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Abstract

We try to maximize the accumulated expected present value of divi-
dends under the constraint that the with dividend risk process has a ruin
probability not exceeding a small number. This problem is considered in
the de Finetti model and in the Lundberg model. From the solution in
the de Finetti model given in Hipp (2003) we learn that one can use a
modified dynamic equation in two state variables: the current surplus and
the running ruin probability. The dynamics of the second variable consti-
tutes a martingale which — in the Lundberg model with constant barriers
between claims — is a function of present surplus and number of claims.
For this we first maximize dividend payments up to the first claim, and
derive an iteration scheme from this initial solution. The resulting value
function for exponential claims dominates the solution with the heuristic
improvement procedure presented in Hipp (2016); it is close to the value
function in the unconstraint case: ruin constraints are cheap!

1 Introduction

Starting with de Finetti’s famous article [5], many papers have been written on
dividend maximization for insurers in which the stock holder’s interest is seen as
the only objective; the interests of policyholders are neglected. The correspond-
ing optimal dividend strategies lead — in most actuarial models — to certain ruin
for the with dividend process. Here, we consider dividend maximization under
the constraint that the probability of the with dividend risk process is limited
by some small number. Similar problems have been considered by Albrecher
and Thonhauser [1], and Hernandez and Junca [10]. For dividend strategies
without certain ruin see [4] and [7].

We shall first reconsider the de Finetti model in which time and space are dis-
crete, for which earlier results can be found in [8] and [9] in which a modified
Hamilton-Jacobi-Bellman equation is derived and used for numerical calcula-
tions. This modified HJB equation involves running ruin probabilities which
form a martingale. In this note we study these martingales in the Lundberg
model and arrive at a characterization of the optimal strategy of the problem
which leads to an efficient numerical procedure.



This is work in progress; many problems, e. g., solutions for other diffusion
processes, are still open.

2 The de Finetti model

Let X7, X5, ... be independent identically distributed random variables with
P{X;=1}=1-P{X;, =1} =p>1/2,
and for an integer s define
Sty=s+X1+..+X,t=0,1,2, ... (1)

In this most simple model Bruno de Finetti has investigated the problem of
optimal dividend payment in his fundamental 1957 paper (see [5]). We shall
thus call the model the de Finetti model. The random variables S(t) can be seen
as the time ¢ surplus of a company with initial surplus s, losing 1 or earning
1 in each period. It might be an insurer who insures claims of size 2 which
occur with probability ¢ = 1 — p for a premium 1. Our assumption p > 1/2
implies that S(t) — oo for ¢ — oo; otherwise, ruin would be certain. The ruin
probability for initial surplus s > 0 is

Y(s) = P{S(t) < 0 for some t > 0|S(0) = s} = (¢/p)**,s > —1.
It is a solution of the linear difference equation

fls)=pf(s+ 1)+ (1 -p)f(s—1), s 20, (2)

which is considered for functions f(s), s > —1. Equation (2) is linear, its solution
space is spanned by the two functions 1 and ¥(s), and a solution can be identified
by its values at two points.

2.1 Dividend problem

We allow for dividend payment in the de Finetti model, i.e. for non-decreasing
D(t),t > 0, with D(¢) — depending on Xj, ..., X; — being the sum of dividends
d(n),n =0,...,t, paid until time ¢, we consider

SP(t) = S(t) — D(t),t > 0.

For a discount rate 0 < r < 1 we define the expected present value of dividends

P

vP(s)=FE Z r*d(n)|S(0) = s| ,

n=0

where 7 = min{t : S(¢)” < 0} is the ruin time for SP. The maximal possible

present value
v(s) = supv?(s),s >0, (3)



is often coined the walue of the company. The supremum is taken over all
dividend functions D with D(t) non-decreasing and depending on X7, ..., X;. We
may restrict the maximization over all dividend functions with d(¢) an integer
for all t > 0, see [11], p. 11, Lemma 1.9.

The dynamic equation for the dividend problem reads
o(s) = max{r(po(s + 1) + (1= pJo(s — 1)), L+ vo(s — D},s > L. (4)

The second term in the brackets stands for a dividend of size 1 paid immediately,
and the first for future dividend payments. For initial surplus s = 0 immediate
dividend payment is forbidden, and for this case the dynamic equation is v(0) =
rpv(1).

The dynamic equation in (4)

v(s) =r(pv(s + 1) + (1 = pJu(s — 1)) (5)

is linear, its solution space has dimension 2, and its solutions can be identified
by their values at one point s > —1.

