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Presented to the ASTIN COLLOQUIUM

LISBOA 2016

31 MAY - 03 JUNE 2016
This paper has been prepared for the ASTIN COLLOQUIUM LISBOA 2016

IAP wishes it to be understood that opinions put forward herein are not necessarily those of the IAP
IAP is not responsible, the author is the only responsible for those opinions.
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Abstract

The paper presents the results of a case study fitting the generalized Pareto
distribution to insurance industry claims data. Besides classical parametric
procedures, robust statistical concepts are considered. The latter provide in-
struments to assess the characteristics of estimators also in the neighborhood
of parametric models.

A demand for robust methods may arise in cases of fitting distribution func-
tions to large claims or extreme events, that is, in situations, in which quite
a few data points may have a considerable impact on the estimate. Special
areas of application are the calibration of individual large claims in internal
models and reinsurance pricing.

Keywords: Generalized Pareto distribution, M-estimator, influence curve,
contamination, neighborhood, gross error sensitivity.



0.1 Introduction

Topic of this article is the fitting of the generalized Pareto distribution (GPD)
to insurance industry claims data. The interest is in estimating the tail of
large claims or extreme events.

Classical statistical procedures act on strict parametric model assumptions
which may not always be fulfilled in real world situations. Tukey (1960)
has shown that already under tiny deviations from model assumptions, here
from normality, the mean deviation may perform better than the standard
deviation, the latter being efficient under strict normality. This conjecture
goes back to A.S. Eddington, see Fisher (1920).

Robust statistical concepts deal with the stability of statistical procedures
in the neighborhood of ideal models. The results of a case study are pre-
sented in which classical and robust estimators are applied to fit the GPD to
insurance industry data. We investigate Danish fire insurance claims data,
that have been analysed extensively in the literature, see for example McNeil
(1997). New in this case study is the consideration of several estimators with
quite different characteristics in terms of efficiency and robustness. To test
the performance of the estimators the dataset is contaminated by adding a
new largest claim. The following estimators are considered in some detail:
maximum likelihood estimator, method of moments, optimal bias-robust es-
timator and Cramér-von Mises minimum distance estimator. The efficiency
and (local) robustness of these estimators are briefly discussed. The proba-
bility weighted moments estimator and the Kolmogorov minimum distance
estimator are included in the case study. The final selection of an estimator
may be a decision on the trade-off between efficiency and robustness.

0.2 The Estimation Problem

A parametric model P consists of a family of probability measures or distri-
bution functions Fθ on a sample space (X ,A) with θ belonging to a parameter
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space Θ. Here, Fθ is the generalized Pareto distibution (GPD) given by

Fθ(x) = 1−
(

1 + ξ
x

β

)−1/ξ
on the sample space X = [0,∞) with unknown parameter θ = (β, ξ) ∈
Θ = (0,∞) × (0,∞). The parameters β and ξ are referred to as scale and
shape parameter. The family P is L2-differentiable (smooth) at θ ∈ Θ with
L2-derivative or scores function

Λθ (x) =
d

dθ
ln fθ (x)

with EθΛθ = 0 and Fisher information of full rank Iθ = EθΛθΛ
t
θ.

Assume that X1, . . . , Xn are independent and identically distributed (i.i.d.)
observations belonging to the sample space X = [0,∞). The Xi may be
interpreted as exceedances over some threshold. Classical statistics assume
that the observations Xi are distributed exactly like one of the Fθ and esti-
mate θ based on the data that is available.

Robust statistics1 introduce the concept of neighborhoods of distribution
functions or probability measures. Pθ will generally differ from the real prob-
ability measure which in turn may be at least in the neighborhood of Pθ. Such
a neighborhood can be described by contamination balls Uc (θ, r) = Bc (Pθ, r)
that allow for convex combinations between Pθ and arbitrary probability
measures,

Bc (Pθ, r) =
{

(1− r)+ Pθ + min (1, r)Q | Q ∈M1 (A)
}
.

Influence curves, or then called influence functions, have been introduced as
Gateâux derivatives of statistical functionals, see for example Hampel et al
(1986). They also appear as summands of asymptotically linear estiamtors,
see Rieder (1994). The set Ψ2 (θ) of all square integrable influence curves is
defined as

Ψ2 (θ) =
{
ψθ ∈ Lk2 (Pθ) | Eθψθ = 0, EθψθΛ

t
θ = Ik

}
.

(In our case k = 2 for the two parameters β and ξ.)

