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Abstract

We study a classical continuous-time consumption-investment problem of a power utility

investor with deterministic labour income with the important feature that the consumption-

investment process is constrained to be deterministic. This is motivated by the design of

modern pension schemes of defined contribution type where, typically, the savings rate is

constant and the proportional investment in growth stocks is a function of age or time-to-

retirement, a so-called life-cycle investment strategy. We derive and study the optimal be-

haviour corresponding to the optimal product design within this realistic family of products

with deterministic decision profiles. We also propose a couple of suboptimal deterministic

strategies inspired from the optimal stochastic strategy and compare the optimal stochastic

control, the optimal deterministic control and these suboptimal deterministic controls in terms

of certainty equivalents. The conclusion is that only little is lost by constraining to determin-

istic strategies and only little is lost by implementing the suboptimal simple explicit strategies

rather than the optimal one we derive.
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1 Introduction

In saving plans where members bear all the investment risk, members are typically encouraged

to take control of making the investment decisions. Most savers, however, have proved unwill-

ing or unable to make appropriate choices and life-cycle strategies have evolved to ensure that

plan members who do not make their own investment decisions have a reasonably appropriate

risk/return profile as they progress through their savings career. Life-cycle strategies have become

a well-established part of the savings investment landscape. Traditionally and generally, life-cycle

investment strategies are based on an algorithm that links the investment risk to the number of

years to retirement. Younger members with longer time to retirement invest more in equities,
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while more mature members with fewer years to retirement tend to gradually transfer their assets

to bonds.

Asset allocation of life-cycle funds can be thought of as consisting of two parts. The growth part

contains equities and other growth assets. The protection part matches the profile of retirement

benefit liabilities. Assets are gradually transferred from the growth part to the protection part as

the member ages. While the concept may seem straightforward, implementation around the world

varies. In UK, asset allocation is determined relatively mechanically, driven by a predetermined

formula, following a straight-line transition over a number of years and executed by the plan

administrator. In contrast, in North America, the concept tends to be implemented via target-date

funds. These are constructed with specific retirement dates in mind. The asset allocation of these

funds is then changed at the discretion and judgement of the fund manager, but generally along

lines of moving from predominantly growth to protection assets as the target date approaches.

Plan members invest in funds whose target date is close to their intended retirement date. A

number of different arguments are used to support younger savers investing more in growth assets,

and hence taking more risk, than their old counterparts.

A popular argument is the idea of time horizon investment or time diversification. This argu-

ment is that which focuses on the link between the length of time an investment is held and the

risk associated with that investment. This link may come from the perception that investment risk

over a series of years is diversified and this diversification effect increases with the time horizon.

Therefore one can accept a larger risk per year for investments made on a long time horizon than

for those made on a small time horizon. The argument is reflected in the stylized fact that in

the long run equities always outperform bonds. Though still widely used, it is actually difficult to

find theoretical substantiation of this argument and, even practically, the hypothesis is not easy

to underpin.

Another argument concerns the flexibility. Young investors have greater flexibility to recover

from adverse market events than those nearer retirement. A young investor can adjust his savings

pattern and retirement timing plans to make up for adverse market events without too great

a lifestyle adjustment. Members nearer retirement have less time and flexibility to make up a

shortfall. The idea is that the so-called human capital consisting of future labor income is partly

controllable by working hours, professional education, and retirement timing. For young investors

marginal changes in these variables can have huge impact on the human capital and therefore

more easily make up for shortfalls in the investment than similar marginal changes do for more

mature investors. The argument does find both theoretical and practical support but working with

working hours, education, and retirement timing as controllable processes is a technically delicate

task with somewhat subtle results.

While both of the arguments above are more frequently heard from practical advisors, a third

argument is standard and simple from a theoretical point of view. It does not rely on either time

diversification or flexibility in human capital. Rather it is based on the mere structure of the (non-

controllable) human capital. At least for many saving plan members it makes sense to assume that

the human capital looks more like a protection asset than like a growth asset. Labor income has

more similarities with coupon payments from a bond than dividend and selling cash flows from an
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equity position. Taking constant proportions of the total assets in growth and protection assets as

starting point and considering human capital as part of the total assets, the conclusion is that the

young investor should add growth investments to the constant proportion in order to make up for

the large position in protection assets indirectly held through future working life. Old investors

should only add a little since the human capital vanishes as retirement approaches. To distinguish

this argument from the argument in the former paragraph, it should be emphasized that this

argument does not involve controlling human capital, but just recognizing its risk structure as

counting it in as a source of risk to the total risk exposure competing with, and therefore ideally

balanced off with, risk from financial assets.

An important question arising, in particular in connection with the last argument, is whether

time-to-retirement is the only relevant parameter to take into account or whether also other criteria

should be taken into account. In the next section we show that a theoretical substantiation

of the argument shows that also wealth, including historical capital gains, is relevant as state

process. Yet, for various reasons one may insist on designing the life-cycle investment strategies

via the age parameter, exclusively. In fact, this discussion is the mere rationale for this paper.

When, as we show in the next section, the optimal adapted strategy is stochastic (age and wealth

dependent) since it reflects the historical development of prices, what is then the best strategy

among the deterministic (only age dependent) ones? How can we technically calculate such an

optimal strategy? Are there, possibly, other deterministic strategies easier to calculate based on

a pragmatic view on the optimal stochastic strategy? And, finally, how do all these strategies

compare? Taking a simple suboptimal deterministic strategy as starting point, how much do we

gain from implementing the more complicated optimal deterministic one? And how much do we

gain if we instead advance the product design and implement the optimal stochastic life-cycle

investment strategy? These are the questions we raise and answer throughout the paper.

There exists a vast amount of financial literature where life-cycle investment turns out as part of

the optimal solution in response to the existence of and, possibly, control over labor income. Here,

we mention a few core references on the topic and refer the reader to these primary publications and

to the references therein. Common for all references mentioned here is that the resulting strategy is

never only depending on age but also on all other state processes in the system. Hakansson (1970)

and Merton (1971) realized that deterministic income in the consumption-investment problem

is similar to a bond position and can therefore be accounted for as such. Bodie et al. (1992)

discuss how control over labor supply through working hours in the active years results in life-

cycle investment because the flexibility in young ages allows a more risky asset position. Bodie et

al. (2004) elaborate further on the argument by also varying the retirement age and introducing

habit formation in preferences. Benzoni et al. (2007) consider the case where the labor income

is cointegrated with the growth asset such that the argument that labor income is of coupon

payment type is only partly true. Monographic overviews are given in Korn (1997), concerning

mathematical techniques and methods applied to the area, and in Viceira (2007), concerning the

economic scope of the methodology. The labor income argument only holds to the extent that

one can borrow against future labor income and therefore dilutes if such borrowing is constrained,

as shown by Dybvig and Liu (2010). Chai et al. (2011) contains, to the authors’ knowledge, the
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so far most comprehensive model where both labor supply and retirement age are endogenously

determined.

