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Abstract

We analyze the connections between the credit spreads that the same credit risk
commands in different currencies. We show that the empirically observed differences
in these credit spreads are mostly driven by the dependency between the default
risk of the obligor and the exchange rate. In our model there are two different
channels to capture this dependence: First, the diffusions driving FX and default
intensities may be correlated, and second, an additional jump in the exchange rate
may occur at the time of default. The differences between the default intensities
under the domestic and foreign pricing measures are analyzed and closed-form prices
for a variety of securities affected by default risk and FX risk are given (including
CDS). In the empirical part of the paper we find that a purely diffusion-based
correlation between the exchange rate and the default intensity is not able to explain
the observed differences between JPY and USD CDS rates for a set of large Japanese
obligors. The data implies a significant additional jump in the FX rate at default.

1 Introduction

In modern debt markets, many large debtors issue debt in more than one currency, e.g.
a large Japanese obligor may find it advantageous to issue debt in USD, or a European
obligor in JPY. Furthermore, since the advent of liquid markets for credit default swaps
(CDS) there are markets for credit protection in currencies different from the obligors
“home” currency, even if the obligor has not issued bonds in that currency. (There is
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demand for this in order to hedge loan exposures or OTC derivatives transactions.) In
particular, CDS protection on many international corporations is now available in their
home currency and EUR and USD.

Given this situation, it is natural to ask about the correct relative pricing of the credit
risk in the different currencies, i.e.: How should the credit spread be adjusted (either on
bonds or on CDS) if a different currency is used? And: What information about likely
FX movements in crisis events can we imply from the relative difference of CDS spreads
in different currencies?

We aim to answer this question in two steps. First, we analyse the connections between
local and foreign currency credit spreads on a theoretical basis in an intensity-based
framework and highlight the effects that we can expect to encounter. We find that the
essential feature driving differences between credit spreads in different currencies is the
dependency between default risk and FX risk. If default risk and FX risk are independent
(in a sense which will be made precise later on), credit spreads in different currencies
should not differ.

In order to capture empirically observed differences, we model dependency between spreads
in two different ways. First, there may be correlation between the diffusions driving FX
and default intensities, and second, an additional jump in the exchange rate may occur at
the time of default, i.e. the default “causes” a devaluation of the currency. We give closed-
form solutions for CDS rates and defaultable bond prices in a model which encompasses
both cases using an affine jump-diffusion (AJD) model.

In the empirical part of the paper these models are estimated using a historical database
of CDS rates in Japanese yen (JPY) and US dollars (USD) on a set of major Japanese
corporate obligors. Besides being relatively clean, liquid and standardised, CDS data
has the additional advantage that the recovery rates on USD-denominated and JPY-
denominated CDS will be identical by definition (by documentation, to be more precise).
Thus, spread differences in CDS rates cannot be caused by the effects of different legal
regimes and bond specification which may affect corporate bond data.

In the pure diffusion hypothesis (i.e. without jumps in the FX rate), we first estimate
the model parameters using USD CDS spreads and the JPY/USD rate, without using
the JPY CDS spread. In the second step, we then calculate the JPY CDS spread which
would hold if the model were correct and compare it to the empirically observed JPY CDS
spreads. In all cases, we can strongly reject the hypothesis that the empirically observed
JPY CDS spreads are noisy observations of the model predictions, the predicted spread
difference is only a small fraction of the observed spread difference. Consequently, we
reject the pure diffusion model, there must be jumps in the exchange rate at default.

In many cases, the implied jump in FX rates at default of the obligors seems quite large
and is difficult to explain unless we assume that the obligor’s default was caused by a major
macroeconomic crisis. The techniques used in this paper are also useful for a number of
other applications like the pricing of counterparty risk and the pricing of sovereign default
risk. Some of these applications are also pointed out in the final section, and we give prices
for some more exotic FX-related credit derivatives.

Sparked by the Asian crisis in the late 1990’s (and the Peso crisis earlier on) there is a
large literature on sovereign default risk, banking crises and currency crises in emerging

2



markets1. While some of the techniques used in the present paper can also be applied to
these situations, this paper has a different focus than the domestic debt of a sovereign
obligor which is special because (at least in theory) the sovereign could always repay that
debt by printing more domestic currency. Similarly, this paper also differs in focus from
papers which empirically investigate sovereign credit spreads, like e.g. Duffie et al. (2003)
and Singh (2003).

In this paper our main focus are multinational corporations which face a quite different
situation from sovereigns. Here, the foreign sovereign often has negligible default risk
compared to the corporate (unless it is an emerging market), and the exchange rate
floats freely. Furthermore, the available data is significantly different: CDS on large
corporations are routinely quoted in the major currencies (USD, EUR, and also JPY,
GBP, CHF). Despite this focus on corporate risk, the techniques of this paper can be
used to back out market implied information about the sovereign, in particular values for
the expected currency devaluation upon a default of the corporate. The same criteria
apply to the CDS spreads of sovereigns in different foreign (to the sovereign) currencies
(e.g. USD and EUR-denominated CDS on Brazil) which also fall within the scope of this
paper. Finally, it is not difficult to extend the model to cover corporates which are based
in a country with non-negligible default risk.

In a related paper Jankowitsch and Pichler (2003), the authors address the question of
the construction of corporate credit spread curves from corporate bond prices in different
currencies. In their sample, the authors find strong evidence against the assumption of
independence of corporate bond credit spreads and exchange rates. Our paper differs
from Jankowitsch and Pichler (2003) in several respects: First, we provide a full theoret-
ical model which is able to capture the stochastic dependency between default intensities
and exchange rates and to replicate the observed spread differences. Second, we base
our analysis on CDS which are significantly better suited to the empirical and theoretical
analysis of these questions as it avoids the issues caused by differences in recovery rates
in different currencies.
Another related paper is Warnes and Acosta (2002) who extend the classical Merton (1974)
firm’s value approach to incorporate debt in a foreign currency and provide closed-form
solutions for debt prices under the assumption of constant interest-rates in both countries.

The rest of the paper is structured as follows: To set the stage for the rest of the paper, we
recapitulate in the next section the payoff mechanics of credit default swaps (CDS) and
show that the delivery option in the protection leg of the CDS makes the effective recovery
rate currency-independent. In section 3 we then set up the mathematical background to
the general FX model under default-risk which follows in section 4. To provide a concrete
specification for the empirical estimation in section 5, we also specify an affine jump-
diffusion (AJD) version of the model in sections 3 and 4. Furthermore, section 4 contains
the presentation of change-of-measure techniques that apply to the valuation of payoffs at
stopping times when the numeraire asset jumps at this stopping time, an analysis of the
the relationship between the default intensities of the obligor under the domestic and the
foreign pricing measures, and some concrete pricing results for basic defaultable securities
(zero-coupon bonds and CDS) under a variety of recovery assumptions. As our focus is

1See e.g. Kaminsky and Reinhart (1999), Reinhart (2002), Bulow and Rogoff (1989) or other papers
listed on N. Roubini’s http://www.stern.nyu.edu/globalmacro/
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on the difference between domestic and foreign CDS rates, we discuss in section 4.3 the
effects which we expect to influence this quantity.
Section 5 contains an empirical analysis of the AJD-model using historical CDS data on
a number of large Japanese obligors. We show that there is a persistent, significant and
rather large difference between CDS rates in JPY and USD which cannot be explained by
a purely diffusion-based dependency between default intensity and FX rate alone. Thus,
we conclude that the market must be pricing an implicit devaluation at default into these
CDS spreads. Finally, in section 6 the empirical results are discussed and it is shown how
the techniques introduced in sections 3 and 4 can be applied to other default-sensitive FX
derivatives.

2 CDS in Multiple Currencies

Credit default swaps (CDS) are derivative instruments which allow the trading of payoffs
contingent on the occurrence of a credit event. Single-name CDS are the most important
class of credit derivatives transactions, Patel (2003) finds that in 2003 they accounted
for around 72.5% of the entire credit derivatives market in terms of notional outstanding
which was equivalent to a notional of around 1’671 bn USD.

In many cases, the liquidity of the CDS market has surpassed the liquidity of the mar-
ket for the bonds of the underlying obligor. This trading volume and liquidity has
been made possible by the standardisation of the documentation for CDS transactions
which has been proposed by the International Swap Dealers Association (ISDA) (see
http://www.isda.org and (ISDA) (1999)). In particular when it comes to the analysis
of the default risk of any given obligor in two or more different currencies (and thus in
two different jurisdictions) this standardisation is essential: Bonds in domestic and for-
eign currency are typically issued in different jurisdictions and therefore are governed by
different legal rules which has a significant impact on the resulting recovery rates of the
bonds (see e.g. Davydenko and Franks (2004)). CDSs referencing the obligor on the other
hand will be governed by the same standardised ISDA documentation even if they are
denominated in different currencies, in particular they will have the same recovery rates.
Thus, for the purposes of this paper we consider CDS to be more standardised and more
easily comparable than the underlying corporate bonds.

We now present a quick summary of the payoff mechanics of an ISDA-standard CDS
with physical settlement in order to explain why the recovery rate of a CDS is typically
independent from the currency of its denomination:

Being an over-the-counter traded derivative, a CDS is a contract between two counter-
parties: the protection buyer and the protection seller. The protection buyer makes the
payments of the fee leg of the CDS, the protection seller pays the protection leg. In order
to define these payment streams, the following data is specified in every CDS:

• the notional amount N , and the currency c of the notional amount,
• the maturity date T ,
• the CDS rate s,
• the reference credit (i.e. the obligor whose credit risk is traded)
• the applicable (precise) definition of the credit event, and

4



• the set of deliverable obligations.

It is important to note that both the definition of the credit event and the list of the
deliverable obligations usually do not depend on the currency of the CDS. The ISDA-
definition of a credit event includes bankruptcy, failure to make due payments on bonds or
loans (“failure to pay”), repudiation or moratorium, cross-acceleration, obligation default,
distressed restructuring and credit events upon mergers. These events apply globally
to the reference obligor and are in most cases objectively verifiable and independent
from local legal rules. The set of deliverable obligations contains most bonds and loans
issued by the reference credit irrespective of their currency, excluding special cases such as
subordinated bonds or bonds with unusual maturity dates but including all major bond
issues.

The Fee Leg. The protection buyer makes fee payments to the protection seller at
regular intervals until the CDS matures or until a credit event occurs. The fee payments
are made in the currency of the CDS and are calculated as [daycount fraction]×[CDS
rate]×[Notional] = ∆t · s ·N .

The Protection Leg. At the credit event, the protection buyer chooses a portfolio from
the set of deliverable obligations such that the total notional amount of the portfolio is
N . If any obligations in the portfolio are denominated in other currencies than the CDS
reference currency c, then the notional amount of these obligations is converted into the
reference currency using the actual exchange rate of the day. The protection buyer then
delivers this portfolio to the protection seller who has to pay the full notional N for it.

Clearly, although they will trade at a significant discount to par, not all deliverable obli-
gations will trade at the same price. The protection buyer has a delivery option: The
protection buyer will choose to deliver those bonds which trade at the highest discount to
their par value, the cheapest-to-deliver bonds. Interestingly, the choice of the cheapest-
to-deliver bond is independent of the currency in which that bond is denominated, it only
depends on the relative discount of the bond to its par value.

To illustrate this let us assume the bond that we want to deliver trades at a discount of
q, i.e. at a price of (1 − q) per unit 1.00 of notional in its currency c̃ 6= c. If one unit of
c̃ is worth X units of c at the time of the credit event, then in order to reach a portfolio
of notional N in currency c, we have to buy a portfolio of notional N/X in the bond’s
currency c̃. Thus the delivery portfolio costs (1− q) ·X ·N/X = (1− q) ·N in the CDS’s
currency. This portfolio is put to the protection seller for a payment of N in c which
yields a net value of the protection payment of N · q in c.