The optimal dividend strategy for the problem is a barrier strategy, i.e. for some
integer M > 0 we pay dividends as soon as we are above M. For a proof and a
method for computation see [11], p. 16, Example 1.13. The value function will
be denoted by Vp(s). If v(s) is the solution of the dynamic equation (5) with
v(—1) =0 and v(0) = 1, then the barrier M equals

M = argmin{v(s + 1) — v(s) : s > 0},

and with

we have

Vo(s) = Wo(s), s < M, Vo(s) = Vo(M) + 5 — M, s> M.

2.2 Dividend payment with ruin constraint

When we maximize dividend payment, we generally generate certain ruin, and
on the other hand maximizing survival probability leads to no dividend payment.
One might instead try to maximize dividend payment under a ruin constraint:

maximize
P_1

vP(s)=F Z r"d,|S(0) = s

n=0

under the constraint P{7” < o0|S(0) = s} < a. To simplify the notation
we shall assume that all dividend strategies D(t) = d(1) + ... + d(t) satisfy



d(t) = 0 whenever t > 7. For the constraint we need that the no dividend ruin
probability ¢ (s) satisfies ¢(s) < a. In line with this we define

v(s,a) =supvP(s) =0
D

whenever a < 9(s). The dynamic equation for this problem reads

v(s,a) = max{l +v(s — 1,a),r[pu(s + 1, 61) + (1 —p)v(s — 1, B2)l}, ()

where the maximum is taken over all 0 < 81 < ¥(s+1),0 < By < (s — 1)
satisfying

phr+ (1 —p)fa=oc. (7)
Here the maximum with 1+ v(s — 1, a) is omitted whenever ¢)(s — 1) > . The
maximum over the empty set is equal to zero. The maximizers (1, 82 define the
process b”(t) of running ruin probabilities for the with dividend process SP(t)
which is an S (t)— martingale. At state « this process goes down to 3y if ST (t)
goes up, and it goes up to By if SP(t) goes down. When dividends are paid,
then the value o remains unchanged. The condition (7) implies that b (¢) is an
SP (t)—martingale.
From equation (6) we obtain an iteration procedure which converges monoton-
ically to the value function of the problem:

Vit1(s,a) =max{l + Vo41(s — 1,a),rpVa(s+ 1,51) + (1 —p)Va(s — 1, 82)]},
with initial function Vi(s,a) = 0 or, more sophisticated,
Vi(s,a) = Vo(s — s(a)),

where V() is the time value of dividends without ruin constraint, and s(«a) =
min{x : ¥ (z) < a}. This method, however, is not efficient, in each step we have
to compute an array V(s,a),s > 0,%(s) < a < 1, for a fine grid of a’s.
Numerical results for the example p = 0.7 and » = 1/1.03 can be found in [§],
section 3, p. 263-264; and in [9].

3 Lundberg model

Here we consider the classical model for non-life insurance claims, the Lundberg

model, in which
N(#)

St)=s+ct— Y Vi, t>0, (8)
i=1
where s is the initial surplus, ¢ the constant premium per time unit, N(t),t >
0, a homogenous Poisson process with intensity A, and independent claims
Y,Y1,Ys, ... which are independent from the claims process N (¢). In this model,
the ruin probability ¢ (s) for initial surplus s satisfies the dynamic equation

0=AE[v(s —Y) —uv(s)] +cv'(s),s > 0. (9)



For exponential claims with density 1/pexp(—z/p), z > 0, the function g(s) =
Elv(s—Y)] satisfies ¢'(s) = (v(s) —g(s))/u, so (9) leads to the second order lin-
ear differential equation with constant coefficients, and (s) = Au/cexp(—Rs),
where R = (¢ — A\u)/(cp). Notice that for all solutions v(s) of (9) satisfying
v(s) =1 for s < 0 we have A(1 —v(0)) = ¢v’(0), so the subspace of these func-
tions has dimension 1. Similar linear differential equations for g(s) are valid for
claims having phase-type distributions.

3.1 Dividend problem

For optimal dividend payment without ruin constraint, we obtain the dynamic
equation in the no action region

0= —dv(s) + AE[v(s — X) —v(s)] + cv'(s),s > 0. (10)

The value function for the optimal dividend problem now is derived with the
solution v(s) of (10) satisfying v(0) = 1 and ¢'(0) = 1 and with barrier M =
argminv’(s) :

Wo(s) =wv(s)/v'(M),s >0,
and Vy(s) with slope 1 for s > M.