All articles in the previous paragraph are classical normative economic contributions to the

literature deriving and studying optimal behavior within a family of models and specifications

of preferences. For all these normative studies it is crucial that the more or less fixed payment

received from labor income has no influence on the utility from consumption apart from influencing

the admissible consumption patterns. This is in sharp contrast to the case where such fixed

amounts occur directly in the utility function, in which case the optimal portfolios completely

change structure into option-like holdings, see e.g. Korn (2005). Further, a couple of quite different

references deserve attention in relation to our motivation in terms of design of pension saving

products. Crane and Bodie (1999) consider the design of saving products by studying the various

aspects of the distribution of retirement wealth. Bikker et al. (2012) examine how the realized

investments of Dutch pensions funds fit to the life-cycle idea. Blake et al. (2013) study life-cycle

investment in the light of so-called prospect theory.

A different and short stream of literature is concerned with consumption and investment being

constrained to be deterministic. This idea is fundamental in Herzog et al. (2007), Geering et al.

(2010) and Bäuerle and Rieder (2013) but the objectives and the technology used is substantially

different from ours. The presentation in this paper has more similarities with Christiansen and

Steffensen (2013) who essentially present and solve a problem similar to the one studied here

but with a mean-variance objective function. While Christiansen and Steffensen (2013) use the

Hamilton-Jacobi-Bellman approach, in the present paper we rather suggest to use Pontryagin’s

maximum principle. The former approach needs an infinite-dimensional state space, so that the

Hamilton-Jacobi-Bellman equation is not a common partial differential equation but some kind

of evolution equation for a functional on a function space. To our knowledge, solutions for this

evolution equation are out of reach, so we focus on Pontryagin’s maximum principle.

One may reasonably ask: If the optimal strategic investment strategy is known to be stochasti-

cally adapted to wealth, then why bother about deterministic strategies at all? Well, still age-but-

not-wealth-dependent life-cycle strategies are crucial in practical pension asset management. They

are simple to communicate and therefore have an advantage from a marketing point of view and

they are (supposed to be) cheap to administrate compared to more involved alternatives. Some

important marketed examples are the BlackRock LifePath Target Date Funds and the Vanguard

Target Retirement Funds. Morningstar Fund Research (2012) reports that Target Date Funds have

grown from 71 billion US dollars at the end of 2005 to approximately 378 billion dollars at the end

of 2011.

Market presence makes life-cycle funds relevant for academic studies. Indeed, many authors

have identified the welfare loss arising from suboptimal deterministic life-cycle investment strate-

gies. However, they typically compare the stochastic investment plan with a so-called linear gliding

path (i.e. an age-linear transfer from growth to protection assets) and find that the welfare loss is

significant. A key reference is Cairns et al. (2006) but the theme is pushed by several challengers of

the target fund idea, see e.g. Basu et al. (2009) and Martellini and Milhau (2010). More recently

Bernard and Kwak (2016) criticised the linear life-cycle strategy for not being optimal for any
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utility function.

In contrast to the existing literature, we do not compare the stochastic plan with the linear

deterministic plan but, instead, the optimal stochastic plan with the optimal deterministic plan.

There, however, we find the welfare loss to be negligible. We show that it is negligible even for

simpler suboptimal paths than the optimal deterministic one. We conclude that the appropriately

designed life-cycle product is, indeed, a relevant product for pension savers to buy.

In Section 2 we discuss a stochastic control problem and propose some simple ways to control

deterministically. In Section 3 we define the optimal deterministic control problem. Section4

derives a necessary condition for optimal solutions to our core problem by means of Pontryagin’s

maximum principle, and the solution is further characterized in Section 5. A brief discussion about

the Hamilton-Jacobi-Bellman approach can be found in Section 6. Section 7 presents a numerical

study and concludes.

2 Motivating discussion and suboptimal alternatives

In the introduction we discussed various arguments for working with life-cycle investment strategies.

We claimed that the argument with strongest and simplest theoretical support is the idea that

human capital shares similarities with a protection asset and supply of working power should

therefore be balanced off by a position in growth stock. This hedging position should, however,

become smaller and smaller as the investor approaches retirement and human capital falls away.

The argument is here illustrated by a simple power utility optimization of consumption and/or

terminal wealth in a Black-Scholes market with constant labor income. This also serves as the

basic model in the rest of the paper.

On some finite time interval [0, T ], we assume that we have continuous income with rate a and

continuous consumption with rate c. The deterministic initial wealth x0 > 0 and the stochastic

wealth X(t) at t > 0 is distributed between a bank account with risk-free interest rate r and a

stock or stock fund with price process

dS(t) = S(t)αdt+ S(t)σdW (t), S(0) = 1,

where α > r and σ > 0. We write π(t) for the proportion of the wealth invested in stocks. We

call π(t) the investment strategy. The price process of a self-financing investment portfolio with

strategy π satisfies

dI(t) = I(t)(r + (α− r)π(t))dt+ I(t)σπ(t)dW (t),

with explicit solution

I(t) = I(0)e
∫ t
0
dU ,

dU(t) = (r + (α− r)π(t)− 1

2
σ2π(t)2)dt+ σπ(t)dW (t).

The wealth process X(t) satisfies

dX(t) = X(t)(r + (α− r)π(t))dt+ (a(t)− c(t))dt+X(t)σπ(t)dW (t), X(0) = x0, (1)
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and has the explicit representation

X(t) = x0e
∫ t
0
dU +

∫ t

0

(a(s)− c(s))e
∫ t
s
dUds. (2)

Writing u(x) for the power utility function,

u(x) =

{
1
γx

γ , γ ∈ (−∞, 0) ∪ (0, 1),

ln(x), γ = 0,

we consider in this section the standard problem to maximize

G(π, c) := E

[∫ T

0

u(c(s))e−ρsds+ u(X(T ))e−ρT

]
(3)

over admissible strategies (π, c). The quantity γ is known as the risk aversion of the investor.

The parameter ρ ≥ 0 describes a preference for consuming today instead of tomorrow. Focusing

here on the life-cycle investment strategy, till the next section we choose to fix the consumption

rate at a specified level corresponding to the idea of a defined contribution saving plan. Then the

consumption-investment problem introduced above is, essentially, just an investment problem with

net income rate equal to the saving rate a− c and the optimal investment strategy can be studied

without taking the fixed consumption part of the objective function into account. This problem

is a special case of the more delicate problem solved for also consumption, which we will study in

the next section. The sophistication is, however, sufficient to illustrate important insight in the

optimal life-cycle strategy, to inspire the development of simple suboptimal saving products, and

to set the scene for the rest of the paper.