This value does not depend on the exchange rate X any more. Thus, in order to maximise
the value of the protection payment, the protection buyer will choose to deliver a portfolio
of those bonds which have the lowest (1 − q), irrespective of the exchange rate for the
currency of denomination of this bond. In particular, the effective recovery rate for the
CDS will be independent from the currency in which the CDS is denominated.

This does not mean that CDS which are denominated in different currencies are identical.
Consider two CDS on the same reference credit with the same deliverable obligations but
denominated in different currencies c (with notional N), and c̃ (with notional Ñ). At
default, the first CDS will pay off N · q in currency c, and the other will pay off Ñ · q
in currency c̃. Thus, the amount of protection that the c̃-CDS provides in currency c
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depends on the exchange rate at the time of default. This is the relationship which we
are going to explore in this paper.

3 Mathematical Framework

3.1 Set-Up

Our model is set in a filtered probability space (Ω,F ,F,Q) with finite time horizon
T ∗ < ∞. The filtration F = (Ft)t∈[0,T ∗] is assumed to satisfy the usual conditions,
FT ∗ = F and is generated by an N -dimensional Brownian motion (BM) Wt and a K-
dimensional purely discontinuous process Jt with jumps ∆Jt ∈ Z = (0, 1]K. We represent
Jt using its associated jump measure µ(dt, dz) on [0, T ∗] × Z as Jt :=

∫ t
0

∫
Z z · µ(dz, ds);

the compensator measure of µ(dz, dt) under Q is denoted with ν(dz, dt). We assume
(Ω,F ,F,Q) has the predictable representation property with respect to W and µ− ν.
The transpose of a matrix M is denoted by M ′, and if x is a vector, then diag(x) is a
diagonal matrix with the elements of x on its diagonal. Standard arithmetical functions,
integrals and comparisons of vectors are meant componentwise, except in the case of mul-
tiplications we will use matrix multiplications. l denotes the Lebesgue measure on R.
Regarding time points we always assume 0 ≤ t ≤ T ≤ T ∗.

Assumption 1.

(i) Nt :=
∫ t

0

∫
Z µ(dz, ds) is a counting process, i.e. Nt <∞ Q-a.s. for all t. We denote

the time of the first jump by the stopping time

τ := inf{t;Nt > 0} (1)

(with the convention inf ∅ =∞).
(ii) There exist a (nonnegative) FW-adapted (hence predictable) processes λ and an FW -

adapted (predictable) function2 F on Z×[0, T ∗] such that the predictable compensator
ν of µ satisfies

1{t≤τ}ν(dz, dt) = 1{t≤τ}dFt(z)λtdt

and Ft is a distribution function on Z.

From this assumption follows that τ is a totally inaccessible stopping time, and
∫ t∧τ

0
λsds

is the predictable compensator of 1{t<τ}, i.e. 1{t≤τ}λt is the predictable intensity of 1{t<τ}.
Note that we do not make any assumption about the form of the predictable compensator
after τ apart from

∫ t
0

∫
Z ν(dz, ds) <∞ Q-a.s. for all t.3

We define a family of conditional Laplace transforms Lt : RK+ → R+ indexed by t ∈ [0, T ∗]

L(t; ·) : u 7−→
∫

Z
1{t≤τ}(1−z)udFt(z) :=

∫

Z
1{t≤τ}

( K∏

k=1

(1−zk)uk
)
dFt(z)

2See e.g. Jacod and Shiryaev (1988) for the definition of predictable functions.
3This is a consequence of NT∗ <∞ Q-a.s.

6



suppressing the dependence on ω ∈ Ω. Intuitively, L is the Laplace transform of the
jump log(1−∆Jt) conditional on the event {τ = t}. Sometimes we will use a version of L
extended to all values u ∈ RK with L(t; u) <∞ Q× l-a.s.

Further we define a continuous time-homogeneous N -dimensional Markov process Y as
the unique strong solution of a stochastic differential equation (SDE)

dYt = γ(Yt)dt+ σ(Yt)dWt, Y (0) = Y0 (2)

with affine functions γ(·) and σσ′(·).4 The process Y is called an affine diffusion (AD).
We say, the process W + J is a jump diffusion (JD); and, if Y is an AD, λ is affine in Y
and L(t; u) is exponentially affine5, in Yt for every u then we call Y + J an affine jump
diffusion (AJD).

3.2 Hypothesis H and its Implications

In the set-up we only assumed F = FW∨ FJ . In addition we assume that hypothesis

H: Every FW-martingale is an F-martingale.

is satisfied. See Jeanblanc and Rutkowski (2000) for details on hypothesis H. In presence
of hypothesis H the computation of the conditional expectation of a “defaultable claim”,
i.e. an FT -measurable random variable Z with Z1{τ≤T} = 0, can be reduced to a con-
ditional expectation of a related FW

T -measurable random variable. The following lemma
gives the precise result.

Lemma 2. Let gT be FWT -measurable with E [ |gT | ] <∞. If hypothesis H holds, then

E
[

1{T<τ}gT
∣∣ Ft

]
= 1{t<τ}E

[
e−

R T
t λsdsgT

∣∣∣ Ft
]
. (3)

It should be noted that in particular E
[
e−

R T
t λsdsgT

∣∣∣ Ft
]

= E
[
e−

R T
t λsdsgT

∣∣∣ FWt
]

by

hypothesis H. With Fubinis theorem we immediately derive the corollary below.

Corollary 3. Let hypothesis H hold and g be FW -adapted with E
[ ∫ T

0
|gs|ds

]
<∞. Then

E

[ ∫ T

t

1{s≤τ}gs ds

∣∣∣∣ Ft
]

= 1{t<τ}

∫ T

t

E
[
e−

R s
t λudugs

∣∣∣ Ft
]
ds.

And the property of the predictable compensator yields the following result.

Corollary 4. Let H hold and f be an FW -adapted (hence predictable) function with

E

[ ∫ T

0

∫

Z
1{t≤τ}|f(z, t)|dFt(z)λtdt

]
<∞. (4)

4Indeed as shown by Duffie and Kan (1996), under light technical assumptions given in section 3.4,
SDE (2) admits a unique strong solution on (Ω,F ,Q).

5I.e. there exist real functions α and β such that L(t;u) = eα(u)+β(u)′Yt .
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Define Gt :=
∫
Z f(z, t)dFt(z). Then

E

[ ∫ T

t

∫

Z
1{s≤τ}f(z, s)µ(dz, ds)

∣∣∣∣ Ft
]

= 1{t<τ}

∫ T

t

E
[
e−

R s
t
λuduGs λs

∣∣∣ Ft
]
ds.

The proofs can be found in the appendix.

3.3 Jump Diffusions under Change of Measure

The distributional properties of the processes Y and J under different probability measures
will be at the heart of this article. We give a general form of Girsanov’s theorem which
is valid for the probability space under consideration. For the proof see e.g. Jacod and
Shiryaev (1988).

Theorem 5 (Girsanov’s Theorem for JD). Let L be an F-martingale under Q with

dLt
Lt−

= φ(t)′dWt +

∫

Z

(
Φ(z, t)− 1

)
(µ− ν)(dz, dt), L0 = 1

for a predictable process φ and a predictable function Φ ≥ 0. Then, the probability measure
Q̃ on (Ω,F), defined by

dQ̃
dQ

∣∣∣∣
Ft

= Lt, t ≤ T ∗ (5)

is absolutely continuous wrt. Q (Q̃� Q) and it holds that:

(i) The process W̃t = Wt −
∫ t

0
φ(s)ds is a BM under Q̃.

(ii) The predictable compensator ν̃ of µ under Q̃ satisfies 1{t≤τ}ν̃(dz, dt) = 1{t≤τ}dF̃t(z)λ̃tdt,
where

λ̃(t) = λ(t)

∫

Z
Φ(z, t)dFt(z)

and F̃t is a distribution on Z for all t ∈ [0, T ∗] with

dF̃t(z) =

{
Φ(z,t)R

Z Φ(z,t)dFt(z)
dFt(z) if

∫
Z Φ(z, t)dFt(z) > 0,

dFt(z) otherwise.

Note that by (ii), 1{t≤τ}λ̃t is the predictable intensity of 1{t<τ} under Q̃. The following
corollary is a straightforward implication of Girsanov’s theorem.

Corollary 6. Let Q̃ ∼ Q. Then 〈deQ
dQ , N〉t∧τ = 0 Q-a.s. for all t, if and only if

1{t≤τ}λ̃(t) = 1{t≤τ}λ(t) Q× l-a.e.. (6)

I.e. the indicator 1{t<τ} has the same intensity under two equivalent measures Q̃ ∼ Q if

〈deQ
dQ , N〉t∧τ = 0 a.s. However, this does not imply that ν̃ = ν.
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Proof of Corollary 6. Let L := deQ
dQ be as in theorem 5. If Q̃ ∼ Q, then Lt > 0 Q-a.s. for

all t. By theorem 5 the predictable covariation of L and 1{t<τ} is given by

〈L, 1{·<τ}〉t = 〈L,N〉t∧τ =

∫ t∧τ

0

∫

Z
Ls−

(
Φ(z, s)− 1

)
ν(dz, ds) =

∫ t∧τ

0

Ls−(λ̃− λ)(s)ds.

hence 1{ ·≤τ}L−(λ̃−λ) = 0 Q× l-a.e. if and only if 〈L,N〉t∧τ = 0 Q-a.s for all t. and the
claim follows.

In the sequel of the paper we use the abbreviation Ẽ[ · ] := E[LT ·] when taking expecta-

tions under Q̃. The following lemma states, how the expected value of stochastic integrals
wrt. µ acts under a measure Q̃� Q.

Lemma 7 (Stochastic Integrals wrt. µ). Let L and Q̃ be as in theorem 5 and f

be a predictable function such that
∫ T

0

∫
Z |f(z, s)|µ(dz, ds) is Q̃-integrable.6 Define ht :=

∫ t
0

∫
Z f(z, s)µ(dz, ds). If E

[ ∫ T
0
h2
t− d〈L〉t

]
<∞,7 then

E

[ ∫ T

t

∫

Z
Ls−Φ(z, s)f(z, s)µ(dz, ds)

∣∣∣∣ Ft
]

= Lt Ẽ

[ ∫ T

t

∫

Z
f(z, s)µ(dz, ds)

∣∣∣∣ Ft
]
.

Proof. Appendix.

Intuitively, if L− + ∆L is a factor of the integrand, then it can be factored out of the
stochastic integral when expectations are taken.

Next we establish a similar connection for expectations of integrals with respect to time
where we are allowed to take Ls− “out of the integral” and perform the change of measure.

Lemma 8 (Stochastic Integrals wrt. l). Let L and Q̃ be as in theorem 5 and g be a

predictable process with E
[ ∫ T

0
(
∫ t

0
|gs| ds)2 d〈L〉t

]
<∞. Then

E

[ ∫ T

t

Ls−gs ds

∣∣∣∣ Ft
]

= Lt Ẽ

[ ∫ T

t

gsds

∣∣∣∣ Ft
]

Proof. Appendix.

3.4 Classification and Properties of the AD Y

There is a large literature on AD in the context of pricing default free and defaultable
bonds. The main feature of ADs is (see Duffie and Kan (1996)) that under technical
conditions, for any affine function f : RN → R there exist deterministic functions A,B
such that

E
[
e
R T
t f(Ys)ds

∣∣∣ Ft
]

= eA(T−t)+B(T−t)′Yt,

6I.e. LT
∫ T

0

∫
Z |f(z, s)|µ(dz, ds) is Q-integrable.

