏
m=1

(
1− α(t)

t−i+m

) σ2
t−i+k∑i−1−k

`=1 C`,t−i+k
(3.10)

+ 2
∑
i<n

Ĉ
CL(t)
i,J Ĉ

CL(t)
n,J

J−1∑
j=t−i+1+k

[
α

(t)
j−k

k−1∏
m=0

(
1− α(t)

j−m

) σ2
j∑t−j−1

`=1 C`,j

]
.

In Theorem 6.4 of [10] there is an exact statement for the conditional expectation E[%(t+1)
i,t+1+k|Dt].

We will not give the full statement here because its formulation is a bit cumbersome, but we give
the approximation and lower bound which is formulated as the next property, for the derivation
we refer to Section 6.4 in [10] and Section 2.4.2 in [14].

Property 3.8 (dynamic view). Assume that Model Assumptions 3.1 hold and that the BCL
predictors are considered in the non-informative prior limit γ → 1. We have approximation
under assumptions (3.1) and (3.6) and lower bound (in any case) for 1 ≤ k ≤ J − 1, t ≥ I and
I ≥ i > t− J + k

E
[
%

(t+1)
i,t+1+k

∣∣∣Dt] ≈ %
(t)
i,t+1+k,

and for aggregated accident years

E
[
%

(t+1)
t+1+k

∣∣∣Dt] ≈ %
(t)
t+1+k.
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Property 3.8 implies that in the non-informative prior gamma-gamma BCL model under as-
sumptions (3.1) and (3.6) we can approximate any term in the sum of Corollary 2.1, and we
obtain for t ≥ I and 0 ≤ k < I + J − t

E
[

msep∑I

i=t−J+1+k
CDRi,t+1+k|Dt+k

(0)
∣∣∣∣Dt] ≈ %

(t)
t+1+k, (3.11)

where in fact the approximation is a lower bound for each index k. The same statements apply
for single accident years I ≥ i > t− J . As a result, the sequence

%
(t)
t+1, . . . , %

(t)
I+J

provides the run-off of uncertainty profile at time t (called dynamic view) in the non-informative
prior gamma-gamma BCL model. There remains the question about the approximation error
in (3.11). Fortunately, we know that %(t)

t+1+k are lower bounds for all k ≥ 0 which allows to
uniformly control the approximation error.

Corollary 3.9. Assume that Model Assumptions 3.1 hold and that the BCL predictors are
considered in the non-informative prior limit γ → 1 and under parametrization (3.3). For
I ≤ t < I + J and 0 ≤ k < I + J − t we have

E
[

msep∑I

i=t−J+1+k
CDRi,t+1+k|Dt+k

(0)
∣∣∣∣Dt] ≥ %(t)

t+1+k,

with aggregation property

msepMack∑I

i=t−J+1 Ci,J |Dt

 I∑
i=t−J+1

Ĉ
CL(t)
i,J

 =
I+J−t−1∑
k=0

%
(t)
t+k+1.

The total approximation error is given by the difference
I+J−t−1∑
k=0

E
[

msep∑I

i=t−J+1+k
CDRi,t+k+1|Dt+k

(0)
∣∣∣∣Dt]− I+J−t−1∑

k=0
%

(t)
t+k+1

= msep∑I

i=t−J+1 Ci,J |Dt

 I∑
i=t−J+1

Ĉ
CL(t)
i,J

−msepMack∑I

i=t−J+1 Ci,J |Dt

 I∑
i=t−J+1

Ĉ
CL(t)
i,J

 ≥ 0.

Property 3.8 and Corollary 3.9 conclude the dynamic view. They tell us how to split the
static long-term view across the future development periods t + 1, . . . , I + J , and the resulting
approximations %(t)

t+k+1 can be calculated explicitly. Moreover, the approximation error can be
determined explicitly from Corollary 3.9, formula (3.5) and Theorem 3.4 applied to the non-
informative prior limit γ → 1. In many applied applications, as for instance the example below,
this approximation error is negligible, which means that in Property 3.8 we almost have the
martingale property in the upper index.

4 Example

In this section we present a numerical example and we show how the R library ChainLadder [6]
can be used to obtain the dynamic view. In order to analyze an example we still need to calibrate
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the variance parameters σ2
0, . . . , σ

2
J−1 to the data. This could be done in a (full) Bayesian way

by also choosing a prior distribution on these variance parameters; in this outline we prefer an
empirical Bayesian approach and estimate these variance parameters directly from the data.
This has the advantage of preserving analytical tractability. Under Model Assumptions 3.1 we
obtain for the first two conditional moments