The resulting investment strategy of the dynamic control problem reads, see e.g. Merton (1971),

π� (t) =
1

1− γ
α− r
σ2

Xπ� (t) + h (t)

Xπ� (t)
, (4)

where h is the deterministic process of human capital calculated as

h (t) =

∫ T

t

(a (s)− c (s)) e−r(s−t)ds.

The superscript π� of X emphasizes that the optimally invested wealth process is an argument in

the strategy. This is typically unspoken, but here it is important to stress in order to distinguish

this optimal strategy from several suboptimal ones proposed below. It is the appearance of X

in the optimal strategy that makes it qualitatively much more involved than practical life-cycle

strategies. Note that in this calculation the human capital is the present value of future earnings

net of consumption, i.e. the present value of future retirement savings. For a relatively stable

saving coefficient a − c, this human capital is decreasing in time. The simplest situation of this

type to think of is a relatively stable income a from which a fixed proportion is saved. Considering

Xπ�(t) as fixed, a decreasing human capital leads to a decreasing investment proportion in equity.

Strongly increasing income or saving rates may actually lead to an increasing human capital,

though.
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Taking into account the dependence on X goes beyond the classical idea of life-cycle investment.

Although we have now derived a strategy with life-cycle features but also with advancements

in the design, it is natural to discuss deterministic strategies in the context of this stochastic

control problem formulation. Namely, there may still be good reason for studying good life-cycle

investment strategies only depending on time to retirement. Such investment patterns are easy to

illustrate, to communicate and to implement and the loss of welfare by disregarding the wealth

dependence may be negligible.

In the following Sections 3 to 8, which make up the core technical part of our paper, we attack

the mathematically challenging problem of finding the best strategy among the deterministic ones

to maximize the objective given in (3).

In the rest of this motivating section, we propose a couple of simple deterministic alternatives

to the optimal deterministic one. What is common for them is that their structure relates directly

to the optimal stochastic strategy and they are mathematically convenient. This makes us believe

that they may perform relatively well, i.e. close to the optimal deterministic and maybe even the

optimal stochastic ones, while at the same time being tractable to work with and communicate.

In Section 8 we compare some of the strategies specified in this section with the optimal

stochastic one and the optimal deterministic one.

• The first deterministic approach is to replace the right hand side of (4) by its plain expecta-

tion. The formula becomes

π1 (t) =
1

1− γ
α− r
σ2

E

[
Xπ (t) + h (t)

Xπ (t)

]
. (5)

On purpose, we have now decorated the wealth process with an arbitrary π rather than π�.

Of course, since we are now looking for suboptimal strategies, we can propose any strategy

plugged in on the right hand side of (5) that makes the formula tractable. The first idea to

plug in π� is appealing but this expectation, actually, does not exist. Another idea (difficult

to implement) is to plug in π1 on the right hand side to form a fixed point problem. One

special case is, however, easy to handle. If we take π = 0, X on the right hand side in

the formula becomes deterministic and the expectation operation becomes redundant. Note

however that π1 is not zero. The strategy is given by

π1 (t) =
1

1− γ
α− r
σ2

X0 (t) + h (t)

X0 (t)

=
1

1− γ
α− r
σ2

x0e
rt +

∫ t
0
er(t−s) (a (s)− c (s)) ds+ h (t)

x0ert +
∫ t
0
er(t−s) (a (s)− c (s)) ds

=
1

1− γ
α− r
σ2

x0e
rt +

∫ T
0
er(t−s) (a (s)− c (s)) ds

x0ert +
∫ t
0
er(t−s) (a (s)− c (s)) ds

. (6)

The special case (6) of π1 given in (5) forms one of the two suboptimal strategies that we

carry on for comparisons at the end of the paper.

7



• The second deterministic approach is to replace X on the right hand side of (4) by its

expectation. The formula becomes

π2 (t) =
1

1− γ
α− r
σ2

E [Xπ (t)] + h (t)

E [Xπ (t)]
. (7)

Again, we can take π = π� on the right hand side as the obvious choice or π = π2 to form

a fixed point problem. Note that for the specific choice π = 0, π2 and π1 coincide. By

choosing π = π�, it turns out to be easy to calculate the expectations on the right hand

side since Xπ� (t) + h (t) follows a geometric Brownian motion. This is of course tractable

since computational simplicity is important when choosing among suboptimal strategies. The

dynamics of Xπ� (t) + h (t) are given by

d
(
Xπ� (t) + h (t)

)
=

(
r +

1

1− γ

(
α− r
σ

)2
)(

Xπ� (t) + h (t)
)
dt

+
1

1− γ
α− r
σ

(
Xπ� (t) + h (t)

)
dW (t), (8)

such that

E
[
Xπ� (t)

]
+ h (t) = (x0 + h (0)) e

(
r+ 1

1−γ (α−rσ )
2
)
t
.

Thus, we have that

π2 (t) =
1

1− γ
α− r
σ2

E
[
Xπ� (t)

]
+ h (t)

E [Xπ� (t)]

=
1

1− γ
α− r
σ2

(x0 + h (0)) e

(
r+ 1

1−γ (α−rσ )
2
)
t

(x0 + h (0)) e

(
r+ 1

1−γ (α−rσ )
2
)
t − h (t)

. (9)

The special case (9) of π2 given in (7) forms the other of the two suboptimal strategies that

we carry on for comparisons at the end of the paper.

3 The optimization problem and existence of optimal solu-

tions

The focus of this paper is to maximize (3) over deterministic investment strategies and deterministic

consumption rates. In order to make sure that G is well-defined, the terminal wealth X(T ) and

the consumption plan c(t), t ∈ [0, T ], must be non-negative. Therefore we assume that

0 ≤ c(t) ≤ c(t) ≤ c(t) ≤ a(t), t ∈ [0, T ],

for some continuous functions c(t) and c(t) that describe the lower and upper consumption bounds.

With the consumption never being greater than the income at any time t, the terminal wealth is

(strictly) positive since we assumed that the initial wealth x0 is (strictly) positive. Moreover, we

assume that the investment strategy π and the consumption rate c are continuous on [0, T ], which
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implies that the stochastic differential equation (1) has a unique strong solution. Applying Lemma

10 and allowing the integral on [0, T ] in (3) to be improper, we can conclude that the mapping

G(π, c) is well-defined on

D :=
{

(π, c) ∈ C([0, T ])× C([0, T ]) : c(t) ≤ c(t) ≤ c(t), t ∈ [0, T ]
}
,

where C([0, T ]) is the Banach space of continuous functions on [0, T ] equipped with the supremum

norm.

Proposition 1 There exists a constant C <∞ such that G(π, c) ≤ C for all (π, c) ∈ D.