7This condition can be replaced by any condition ensuring that
∫ t

0
hs−dLs is a martingale.
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where A,B are determined by a set of ordinary differential equations (ODEs) involving

γ, σσ′ and f . (Note that E
[
e
R T
t f(Ys)ds

∣∣∣ Ft
]

= E
[
e
R T
t f(Ys)ds

∣∣∣ FWt
]

by hypothesis H.)

When one wants to parameterize the functions γ and σσ ′ in (2), it has to be taken into
account that σ is a square root of an affine matrix function (σσ ′(Y )), hence it may not
be well-defined for all values of Y . In the light of this problem Dai and Singleton (2000)
introduced a parametrization under which the admissibility of the matrix σσ ′ can be
checked easily. They call a pair (γ, σσ′) admissible if (2) admits a unique strong solution.8

Furthermore their parametrization allows for a simple classification of ADs. We present
a (very slight) extension of their parameterization9.

For m ∈ {0, 1, . . . , N} fixed, Am(N) is the class of admissible N -dimensional ADs with σ
depending on exactly m components of Y . Consider the following parameterized version
of the SDE (2)

dY = (Θ−KY )dt+
√
S dW, Y (0) = Y0, (7)

where S is a diagonal matrix with Sii = ai +
∑m

j=1 bijYj for a ∈ RN and b ∈ RN×N ,

Y0,Θ ∈ RN and K ∈ RN×N . Now, if the following conditions are satisfied then (γ, σ) is
admissible and the solution Y of (7) belongs to Am(N):

• b ≥ 0, and for all 1 ≤ i 6= j ≤ m we have :

Y0i ≥ 0, Θi ≥ 0, ai = 0,

Kij ≤ 0, bii = 1, bij = 0.

• and for all m < k ≤ N and 1 ≤ i ≤ m we have

Θk = 0, ak ∈ {0, 1}
bik = 0 Kik = 0.

Then the first m components Yt1, . . . , Ytm of Yt are nonnegative and σ(Yt) depends only
on these components. Y is called a canonical representative of the class Am(N) which is
formed by all regular affine transforms of Y (i.e. all processes Z = η+ θY , where η ∈ RN ,
θ ∈ RN×N invertible).

If furthermore: (i) Kii > 0 for 1 ≤ i ≤ N , (ii) the inequalities concerning Y0 hold strictly,
(iii) Θi >

1
2
, 1 ≤ i ≤ m and ai +

∑N
j=1 bij > 0 for all 1 ≤ i ≤ N , then (Yt1, . . . , Ytm)′

remains strictly positive and Y is non-explosive Q-a.s. on [0, T ∗], and FW = FY . In the
sequel of the paper we will always consider this case.

Proposition 1 (Quadratic Variation). Let Y be a canonical representative of Am(N)
and α ∈ R and β ∈ RN . Then the quadratic variation of α + β ′Y satisfies

d

dt
[α + β ′Y ]t = v(β) + w(β)′Yt

where v and w in matrix notation are given by

v(β) = a′diag(β)β = β ′diag(a)β and w(β) = b′diag(β)β.

8In particular, a real matrix σt with σtσ
′
t = σσ′(Yt) is Q-a.s. definable for all t ∈ [0, T ∗].

9A comment in Ait-Sahalia and Kimmel (2002) shows that the Dai and Singleton (2000) parametriza-
tion does not include all ADs.
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Proof. We have

d

dt
[β ′Y ] = β ′Sβ =

N∑

i=1

β2
i

(
ai +

N∑

j=1

bijYj

)
=

N∑

i=1

β2
i ai +

N∑

i,j=1

β2
i bijYj.

We observe that v(·) ≥ 0 and w(·) is Rm+ × {0}N−m-valued. Further note the rules

v(β1+β2) = v(β1) + v(β2) + 2β1diag(a)β2

w(β1+β2) = w(β1) + w(β2) + 2b′diag(β1)β2

and that the partial derivatives of v and w wrt. β in matrix notation are given by

∂v(β)

∂β
= 2a′diag(β) = 2β ′diag(a) and

∂w(β)

∂β
= 2b′diag(β).

The following lemmata for the calculation of extended transforms are well-known (see e.g.
Duffie and Kan (1996) or Dai and Singleton (2000)), in our parametrization they are:

Lemma 9. Let Y be the canonical representative of Am(N) satisfying (7), α ∈ R and
β ∈ RN , and A : R→ R and B : R→ RN solve the Riccati ODEs

∂

∂x
A(x) = α + Θ′B(x) +

1

2
v
(
B(x)

)
,

∂

∂x
B(x) = β −K′B(x) +

1

2
w
(
B(x)

)
(8)

with initial conditions A(0) = 0 and B(0) = 0. If there exists B∗ < ∞ with |B| ≤ B∗ on

[0, T ] and E
[
e

1
2

R T
0
w(B∗)′Ysds

]
<∞, then

E
[
e
R T
t
α+β′Ysds

∣∣Ft
]

= eA(T−t)+B(T−t)′Yt

The following lemma generalizes the result of lemma 9.

Lemma 10. Let the assumptions of lemma 9 be satisfied, ζ ≥ 0 and ξ ∈ Rm+ × {0}N−m
and A : R→ R and B : R→ RN solve the ODEs

∂A(x)

∂x
= Θ′B(x) + B(x)′diag(a)B(x)

∂B(x)

∂x
= −K′B(x) + b′diag

(
B(x)

)
B(x). (9)

with initial conditions A(0) = ζ and B(0) = ξ. If E

[
e

1
2

R T
0 w
(
B∗+ B∗

A∗+B′∗Yt

)′
Ytdt

]
< ∞,

where A∗ = min0≤t≤T A(t), B∗ = min0≤t≤T B(t), then

E
[
e
R T
t
α+β′Ysds(ζ+ξ′YT )

∣∣∣ Ft
]

=
(
A(T− t)+B(T− t)′Yt

)
eA(T−t)+B(T−t)′Yt.
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The proofs of lemma 9 and 10 can be found in the appendix. We say (α, β) is Q-regular
if α, β and the parameters (Θ,K, a, b) governing the dynamics of Y under Q satisfy the
conditions of lemma 9, and if the conditions of lemma 10 are satisfied, we say (α, β, ζ, ξ)
is Q-regular.

Remark 11. (i) The following relationship is useful for applications and follows im-
mediately from lemma 10. If (α, β, ζ = α, ξ = β) is Q-regular, then

E
[
e
R T
t
α+β′Ysds(α+β ′YT )

∣∣∣ Ft
]

=
∂

∂T
eA(T−t)+B(T−t)′Yt

i.e. A and B are the derivatives of A and B with respect to time.

(ii) The result of of lemma 10 can be generalized to values of ζ ∈ R and ξ ∈ RN ,
but then one has to impose a condition which is more difficult to check than

E
[

exp{1
2

∫ T
0
w
(
B∗ + B∗

A∗+B′∗Yt

)′
Ytdt}

]
<∞.

Duffie and Singleton (1999) directly calculate expectations of the form E
[
e
R T
t
α+β′Ysds+γ′YT (ζ+ξ′YT )

]

using differentiation through the integral. We believe we have found a more natural way
to look at this, namely we choose φ =

√
S γ and Φ = 1 in Girsanov’s theorem 5. Then

Lt = eγ
′(Yt−Y0)−

R t
0

Θ−KYsds− 1
2

R t
0
v(γ)+w(γ)′Ysds

and (see also proposition 3) Y is also an AD under Q̃. Thus we can always find a measure

Q̃ ∼ Q under which Y remains an AD and α̃, β̃ such that

E
[
e
R T
t
α+β′Ysds+γ′YT (ζ+ξ′YT )

∣∣∣ Ft
]

= eγ
′Yt Ẽ

[
e
R T
t
eα+eβ′Ysds(ζ+ξ′YT )

∣∣∣ Ft
]
,

hence lemma 9 or 10 apply again.

In the sequel of this paper the circuitous detour described above to find α̃, β̃ in order to
derive the respective expectations will never be necessary. The martingale L, rather than
the factor eγ

′YT , will have an important financial interpretation.

4 Fixed Income Securities in Different Currencies

In this section we discuss how to determine the prices of default-sensitive foreign currency
instruments such as bonds and CDSs denominated in different currencies. It is well-
known that with the change of numeraire method the problem of pricing foreign currency
claims at fixed times can be reduced to a related domestic currency pricing problem. The
recovery of defaultable bonds or the protection payments of CDSs, however, are payoffs
at stopping times which require a modification of these techniques, in particular when
the value process of the numeraire (and thus the density of the change of measure) is
discontinuous at the stopping time. The general form of this modification is given in
lemma 7, here we apply this modification to the case of foreign currency claims payable
at default and transform these pricing problems into an equivalent domestic currency
pricing problem, which is then solved easily using the AJD-specification of the model. All
notation from section 3 is carried over to this part of the paper.
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4.1 Default Intensities under Domestic and Foreign Martingale

Measures

The model for foreign exchange risk in the presence of default risk is set up as follows:

Assumption 12 (The Defaultable FX Model). (i) The market is modelled by the
filtered probability space (Ω,F ,F,Q) defined in 3.1, where Q is a domestic spot
martingale measure (DSMM)10, and F is the information of the market to which all
processes are adapted.

(ii) The time of default of the obligor is the stopping time τ defined in (1). i.e. the time
of the first jump of N(t). Given default, the severity of default is characterized by
the realization of the marker zτ := ∆Jτ of the marked point process.

(iii) The exchange (FX) rate between foreign currency cf and domestic currency cd is

denoted with X ≥ 0.11 ri are the short-term interest rates and bi(t) := e
R t
0
ri(s)ds

instantaneous bank accounts in the respective currencies ci, i = d, f .

We sometimes write Qd instead of Q when we find it necessary to emphasize the fact that
Q is the domestic SMM, or λd instead of λ for the default intensity under Qd.

12 Qd does
not need to be unique, we only assume it is the pricing measure chosen by the market.
From assumption 12 (i) and (iii) it follows directly that X satisfies a SDE of the form

dXt

Xt−
= (rd−rf )(t)dt+ φX(t)′dWt −

∫

Z
δ(z, t)(µ−ν)(dz, dt) (10)

where φX is predictable process, and δ(·, ·) ≤ 1 is a predictable function. To see this note

that Xt
bf (t)

bd(t)
is the discounted value in cd of a foreign bank account and hence needs to be a

Q-local martingale. Furthermore our probability space has the predictable representation
property and X must be a nonnegative process. Regarding the drift term in (10) we say
X satisfies the FX drift restriction under Q.

The dependency between defaults and the movements of the exchange rate X has im-
portant consequences for the dynamics of the model under the pricing measures that we
will introduce in the following. Here, equation (10) has two implications. First, FX rate
and default intensity may be conditionally correlated, if [λ,X] is not identically zero. If
for example we have positive local correlation, an increasing (decreasing) FX rate will
indicate a rise (lowering) in the default intensity. Second, there is a direct jump-influence
from the default event itself on the exchange rate which is captured in the function δ via
d[N,X]t = −Xt−

∫
Z δ(z, t)µ(dz, dt) or

∆Xτ = −Xτ−δ(zτ , t).

At default τ , the foreign currency cf is devaluated (relative to cd) in a jump of a fraction
δ(zτ , τ) of the pre-default value of X. As defaults are the only jumps in this model, there
is no discontinuity in X before τ .

10I.e. every traded asset (denominated in domestic currency) is a Q-local martingale.
11I.e. Xt is the value at time t of one unit of cf , expressed in units of cd.
12We also sometimes call λ itself default intensity, omitting the indicator function in the mathematically

correct expression 1{t≤τ}λ(t).
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Of course not only X and λ but also rd, rf , λ,X may show mutual correlation and rd, rf
might also jump at τ . However, in this paper we mainly focus on the dependence of FX
and credit risk, and we will not treat these additional features in detail. For technical
reasons, we make the following assumption.