3.2 Dividend payment with ruin constraint

We consider dividend payments D(t) accumulated up to time ¢, with no pay-
ments at or after ruin. The problem to maximize the present value of future
dividends under a ruin constraint has value function

V(s,a) = supvP(s),
D

where 7P is the ruin time of the with dividend process,

D

WP(s) = E / " exp(—d)dD(1)[S(0) = 5| |
0

and the supremum is taken over all dividend payments satisfying
P{rP < x|S(0) = s} < a.

Also here, we will consider a process b(t) of running ruin probabilities which
is a martingale with mean «. But before we study these processes in detail,
we mention a heuristically defined iteration scheme which leads to good sub-
solutions of our problem.



3.3 Heuristic iteration scheme

The following iteration scheme for the computation of good suboptimal value
functions is given in [9]. Assume we have a suboptimal dividend function
Vi(s,a). For U > s and a > ¢(s) define a(B) as the solution to

_ b(s) () 1 4(s)
1= 0(0) [ 0(0)

Then a better suboptimal value function V,,41(s, @) is given by

+a(U) (11)

Vit1(s,a) = max{rlrjlgicv(s)vn(U,a(U))/v(U), Vit1(s — 1, @) + 1}, (12)

where the outer maximum is taken only if ¢(s — 1) < a. The strategy behind
this heuristic iteration is: start at s and wait without paying dividends until
you reach U. When you reach U, then use an optimal dividend strategy starting
at U and allowed ruin probability a(U). The ruin probability for this strategy
is the probability to be ruined before reaching U, plus the probability for reach-
ing U before ruin, multiplied by a(U). The dividend value of the strategy is
the dividend value V (U, a(U)), discounted over the time 7 until U is reached.
The equation (12) results from the fact that (¢¥(s) —(U))/(1 —(U)) is the
probability for ruin before reaching U, and

Elexp(=67)] = v(s)/v(U),

where v(s) is the solution to (10) with v(0) = v/(0) = 1.

A possible initial function is Vi (s, a) = 0, a more sophisticated starting point is
Vi(s,a) = Vo(s — s(a)), (13)

where E[¢(s — s(a))] = a. This iteration scheme does, however, not seem to
converge to the value function, and actually the numerics is quite inefficient.
Again, in each step we have to compute an array V(s,a),s > 0,9(s) < a < 1,
for a fine grid of a’s.

The following figure shows the heuristic improvement procedure for exponential
claims with mean 1, for A = 1,¢ = 2 and § = 0.03. The initial function (smallest
values ) is the one given in (13). The improvements V,,(s,0.2) seem to converge,
but the computation time for each step is too long for more than 200 iterations.
Furthermore, a large number of iterations involves so many operations, that the
results are no longer reliable.

We see that a first guess for the true value V(2,0.2) would be approximately
17.
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V(8), Vn(s,0.2) for 0 < s <7and n=1,..,30.

3.4 A promising classical approach

For fixed s and a we consider the dividend maximization problem in which we
stop paying dividends after the n—th claim. This certainly leads to a sequence
of value functions (for easier problems!) which converge to the value function
of the given problem. We will first show that the optimal solution to these
partial problems is easy: They can be solved using a sequence of barriers which
are not state-dependent; we show in a numerical example that they give better
results than the above heuristic iteration. We first consider the case of dividend
payment until the first claim, and then show in the case n = 2 that the optimal
solution has constant barriers between claims.

3.5 Dividend payment until the first claim

This problem is solved as follows: let By(x) = E[¢(z —Y)]; if By(s) < a, then
we can find M; < s satisfying Bo(M;) = «, and we pay a lump sum s — M;
immediately, and after that we pay out all incoming premia. If By(s) > « or
s < M, then we wait until we reach M, and then we again pay out all premia.
The present value of dividends for this strategy for s < M; is

o e Deda _ Acexp(=(A+6)(M) — s5)/c)

E

The running ruin probabilities b”(¢) for this optimal strategy are also easily
computed: Since after the first claim no dividends are paid, b”(t) = B(SP(t))
will be given by the dynamic equation (martingale property)

0=ME[Y(z—Y)— B(z)] + cB'(x),



with initial condition B(s) = a which has a solution of the form
B(z) = —%/ E[Y(u—Y)]exp(—Au/c)duexp(—Ax/c) + Cexp(Az/c), (15)
0

where C' is chosen such that the initial condition holds. Since B(x) should be
decreasing (and of course bounded by 1), we obtain that ST (¢) should have
an upper bound which defines the optimal barrier M; which is given by the
smallest solution of

B(a) = Elb(a — V)]

This simple structure looks promising; its properties can be used generally (for
all n).