1For the theoretical background we refer to Rieder (1996). Here, just some rough ideas of the theory are
indicated.
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An estimator θ̂n = θ̂n (X1 . . . , Xn) is called asymptotically linear at Pθ if
there is an influence curve ψθ ∈ Ψ2 (θ) such that

√
n
(
θ̂n − θ

)
=

1√
n

n∑
i=1

ψθ (Xi) + oPnθ
(
n0
)
.

(o is the usual Landau symbol, Xn = oP (Rn) is short for Xn/Rn → 0
in probability.) This expansion determins the influence curve ψθ uniquely,
see Rieder (1996). If the estimator θ̂n is asymptotically linear with square
integrable influence curve ψθ, then

√
n
(
θ̂n − θ

)
→ N (0, Covθ (ψθ))

in distribution.

All estimators that are considered here, M estimators and minimum distance
estimators, are asymptotically linear.

0.3 M Estimators

M estimators are of special interest in the context of robust estimation. They
generalize the concept of maximum likelihood estimators.

Consider the classical estimation problem. The maximum likelihood (ML)
etimator θ̂n = θ̂n (X1, . . . , Xn) maximizes the likelihood or equivalently the
log likelihood

ln (θ;X1, . . . , Xn) =
1

n

n∑
i=1

ln f (Xi, θ) .

M estimators are a generalization of this concept introduced by Huber (1964).
The idea is to replace the function ln f by one that does not deviate too much
from ln f to maintain the good characteristics of the ML estimator and that
reacts more robust to outliers. M estimators are defined as maximizing an
expression like

Mn (θ) =
1

n

n∑
i=1

m (Xi, θ)
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with some function m : X ×Rk → Rl. Suppose m has a set of partial deriva-
tives Ψ (x, θ) = ∂

∂θm (x, θ), then θ̂n is called an M-estimator if it satisfies the
equation

Ψn (θ) =
1

n

n∑
i=1

Ψθ (Xi, θ) = 0.

Assume that the M estimator θ̂n is consistent, that is, the sequence θ̂n con-
verges in probability to a zero θ0 of Ψ = EθΨθ. Under mild regularity con-

ditons
√
n
(
θ̂n − θ0

)
is asymptotically normal with mean zero and covari-

ance matrix
(
Eθ0

d
dθΨθ0

)−1
EΨθ0Ψ

t
θ0

(
Eθ0

d
dθΨθ0

)−t
, see van der Vaart (1998).

Then,

√
n
(
θ̂n − θ0

)
=

1√
n

n∑
i=1

ψθ0 (Xi) + oPnθ0

(
n0
)

with ψθ0 (x) = −
(
Eθ0

d
dθΨθ0

)−1√
nΨθ0 (x).

0.4 Criteria to assess an Estimator

The asymptotic covariance matrix of an asymptotically linear estimator θ̂n
(converging to θ) may be determined as Covθ (ψθ) = Eθψθψ

t
θ. To measure

the efficiency of an estimator and compare it to other estimators we either
consider the trace of the covariance matrix, see Hampel et al. (1986),

trace Covθ (ψθ) = Eθψ
t
θψθ = Eθ ‖ ψθ ‖2

or the standard error of the components of θ̂n.

The gross error sensitivity (GES) is a measure for the asymptotic bias of an
estimator caused by contamination, see Hampel et al. (1986),

GESθ̂n = sup
x
‖ ψθ (x) ‖ .

The GES provides a measure of the (local) robustness of an estimator. If
GESθ̂n <∞ the estimator θ̂n is called bias robust (b-robust).
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0.5 Estimators

The following estimators are considered in the case study analysing the in-
dustry data,

• Maximum likelihood estimator (MLE)

• Method of moments estimator (MOM)

• Optimal bias robust estimator (OBRE)

• Cramér-von-Mises minimum distance estimator (MDE CvM)

Some basic ideas of these estimators are provided, estimation procedures and
characteristics are indicated.

0.5.1 Maximum Likelihood Estimator

The maximum likelihood estimator θ̂MLE
n = θ̂MLE

n (X1 . . . , Xn) maximizes
the likelihood L (θ;X1, . . . , Xn) =

∏n
i=1 fθ (Xi) or equivalently the log likeli-

hood

ln (θ;X1, . . . , Xn) =
1

n

n∑
i=1

ln fθ (Xi) .