Assumption 13 (FX Martingale Property). The discounted value in cd of a foreign
bank account

Lt :=
Xt

X0

bf (t)

bd(t)

is uniformly integrable, i.e. a true martingale under Q, and LT ∗ > 0 Q-a.s.

Starting from a DSMM Q, the following pricing measure is commonly used to analyze FX-
related instruments when assumption 13 is satisfied (see Musiela and Rutkowski (1997)).

Definition 1 (FSMM). The equivalent measure Qf ∼ Qd on (Ω,F) defined by

dQf

dQd

∣∣∣∣
Ft

:= Lt =
Xt

X0

bf(t)

bd(t)

is called the foreign spot martingale measure (FSMM) induced by Qd and X.13 The
default intensity under Qf is denoted with λf .

The FSMM is useful for pricing foreign currency payoffs because the price in cd at time t
of an instrument that pays Z units of cf at a fixed time T ≥ t (i.e. XTZ units of cd) is

p(t) = EQd
[
e−

R T
t
rd(s)dsXTZ

∣∣∣ Ft
]

= Xt E
Qf
[
e−

R T
t
rf (s)dsZ

∣∣∣ Ft
]
, (11)

i.e. EQf
[
e−

R T
t rf (s)dsZ

∣∣∣ Ft
]

is the price of this instrument in cf . Thus, in order to price

a foreign currency contingent claim at fixed times, only the distributional properties of
foreign interest rates and the considered claim under the FSMM are needed.

If the FX rate Xt (and so the Radon-Nikodym density
dQf
dQd ) jumps at default, then, in

general, the domestic and the foreign default intensity do not coincide, and thus, defaults
occur with different probabilities under the FSMM and under the DSMM. As was already
shown in corollary 6, λf = λd if and only if 〈N,L〉t∧τ ≡ 0. Here, given the particular
nature of our numeraire asset, more can be said about the link between the devaluation
fraction of the currency and the two default intensities:

Proposition 2 (FSMM Default Intensity). Let assumptions 12 and 13 hold. Define

the locally expected devaluation fraction δ̂(t) at time t (under Qd, conditional on default
occurring at τ = t)

δ̂(t) :=

∫

Z
1{t≤τ}δ(z, t)dFt(z). (12)

Then, the default intensity under the foreign spot martingale measure (FSMM) equals

λf (t) =
(
1− δ̂(t)

)
λd(t).

13We emphasize that every DSMM induces another associated FSMM. If Qd is unique, then so is Qf .
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Proof. Substitute (10) in theorem 5.

Intuitively, the adjustment factor between local and foreign default intensity is equal to
the locally expected devaluation of the FX rate X, if a default were to happen at time t:

λf (t)

λd(t)
= 1− δ̂(t) =

EQ [ X(t) | τ = t, Ft− ]

EQ [ X(t) | τ > t, Ft− ]
.

To specify a tractable model that can be estimated statistically we return to an AJD
framework and use the canonical representative Y ∈ Am(N) defined in (7) as an observable
background process driving the continuous dynamics of the other variables in the market.

Assumption 14 (AJD Economy). Let Y be as in (7) with admissible parameters.

(i) Default intensity and interest rates are affine in Y , i.e. there exist αi ∈ R, βi ∈ RN ,
i = d, f and αλ ≥ 0, βλ ∈ Rm+ × {0}N−m 14 such that

ri = αi + β ′iY, i = d, f and

λ = αλ + β ′λY.

(ii) There exist γ ∈ RN and x ∈ RK with L(t; x) < ∞ Q-a.s. for all t such that in the
FX dynamics (10)

φX(t) =
√
St γ, and δ(z, t) = δ(z) = 1− (1−z)x.

Occasionally, we prefer to write αλd and βλd instead of αλ and βλ. Under assumption
14 the covariation between intensity and exchange rate [λ,X] is completely determined
by the inner product γ′Sβλ because d[λ,X] = X−γ′Sβλdt. As we did not make any
assumptions on the conditional distribution Ft(z) of the jump severity, the assumption

regarding δ(·, ·) is not restrictive and was only chosen in order to express δ̂(t) = 1−L(t; x)
with the Laplace transform L(t; x).

The following proposition provides the relations between the domestic and the foreign
spot martingale measure in an AJD framework.

Proposition 3 (AJD FX Rate). Let assumption 14 be satisfied. Then

(i) Y satisfies the SDE

dY = (Θf −KfY )dt+
√
S dWf , Y (0) = Y0,

where Θf = Θ + diag(γ)a, Kf = K− diag(γ)b and Wf is a BM under Qf , i.e. Y is
also an AD under Qf .

(ii) The default intensity under Qf is given by

λf(t) = L(t; x)λ(t),

(iii) and the stochastic Laplace transform of the default severity distribution under Qf

satisfies

Lf(t; u) =
L(t; u+x)

L(t; x)
.

14This ensures nonnegativity of λ.
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(iv) λf is an AD under Qf , if and only if L(t; x) = L(x) < ∞ is time-invariant.15 In
this case we define constant coefficients αλf := L(x)αλ and βλf := L(x)βλ with
λf = αλf + β ′λfY , and we call X an affine FX rate.

Proof. Apply Girsanov’s theorem 5 to our AJD framework.

Mean reversion speed and level of Y (and thus of λ, rd, rf) transform under the changes
of measure considered in proposition 3, whereas the parameters a and b governing the
volatility of Y are clearly invariant. Note that the parameter restrictions for canonical
ADs given in section 3.4 are automatically satisfied for Kf and the m first components of
Θf , but in general not for the N −m last components of Θf . Of course (Θf ,Kf , a, b) is an
admissible parameter set, but it does not necessarily belong to a canonical representative
of Am(N). Further the inequalities Kfii > 0, i = 1, . . . , N may be violated, i.e. we might
lose mean reversion under the FSMM, which would not be economically meaningful. In
applications one should check that these inequalities hold.

Remark 15.

(i) In general it is difficult to check the validity of assumption 13. In the AJD case
however, the martingale property of L is ensured if the following condition holds
(see e.g. Lepingle and Memin (1978)). Let X be as in proposition 3, and

E

[
exp{1

2

∫ T ∗

0

w(γ)′Ytdt+

∫ T ∗

0

( ∫

Z
(x′ log(1− z) · (1− z)x − 1)dFt(z)

)
λ(t)dt}

]
<∞

For x ≥ 0, i.e. if the foreign currency can only be devaluated at default, it suffices

to check the Novikov condition E
[
e

1
2

R T∗
0 w(γ)′Ytdt

]
<∞.

(ii) Proposition 3 remains true for all sufficiently regular16 interest rates.

4.2 Basic Default-Free and Default-Sensitive Instruments

We turn to the pricing of domestic and foreign securities which may be sensitive to both,
time and severity of default. Basically one has to distinguish two types of default-sensitive
instruments. First, payoffs upon survival until a fixed maturity T (e.g. a defaultable bond
with zero recovery), and second, instruments with payments that become due at default
(e.g. recovery payments or protection payments in CDS).

As hypothesis H underlies our probability space, we can always reduce the pricing problem
of a defaultable claim to a related default-free pricing problem, following the tools provided
in section 3.2. But first we address the well-known problem of pricing default-free zero
coupon bonds (ZCBs).

4.2.1 Default-Free Zero Coupon Bonds

If the interest rate coefficients (αi, βi) are Qi-regular for i = d, f , then, according to
(11) with Z = 1 and lemma 9, domestic and foreign default-free ZCB prices exist for all

15Ft = const. is a sufficient but not a necessary condition for this.
16E.g. bi(t) <∞ Q-a.s. for i = d, f .
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0 ≤ t ≤ T ≤ T ∗ and are given (in their respective payoff currency) by

Bi(t, T ) = EQi
[
e−

R T
t
ri(s)ds

∣∣∣ Ft
]

= eAi(T−t)+Bi(T−t)
′Yt,

where Ai,Bi solve (8) with (−αi,−βi,Θi,Ki, a, b) for i = d, f . In the sequel of the article,
we will always assume that default free ZCB prices exist.

If we do not allow for negative interest rates, i.e. αi ≥ 0 and βi ∈ Rm × {0}N−m for
i = d, f , then the existence of ZCB prices is immediate. However, in that case λ can only
have nonnegative correlation with ri (because then β ′λSβi ≥ 0), which is not always a
desirable property (see e.g. Duffee (1998) for empirical evidence of negative correlation).

Assumption 16 (Recoveries). Generally, we model the loss given default (of a ci-
bond) with a predictable [0, 1]-valued function qi(z, t)

17 which captures the dependency of
recovery on the default severity marker z.
In the AJD framework we assume that the recoveries can be written as 1−qi(z) := (1−z)ui
for some fixed ui ∈ RK+ . We also assume Li(t; u) = Li(u) for all t.

In combination with assumption 14 (ii) on the devaluation fraction, the assumption on
the functional form of q(z, t) is restrictive, but it preserves the affine structure. Despite
this, using a higher-dimensional marker space Z we still have a large degree of flexibility
in the modelling of the correlation between loss given default q and FX devaluation δ.

4.2.2 Defaultable Zero Coupon Bonds

We present the prices of ZCB under a variety of recovery assumptions that have been
proposed in the literature:

Zero Recovery. A ci-ZCB with zero recovery (ZR) pays 1{T>τ} units of ci at its maturity
T , i = d, f . By equation (11) with Z = 1{T>τ}, the price of domestic and foreign ZCB
with ZR is

Bi(t, T ) := EQi
[
e−
R T
t ri(s)ds 1{T>τ}

∣∣∣ Ft
]
, i = d, f

in the respective payoff currency. Using hypothesis H and lemma 2, the survival function

1{T>τ} can be replaced by 1{t>τ}e−
R T
t λi(s)ds in the above expectation. Then lemma 9

yields for the AJD setup

Bi(t, T ) = 1{t>τ}E
Qi
[
e−
R T
t (ri+λi)(s)ds

∣∣∣ Ft
]

= 1{t>τ}e
Ai(T−t)+Bi(T−t)′Yt, (13)

where Ai and Bi solve (8) with (−αi,−βi,Θi,Ki, a, b) where αi := αi + αλi and βi =
βi + βλi , i = d, f . Note that not only are the payoffs in different currencies discounted
with different interest rates, but also with different default intensities.

Any positive recovery is a payment at a stopping time, and thus, its value is equal to the
expectation of a stochastic integral wrt. the jump measure µ. This renders the pricing
problem a bit more complicated. We consider the following recovery assumptions.

17The recovery rate 1 − q of a foreign-issued bond is in general not equal to that of a domestic bond
because the respective bankruptcy courts use different legal rules.

17



Recovery of Par. (See e.g. Duffie (1998).) In addition to the survival payoff of
1{T>τ}units of ci at maturity T , a defaultable ZCB pays 1−qi(zτ , τ) units of ci at the
default time τ if τ ≤ T in the recovery of par setting (RP). This (the recovery payment)
can be written as ∫ T

0

∫

Z

(
1−qi(z, t)

)
1{t≤τ}µ(dz, dt).

The no-arbitrage price of the domestic bond is thus

B
RP

d (t, T ) = Bd(t, T ) + EQd
[ ∫ T

t

∫

Z
e−
R s
t
rd(v)dv

(
1−qd(z, s)

)
1{s≤τ}µ(dz, ds)

∣∣∣∣ Ft
]

on the set {t < τ}. The valuation of the foreign recovery payment is slightly more
involved. In units of cd, the foreign recovery payment is

∫ T

0

∫

Z
Xt−

(
1−δ(z, t)

)(
1−qf(z, t)

)
1{t≤τ}µ(dz, dt).