3.6 Dividend payment after the n—th claim

The optimal dividend value up to the n 4+ 1—th claim is obtained using the
results for n = 1, in particular the above optimal strategy and formulas (15)
and (14). Assume that claim n happens at time 7" and the position after this
claim equals Z. Then we should maximize the dividends paid after time 7" and
stop paying dividends at the next claim. The ruin probability after the n—th
claim is some known number a,, = o — P{S > 0}. Let M,, be the solution of
EYp(M-Y)] =a,. If S > M,, then we pay a lump sum S — M,, immediately,
and if S < M, then we wait without paying dividends until we reach M,, where
we start paying out all incoming premia as dividends, until the next claim where
we stop. This means, we use a constant barrier M,,.

Hence the solution to the maximization of dividend value until the n+ 1th claim
has constant barriers between claims. For n = 2 this follows from the fact that
until the first claim we have a constant barrier, and after the first claim it is
again constant. For larger n we can use induction.

Clearly, the the value functions of the subproblems Dividends until the n—th
clatm will converge to the value function of the given problem.

It is surprising that the optimal strategies are all barrier strategies, while in the
case of unconstraint optimal dividend payment band strategies show up (see [6]
and [3]).

3.7 Calculations with constant barriers

For our numerical calculations we may restrict to barriers which are constant.
This will lead to optimal solutions of the subproblem dividends up to the n—th
clatm when the barriers My, ..., M,, are chosen properly, and in any case we get
subsolutions, and the results are surprisingly good and better than those of the
heuristic improvement procedure. The computation with constant barriers is
much faster than heuristic improvement.



For given barriers My > ... > M, we sequentially compute the running ruin
probabilities B;(z) and the dividend values V;(z) with the dynamic equations

0 = AE[Bi—i(z—Y) — Bi(x)] + ¢Bi(x),
0 = —0Vi(x) + AE[Vica(z = Y) = Vi(a)] + ¢V (2),

with the boundary values B.(z) = 0 for x > M;, and V/(x) = 1 for > M.
Here, M, is the barrier until the first claim, M, _; is the barrier for the time
between the first and the second claim, and so on. Bj(z) is the running ruin
probability before the n—th claim, so

0=AE[(z—Y) = Bi(z)] + cBj (),

and By(z) is the running ruin probability between claim number n — 1 and n.
Vi(x) is the present time T),,_; value of dividend payments over the last period,
where T; is the time for claim i. Vi (x) can be obtained with formula (14), where
the barrier is M.

For exponentially distributed claims with mean y, the functions
Gi(z) = E[Bij(x —=Y)] and H;(z) = E[V;(x = Y)]
are computed with the useful differential equations

Gi(z) = (Bi(z) —Gi(x)/p,
Hi(z) = (Vi(z)— Hi(x))/n,

together with the boundary values

G;(0) = 1, H;(0) = 0.

3.8 Numerical results

Our numerical work is done for exponential claims with mean p = 1, with
A =1, =0.03 and ¢ = 2. The first test shows that the number n of claims
considered should be large, but not too large. You see the computed values
for various n and for barriers M;,i = 1,...,n which are all equal to M. The
computations are done for s = 2 and a = 0.2, which is a region in which the
true value function of the problem is very steep (we have ¥(2) = 0.1839 and
hence V/(2,0.1839) = 0 while V'(2,0.2) is seen to be approximately 17 or larger
in our figure above.

In the table below you see the suboptimal values for V(2,0.2) with barriers
M; = M which are all equal, and for various n. You can see that for a high
value of dividends, n should be large, but not too large.



n | Va(s, a) M

15 4.9432 | 11.880
30 | 10.0279 | 13.255
60 | 15.5051 | 14.640
100 | 17.9717 | 15.670
150 | 18.5714 | 16.470
160 | 18.5795 | 16.600
170 | 18.5732 | 16.720

Better results are possible when we take M; which vary with i :

4

My =17, My = M; —¢,e = 0.0067 : V(2,0.2) = 18.6696.
My =19, Miyy = M; —¢,e = 0.0287 : V(2,0.2) = 18.8614.
My =20, Mgy = M;/e,e = 1.00218 : V(2,0.2) = 18.888.
without ruin constraint: V5(2) = 19.7939.

ruin constraints are cheap, they lead to small reductions of the company
value.

Conclusions

Above we wrote that this note is work in progress, many problems are still open,

e. g.

the solution for diffusion models for which heuristic improvements can be

defined and calculated (see [9]). Others are:

fast iteration schemes for other than exponential claims (phase-type);

efficient methods for the calculation of optimal barriers;
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