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Outline

•
 

Longevity risk:
–

 
Identification

–
 

Assessment
–

 
Management

•
 

Securitization Mortality Indexes
•

 
Stochastic forecasts of life expectancy

–
 

Univariate ARIMA
–

 
Multivariate VAR Vector Error Correction
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Identification 

•
 

“Mortality risk”
 

is divided into:
–

 
Process risk: random fluctuations due to the 
stochastic nature of mortality

–
 

Catastrophe risk: unexpected shocks of 
mortality

–
 

Uncertainty risk: random deviations due to
•

 
choice of the projection model (model risk)

•
 

estimated parameters of the model (param.risk)
Longevity Risk refers to old age mortality
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Assessment

•
 

The impact of the LR is measured via:
–

 
Discounted cash flows

–
 

Random annual cash flows
–

 
Random number of annuitants alive in t

–
 

Loss function

•
 

Combined with different indexes:
–

 
Expected value

–
 

Variance
–

 
Quantile
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Management

•
 

Portfolio strategies of loss control
–

 
Loss prevention

–
 

Loss severity

•
 

Portfolio strategies of loss financing
–

 
Natural hedging 

–
 

Risk transfer Securitization
–

 
Risk retention
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Securitization

•
 

LR is transferred to capital markets via 
mortality-linked securities:
–

 
Longevity Bonds (EIB/BNP in 2004)

–
 

Survivor Swaps (Swiss Re in 2007)
–

 
Mortality Futures 

–
 

Mortality Forwards (JP Morgan in 2007)
–

 
Mortality Options
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Securitization

•
 

LR is transferred to capital markets via 
mortality-linked securities:
–

 
Longevity Bonds (EIB/BNP in 2004)

–
 

Failed due to:
•

 
Presence of basis risk

•
 

Lack of transparency
•

 
Capital strain
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Mortality indexes

•
 

Recently proposed:
–

 
Longevity Index by Credit Suisse (2005)

–
 

LifeMetrics
 

Indices by JP Morgan (2007)
–

 
Xpect-Indices by Deutsche Börse

 
(2008)

•
 

Our proposal:
–

 
Life expectancy at birth

–
 

Publicly available mortality data (HMD)
–

 
Multivariate analysis between countries
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Stochastic models to forecast 
mortality
•

 
Univariate ARIMA models
–

 
De Beer and Alders (1999)

–
 

Keilman, Pham and Hetland
 

(2001)
–

 
Alders Keilman

 
and Cruijsen

 
(2007)

•
 

Multivariate VAR models
•

 
Multivariate VEC models Economics
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ARIMA models

•
 

Based on the theory of stationary 
stochastic processes. ARIMA(p, d, q):

•
 

Box and Jenkins’
 

iterative model selection 
strategies:
–

 
Model identification

–
 

Model estimation
–

 
Diagnostic checking of model adequacy
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ARIMA models
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ARIMA models
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VAR models

•
 

Variables are explained by their own past 
values and the past values of all the other 
variables in the system. 
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VAR models

•
 

Variables are explained by their own past 
values and the past values of all the other 
variables in the system. VAR(p):

–
 

Model identification
–

 
Model estimation

–
 

Diagnostic checking of model adequacy
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VAR(2) model
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VAR models
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Cointegration
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Cointegration
•

 
“If each element of a vector of time series  
achieves stationarity

 
after differencing, but a 

linear combination  is already 
stationary, the time series are said to be 
cointegrated”

tt YZ 'β=

tY



19

Cointegration
•

 
“If each element of a vector of time series  
achieves stationarity

 
after differencing, but a 

linear combination  is already 
stationary, the time series are said to be 
cointegrated”

•
 

Grangers' representation theorem: “For 
each cointegrated system exists a VEC 
representation; if exists a VEC 
representation and the series are 
integrated, then they are also cointegrated”

tt YZ 'β=

tY
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VEC models

•
 

A VAR in a VEC representation:

where , 

•
 

Example of a VAR(1):

where



21

VEC models
•

 
Studying the rank of  we obtain information 
on the number of cointegrating

 
relationship:

 0≤
 

r ≤
 

n
•

 
is decomposed into the loading 

matrix α
 

and the cointegrating
 

matrix β

•
 

VEC is a VAR model on the first differences 
plus a vector of cointegrating

 
residuals

βα '=Π

Π
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VEC models
•

 
Lag-order: 2

•
 

Rank(   )=1
•

 
stationary
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VEC models
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Comparison of results: 2050 
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Changing time-window
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Changing time-window: NORWAY
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Changing the in-sample period
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Changing the in-sample period
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Conclusions

•
 

Our models:
•

 
Multivariate framework

–
 

VEC more coherent, VAR performs better forecasts

•
 

Questionable the use of e0

 

:
•

 
Not strictly representing the annuitants’

 
mortality

–
 

Basis risk present for the insurance company

however:
•

 
A well known and understood measure

•
 

Easily available and constantly updated
–

 
Transparency guaranteed to investors
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Thanks for your attention! 

Comments 
or 

questions? 

torri@demogr.mpg.de
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VAR models
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