The standard formula (11) to eliminate X by changing to the FSMM is not directly
applicable here because the payment takes place at a stopping time. We use lemma 7
instead, again on {t < τ}. Assume that L and f(z, t) := e−

R t
0
rf (v)dv(1−qf (z, t))1{t≤τ}

satisfy the conditions of lemma 7. 18 Then

EQd
[ ∫ T

t

∫

Z
e−
R s
t rd(v)dv Xs−

(
1−δ(z, s)

)(
1−qf(z, s)

)
1{s≤τ}µ(dz, ds)

∣∣∣∣ Ft
]

= Xt E
Qd
[ ∫ T

t

∫

Z

Ls−
Lt

(
1−δ(z, s)

)
e−
R s
t rf (v)dv

(
1−qf(z, s)

)
1{s≤τ}µ(dz, ds)

∣∣∣∣ Ft
]

= Xt E
Qf
[ ∫ T

t

∫

Z
e−

R s
t
rf (v)dv

(
1−qf(z, s)

)
1{s≤τ}µ(dz, ds)

∣∣∣∣ Ft
]
. (14)

The important difference to a “naive” application of (11) is, that not just the predictable
part of the exchange rate Xt−, but also the jump term 1−δ(z, s) is removed in the change
of measure. Further note that pricing equation (14) remains true for all regular19 payoff
functions p(z, t) instead of 1−qf . Hence (14) is an equivalent to (11) for the valuation of
foreign currency payments at default.

Then, by corollary 4 and lemma 10 on {t < τ}

B
RP

i (t, T ) = Bi(t, T ) + EQi
[ ∫ T

t

∫

Z
e−
R s
t ri(v)dv (1−z)ui1{s≤τ}µ(dz, ds)

∣∣∣∣ Ft
]

= Bi(t, T ) + Li(ui)
∫ T

t

EQi
[
e−
R s
t

(ri+λi)(v)dvλi(s)
∣∣∣ Ft

]
ds

= Bi(t, T ) + Li(ui)
∫ T

t

(
Ai(s−t)+Bi(s−t)′Yt

)
eAi(s−t)+Bi(s−t)

′Ytds

where Ai, Bi solve (9) with (−αi,−βi, ζi := αλi , ξi := βλi ,Θi,Ki, a, b). Note that by
remark 11 the existence of EQi

[
e−
R s
t (ri+λi)(v)dvλi(s)

∣∣ Ft
]

is immediate if ri ≥ 0.

18If rf ≥ 0, then the process ht =
∫ t

0

∫
Z f(z, s)µ(dz, ds) is bounded by 1. In this case the conditions of

lemma 7 are already satisfied, when L is a square-integrable martingale.
19Again, the conditions of lemma 7 must be satisfied.
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Remark 17. A special case in the RP setting is obtained when ui = 0. Such a ZCB pays
1 unit of ci at τ ∧ T 20 and we denote its price by B

∗
i (t, T ).

Multiple Defaults. (See e.g. Schönbucher (1998) or Duffie et al. (2003).) A multiple
default (MD) ZCB with maturity T has the payoff pMD

i (T ) units of ci at T which solves
the SDE

dpMD
i (t)

pMD
i (t−)

= −
∫

Z
qi(z, t)µ(dz, dt), pMD

i (0) = 1.

An MD bond can default more than once and qi is the loss fraction at a default. The
value pMD

i (t) can be seen as the remaining promised payoff at time t.

In order to derive closed form solutions of ZCB prices in the MD setting, knowledge of
the compensator ν after τ is needed. That is the distributional properties of the stopping
times τj := inf{t > τj−1; Nt > Nτj−1

} (i.e. the time of the jth default) and the conditional
distribution function of the jth jump size Fτj (z) (given the jth default occurs). Hence
additional assumptions have to made.

Assumption 18 (MD). The predictable compensator of µ under Qd is of the form

ν(dz, dt) = dF (z)λ(t)dt,

where F is a time-invariant distribution function on Z and the loss fractions at each
default are

qi(z) = 1− (1−z)ui.

Under assumption 18, Nt is a Cox process and thus

B
MD

i (t, T ) = EQi
[
e−

R T
t ri(s)ds pMD

i (T )
∣∣∣ Ft

]
= pMD

i (t) eA
MD
i (T−t)+BMD

i (T−t)′Yt, (15)

where AMD
i and BMD

i solve (8) with (−αMD
i ,−βMD

i ,Θi,Ki, a, b), where αMD
i := αi +

Li(ui)αλi and β
MD

i := βi + Li(ui)βλi, i = d, f . (A proof can be found in the appendix.)

Recovery of Treasury. (See e.g. Jarrow and Turnbull (1995).) If a default occurs
before maturity (τ ≤ T ), a ZCB holder receives under recovery of treasury (RT)

∫ T

0

∫

Z

(
1−qi(z, t)

)
1{t≤τ}µ(dz, dt) (16)

default-free ZCBs with the same maturity T and par value 1ci. By a simple hedging
argument, the value of the recovery is equal to that of receiving (1−qi(zτ , τ))1{τ<T} units
of ci at time T . Using the domestic and foreign T -forward measures

dPTi
dQi

∣∣∣∣
Ft

:= LTi (t) :=
Bi(t, T )

Bi(0, T )bi(t)
for i = d, f ,

20This is also true for arbitrary ui if Ft(0) = 1 Q-a.s. for all t ≤ T
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we can always reduce the RT case to a related RP case21, namely on {t < τ}

B
RT

i (t, T ) = Bi(t, T ) + EQi
[ ∫ T

t

∫

Z
e−
R s
t ri(v)dv

(
1−qi(z, s)

)
Bi(s, T )1{s≤τ}µ(dz, dt)

∣∣∣∣ Ft
]

= Bi(t, T ) +Bi(t, T ) EP
T
i

[ ∫ T

t

∫

Z

(
1−qi(z, s)

)
1{s≤τ}µ(dz, dt)

∣∣∣∣ Ft
]
. (17)

If we postulate again 1−qi = (1−z)ui , then this leads to a AJD pricing problem with
deterministic but time-dependent coefficients (Θi(t),Ki(t), a, b). We will not further treat
the time-heterogeneous case in this paper.

4.2.3 Credit Default Swaps

The cash flows involved in a CDS contract were already described in section 2. After
default a CDS contract is unwound, thus we always assume that default has not yet
occurred (t < τ) in order to avoid trivialities. We also assume the amount of notional
insured is always 1 unit of ci, i = d, f . For a contract with maturity T entered at t, the
fee leg then consists of payments si(t, T ) × (Tj − Tj−1) in ci at quarterly dates Tj. We
approximate this payment stream by an integral.

The Value of the Fee Stream (in its payoff currency) is thus given by

V fee
i (t, T ) = si(t, T )

∫ T

t

Bi(t, s)ds = si(t, T )

∫ T

t

EQi
[
e−
R s
t

(ri+λi)(v)dv
∣∣∣ Ft

]
ds.

The fee stream of a CDS can be interpreted as a defaultable coupon bond with continu-
ously paid coupon si(t, T )ds and par value zero.

Value of Protection Leg. The protection payment of a CDS takes place if and only if
τ ≤ T . In this case it is made at the time of default τ , and its size is 1 − Bctd(τ) units
of ci, where Bctd is the price of the cheapest-to-deliver bond. As argued in section 2,
the cheapest-to-deliver bond will usually be a coupon-bearing bond and the only relevant
quantity is its relative discount to par value in the currency in which it was issued. We
model this using the RP setup which is the most appropriate choice for CDS recovery
modelling (see e.g. Houweling and Vorst (2005)). In this case, we can write q(zτ , τ) =
1 − Bctd(τ) = 1 − (1 − zτ )

uctd. If e.g. Li(t; uctd) = Li(uctd) is deterministic and time-
independent, then the value of the protection leg satisfies

V prot
i (t, T ) =

(
1−Li(uctd)

)∫ T

t

EQi
[
e−
R s
t

(ri+λi)(v)dv λi(s)
∣∣∣ Ft

]
ds. (18)

The fair CDS rate si(t, T ) is obtained when the value of fee and protection leg are equal:

si(t, T ) =
V prot
i (t, T )∫ T

t
Bi(t, s)ds

. (19)

21First (14) shows that (17) is also valid for i = f . Then lemma 7 with LTi applies again because LTi
is continuous at τ . Moreover theorem 5 yields that Y has the coefficients ΘT

i (t) := Θi + diag
(
Bi(T− t)

)
a

and KTi (t) := Ki − diag
(
Bi(T− t)

)
b under the respective measure PTi .
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It is not hard to see that

lim
T↓ t

si(t, T ) =
(
1−Li(t; uctd)

)
λi(t) Qi-a.s. (20)

This limiting property remains true when Li(t; uctd) is a right-continuous stochastic pro-
cess.

4.3 The relationship between domestic and foreign CDS rates

In this subsection we want to achieve some intuition regarding the relationships between
domestic and foreign CDS rates sd and sf . We will identify the three components of
credit risk (default intensity risk, default event risk and default severity risk) and the
default-free term structures of interest rates as the driving factors of this relation.

For simplicity we assume that the expected recovery rates remain constant over time as in
(18) for both currencies and write q̂i := 1−Li(uctd), i = d, f . Note that if default occurs,
there will be one unique recovery rate to both CDS due to the protection buyer’s delivery
option discussed on section 2. The quantities Li(uctd), however, may differ from each
other because they are the expectations of this recovery rate under different measures.
Mathematically this becomes clear from the definition of F̃ in (ii) of Girsanov’s theorem
5 or from (iii) in proposition 3. From an economic point of view this phenomenon is
explained by the possible dependence of recovery and devaluation fraction of the foreign
currency at default. E.g. if recovery and devaluation show negative correlation, then
the protection buyer of a foreign CDS is doubly punished. In a light default scenario,
i.e. when recovery is large, the LGD payed to the protection buyer will be small. In the
case of a severe default, i.e. when recovery is small, then the LGD amount in foreign
currency will be large, but its value in domestic currency will typically be reduced by
a high devaluation fraction. Clearly, when the recovery rate (or/and the devaluation
fraction) is constant, then q̂d = q̂f := q.22 In the sequel we assume such a q exists but one
could easily include the considerations concerning recovery risk (=default severity risk)
in the subsequent discussion.

The value of the protection leg in (18) was expressed as an integral over securities with a
payoff in units of defaultable ZCBs. The following probability measures are often used in

this situation (see Schönbucher [1999, 2004]). PTd and PTf

dPTi
dQi

∣∣∣∣
Ft

:= L
T

i (t) :=
Bi(t, T )

Bi(0, T )bi(t)
, i = d, f

are called the domestic and the foreign T -survival measure.23 Further we define the
term structures of default intensities λi(t, s) := EP

s
i [ λi(s) | Ft ] and defaultable weights

wi(s; t, T ) := Bi(t,s)R T
t
Bi(t,s)ds

. Then (19) simplifies to

si(t, T ) = q

∫ T

t

wi(s; t, T )λi(t, s)ds. (21)

22This is also true when recovery and devaluation are independent, given default occurs.
23We assume L

T

i is a Qi-martingale.
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The weights wi are proportional to the defaultable ZCB price for the corresponding ma-
turities. Overall, the price curve of defaultable ZCBs will be downward-sloping. The
currency with the higher level of defaultable interest rates will have a stronger downward
slope in the defaultable ZCB price Bi(t, s) and thus it will have a higher weight on early
(small s) values of λi(t, s), compared to the currency with a lower level of defaultable
interest rates.

In many cases the fact that we have different weights wd and wf will only have a small
influence on the differences in CDS rates, because the weights wi will not differ by much,
and the term-structure of default intensities will be quite flat (i.e. λi(t, s) is close to a
constant function of s). For flat term structures of λi(t, s) the weighting has no influence
at all; and if the slope is small, the influence of slightly varying weights will also be small.
In these cases we may argue that si(t) ≈ qλi(t).