Proof. Since the optimal stochastic control π� according to (4) leads to a utility that is greater

than for any deterministic, continuous control π, it suffices to show that c 7→ G(π�, c) has a finite

upper bound. By applying (8), we obtain that

G(π�, c) =

∫ T

0

u(c(s))e−ρsds+ E
[
u
(
(x0 + h(0))eN

)
e−ρT

]
for a random variable N that is normally distributed and that does not depend on the choice of c.

Since u(c(t)) ≤ u(sup0≤t≤T c(t)) <∞ and

h(0) ≤
∫ T

0

a(s)e−r(s−t)ds <∞,

we can conclude that there exists a finite K with G(π, c) ≤ G(π�, c) ≤ K for all (π, c) ∈ D.

4 A Pontryagin maximum principle

In this section we give a necessary condition for optimal controls in D. With writing F (t, x) for

the cumulative distribution function of X(t) at x, we have

E[u(X(T ))] =

∫
E[u(X(T ))|X(t) = x]F (t, dx).

The expectations indeed exists for each (π, c) ∈ D because of Lemma 10. Using the decomposition

X(T ) = X(t)e
∫ T
t
dU +

∫ T

t

(a(s)− c(s))e
∫ T
s
dUds

and the fact that X(t) and
∫ T
s
dU are stochastically independent for all s ≥ t, we obtain that

E[u(X(T ))|X(t) = x] = E[u(Xt,x(T ))] =: g(t, x), (10)

where

Xt,x(T ) := xe
∫ T
t
dU +

∫ T

t

(a(s)− c(s))e−
∫ T
s
dUds.
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Proposition 2 For each (π, c) ∈ D the function g : [0, T ]× (0,∞)→ R is continuously differen-

tiable in t, twice continuously differentiable in x, and satisfies the Kolmogorov backward equation

∂tg(t, x) = −
(
xr + x(α− r)π(t) + a(t)− c(t)

)
∂xg(t, x)− 1

2
x2σ2π(t)2∂xxg(t, x),

g(T, x) = u(x).
(11)

Furthermore, for each positive integer k we have

∂kxg(t, x) = E
[
∂kxu(Xt,x)ek

∫ T
t
dU
]
. (12)

Proposition 2 corresponds to the Feynman-Kac Theorem. Instead of just referring to the literature,

we present a direct proof in section 9, because the partial differential equation (11) is degenerated

as π(t) can be zero. Our degenerated case is not very well covered in the literature, in particular

with the coefficients (xr + x(α − r)π(t) + a(t) − c(t)) and x2σ2π(t)2 and the terminal condition

u(x) being unbounded and the latter two being non-Lipschitz in x on R.

Theorem 3 Suppose that (π∗, c∗) ∈ D is optimal, i.e. G(π∗, c∗) = sup(π,c)∈D G(π, c). Then for

each t ∈ [0, T ] we have

(π∗(t), c∗(t)) = argmax
(π(t),c(t))∈R×[c(t),c(t)]

{∫
e−ρT (∂xg

∗(t, x))
(
xr + x(α− r)π(t) + a(t)− c(t)

)
F ∗(t, dx)

+

∫
e−ρT

1

2
(∂xxg

∗(t, x))
(
x2σ2π(t)2

)
F ∗(t, dx) + e−ρtu(c(t))

}
.

(13)

Proof of Theorem 3. We write Xt+ε,X(t)(T ) for the wealth function that is interrupted on the

interval (t, t+ ε],

Xt+ε,X(t)(T ) = x0e
∫
(0,T ]\(t,t+ε] dU +

∫
(0,T ]\(t,t+ε]

(a(u)− c(u))e
∫
(s,T ]∩(t,t+ε] dUds.

Let l and k, l ≤ k, be non-negative integers. We write u(k)(x) for the k-th derivative of the power

utility function u(x). With the help of the Taylor expansion for u(k)(x) as given in the proof of

Lemma 11, we can show that

u(k)(Xt+ε,X(t)(T ))X(t)lek
∫ T
t+ε

dU =u(k)(X(T ))X(t)lek
∫ T
t
dU

+ u(k)(X(T ))X(t)lek
∫ T
t+ε

dU
(

1− ek
∫ t+ε
t

dU
)

+ u(k+1)(Ξ)
(
Xt+ε,X(t)(T )−X(T )

)
X(t)lek

∫ T
t+ε

dU

(14)

for some random variable Ξ between Xt+ε,X(t)(T ) and X(T ). We now show that the expectations

of the second and third addend on the right hand side vanish with order O(ε1/2). At first we

apply Hölder’s inequality repeatedly to derive for the absolutes of the second and third addends

the upper bound

E
[
u(k)(X(T ))6

]1/6
E
[
X(t)6l

]1/6
E
[
e6k

∫ T
t+ε

dU
]1/6

E
[(

1− ek
∫ t+ε
t

dU
)2]1/2

+ E
[
u(k+1)(Z)6

]1/6
E[X(t)6l

]1/6
E
[
e6k

∫ T
t+ε

dU
]1/6

E
[(
Xt+ε,X(t)(T )−X(T )

)2]1/2
,

(15)
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where Z denotes the lower bound Ξ ≥ x0e
∫ t
0
dUe

∫ T
t+ε

dUe(
∫ t+ε
t

dU)− =: Z. Recall that u(k+1)(x)

is proportional to x−δ for some δ > 0, so that u(k+1)(Ξ)6 ≤ u(k+1)(Z)6, where the latter term

is proportional to the independent factors x−4δ0 e−4δ
∫ t
0
dUe−4δ

∫ T
t+ε

dUe−4δ(
∫ t+ε
t

dU)− . Therefore, the

first, second, and third expectation in both lines of (15) are finite because of Lemma 9 and Lemma

10. By applying Lemma 9 and then using the expansion exp{y} = 1+O(y) for bounded arguments

y, we can show that the fourth expectation on the right hand side of the first line of (15) has an

upper bound of O(ε1/2). The fourth expectation in the second line of (15) equals

E
[(
X(t)e

∫ T
t+ε

dU
(

1− e
∫ t+ε
t

dU
)
− e

∫ T
t+ε

dU

∫ t+ε

t

(a(s)− c(s))e
∫ t+ε
s

dU
)2]1/2

.

