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Risks in life insurance
present value of future benefits and premiums depends on ...
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(b) investment return / interest rate ϕ(t)

→ financial risk (non-diversifiable)
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Getting rid of the non-diversifiable risks?

(i) benefits guaranteed

Policyholder Third PartyInsurer

(ii) benefits according to surplus
e.g. with profits policies such as DC pension plans

Policyholder Third PartyInsurer

• contrary to customer demand (in Germany)!

(iii) benefits guaranteed by third party
e.g. reinsurance, securitisation, ...

Policyholder Third PartyInsurer

• enough capacity for risk transfer?
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Getting rid of the non-diversifiable risks?

(iv) reality (in Germany): compositions of (i) – (iii)

Policyholder Third PartyInsurer

• still a significant load of systematic risks for the insurer !

Question A: effect of policy design on risk load of the insurer ?

Policyholder
(
Third Party

)⇐ §§⇒
Insurer

(v) netting effects
e.g. survival benefits vs. death benefits}

±§§
§§

§§
Policyholder

(
Third Party

)
Insurer

Question B: which combinations give strong netting effects ?
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TOOL 1:

Sensitivity Analysis



Effect of changes of the valuation basis on premiums
and reserves

qualitative results:
Lidstone (1905), Norberg (1985), Hoem (1988), Ramlau-Hansen (1988),
Linnemann (1993), ...

quantitative results:
Bowers et al. (1987, 1997, constant interest), Dienst (1995, yearly invalidity),
Kalashnikov and Norberg (2003, general single parameter), C. and Helwich
(2008, yearly interest & yearly mortality),

f (x + ∆x) ' f (x) + 〈∇x f ,∆x〉

y interpret ∇x f = f ′(x) as sensitivity of f at x

• general approach for all valuation basis parameters and
with continuous time ?
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General sensitivity analysis (C., 2008)
LET

Vt,a(ϕ, µad , µai , ...) := prospective reserve at time ’t’ in state ’a’

with a valuation basis (ϕ, µad , µai , ...) whose entries are either

(a) vectors of yearly interest rates, mortality probabilities, etc.

(b) or intensity functions for interest, mortality, etc.

(c) or cumulative intensity functions for interest, mortality, etc.

THEN there exists a generalized first-order Taylor expansion

Vt,a(ϕ+ ∆ϕ, µad + ∆µad , ...) ' Vt,a(ϕ, µad , ...)

+ 〈∇ϕVt,a ,∆ϕ〉+ 〈∇µad Vt,a ,∆µad 〉+ ...

with generalized gradients / sensitivities

∇ϕVt,a (s) = −1s>t · v(t , s) ·
∑

k

P(Xs = k |Xt = a) · Vs−,k

∇µad Vt,a (s) = 1s>t · v(t , s) · P(Xs− = a |Xt = a) · S@Rad (s)
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Example

endowment insurance with disability waiver
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Example: mortality sensitivities

policyholder at time t = 0 is a 30 year old male
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combinations of insurance contracts:
sensitivity of
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Conclusion for Tool 1: Sensitivity Analysis

Pros
• yields graphic images of risk structures

• sensitivity is linear with respect to combinations of policies
y very helpful tool to find netting effects

Cons

• disregards the variability of the arguments
• no real-valued risk measure

y how to compare policies (with respect to their systematic
mortality risk) ?
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Comparing policies
temporary life ins.
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TOOL 2:

Worst-Case Analysis



Comparing / Measuring policies

IDEA (risk measure for systematic mortality risk):
use the SCR according to the standard formula in Solvency II

systematic mortality risk = Lifelong & Lifemort

• reflects the practical consequences for the insurer
• approximation of the risk measure V@R
• cost-of-capital method: proportional to some (hypothetical)

market price

BUT risk approximation by the standard formula is too rough
here !
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Calculation of Lifemort and Lifelong
∆NAV = changes in the net value of assets and liabilities due to ...

40 45 50 55 60 65
0,000

0,005

0,010

0,015

0,020 +10% mortality shock

−25% longevity shock

mortality rate

± mixed shock

• Do we really study the crucial scenarios?
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MARKT/2505/08, TS.XI.B.3 & TS.XI.C.3

For those contracts that provide benefits both in case of death
and survival, one of the following two options should be chosen
[...]:

1 Contracts [...] should not be unbundled. [...] the mortality
scenario should be applied fully allowing for the netting
effect provided by the ’natural’ hedge between the death
benefits component and the survival benefits component.
[...]