It remains to analyze the difference between the domestic and foreign term structure of
default intensities. Assume that X is an affine FX rate. Then δ̂ := 1−L(x), the expected
devaluation fraction of X at default (under Qd and given default occurs), is a constant

and λf (t) = (1−δ̂)λd(t). Further, chaining densities we can define the PTd -martingale

L
T

df (t) :=
dPTf
dPTd

∣∣∣∣∣
Ft

= LX(t)
L
T

f (t)

L
T

d (t)
=
Xt

X0

Bf(t, T )/Bd(t, T )

Bf (0, T )/Bd(0, T )
.

It should be noted that when domestic and foreign ZCB price do not differ by much, then

L
T

df is almost proportional to the FX rate X. In any case

λf (t, s) = (1− δ̂) EP
s
d

[
L
s

df (s)

L
s

df (t)
λd(s)

∣∣∣∣∣ Ft
]
.

Thus, different term structures of default intensities may arise for two reasons. First,
when domestic and foreign default intensities are not equal, i.e. when there is a non-zero
expected devaluation fraction δ̂. Second, when L

s

df and the domestic default intensity

λd(s) are correlated under the domestic s-survival measure Psd.

Overall we have identified four drivers of the difference between CDS rates in domestic
and foreign currency. First, foreign and domestic default intensities are not equal, when
the FX rate is subject to default event risk, i.e. when X jumps at default.24 Second,
foreign and domestic term structure of default intensities do not coincide (nor are they
proportional) when there is covariance between λd and the Psd-martingale L

s

df under the

domestic survival measure P
s

d at any time s. It can be shown that these term structures

are equal, up to the multiplicative constant (1 − δ̂), when the default-free interest rates
rd, rf are independent of λ and [λ,X] = 0, i.e. when X is not subject to default intensity
risk.25

Third, the expected LGD q̂i may differ between the pricing measures Qd and Qf when
devaluation is not independent of default severity risk. Fourth, the slopes of domestic and
foreign term structure of default free interest rates determine (via their impact on the
weights wi) how the respective term structures of default intensities must be weighted in
order to derive the CDS rate in each currency.

24Unless the expected devaluation fraction is equal to zero.
25Precisely, we mean they have orthogonal volatilities ([λ,X ] = 0).
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5 Empirical Results

Here we focus on the first two drivers. There is theoretical and empirical evidence that
the correlation between default-free interest-rates and default intensities has only a very
small effect on CDS rates (see e.g. Houweling and Vorst (2005) or Schönbucher (2002)).
Regarding the relative prices of CDS, this effect is likely to be even smaller here, so we
feel justified in ignoring this effect. Furthermore, we will also assume that the correlation
between recovery rate and devaluation fraction is not significant.

Assumption 19 (Empirical Estimation Setup).

(i) We assume that domestic and foreign interest-rates have zero covariation with ex-
change rate and default intensity:

[rd, X] =0 = [rd, λ] and [rf , X] =0 = [rf , λ].

(ii) The cheapest-to-deliver bond of a CDS has a constant LGD rate q and, at default,
the FX rate is devaluated by a constant fraction δ.

By virtue of assumption 19 (i) we do not have to model an affine model for the default-free
interest-rates any more and we directly use the current 1M Libor rates as approximation
for the short rate in the FX drift (23) and the current term-structure of interest-rates to
discount future cash-flows.

As data source for CDS quotes we use the ValuSpread CDS database by Lombard Risk
Systems Ltd., a provider of a data pooling service for the CDS market. 26 The data
starts in the third quarter of 1999. At the beginning of the period the set of CDSs on
the same reference entity which are available in more than one currency is relatively
sparse and the data frequency is only monthly but from 2002 onwards the data quality
improves significantly both in frequency (weekly, then daily from 2003) and in the number
of obligors with CDS rates in both JPY and USD. From the available set of Japanese
reference names we selected the 25 obligors with the largest number of simultaneous data
points in both JPY and USD. For default-free interest-rates we used JPY and USD term-
structures of interest-rates based upon Bloomberg swap and money-market data. The
JPY/USD exchange rate data was also taken from Bloomberg.

The snapshots in figure 5 act as a good example for the magnitude of the spread between
domestic and foreign CDS rates in our dataset. JPY CDS rates on many large Japanese
reference entities trade typically around 20 percent lower than their US$ equivalent.

5.1 A Simple Estimator for the Devaluation Fraction

As a first step, we tested for the presence of significant differences between JPY and USD
CDS rates used a simple statistic based upon the limiting property (20), which states that

26At regular (daily) intervals, Lombard Risk Systems collects CDS quotes on a large number of reference
names from a set of major market makers and dealers. The submitted data is cleaned and averaged and
then added to the ValuSpread CDS data base and distributed back to the original data providers and to
other subscribers of the service who use this data to mark their books and for various risk management
purposes.
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Figure 1: 5y CDS rates on Sony (left) and Tokyo Electric Power US$ and JPY. The mean
spread amounts 5.4 bp for Sony and 3.6 bp for Tokyo Electric Power.

CDS rates for short maturities are approximately equal to LGD times default intensity.
Remembering λf = (1− δ)λd (proposition 2), the following (approximate) estimator for
δ is straightforward.

δ̂k :=
1

n

n∑

i=1

{
1− sY (ti, ti+k)

s$(ti, ti+k)

}
, k > 0. (22)

Apart from the limit argument (20), we will see another argument why this estimator can
be interpreted as an implied devaluation fraction in equation (28). We give the estimates

1 year CDS 5 year CDS
Ticker (Company) δ̂1 [%] p-Value [%] δ̂5 [%] p-Value [%]

ASAGLA (Asahi Glass Company, Limited) 15.50 0.000 11.19 0.000
BOT1 (Bank of Tokyo-Mitsubishi, Ltd.) 5.86 3.438 18.98 0.000
EJRAIL (East Japan Railway Company) 22.34 0.000 18.12 0.000
FUJITS1 (Fujitsu Ltd) 15.78 0.000 13.91 0.000
HITACH (Hitachi, Ltd.) 26.28 0.000 17.55 0.000
HONDA (Honda Motor Co., Ltd.) 16.77 0.000 20.86 0.000
MATSEL (Matsushita Electric Industrial Co., Ltd.) 25.79 0.000 17.42 0.000
MITCO1 (Mitsubishi Corp) 17.99 0.000 11.74 0.000
MITSCO (Mitsui & Co., Ltd.) 16.56 0.000 12.88 0.000
NECORP (NEC Corpoartion) 20.24 0.000 13.58 0.000
NIPOIL/NIPOIL1 (Nippon Oil Corporation) 14.59 0.000 14.55 0.000
NIPSTL (Nippon Steel Corporation) 14.23 0.000 12.51 0.000
NTT (Nippon Telegraph & Telephone Corporation) 28.50 0.000 19.05 0.000
NTTDCM (NTT DoCoMo Inc.) 35.75 0.000 15.27 0.000
ORIX (Orix Corporation) 18.86 0.000 12.93 0.000
SHARP (Sharp Corporation) 31.80 0.000 21.76 0.000
SNE (Sony Corporation) 28.21 0.000 17.17 0.000
SUMIBK2 (Sumitomo Mitsui Banking Corporation) 23.54 0.000 21.94 0.000
SUMT (Sumitomo Corporation) 14.32 0.000 9.61 0.000
TAKFUJ (Takefuji Corporation) 8.38 0.000 6.56 0.000
TOKELP (Tokyo Electric Power Co., Inc.) 29.22 0.000 18.73 0.000
TOKIO (Tokio Marine and Fire Insurance Company Limited) 30.11 0.000 22.37 0.000
TOSH (Toshiba Corporation) 22.62 0.000 14.01 0.000
TOYOTA1 (Toyota Motor Corporation) 31.26 0.000 27.41 0.000
YAMAHA (Yamaha Motor Co., Ltd.) 19.83 0.000 17.68 0.000

Table 1: Estimates for the devaluation fraction implied by the data.

δ̂k for the maturities k = 1 years and k = 5 years in table 1. The 1Y maturity is the
shortest maturity available to us, it is reported in the first pair of columns. We also
added the 5Y maturity because market liquidity is usually concentrated at this point of
the CDS term structure. Using a t-test on 1 − sY /s$ we tested the hypothesis whether
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the deviations of the CDS ratio sY /s$ from 1 is just noise in the data. In all cases this
hypothesis could be clearly rejected: We are facing a systematic feature of the data.
Interestingly the devaluation fractions implied by the data is typically higher for the 5
CDS rates than for the 1 year CDS rates.

5.2 A Correlation Model

The differences between JPY and USD CDS rates reported in table 1 need not necessarily
be caused by an implied devaluation of the JPY at default (i.e. a δ̂ > 0). As seen
above, a difference between CDS rates in different currencies can also arise when default
intensities and FX rate are correlated via their diffusion components. Thus, we now
want to investigate whether it is possible to reproduce the observed differences in CDS
rates without assuming a devaluation at default, but only using the dependency between
defaults and exchange rate X that is generated in a purely diffusion-based setup.

We build up a concrete model for the observable background driving process Y using the
classification of ADs into the families Am(N). Because assumption 19 relieves us from
modelling default-free interest-rates, we are left with the task of modelling the correlation
structure of two variables: λ and the diffusion part of X, hence we need a dimension of
at least N ≥ 2. Second we have to choose the number m ≤ N of components of Y that
we want to remain positive. In our case λ > 0 is desirable, hence we choose m ≥ 1. Thus,
an A1(2) or an A2(2) model is appropriate. We chose Y ∈ A1(2) because for fixed N ,
the number of parameter restrictions is increasing in m (see 3.4), and if Y ∈ A2(2), then
the two components driving the stochastic volatility of Y , and thus of λ and X, can only
have nonnegative correlation. (See Dai and Singleton (2000))

Then λ is a CIR process up to a positive additive constant. We restrict this constant and
the matrix b defined in (7) to zero. This yields the following model under the DSMM Qd.

dλ = κ(θ − λ)dt+ σ
√
λdW 1

dX

X−
= (rd − rf)dt+ γ1

√
λ dW 1 + γ2 dW

2 − δ(dN − λdt) (23)

with κ, θ, σ, γ2 > 0, γ1 ∈ R and δ < 1 and (W 1,W 2)′ a standard BM under Qd. The
instantaneous correlation of default intensity and log FX rate,

ρ(logXc, λ) :=
d
dt

[logXc, λ]√
d
dt

[logXc] d
dt

[λ]
= sgn(γ1)

(
1 +

γ2
2

γ2
1λ

)− 1
2

,

is essentially controlled by the ratio γ1/γ2, but also depends on the current level of the
stochastic process λ. Importantly its sign depends only on the sign of γ1. Further we
have to link the DSMM to the physical measure P, under which the data was generated.
For tractability we assume that the state price density is of the form

dP
dQ

∣∣∣∣
FT

:= LT with
dL

L−
= φ1

√
λ dW 1 + φ2 dW

2 − Φ(dN − λdt)

for φ1, φ2 ∈ R and Φ < 1. Then Y is also an AD ∈ A1(2) under P.
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In order to estimate the parameters of an Am(N) model a large number of relatively
demanding estimation methodologies have been proposed for non-Gaussian AD models
(Singleton (2001), Ait-Sahalia (2002), Gallant and Tauchen (1996)). Given the simplicity
of our model and the high frequency of our data (daily for most of the dataset) we used a
simple quasi maximum likelihood (QML) estimator by approximating (23) with its Euler
discretisation. Then the parameter estimation reduces to a linear regression problem in
transformed variables. Note that for every volatility estimator of the above model the
value of δ plays no role as long as default has not yet occurred.