By expanding the inner square, taking the expectation separately for the (independent) factors

corresponding to (0, t], (t, t+ ε], (t+ ε, T ], and then applying Lemma 9 and Lemma 10, we get an

upper bound of order O(ε1/2). All in all, using (12) we can conclude that∫
xl∂kxg(t+ ε, x)F (t, dx) = E

[
u(k)(Xt+ε,X(t)(T ))X(t)lek

∫ T
t+ε

dU
]

= E
[
u(k)(X(T ))X(t)lek

∫ T
t
dU
]

+O(|ε|1/2)

=

∫
xl∂kxg(t+ ε, x)F (t, dx) +O(|ε|1/2)

(16)

for non-negative integers k and l, k ≥ l. In all estimates above we can choose upper bounds that

hold uniformly in t, so (16) holds in fact uniformly in t. Together with equation (11), we also

obtain that ∫
∂tg(t+ ε)F (t, dx) =

∫
∂tg(t)F (t, dx) +O(|ε|1/2) (17)

for ε > 0 and uniformly in t. Analogously to the case ε > 0, one can show that (16) and (17) are

also true if we replace +ε on the left hand side by −ε.
We now show (13) by indirect evidence. Let T ⊂ [0, T ] be the set of times where u(c∗(t)) = −∞,

which could theoretically happen when c∗(t) touches zero and γ ≤ 0. The complementary set

T c = [0, T ]\T is dense in [0, T ]. Otherwise we could find a small ball where u(c∗(t)) = −∞, which

implies G(π∗, c∗) = −∞ and is a contradiction to the optimality of (π∗, c∗). Suppose now that

(13) is not satisfied at an arbirtary but fixed time t0 ∈ T c ∩ (0, T ). Then there exists a small ball

(t0− ε, t0 + ε) ⊂ [0, T ] where (π∗(t), c∗(t)) is different from the argmax (and c∗ different from zero),

since (π∗(t), c∗(t)) is continuous and (13) is continuous according to Proposition 5. Let 0 < εn ≤ ε
be a decreasing sequence that converges to zero. We choose a sequence (πn, cn) ∈ D in such a way

that (πn(t), cn(t)) = (π∗(t), c∗(t)) on [0, T ] \ (t0 − εn, t0 + εn) and such that (πn(t0), cn(t0)) equals

the argmax (13) at t0. For this sequence we get

G(π∗, c∗)−G(πn, cn)

=

∫
g∗(t0 − ε, x)F ∗(t− ε, dx)−

∫
gn(t0 − ε, x)F ∗(t0 − ε, dx) +

∫ T

0

e−ρs
(
u(c∗(s))− u(cn(s))

)
ds

=

∫ ∫ t0+ε

t0−ε
(∂tg

n(s, x)− ∂tg∗(s, x))dsF ∗(t0 − ε, dx) +

∫ t0+εn

t0−εn
e−ρs

(
u(c∗(s))− u(cn(s))

)
ds

11



since F ∗(t0 − ε, dx) = Fn(t0 − ε, dx) and g∗(t0 + ε, x) = gn(t0 + ε, x) for all x. By applying (17)

(recall that (17) holds uniformly in t), we can show that

G(π∗, c∗)−G(πn, cn) =2εn

∫
(∂tgn(t0, x)− ∂tg∗(t0, x)) dsF ∗(t0, dx) +O(|εn|3/2)

+ 2εne
−ρs(u(c∗(t0))− u(cn(t0))

)
ds+ r(εn),

where r(εn)/εn → 0. Furthermore, because of (11) and (17) we have

G(π∗, c∗)−G(πn, cn) = 2εn

(
h∗(t0, π

∗(t0), c∗(t0))− h∗(t0, πn(t0), cn(t0))
)

+O(|εn|3/2) + r(εn),

where h∗(t, π(t), c(t)) is the term in curly brackets on the right hand side of (13). By construction,

h∗(t0, π
∗(t0), c∗(t0)) − h∗(t0, πn(t0), cn(t0)) < −δ < 0 for each n. As O(|εn|3/2) + r(εn) vanishes

faster than εn, there must exists an n for which G(π∗, c∗)−G(πn, cn) is negative. However, this is

a contradiction to the fact that G(π∗, c∗) is maximal.

All in all, we showed that (13) holds on T c ∩ [0, T ]. As the latter set is dense in [0, T ] and

(π∗(t), c∗(t)) and (13) are both continuous (see Proposition 5), we can conclude that (13) must

hold on all of [0, T ].

5 Stochastic characterization of optimal controls

The necessary condition (13) can be rewritten in terms of our stochastic model.

Lemma 4 The argmax in (13) is equivalent to

π∗(t) = −
∫

(∂xg
∗(t, x))x(α− r)F ∗(t, dx)∫

(∂xxg∗(t, x))x2σ2F ∗(t, dx)
, (18)

c∗(t) =
(
c(t) ∨

(∫
e−ρ(T−t)(∂xg

∗(t, x))F ∗(t, dx)
)1/(γ−1))

∧ c(t). (19)

Proof. In order to find the argmax in (13), we calculate the partial derivatives with respect to

π(t) and c(t) and set them equal to zero,

0 =

∫
e−ρT (∂xg

∗(t, x))x(α− r)F ∗(t, dx) +

∫
e−ρT (∂xxg

∗(t, x))x2σ2πF ∗(t, dx),

0 = −
∫
e−ρT (∂xg

∗(t, x))F ∗(t, dx) + e−ρtcγ−1.

(20)

Solving the equations (20) leads to the unconstrained extremum, which is indeed a maximum since

the matrix of the second-order partial derivatives (Hessian matrix) is negative definite. To see that,

note that the non-diagonal entries of the Hessian matrix are zero and that the diagonal entries are∫
e−ρT (∂xxg

∗(t, x))x2σ2F ∗(t, dx) and (γ − 1)e−ρtcγ−2.

The second term is negative since γ < 1 and the first term is negative since

∂xxg
∗(t, x) = (γ − 1)E

[(
e
∫ T
t
dU∗
)2(

xe
∫ T
t
dU∗ +

∫ T

t

(a(u)− c∗(u))e
∫ T
u
dU∗du

)γ−2]

12



is negative for all x > 0. As (18) does not depend on c and since the right hand side of (13) is

concave in c, the maximum under the constraint 0 ≤ c(t) ≤ c ≤ c(t) ≤ a(t) has the form as stated

in the proposition.

Proposition 5 The argmax in (13) is equivalent to

π∗(t) =
α− r

σ2(1− γ)

E
[
X∗(T )γ−1X∗(t)e

∫ T
t
dU∗
]

E
[
X∗(T )γ−2

(
X∗(t)e

∫ T
t
dU∗
)2] , (21)

c∗(t) =
(
c(t) ∨

(
e−ρ(T−t)E

[
X∗(T )γ−1e

∫ T
t
dU∗
])1/(γ−1))

∧ c(t). (22)

In particular, the right hand sides of (21) and (22) are continuous in t.

Note that the denominator in (21) is never zero, because X∗(T ) and X∗(t)e
∫ T
t
dU∗ are (strictly)

positive.

Proof. By applying (12), we can show that∫
(∂xg

∗(t, x))F ∗(t, dx) = E
[
(X∗(T ))γ−1e

∫ T
t
dU∗
]
,∫

(∂xg
∗(t, x))xF ∗(t, dx) = E

[
(X∗(T ))γ−1X∗(t)e

∫ T
t
dU∗
]
,∫

(∂xxg
∗(t, x))x2F ∗(t, dx) = (γ − 1)E

[
(X∗(T ))γ−2

(
X∗(t)e

∫ T
t
dU∗
)2]

.