The estimator satiefies the implicit equation,

Ψn (θ) =
1

n

n∑
i=1

Λθ (Xi) = 0,

with scores function Λθ (x) = d/dθ ln fθ (x). A zero of Ψn can be determined
iteratively applying the Newton-Raphson algorithm,

θ(i+1)
n = θ(i)n + I−1

θ
(i)
n

1

n

n∑
i=1

Λ
θ
(i)
n

(Xi) ,

with Fisher information Iθ = −Eθ
d
dθΛθ = EθΛθΛ

t
θ > 0 and some starting

value θ
(0)
n . The influence function is given by

ψθ (x) = I−1θ Λθ (x) .
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The MLE is asymptotically normal with asymptotic covariance matrix I−1θ /n.
The estimator is efficient regarding the partial ordering of covariance matri-
ces,

U ≤ V ⇔ V − U positive semidefinite.

The Influence function is unbounded and the asymptotic bias is infinite. The
MLE is not b-robust.

0.5.2 Method of Moments

The method of moments or moment estimator θ̂MOM
n for θ is the solution of

the system of equations

Tn =
(
X,X2

)
=

(
1

n

n∑
i=1

Xi,
1

n

n∑
i=1

X2
i

)
= e (θ) :=

(
EθX,EθX

2
)
.

With ei = EθX
i, i = 1, 2, the moment estimator can be specified as

θ̂MOM
n =

(
β̂, ξ̂
)

= e−1
(
EθX,EθX

2
)

provided that ξ < 0.5. The influence function of Tn =
(
X,X2

)
is given by

ψTnθ (x) =

(
x− EX
x2 − EX2

)
,

see for example Hampel et al. (1986). The influence function of θ̂MOM
n

can be determined by applying the delta method, see van der Vaart (1998),
as ψθ = DψTnθ with D as Jacobi matrix of e−1. The moment estimator is
asymptotically normal for ξ < 0.25, i.e. if the fourth moment exists. The
asymptotic covariance matrix is given by DΣDt/n with Σ = Covθ

(
X,X2

)
,

the covariance matrix of the first two moments. The influence function is
unbounded. The estimator is not b-robust.

0.5.3 Optimal B-Robust Estimator

The intention associated with the optimal bias-robust estimator (OBRE)
θ̂OBREn is to construct an estimator that is just slightly less efficient than the
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MLE and that has at the same time a bounded asymptotic bias in the neigh-
borhood of the ideal model. There is a trade-off between these objectives.
The OBRE minimizes the trace of the asymptotic covariance matrix subject
to a bias bound b,

Eθ ‖ ψθ ‖2= min! subject to sup
x
‖ ψθ ‖≤ b.

The solution to this otimization problem coincides with the solution to the
asymptotic mean square error (MSE) problem,

maxMSEθ (ψθ, r) := Eθ ‖ ψθ ‖2 +r2 sup
x
‖ ψθ ‖2= min!

To estimate the parameter θ, determine a starting value θ
(0)
n for the iteration

and set a = 0 and A = I−1
θ
(0)
n

with Fisher information Iθ. θ̂OBREn can be

determined iteratively,

θ(i+1)
n = θ(i)n + A

1

n

n∑
i=1

wA,a
c (Xi)

(
Λ
θ
(i)
n

(Xi)− a
)
,

with

wA,a
b (x) = hb (A (Λθ (x)− a)) , hb (x) = min

(
1,

b

‖ x ‖

)
,

a =

∫
wA,a
b (s) Λθ (s) dFθ (s)∫
wA,a
b (s) dFθ (s)

,

A =

(∫
wA,a
b (s) (Λθ (s)− a) (Λθ (s)− a)t dFθ (s)

)−1
.

wA,a
b is a weighting function. The bulk of the observations will usually be

assigned the weight 1, while very large claims or outliers may be assigned
a weight between 0 and 1. a has an auxiliary function. It ensures con-
sistency of the estimator. Matrix A can be interpreted as inverse of the
generalization of the Fisher information. b and radius r are related by
r2b = Eθ (‖ AΛθ − a ‖ −b)+. The influence function is given by

ψθ (x) = wA,a
c (x)A (Λθ (x)− a) .

It is bounded. The OBRE is relative efficient. The smaller the constant b
is, the less efficient the estimator is. The asymptotic bias does not exceed b.
The OBRE is b-robust.
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0.5.4 Cramér-von Mises Minimum Distance Estimator

The Cramér-von-Mises (CvM) minimum distance between empirical df F̂n
and theoretical df Fθ is defined as

dCvM

(
F̂n, Fθ

)
:=

√∫ (
F̂n (x)− Fθ (x)

)2
dFθ (x).

The minimun distance estimator θ̂MDE
n minimizes the distance dCvM . For the

parameter estimation we refer to Rieder (1994). The family P of generalized
Pareto distributions is Cramér-von Mises (CvM) differentiable at θ with CvM
derivative ∆θ,

∆θ (y) =

∫
(I (x ≤ y)− Λθ (x))Pθ (dx) .