As the intensity λ is not directly quoted in the markets, we need to find a proxy for
it. Here, the limiting property (20) suggests that CDS rates with a short maturity are
approximately proportional to λ, and equation (21) tells us that also for longer times
to maturity, CDS rates are proportional to a weighted average of forward hazard rates.
Therefore, we decided to use CDS rates as approximation for qλd(t). Ideally, we would
have liked to use 1Y CDS rates, but the data for the 5Y maturity turned out to be cleaner
and more liquid, so we used 5Y USD CDS rates, sd(t, t+ 5).

If q is unknown, then γ1 can only be estimated up to a positive constant. Therefore,
we give QML estimates and 95%-confidence intervals for γ1

qσ
in table 2. However, the

Ticker (Company) (̂ γ1

qσ ) 95%-CI
ρ(logXc, λ)
(mean, [%])

ASAGLA (Asahi Glass Company Ltd.) −2.26 [−10.18, 5.67] −3.97
BOT1 (Bank of Tokyo-Mitsubishi Ltd.) −2.80 [ 5.62, 0.01] −16.58
EJRAIL (East Japan Railway Co.) −2.34 [−10.57, 5.90] −3.38
FUJITS1 (Fujitsu Ltd) −0.15 [ −1.58, 1.27] −1.09
HITACH (Hitachi Ltd.) −1.14 [ −4.78, 2.50] −3.58
HONDA (Honda Motor Co. Ltd.) −2.52 [ −7.80, 2.75] −5.48
MATSEL (Matsushita Electric Industrial Co. Ltd.) 1.35 [ −4.43, 1.73] −5.03
MITCO1 (Mitsubishi Corp.) −4.10 [ −8.55, 0.35] −10.69
MITSCO (Mitsui & Co. Ltd.) −4.43 [ −8.72, −0.13]∗ −10.25
NECORP (NEC Corp.) −1.51 [ −3.60, 0.58] −7.23
NIPOIL1/NIPOIL (Nippon Oil Corp.) −3.92 [−10.28, 2.44] −7.98
NIPSTL (Nippon Steel Corp.) −5.67 [ −9.44, −1.89]∗ −15.04
NTT (Nippon Telegraph & Telephone Corp.) −3.16 [−11.59, 5.28] −4.80
NTTDCM (NTT DoCoMo Inc.) −3.90 [ −9.76, 1.95] −8.61
ORIX (Orix Corp.) −0.38 [ −1.84, 1.07] −2.94
SHARP (Sharp Corp.) −3.96 [ −7.28, −0.65]∗ −15.47
SNE (Sony Corp.) −2.84 [ −7.43, 1.76] −7.06
SUMIBK2 (Sumitomo Mitsui Banking Corp.) −1.42 [ −5.34, 2.50] −4.63
SUMT (Sumitomo Corp.) −3.88 [ −7.65, −0.12]∗ −11.72
TAKFUJ (Takefuji Corp.) 0.07 [ −0.48, 0.62] 1.32
TOKELP (Tokyo Electric Power Co. Inc.) −3.15 [ −8.02, 1.72] −6.98
TOKIO (Tokyo Marine & Fire Insurance Co. Ltd.) −1.51 [ −4.39, 1.37] −6.95
TOSH (Toshiba Corp.) −0.70 [ −2.78, 1.37] −3.58
TOYOTA1 (Toyota Motor Corp.) −3.68 [−13.93, 6.58] −4.22
YAMAHA (Yamaha Motor Co., Ltd.) 0.38 [ −1.63, 2.40] 1.98

Table 2: QLM estimates of the Correlation Parameter and Averaged Correlation

level of correlation seems to be rather low: For only four companies, MITSCO, NIPSTL,
SHARP and SUMT, the null hypothesis H0 : γ1 = 0 can be rejected on the 95% level.
To provide a quantity which is more intuitively understandable, we also computed the
average instantaneous correlation function ρ(logX c, λ) by combining the estimates for γ1

qσ

with the estimates of γ2 and σ. This quantity can be viewed as the average correlation
between default intensity and exchange rate over our sample period.
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5.3 Evidence for Devaluation at Default

As we outlined in 4.3, γ1 6= 0 if and only if [X, λ] 6= 0, which implies different term
structures of default intensities in USD and JPY. We now attempt to answer the question
whether this purely correlation based dependence is able to explain the whole spread
between USD and JPY CDS rates, i.e. the question whether we can we can make our
life much easier and set the jump interaction parameter δ to zero? Formally, our null
hypothesis is: “The difference between JPY and USD CDS spreads is caused by a model
like (23) with no devaluation at default, i.e. δ = 0.”

In order to evaluate the Null, we must first completely specify the model (23). Given
δ = 0, and for a given value of the loss given default q (which is also provided in our CDS
database), we are able to compute QML-estimates for all parameters in (23) including
the market price of risk φ1, φ2. In the estimates of these parameters only USD CDS rates
(and not JPY CDS rates) are used besides the exchange rate and interest-rate data.

Next, we try to find out whether there are any combinations of λ and the default-free
term structures for which the resulting ratio of JPY CDS spreads to USD CDS spreads
is of a similar order of magnitude as the one observed in table 1. We do not need to
consider the current value of X as it only enters the CDS spreads through its dependency
with λ under the different measures (see e.g. equation (21)). For this, we took the mean
term structures of default-free interest rates over the sample period in US$ and JPY. We
also considered the term structure which turned out to be most favorable (disfavorable)
to our null hypothesis: the steepest (flattest) default-free USD term structure of interest-
rates of this period, together with the JPY term structure of the same day. We first used
λ(ti) ≈ 1

q
s$(ti, ti+5) as an approximation for the default intensity at ti and then calculated

at each ti the corresponding 5Y USD and JPY CDS rates (21).

The resulting spread between USD and JPY CDS rates was in no case even close to
the spread empirically observed in the data: Even with the steepest term structure of
USD-interest-rates we typically found a theoretical relative spread of less than 5%, (with
the mean term structure one of less than 3% and with the flattest less than 2%): We
applied the estimator (22) to the resulting theoretical 5Y CDS rates and also calculated

mini
{

1− sY (ti ,ti+5)
s$(ti,ti+5)

}
. With the mean and the steepest term structures of interest rates

in this period we reached the values reported in table 3. (We considered only the tickers

mean term structure steepest term structure
Ticker (Company) δ̂5 95%-CI δ5,max δ̂5 95%-CI δ5,max

BOT1 (Bank of Tokyo-Mitsubishi Ltd.) 0.9 [−1.8, 3.4] 2.1 −0.2 [−2.9, 2.4] 1.7
EJRAIL (East Japan Railway Co.) 0.0 [−0.7, 0.7] 1.1 −0.1 [−0.8, 0.6] 1.7
HONDA (Honda Motor Co. Ltd.) 0.3 [ 0.3, 0.4] 0.8 0.6 [ 0.5, 0.6] 1.5
MITCO1 (Mitsubishi Corp.) 1.4 [ 1.2, 1.5] 3.8 2.2 [ 2.1, 2.4] 6.4
MITSCO (Mitsui & Co. Ltd.) 0.9 [ 0.5, 1.3] 3.2 1.2 [ 0.9, 1.6] 5.1
NTT (Nippon Telegraph & Telephone Corp.) 1.9 [ 1.8, 2.0] 3.9 3.3 [ 3.2, 3.3] 6.8
NTTDCM (NTT DoCoMo Inc.) 2.1 [ 2.0, 2.3] 4.4 3.6 [ 3.5, 3.8] 7.5
SHARP (Sharp Corp.) 0.7 [ 0.4, 0.9] 1.5 0.9 [ 0.7, 1.2] 2.3
SUMT (Sumitomo Corp.) 1.3 [ 0.4, 2.1] 3.7 1.5 [ 0.7, 2.3] 5.4
TAKFUJ (Takefuji Corp.) 1.5 [ 1.5, 1.5] 3.3 2.7 [ 2.7, 2.7] 5.8
TOKIO (Tokyo Marine & Fire Insurance Co. Ltd.) 0.9 [ 0.8, 1.0] 2.4 1.5 [ 1.4, 1.7] 4.2
TOYOTA1 (Toyota Motor Corp.) 1.2 [ 1.1, 1.2] 2.1 2.1 [ 2.0, 2.1] 3.8
YAMAHA (Yamaha Motor Co., Ltd.) 2.7 [ 2.7, 2.8] 6.4 4.6 [ 4.7, 4.8] 10.9

Table 3: Implied devaluation fractions [%] in the pure-diffusion setup.

which showed positive mean reversion κ under Q.) Comparing these results to the relative
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spreads reported in table 1 we reject the null hypothesis of δ = 0.

On the other hand, for any given relative spread of USD and JPY CDS rates (and for any
given term structures of default-free interest-rates) we can find a nonzero value of δ 6= 0
such that this relative spread is reproduced. So we cannot reject the hypothesis that the
devaluation fraction δ is not zero.

6 Applications and Extensions

6.1 Discussion of the Empirical Results

The spread between domestic and foreign CDS rates implies a currency devaluation of
between 15 and 25% at a default of one of the larger obligors in our sample. This may
seem rather large, and it may be (at least partially) caused by market imperfections.
Nevertheless, the size and persistence of the effect (it did not change significantly although
the market liquidity has multiplied in our sample) indicates that there is – at least to
some extent – a real foundation to it. For example, a default of a large Japanese firm
will most likely happen in a serious recession scenario, or it will be an indicator of severe
fundamental problems in the economy (e.g. a bank default would be a strong indicator
that the Japanese bad-loans problem is more serious than expected).

Furthermore, we would like to point out that we excluded some sources of dependency
in our setup, in particular the possibility of joint jumps of FX rate and default intensity
before default, and the dependency across obligors. In particular the latter effect should be
investigated further: A macro-economic effect of a default (e.g. FX devaluation) should
be particularly large if the default itself was caused by a systematic, macro-economic
reason. But then the default is also more likely to affect other obligors. Thus, the implied
FX devaluation at default may even give us information on the dependency between the
obligors and the macro economy if all variables (defaults and FX rate) are driven by the
same macro-variables.

We would have expected to see significantly different results for firms that are active
in foreign trade as exporters, as importers, and firms that mostly service the domestic
market. Making this distinction for large Japanese corporations is rather difficult and from
a qualitative inspection of our results we did not see any such systematic connection.

To the methodology of our study it was irrelevant that the reference obligors were Japanese
companies. What we needed was that X was the exchange rate between the CDS-
currencies, but not that X had any connection to the reference credit. Thus, a similar
study can also be performed using reference credits that are not incorporated in the “for-
eign” country. A particularly interesting case arises if the reference credit of the CDS
is a sovereign itself. Usually, this sovereign will not be a G7 country, so (unless this is
explicitly stated in the term sheet) the CDS will not be denominated in its currency. Nev-
ertheless, many developing countries have issued debt in multiple currencies, e.g. USD,
EUR, and JPY, and CDS on these sovereigns can also be traded in these currencies. The
relative spreads of these CDS will then allow us to make statements about the implied
effect of a sovereign default of e.g. Brazil on the EUR/USD exchange rate in much the
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same way as we made statements about the JPY/USD exchange rate upon default of
a corporate reference credit. In this case, it will not be clear which currency we would
expect to devalue, i.e. δ̂ may also be negative.

6.2 Other Default-Sensitive FX Derivatives

We used CDS with denomination in different currencies to illustrate the key ideas and
methods which must be used to analyse credit risk in multiple currencies, but there are
also a number of other situations in which the methods of this paper can be used, for
example some exotic credit derivatives and the analysis of counterparty credit risk in OTC
derivatives transactions. In this section we present some of these connections.

As a first application, we define default-sensitive equivalents for the most common FX
derivatives such as FX swaps and FX forwards. These derivatives behave like their default-
free equivalents except that they are cancelled at default. It will turn out that some of
these instruments have a natural connection to the problem of pricing CDSs in different
currencies.