(23)

Plugging these results into equations (18) and (19) leads to (21) and (22). Starting from the

equation

u(k)(X∗(T ))X∗(t+ ε)lek
∫ T
t+ε

dU∗ =u(k)(X∗(T ))X∗(t)lek
∫ T
t
dU∗

+ u(k)(X∗(T ))X∗(t+ ε)lek
∫ T
t+ε

dU∗
(

1− ek
∫ t+ε
t

dU∗
)

+ u(k)(X∗(T ))
(
X∗(t+ ε)l −X∗(t)l

)
ek
∫ T
t
dU∗

for k = 1, 2 and l = 0, 1, 2 with l ≤ k and using the line of arguments that follow equation (14),

after some algebra we can show that

E
[
u(k)(X∗(T ))X∗(t+ ε)lek

∫ T
t+ε

dU∗
]
−→ E

[
u(k)(X∗(T ))X∗(t)lek

∫ T
t
dU∗
]
, ε→ 0.

Hence, all three terms in (23) are continuous in t, and so are the right hand sides of (21) and (22).

At time t = T all investment strategies that we discussed so far are equal,

π∗(T ) =
α− r

σ2(1− γ)
= π�(T ) = π1 (T ) = π2 (T ) ,

where π� is the optimal stochastic investment strategy according to (4) and π1 and π2 are the

suboptimal investment strategies from (6) and (9). If there is no income and no consumption

(a = c = c = 0), then all investment strategies are equivalent,

π∗(t) =
α− r

σ2(1− γ)
= π�(t) = π1 (t) = π2 (t) , t ∈ [0, T ].

13



6 Remarks on the Hamilton-Jacobi-Bellman approach

In the literature dealing with optimal stochastic control, the optimal consumption and investment

problem is solved by choosing the wealth process as state variable, see e.g. Merton (1971). In order

to solve the deterministic control problem, the idea is here to use the probability density function

of the wealth as state variable rather than the wealth itself. However, that implies that the state

space is some function space, which leads to major difficulties.

For simplicity we assume that X(t) has a density function f(t, x) = ∂xF (t, x). Let us define a

value function by

E
[
e−ρTu(X(T ))

]
+

∫ T

t

e−ρsu(c(s))ds =

∫
e−ρT g(t, x)f(t, x)dx+

∫ T

t

e−ρsu(c(s))ds

=: V (t, f(t, ·)), t > 0.

(24)

Here the probability density function f(t, ·) is the state variable at time t, and the functional V is

a mapping from [0, T ]× L1(R) into the real numbers. Frechet differentiation with respect to t on

the left hand side and on the right hand side of equation (24) yields

−e−ρTu(c(t)) =
d

dt
V (t, f(t, ·)) = ∂tV (t, f(t, ·)) +DfV (t, f(t, ·))ft(t, ·),

where DfV (t, f(t, ·)) denotes the Frechet derivative of V at (t, f(t, ·)) with respect to the second

argument. By applying (25) we obtain the evolution equation

0 = ∂tV (t, f(t, ·)) +DfV (t, f(t, ·))Atf(t, ·) + e−ρtu(c(t))

with operator At given by

Ath(x) = −∂x
((
xr + x(α− r)π + a(t)− c

)
h(x)

)
+

1

2
∂xx
(
x2σ2π2h(x)

)
.

Since g(T, x) = u(x), we can derive the terminal condition

V (T, f(T, ·)) =

∫
e−ρTu(x) f(T, x)dx.

Following the Hamilton-Jacobi-Bellman concept, we have to solve this evolution equation for all

possible state variables f(t, ·) simultaneously, and we have to (locally) minimize the derivative ∂tV

in order to maximize the value function V . Here, the resulting Hamilton-Jacobi-Bellman equation

has the form

0 = ∂tV (t, h) + max
π,c

{
DfV (t, f(t, ·))Ath+ e−ρtu(c)

}
,

V (T, h) =

∫
e−ρTu(x)h(x)dx.

However, solving this evolution equation is extremely difficult, and it is not clear whether a solution

exists at all. Therefore we recommend to use the Pontryagin maximum principle.
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7 Numerical methods and results and conclusion

Here we discuss the numerical calculation of deterministic optimal controls.

Lemma 6 If (π, c) ∈ D, then the Kolmogorov forward equation

∂tF (t, x) = −∂x
((
xr + x(α− r)π(t) + a(t)− c(t)

)
F (t, x)

)
+

1

2
∂xx
(
x2σ2π(t)2F (t, x)

)
F (0, x) = 1x≥x0

(25)

for the wealth process X has a unique weak solution.

Proof. The existence of a weak solution follows from Theorem 2.5 in Manita and Shaposhnikov

(2015). Suppose there are two weak solutions F and F̃ of the partial differential equation. Then

the difference F − F̃ is a weak solution of the same partial differential equation but with initial

condition F (0, x) − F̃ (0, x) = 0 for all x ∈ R. Theorem 2.7 in Manita and Shaposhnikov (2015)

says that we necessarily have F (t, x)− F̃ (t, x) = 0 for all t > 0, i.e. F and F̃ are equivalent.

Formulas (18) and (19) give useful characterizations of optimal controls. In order to find

numerical solutions, we read (18) and (19) as fixed-point equations and do the following iterative

calculations:

1. We choose a starting investment strategy π(0) and a starting consumption rate c(0).

2. On the basis of π(0) and c(0) we solve the Kolmogorov forward equation (25) to obtain

F (0)(t, x) and we solve the Kolmogorov backward equation (11) to obtain g(0)(t, x).

3. We define a new investment strategy π(1) and consumption rate c(1) via the equations (18)

and (19).

4. By repeating the steps 2 and 3 iteratively, we obtain the sequence (π(j), c(j)), j = {0, 1, 2, ...}.

For the following numerical examples, we have implemented this fixed-point approach. If the

sequence (π(j), c(j)), j = {0, 1, 2, ...} converges uniformly to a limit, then we have a likely candidate

for an optimal control strategy. We cannot exactly proof that it is indeed optimal. In the numerical

examples below, we repeated the algorithm for many different starting values. We always ended

up with the same limit, which makes it quite likely that our numerical result is in fact optimal.

Consider an employee who is T = 20 years away from retirement and has a constant income

of a(t) = 100 (the reader could think of e.g. the unit thousand Euro) and a present wealth of

x0 = 200. Assume that the bank account yields interest with rate r = 0.04 and that the stock fund

process has the parameters α = 0.06 and σ = 0.2. (With these parameters a log investor with no

income would place 50% of his current wealth into stocks.)