2 All contracts are unbundled into 2 separate components:
one contingent on the death and other contingent on the
survival of the insured person(s). [...]
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MARKT/2505/08, TS.XI.B.3 & TS.XI.C.3

For those contracts that provide benefits both in case of death
and survival, one of the following two options should be chosen
[...]:

1 Contracts [...] should not be unbundled. [...] the mortality
scenario should be applied fully allowing for the netting
effect provided by the ’natural’ hedge between the death
benefits component and the survival benefits component.
[...]→ not the crucial scenarios

2 All contracts are unbundled into 2 separate components:
one contingent on the death and other contingent on the
survival of the insured person(s). [...]→ no netting effect



Finding the crucial scenario(s)

40 45 50 55 60 65
0,000

0,005

0,010

0,015

0,020 +10% shock UPPER BOUND

−25% shock LOWER BOUND

worst/best scenario ?

• Which scenarios lead to the highest/lowest ∆NAV ?



Finding the crucial scenario(s)

40 45 50 55 60 65
0,000

0,005

0,010

0,015

0,020 +10% shock UPPER BOUND

−25% shock LOWER BOUND

worst/best scenario ?

• Which scenarios lead to the highest ∆NAV ?



Optimization problem
If we focus on the liabilities only then ∆NAV = ∆V0,a .

Problem Find scenario µad with
V0,a(µad ) = max

{
V0,a(µad )

∣∣LowBound ≤ µad ≤ UppBound
}

first-order Taylor approximation
V0,a(µad + ∆µad ) = V0,a(µad ) + 〈∇µad V0,a , ∆µad〉+ Remainder

where∇µad V0,a (s) = 1s>0 · v(0, s) · P(Xs− = a |X0 = a) · S@Rad (s)

Conclusion 1 For all s
sign

(
∇µad V0,a(s)

)
= sign

(
S@Rad (s)

)
Conclusion 2 Because of the maximality property of µad :
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Hence
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Conclusion
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Example 1
Task Design a combination of

1×pure endowment ins. + β× temporary life ins.

Question Which ratio
death benefit : survival benefit = β : 1

leads to the lowest systematic mortality risk ?
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Example 2
Task Design a combination of
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death benefit : yearly disability benefit = β : 1
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Example 3
Task Design a combination of

1×annuity ins. + β× temporary/whole life ins.
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leads to the lowest systematic mortality risk ?

0 10 20 30 40
0

0,1

0,2

0,3

0,4

0 10 20 30 40
0

0,1

0,2

0,3

0,4

temporary life ins.

sensitivity: pure endowm. ins.

whole life ins.

β : 1 β : 1



Example 3
Task Design a combination of

1×annuity ins. + β× temporary/whole life ins.

Question Which ratio
death benefit : yearly annuity benefit = β : 1

leads to the lowest systematic mortality risk ?

0 10 20 30 40
0

0,1

0,2

0,3

0,4

0 10 20 30 40
0

0,1

0,2

0,3

0,4

temporary life ins.

sensitivity: pure endowm. ins.

whole life ins.

β : 1 β : 1



Example 3
Task Design a combination of

1×annuity ins. + β× temporary/whole life ins.

Question Which ratio
death benefit : yearly annuity benefit = β : 1

leads to the lowest systematic mortality risk ?

0 10 20 30 40
0

0,1

0,2

0,3

0,4

0 10 20 30 40
0

0,1

0,2

0,3

0,4

temporary life ins.

sensitivity: pure endowm. ins.

whole life ins.

β : 1 β : 1



Example 3
Task Design a combination of

1×annuity ins. + β× temporary/whole life ins.

Question Which ratio
death benefit : yearly annuity benefit = β : 1

leads to the lowest systematic mortality risk ?

0 10 20 30 40
0

0,1

0,2

0,3

0,4

0 10 20 30 40
0

0,1

0,2

0,3

0,4

temporary life ins.

sensitivity: pure endowm. ins.

whole life ins.

β : 1 β : 1



Example 3
Task Design a combination of

1×annuity ins. + β× temporary/whole life ins.

Question Which ratio
death benefit : yearly annuity benefit = β : 1

leads to the lowest systematic mortality risk ?

0 10 20 30 40
0

0,1

0,2

0,3

0,4

0 10 20 30 40
0

0,1

0,2

0,3

0,4

temporary life ins.

sensitivity: pure endowm. ins.

whole life ins.

β : 1 β : 1



literature

• Christiansen, M.C. (2008): A sensitivity analysis concept
for life insurance with respect to a valuation basis of infinite
dimension. Insurance: Mathematics and Economics 42,
680-690.

• Christiansen, M.C. (2008): A sensitivity analysis of typical
life insurance contracts with respect to the technical basis.
Insurance: Mathematics and Economics 42, 787-796.

• Christiansen, M.C., Helwich, M. (2008): Some further
ideas concerning the interaction between insurance and
investment risks. Blätter der DGVFM 29 (2), 253-266.

• Christiansen, M.C. (2008): Biometrical worst-case and
best-case scenarios in life insurance. Preprint. Available at
http://www.uni-rostock.de/∼christiansen/



contact information

http://www.uni-rostock.de/∼christiansen/