We define the defaultable FX forward rate X as

X(t, T ) = X(t)
Bf(t, T )

Bd(t, T )
. (24)

This is the forward exchange rate to be used in a FX forward contract which is cancelled
at default (i.e. if a default occurs before the settlement date T ). Using the defaultable
zero coupon bond prices given in section 4.2.2, the defaultable FX forward rates can be
given in closed-form.

In a defaultable currency swap one side of the swap pays a stream of the defaultable
currency swap rate x(t, T ) in cd, and the other side of the swap pays a stream of 1 in
cf , and both payment streams stop at default, or — if no default occurs before T — at
the maturity date T . (In contrast to a classical currency swap we assume no exchange of
principal at maturity.) As both legs of the currency swap must have the same value, we
reach the following representation for x(t, T ):

x(t, T )

∫ T

t

Bd(t, s)ds = X(t)

∫ T

t

Bf (t, s)ds =

∫ T

t

X(t, s)Bd(t, s)ds (25)

and thus

x(t, T ) = X(t)

∫ T
t
Bf(t, s)ds∫ T

t
Bd(t, s)ds

=

∫ T

t

wd(s; t, T )X(t, s)ds.

Thus, we can view the rate x as a weighted average of the defaultable FX-forward rates
X(t, s) over the life of the swap, or as a survival-contingent exchange rate for payment
streams. Alternatively, it can be viewed as the relative price of a unit payoff stream (an

annuity) in foreign-currency
∫ T
t
Bf (t, s)ds, measured in units of the domestic defaultable

annuity
∫ T
t
Bd(t, s)ds.

The defaultable currency swap in (25) allows us to transform any CDS fee stream in cf
into a corresponding fee stream in cd. This leads naturally to the following instrument:
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A Quanto CDS is a credit-default swap, which has a protection payment in one currency
(e.g. cf ), but the fee payment is made in another currency (e.g. cd) at the rate squanto.
Using the defaultable currency swap to transform the fee streams we reach:

squanto(t, T ) = sf(t, T ) x(t, T ). (26)

A Default-Contingent FX Forward is a contract to exchange 1 unit of foreign currency
forX

τ
(t, T ) units of domestic currency at the time of default τ , if and only if default occurs

before its maturity T .

This instrument may seem a bit artificial but we believe there should be interest in it.
Often, investors in foreign companies have secured strong collateralisation of their loans.
Upon a credit event, these investors will have to liquidate the collateral and convert a
significant amount of cash back into their domestic currency. Such investors might be
interested in a default-contingent FX forward, i.e. a FX forward contract which allows
the investor to exchange if (and only if) a credit event has occurred.

Assuming constant recovery rates 1− q, we can model this contract as a portfolio of two
CDS contracts, one of which is short protection in foreign currency with notional 1/q (thus
paying one unit of cf at default), and one that is long protection in domestic currency
with notional X

τ
/q (which pays one unit of cd at default). We can convert the fees of the

cf CDS into domestic currency using the quanto CDS introduced above to reach a net
value in cd for the default-contingent FX forward of

1

q

(
sf(t, T ) x(t, T )−Xτ

(t, T ) sd(t, T )
)∫ T

t

Bd(t, s)ds,

i.e. the fee in domestic currency that has to be paid for this contract is 1
q
(sf x −Xτ

sd).

Finally, for the contract to be fair (i.e. for the fee to be zero), we need to set the default-
contingent FX forward rate to

X
τ
(t, T ) = x(t, T )

sf (t, T )

sd(t, T )
. (27)

The Ratio of Domestic to Foreign CDS Rates: From (27) we reach immediately

sf(t, T )

sd(t, T )
=
X
τ
(t, T )

x(t, T )
. (28)

The ratio of the foreign to the domestic CDS rate is the ratio of two exchange rates: The
exchange rate X

τ
(t, T ) that applies at the time of default only if a default occurs over

[t, T ] to the exchange rate x(t, T ) that applies over [t, T ] only for the time the obligor
survives.
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A Appendix

Proof of Lemma 2. Mt := E
[
e−

R T
0
λ(s)dsgT

∣∣∣ Ft
]
, t ∈ [0, T ∗] is a uniformly integrable

martingale. Under hypothesis H (see definition H3 in Jeanblanc and Rutkowski (2000))

we have that E
[
e−

R T
0 λ(s)dsgT

∣∣∣ Ft
]

= E
[
e−
R T
0 λ(s)dsgT

∣∣∣ FWt
]

because e−
R T
0 λ(s)dsgT is

32



FWT -measurable and thus the strong predictable representation property (see e.g Karatzas
and Shreve (1991)) implies that there exists a FW -adapted process φM such that

Mt = M0 +

∫ t

0

φM(s)dWs. (29)

Yt := 1{t<τ}e
R t
0
λ(s)ds is a local martingale (dYt = Yt−(−dNt+λ(t)dt)) with YT = 1{T<τ}e

R T
0
λ(s)ds.

MY is also a local martingale because d[M,Y ] = d[M c, Y c] + ∆M∆Y = 0. Note that
this follows only from (29), i.e. from hypothesis H. Further E [ |gT | | Ft ] is uniformly
integrable and |MtYt| ≤ E [ |gT | | Ft ] (Jensen’s inequality for cond. expectations). Thus
MY is uniformly integrable, i.e. it is a martingale and we have

1{t<τ}E
[
e−

R T
t
λ(s)dsgT

∣∣∣ Ft
]

= MtYt = E [ MTYT | Ft ] = E
[

1{T<τ}gT
∣∣ Ft

]
.

Proof of corollary 3. E
[ ∫ T

0
1{s≤τ}|gs|ds

]
<∞ guarantees that 1{t≤τ}gt isQ×l-integrable.

Hence Fubini’s theorem applies and E
[

1{t≤τ}|gt|
]
<∞ l-a.e. For every F ∈ Ft

E

[
1F

∫ T

t

1{s≤τ}gsds

]
=

∫ T

t

E
[

1{s≤τ}gs 1F
]
ds =

∫ T

t

E
[

1F E
[

1{s≤τ}gs
∣∣ Ft

] ]
ds

= E

[ ∫ T

t

1F E
[

1{s≤τ}gs
∣∣ Ft

]
ds

]

= E

[
1F

∫ T

t

E
[

1{s<τ}gs
∣∣ Ft

]
ds

]
.

In the last equality we used that E
[

1{t≤τ}gt
]

= E
[

1{t<τ}gt
]
Q× l-a.e. because 1{t≤τ} =

1{t<τ} l-a.e. Together with lemma 2 this proves the claim.

Proof of corollary 4. By a variation of theorem 1.8 of chapter II in Jacod and Shiryaev (1988)
(4) ensures

∫ t
0

∫
Z1{s≤τ}f(z, s)(µ−ν)(dz, ds) is a martingale. Thus, for all F ∈ Ft27

E

[
1F

∫ T

t

∫

Z
1{s≤τ}f(z, s)µ(dz, ds)

]
= E

[
1F

∫ T

t

1{s≤τ}
(∫

Z
f(z, s)dFs(z)

)
λsds

]
<∞

By Fubini’s theorem E
[ ∫
Z |f(z, t)|dFt(z) 1{t≤τ}λt

]
<∞ l-a.e. and we can proceed as in

the proof of lemma 3.

Proof of Lemma 7. We omit the argument of f and Φ. Recall ∆L = L−
∫
Z(Φ−1)µ(dz, dt).

By Itô’s lemma

d

(
Ls

∫ s

0

∫

Z
fµ(dz, du)

)
= Ls−

∫

Z
fµ(dz, ds) +

(∫ s−

0

∫

Z
fµ(dz, du)

)
dLs

+ ∆Ls

∫

Z
fµ(dz, ds)

= Ls−

∫

Z
fΦµ(dz, ds) +

(∫ s−

0

∫

Z
fµ(dz, du)

)
dLs.

27f̃(z, s) := 1{s>t}1F f(z, s) is predictable for fixed t and F ∈ Ft.
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Condition E
[ ∫ T

0
h2
t− d〈L〉t

]
< ∞ ensures that the stochastic integral wrt. L,

∫ t
0
hs−dLs,

is a true martingale, hence has zero expectation. The arguments hold true when f is
replaced by f̃ := 1(t,T ]1Af for arbitrary A ∈ Ft, this proves the claim.

Proof of Lemma 8. From Itô’s lemma it follows

d

(
Ls

∫ s

0

gu du

)
= Ls−gs ds+

(∫ s

0

gu du

)
dLs

Condition E
[ ∫ T

0
(
∫ t

0
|gs| ds)2 d〈L〉t

]
< ∞ guarantees that

∫ t
0
(
∫ s

0
gudu) dLs is a true mar-

tingale. This remains valid for g̃ := 1(t,T ]1Ag for arbitrary A ∈ Ft instead of g and the
claim follows.

Proof of lemma 9. The boundedness of B (and hence A) guarantees that A and B are

C1-functions. Hence M(t) = e
R t
0
α+β′Ysds+A(T−t)+B(T−t)′Yt, t ∈ [0, T ], is differentiable in t

and it can be checked easily via Itô’s lemma that M solves the SDE

dMt

Mt

= B(T− t)′
√
St dWt

if A and B solve the ODE (8), hence M is a local martingale. By E
[
e

1
2

R T
0 w(B∗)′Ysds

]
<∞

(Novikov’s condition) M is a martingale and the boundary conditions A(0) = 0 and

B(0) = 0 imply the terminal value MT = e
R T
0
α+β′Ysds.

Proof of lemma 10. If ξ = 0, then lemma 9 applies. Hence we consider only the case
where ξ has at least one positive component. Note that (9) is linear in B with bounded
coefficients as long as B is bounded, i.e. B is also bounded. Moreover B ≥ 0, for at least
one component min0≤t≤T Bi(t) > 0 and A ≥ 0. Thus

M(t) := e
R t
0
α+β′Ysds+A(T−t)+B(T−t)′Yt(A(T− t)+B(T− t)′Yt

)
,

is differentiable in t and Q-a.s. positive for all t ∈ [0, T ]. By Itô’s lemma

dM(t)

M(t)
=

(
B(T− t) +

B(T− t)
A(T− t) +B(T− t)′Yt

)′√
St dWt

i.e. M is a local martingale. Novikov’s criterion E

[
e

1
2

R T
0
w
(
B∗+ B∗

A∗+B′∗Yt

)′
Ytdt

]
< ∞ guar-

antees that M is also a martingale and by the initial condition A(0) = ζ and B(0) = ξ

its terminal value is MT = e
R T
0
α+β′Ysds

(
ζ+ξ′YT

)
.

Proof of formula (15). By virtue of (11) it suffices to proof the domestic formula. We
first define q̂d := 1 − Ld(ud) and choose an FW

T -measurable gT with EQd [ |gT | ] < ∞.
Then the proof goes much in line with that of lemma 2. Define the Qd-martingale Mt :=

EQd
[
e−bqd

R T
0
λd(s)dsgT

∣∣∣ Ft
]
. It can be checked easily that Yt := pMD

d (t)e bqd
R t
0
λd(s)ds is a Qd-

local martingale. Due to assumption of hypothesisH we have Mt = E
[
e−

R T
0 λ(s)dsgT

∣∣∣ FWt
]
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and thus MY is also a Qd-local martingale. Further |MtYt| ≤ EQd [ |gT | | Ft ], hence MY
is a true Qd-martingale and

pMD
d (t) EQd

[
e−bqd

R T
t
λd(s)dsgT

∣∣∣ Ft
]

= MtYt = EQd [ MTYT | Ft ] = EQd
[
pMD
d (T ) gT

∣∣ Ft
]
.

We set gT := e−
R T
t
rd(s)ds, then lemma 9 yields the claim.
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