Example 7 Suppose that the employee needs at least 70% of his income to live a decent life and

is obliged to save at least 10% of his income for his post-retirement life. Hence, the employee’s
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consumption rate is bounded by

c = 90% · a = 90

c = 70% · a = 70.

The preference parameter of consuming today instead of tomorrow is set to ρ = 0.1, and we consider

three different values of gamma, −2, −1, and −0.85.

Applying the iteration method above leads in Example 7 to an optimal consumption rate of

c∗(t) = 90 and optimal investment rates π∗(t) as shown in Figure 1. We tried different starting

Figure 1: Optimal investment rate π∗(t) in Example 7 for γ = −2 (dash), −1 (solid), −0.85 (dot)

values for the iteration and always obtained the same limit. This is a strong indication that the

numerical solution is indeed a global maximum.

Following the discussion in Section 2, we now study examples where the consumption rate is

fixed and only the investment is controlled.

Example 8 We take the same parameters as in Example 7 but γ = −1 and

c = c(t) = c = 0, 50, 80, 100.

Figure 2 shows the optimal investment rates π∗(t) for Example 8. Note that c(t) = 100 means

that the human capital h(t) is zero, and thus the optimal stochastic control (4) is deterministic

and equals the optimal deterministic control (equals 1/4).
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Figure 2: Optimal investment rate π∗(t) in Example 8 for consumption rate c(t) = 0 (dot), 50

(dash), 80 (solid), 100 (dashdot)

In Figure 3 we compare the optimal deterministic investment strategy for fixed consumption

c(t) = 0 with the suboptimal approximations (6) and (9). Although the human capital is relatively

large for c(t) = 0, the optimal, suboptimal and local cost minimizing investment strategies are

amazingly similar.

Table 1 shows the increase in initial capital x0 that we need for the suboptimal strategies in

order to achieve the same utility as for the optimal strategy. We see that the losses due to acting

suboptimal are very small. Table 1 also shows the decrease in initial capital needed if we wanted

the same utility as we get from the optimal deterministic strategy, but had access to stochastic

investment. The monetary gain from using stochastic investment control is astonishingly small.

8 Conclusion

We conclude by emphasizing the key output of the paper. Standard stochastic control theory gives

a state (wealth) dependent solution to the consumption-investment problem. Still, standard mar-

keted products offer a deterministic life-cycle investment strategy. We derive a representation of the

best of this kind. In terms of certainty equivalents, this best deterministic strategy performs very

well for realistic parameters. But so do two much simpler deterministic sub-optimal alternatives.

Given the efforts it takes to deal with the optimal solution, it may be appropriate to implement
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Figure 3: Optimal investment rate (solid), suboptimal strategy 1 (dash) and suboptimal strategy

2 (dot) in Example 8 for c(t) = 0

the suboptimal alternatives. Given the simplicity of these non-linear profiles of the growth asset

proportion as function of age, they may be good alternatives to the more standard linear profiles.

In particular, note the ’rule-of-thumb’ style of e.g. π1. Invest the preference dependent Merton

proportion multiplied by a ratio which is simply the present value of total savings divided by the

present value of past savings. Such a rule-of-thumb could even work well for much more realistic

situations with stochastic investment environment and non-hedgeable income (in case one would

have to estimate the present value of total savings). Such an analysis could be the topic for future

research based on the ideas and suboptimal strategies presented in this paper.
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9 Appendix: tools and proofs

Lemma 9 For all (π, c) ∈ D, k > 0, and 0 ≤ s < t ≤ T , we have

E
[
e

(
k
∫ t
s
dU
)
−

]
≤ E

[
ek
∫ t
s
dU
]

= exp
{
k

∫ t

s

(
r + (α− r)π(u) +

1

2
(k − 1)σ2π(u)2

)
du
}
,

E
[
e
−
(
k
∫ t
s
dU
)
−

]
≤ E

[
1 + e−k

∫ t
s
dU
]

= 1 + exp
{
k

∫ t

s

(
−r − (α− r)π(u) +

1

2
(k + 1)σ2π(u)2

)
du
}
,

where (·)− denotes the negative part of an argument.

Proof. The formula follows from the fact that k
∫ t
s
dU is normally distributed with an expectation

and a variance of

k

∫ t

s

(
r + (α− r)π(u)− 1

2
σ2π(u)2

)
du and k2

∫ t

s

σ2π(u)2du,

respectively.

Lemma 10 Let 0 ≤ t ≤ τ ≤ T and let M be a set of investment strategies and consumption rates

(π, c) that is uniformly bounded with respect to the supremum norm.

(a) If k ≤ 0, then supM E[|Xt,x(τ)|k] ≤ xkC for some C = C(k) <∞,

(b) If k > 0, then supM E[|Xt,x(τ)|k] ≤ (1 + x2n)C for some C = C(k) < ∞, where n is the

smallest positive integer for which k ≤ 2n.

Proof. Suppose that k ∈ [0, 2]. Then |y|k ≤ 1 + y2, so we just need to consider the case k = 2,

which follows from Theorem 4.5.4 in Kloeden and Platen (1999). Now let k ≤ 0. Since (2) and

a(s)− c(s) ≥ 0 imply that

0 ≤ E
[
|Xt,x(T )|k

]
≤ E

[
xkek

∫ T
t
dU
]
,

it suffices to show that the random variables exp{k
∫ T
t
dU} are uniformly integrable. Indeed, we can

show uniform integrability by applying Lemma 9 and using the fact that the (π, c) are uniformly

bounded with respect to the supremum norm.

Lemma 11 For each integer k ≥ 0, (t, x) ∈ (0, T ]×R, and (π, c) ∈ D the term that

E
[
u(k)(Xt−ε,x(T ))ek

∫ T
t−ε dU

]
+O(ε2)

equals the sum of (27), (28), and (29). Here, u(k)(x) is the k-th derivative of the power utility

function u(x). Furthermore,

E
[
u(k)(Xt,x+ε(T ))ek

∫ T
t
dU
]

= E
[
u(k)(Xt,x(T ))ek

∫ T
t
dU
]

+ εE
[
u(k+1)(Xt,x(T ))e(k+1)

∫ T
t
dU
]

+O(ε2).