E [Ci,j+1|Ci,0, . . . , Ci,j ,Θ] = Θ−1
j Ci,j ,

Var (Ci,j+1|Ci,0, . . . , Ci,j ,Θ) = Θ−2
j σ2

j Ci,j ,

for all 1 ≤ i ≤ I and 0 ≤ j ≤ J − 1. This implies that for known model parameters Θ the
gamma-gamma BCL model exactly fulfills the assumptions of the distribution-free CL model
as defined in [7]: Θ−1

j plays the role of the CL factor and Θ−2
j σ2

j plays the role of the variance
parameter in the distribution-free CL model. This is also the motivation behind parametrization
(3.3). For this reason we use the classical CL estimates and consider at time t ≥ I for j < t− 2

ŝ2
j = 1

((t− j − 1) ∧ I)− 1

(t−j−1)∧I∑
`=1

C`,j

(
C`,j+1
C`,j

− f̂CL(t)
j

)2

, (4.1)

and if j = J − 1 = I − 2 = t− 2 we set

ŝ2
J−1 = min

{
ŝ2
J−3, ŝ

2
J−2, ŝ

4
J−2/ŝ

2
J−3

}
= min

{
ŝ2
J−3, ŝ

4
J−2/ŝ

2
J−3

}
.

Using re-parametrization (3.3) then motivates estimates at time t ≥ I for 0 ≤ j ≤ J − 1

σ̂2
j = ŝ2

j/(f̂
CL(t)
j )2.

In the sequel we use these sample estimates ŝ2
j and σ̂2

j for s2
j and σ2

j , respectively, in all terms
appearing in Corollary 3.9.
We revisit Example 2.4 of [14]. The data is given in Table 4 in Appendix A, and the parameter
estimates for this data are provided in Table 1. With these parameter estimates we can now

j = 0 1 2 3 4 5 6 7 8 9

f̂
CL(I)
j 1.4925 1.0778 1.0229 1.0148 1.0070 1.0051 1.0011 1.0010 1.0014
ŝj 135.25 33.80 15.76 19.85 9.34 2.00 0.82 0.22 0.06
σ̂j 90.62 31.36 15.41 19.56 9.27 1.99 0.82 0.22 0.06

Table 1: Estimated CL factors f̂CL(I)
j and standard deviation parameters ŝj and σ̂j at time

t = I = J + 1.

calculate all quantities of interest for the CL method. We start by defining the CL reserves. If
we assume that at time t ≥ I the cumulative claims Ci,(t−i)∧J are already settled, we can define
the claims reserves of accident years I ≥ i > t− J for the outstanding loss liabilities by

RCL(t)
i = Ĉ

CL(t)
i,J − Ci,t−i,
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accident CL reserves BCL Mack’s in %
year i RCL(I)

i msep1/2 msep1/2 reserves

1 0 0 0 –
2 15’126 267 267 1.8%
3 26’257 914 914 3.5%
4 34’538 3’058 3’058 8.9%
5 85’302 7’628 7’628 8.9%
6 156’494 33’341 33’341 21.3%
7 286’121 73’467 73’467 25.7%
8 449’167 85’399 85’398 19.0%
9 1’043’242 134’338 134’337 12.9%
10 3’950’815 410’850 410’817 10.4%

total 6’047’061 462’990 462’960 7.7%

Table 2: CL reserves and prediction uncertainty in the static long-term view: rooted conditional
MSEPs in the non-informative prior gamma-gamma BCL model (Theorem 3.4) and Mack’s
formula (3.4) and (3.5) at time t = I = 10.

and aggregated over all accident years by

RCL(t) =
I∑

i=t−J+1
RCL(t)
i .

In Table 2 we provide the CL reserves and the rooted conditional MSEPs of the static long-
term view, that is, the rooted MSEP formula in the non-informative prior gamma-gamma BCL
model (Theorem 3.4) and the rooted Mack’s formula (3.4) and (3.5). As stated in Corollary
3.9 we see that Mack’s formula gives a lower bound to the conditional MSEP formula in the
non-informative prior gamma-gamma BCL model. The approximation error 462′960 versus
462′990 is fairly small and therefore we may consider approximations %(I)

I+1+k for k ≥ 0 being
appropriate. Using (3.9) and (3.10) we calculate the dynamic run-off view. This describes how
Mack’s static long-term prediction uncertainty is expected to be released over time. We therefore
consider two different quantities, the first one being the rooted expected claims development
result uncertainties

√
%

(I)
I+1+k, for k = 0, . . . , J − 1 at time t = I, and the second one being the

rooted expected remaining prediction uncertainty at time s = I, . . . , I+J−1 (viewed from time
t = I) defined by

χ(I)
s =

√√√√ J−1∑
k=s−I

%
(I)
I+k+1. (4.2)

This rooted expected run-off of prediction uncertainty is compared to the expected run-off of
the CL reserves given by

E
[
RCL(s)

∣∣∣DI] =
I∑

i=s−J+1
Ĉ
CL(I)
i,J − ĈCL(I)

i,s−i . (4.3)