The influence function is given by

ψθ (x) =

∫
(I (x ≤ y)− Fθ (y))ϕθ (y)µ (dy) ,

with ϕθ (x) = J −1θ ∆θ (x) and CvM information Jθ of P at θ, Jθ =
∫

∆θ∆
t
θdµ >

0. The estimator is quite efficient and b-robust, the influence curve is
bounded.

0.6 Case Study: Danish Fire Insurance Data

The data analysed in this case study comprises of 2,167 fire claims of a
Copenhagen reinsurance company collected in 1980 to 1990. The data is ad-
justed for inflation reflecting 1985 values. (The claims represent aggregated
claims from the sub-lines building, contents and loss of profits.)

First, we study the data considering a threshold of 10m DKK (Model 1).
Then, we introduce an additional large claim of 350m DKK and investigate
how the estimators react to this contamination. In the original data set the
largest claim amounts to 263m DKK. The threshold of 10m DKK and the
contamination have been considered by McNeil (1997).

Model 1: Exceedances over threshold of 10m DKK

Model 2: Introduction of new largest claim of 350 m DKK to dataset
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0.6.1 Model 1: Exceedances over threshold of 10m DKK

Estimator Scale parameter Shape parameter GES Quantiles
β s.e. β ξ s.e. ξ 99.5% 99.9%

MLE 6.975 1.156 0.497 0.143 ∞ 181 421
MOM 8.520 0.395 ∞ 153 309
OBRE (b = 10) 6.970 1.161 0.494 0.149 10 179 413
OBRE (b = 9) 6.982 1.164 0.488 0.150 9 176 403
OBRE (b = 8) 7,032 1.162 0.454 0.150 8 156 341
MDE CvM 7.696 1.382 0.333 0.202 28 112 208

The MLE is efficient. The standard errors of scale and shape parameter
are smaller than the standard errors of the other estimators. The GES is
infinite, the MLE is not b-robust. The MOM provides a poor fit. Since the
shape parameter exceeds 1/4, the estimator is not asymptotically normal.
The MOM is not b-robust. OBRE and MDE CvM are both efficient and
b-robust (GES < ∞). With decreasing constant b the shape parameter of
the OBRE decreases as well. The OBRE achieves that by assigning a weight
lower than 1 to the largest claims. The radius r depends on the constant b
and equals 5.1% (b = 10), 8.1% (b = 8) and 14.5% (b = 6).

0.6.2 Model 2: Introduction of new claim of 350m DKK

For this analysis we have considered two more estimators, the Kolmogorov
minimum distance estimator (MDE Kol) and the probability weighted mo-
ments estimator (PWM). The former minimizes the Kolmogorov distance
defined by

dKol

(
F̂n, Fθ

)
:= sup

x
| F̂n (x)− Fθ (x) |,

for the latter we refer to Hosking and Wallis (1987).

11



Estimator Model 1 Model 2 Delta
ξ Quantiles ξ Quantiles 99.9%-

99.5% 99.9% 99.5% 99.9% Quantile

MLE 0.497 181 421 0.597 257 690 64%
PWM 0.517 191 455 0.613 266 732 61%
OBRE (b = 10) 0.494 179 413 0.592 252 672 63%
OBRE (b = 9) 0.488 176 403 0.571 234 603 50%
OBRE (b = 8) 0.454 156 341 0.551 218 545 60%
MDE CvM 0.333 112 208 0.370 127 248 19%
MDE Kol 0.457 158 347 0.489 179 410 18%

We leave the moment estimator (MOM) aside because of the poor fit and
the restriction to the parameter space associated with the MOM (ξ < 1/4).
The 99.9%-quantile of MLE and OBRE increases by approximately 60%
switching from model 1 to model 2. An exeption is the OBRE with constant
b = 9. For this estimator the increase is still 50%. The behaviour of the
minimum distance estimators stands out. The increase is slightly less than
20%.

0.7 Conclusions

In this paper several estiamtors, classical and robust ones, have been applied
to insurance industry data. It turned out that the selection of the estimator
may have a significant impact on the shape parameter and the quantiles of
the fitted distribution. Contaminating the dataset with a new largest claim
results in a considerable increase of the shape parameter not just for classical
estimators but also for robust ones like the OBRE. The behaviour of the
minimum distance estimators turned out to be more resilient in this respect.
It should be avoided to use robust estimators to optimize the fit to the bulk
of the data at the cost of weighting down or excluding the largest claims
(outliers) without precaution for an appropriate tail of the fitted distribution.
After all, robust estimators should be treated with knowledge and care.
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