Proof. From Taylor’s theorem we know that

u(k)(y) = u(k)(y0) + u(k+1)(y0)(y − y0) +
1

2
u(k+2)(y0)(y − y0)2 +

1

6
u(k+3)(ξ)(y − y0)3
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for some ξ between y0 and y. By identifying y and y0 with Xt−ε,x(T ) and Xt,x(T ) such that

y − y0 = xe
∫ T
t
dU
(
e
∫ t
t−ε dU − 1

)
+

∫ t

t−ε
(a(s)− c(s))e

∫ T
s
dUds =: Z1 + Z2,

we obtain

u(k)(Xt−ε,x(T )) =u(k)(Xt,x(T )) + u(k+1)(Xt,x(T ))(Z1 + Z2)

+
1

2
u(k+2)(Xt,x(T ))(Z1 + Z2)2 +

1

6
u(k+3)(Ξ)(Z1 + Z2)3

for some random variable Ξ that is between Xt−ε,x(T ) and Xt,x(T ). So we can write

u(k)(Xt−ε,x(T ))ek
∫ T
t−ε dU =u(k)(Xt,x(T ))ek

∫ T
t−ε dU + u(k+1)(Xt,x(T ))ek

∫ T
t−ε dU (Z1 + Z2)

+ u(k+2)(Xt,x(T ))ek
∫ T
t−ε dUZ2

1 +R
(26)

for some remainder R. Since the increments dU are independent on disjunct intervals, the random

variable exp{
∫ t
t−ε dU} is independent of Xt,x(T ) and

∫ T
t
dU . Thus, the first addend on the right

hand side of (26) has the expectation

E
[
u(k)(Xt,x(T ))ek

∫ T
t
dU
]
E
[
ek
∫ T
t−ε dU

]
.

By applying Lemma 9 for the second factor and using the fact that exp{y} = 1 + y+O(y2) if y is

bounded, we obtain the equivalent formula

E
[
u(k)(Xt,x(T ))ek

∫ T
t
dU
](

1 + k

∫ t

t−ε

(
r + (α− r)π(u) +

k − 1

2
σ2π(u)2

)
du+O(ε2)

)
. (27)

Using similar arguments, the second addend on the right hand side of (26) has the expectation

E
[
u(k+1)(Xt,x(T ))e(k+1)

∫ T
t
dU
]
E
[
x
(
e(k+1)

∫ t
t−ε dU − ek

∫ t
t−ε dU

)
+

∫ t

t−ε
(a(s)− c(s))ek

∫ t
s
dUds

]
which, by applying Lemma 9 and using Taylor’s expansion for the exponential function, can be

rewritten to

E
[
u(k+1)(Xt,x(T ))e(k+1)

∫ T
t
dU
](∫ t

t−ε

(
x
(
r + (α− r)π(u) + kσ2π(u)2

)
+ a(u)− c(u)

)
du+O(ε2)

)
(28)

Analogously, for the third addend on the right hand side of (26) we get an expectation of

E
[1

2
u(k+2)(Xt,x(T ))e(k+2)

∫ T
t
dU
](
x2
∫ t

t−ε
σ2π(u)2du+O(ε2)

)
. (29)

The expectation of the remainder R is of the form O(ε2). To see that, at first notice that a(s) −
c(s) ≥ 0 implies that

Xt,x ≥ xe
∫ T
t
dU ≥ 0 and Xt−ε,x ≥ xe

∫ T
t−ε dU ≥ 0,
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so that Ξ = θXt,x + (1− θ)Xt−ε,x for some random variable 0 ≤ θ ≤ 1 has a lower bound of

Ξ ≥ xe
∫ T
t
dU
(
θ + (1− θ)e

∫ t
t−ε dU

)
≥ xe

∫ T
t
dUe(

∫ t
t−ε dU)− =: Z3,

where (·)− denotes the negative part of a term. As u(k+3)(y) is proportional to y−δ for some δ > 2,

the absolute of u(k+3)(Ξ) has an upper bound that is proportional to the absolute of u(k+3)(Z3).

That means that the absolute of R has an upper bound of the form

|R| ≤ 1

2
|u(k+2)(Xt,x)|ek

∫ T
t−ε dU

(
2Z1Z2 + Z2

2

)
+

1

2
|u(k+3)(Z3)|ek

∫ T
t−ε dU

(
Z1 + Z2

)3
.

Now we take the expectation on both hand sides and apply Hölder’s inequality several times in

order to obtain

E[|R|] ≤ 1

2
E
[
(u(k+2)(Xt,x))4

]1/4
E
[
e4k

∫ T
t−ε dU

]1/4
E
[(

2Z1Z2 + Z2
2

)2]1/2
+

1

2
E
[
(u(k+3)(Z3))4

]1/4
E
[
e4k

∫ T
t−ε dU

]1/4
E
[(
Z3
1 + 3Z2

1Z2 + 3Z1
1Z

2
2 + Z3

2

)6]1/2
.

The first two expectations in each line have finite upper bounds because of Lemma 10 and Lemma

9, using the fact that u(k+3)(Z3)4 is proportional to the indendent factors xγ−k−3, e4(γ−k−3)
∫ T
t
dU ,

and e4(γ−k−3)(
∫ t
t−ε dU)− . The other two expectations are of order O(ε2). To see that, first expand

the polynomials, then split the factors into independent sub factors that correspond to the intervals

[t − ε, t] and [t, T ], and take the expectations. For the factors corresponding to [t − ε, t] we get

with Lemma 9 and Taylor’s expansion for the exponential function the order O(ε2). The factors

corresponding to [t, T ] have finite upper bounds, which can be verified with the help of Lemma

9. So, all in all, obtain that E
[
u(k)(Xt−ε,x(T ))ek

∫ T
t−ε dU

]
equals the sum of (27), (28), (29), and

O(ε2).

The proof for the expansion of E
[
u(k)(Xt,x+ε(T ))ek

∫ T
t
dU
]

is analogous: First, apply Taylor’s

expansion of u(k) for y − y0 = ε e
∫ T
t
dU , and then show that the expectations of the Taylor terms

of second and higher order are of order O(ε).

Proof of Proposition 2. By applying Lemma 11, we get for g(t, x) = E
[
u(Xt,x(T ))

]
that the

partial derivative ∂tg(t, x) exists and has the form

∂tg(t, x) = lim
ε↓0

g(t, x)− g(t− ε, x)

ε

= E
[
u′(Xt,x(T ))e

∫ T
t
dU
](
x(r + (α− r)π(t)) + a(t)− c(t)

)
+ E

[
u′′(Xt,x(T ))e2

∫ T
t
dU
]
x2σ2π(t)2.

(30)

Applying Lemma 11 again, but this time on E
[
u′(Xt,x(T ))e

∫ T
t
dU
]

and E
[
u′′(Xt,x(T ))e2

∫ T
t
dU
]
,

we can see that ∂tg(t, x) is indeed continuous in t and x. The existence and continuity of ∂kxg(t, x)

and its representation (12) follows by induction in k = 0, 1, 2, . . . , where in each step the expansion

according to Lemma 11 for ∂kxg(t, x+ ε) is used.

By plugging (12) for k = 1, 2 into (30), we finally arrive at the Kolmogorov backward equation

(11). The terminal condition follows from g(T, x) = E[u(XT,x(T ))] = E[u(x)] = u(x).
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