Formula (4.3) can be considered as the expected run-off of the liabilities that corresponds to a
first moment, and formula (4.2) can be considered as the expected run-off of the corresponding
second moment. The results of the dynamic view are provided in Table 3.
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calendar exp. run-off run-off in % rooted expected
years CL reserves rooted MSEP reserves CDR MSEP

s E[RCL(s)|DI ] χ
(I)
s

√
%

(I)
s+1

10 6’047’061 462’960 8% 420’220
11 2’173’856 194’285 9% 150’544
12 1’048’144 122’813 12% 93’390
13 570’584 79’758 14% 72’882
14 293’063 32’397 11% 31’459
15 148’951 7’739 5% 7’172
16 67’824 2’906 4% 2’803
17 36’036 769 2% 744
18 13’655 191 1% 191
19 0 0 0

Table 3: Dynamic view: expected run-off of CL reserves (4.3), the corresponding rooted remain-
ing prediction uncertainty χ

(I)
s defined in (4.2) and the rooted expected claims development

result (CDR) uncertainties
√
%

(I)
s+1 for I ≤ s ≤ I + J − 1 at time t = I = 10.

The first line of Table 3 for s = 10 corresponds to the last line of Table 2, providing the
CL reserves, Mack’s static long-term formula (3.5), as well as MW’s short-term formula (3.8).
This first line is complemented by the full expected run-off picture (dynamic view) on lines
s = 11, . . . , 19. The last column

√
%

(I)
s+1 provides the rooted expected claims development result

uncertainties for all future calendar years s, and the second and third columns describe the
expected run-off of the CL reserves and of the corresponding prediction uncertainties. Inter-
estingly, the relative uncertainty in the fourth column is increasing until calendar year s = 13
(from 8% to 14%) and then decreasing. This is not a typical picture, often in non-life insurance
data one finds that this column is monotonically increasing, which says (colloquially speaking)
that the release of reserves is faster than the release of uncertainty.
The results of Table 3 can be obtained from the R library ChainLadder [6]. Let us briefly describe
the corresponding commands. Assume that the cumulative data is stored in data.cumulative,
then we use the following commands:

# bringing data in appropriate triangular form
> tri <- as.triangle(as.matrix(data.cumulative))
> dimnames(tri)=list(origin=1:nrow(tri),dev=1:ncol(tri))

# calculation of CL method using (4.1)
> M <- MackChainLadder(tri,est.sigma="Mack")
> M

Columns ‘IBNR’ and ‘Mack.S.E’ of the R output provide the CL reserves and the rooted con-
ditional MSEP per accident year 1 ≤ i ≤ I, see (3.4), and the summary table gives the corre-
sponding statistics for aggregated accident years, see (3.5), in the static long-term view.
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# dynamic view (3.10)
> CDR(M,dev="all")

Columns ‘IBNR’, ‘CDR(1)S.E.’, . . ., ‘CDR(J + 1)S.E.’ and ‘Mack.S.E.’ of the R output provide
the CL reserves and the rooted expected conditional MSEPs of the claims development results
(short-term view) and of the total run-off uncertainty (static long-term view). The last line of
these columns of the R output denoted ‘Total’ exactly displays

√
%

(I)
s+1, I ≤ s ≤ I +J − 1, which

gives the dynamic view.

5 Conclusions

We have revisited the CL algorithm. For analyzing prediction uncertainty of the CL algorithm
we have introduced the non-informative prior gamma-gamma BCL model which provides the
classical CL predictors. In this model we have studied the full dynamic run-off of uncertainty
picture. The resulting uncertainty formulas were compared to Mack’s formula (static long-term
view) and to MW’s formula (short-term view). The dynamic view allows to analyze the release
of prediction uncertainty over time, which was demonstrated in an example.
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A Data

acc. development year j
year i 0 1 2 3 4 5 6 7 8 9

1 5’946’975 9’668’212 10’563’929 10’771’690 10’978’394 11’040’518 11’106’331 11’121’181 11’132’310 11’148’124
2 6’346’756 9’593’162 10’316’383 10’468’180 10’536’004 10’572’608 10’625’360 10’636’546 10’648’192
3 6’269’090 9’245’313 10’092’366 10’355’134 10’507’837 10’573’282 10’626’827 10’635’751
4 5’863’015 8’546’239 9’268’771 9’459’424 9’592’399 9’680’740 9’724’068
5 5’778’885 8’524’114 9’178’009 9’451’404 9’681’692 9’786’916
6 6’184’793 9’013’132 9’585’897 9’830’796 9’935’753
7 5’600’184 8’493’391 9’056’505 9’282’022
8 5’288’066 7’728’169 8’256’211
9 5’290’793 7’648’729
10 5’675’568

Table 4: Observed cumulative claims Ci,j for i+ j ≤ 10 and I = J + 1 = 10.
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