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Introduction

Aim: to perform a stochastic assessment of mortality risks (aggregate
mortality risk included), calibrating the stochastic mortality model to
market or portfolio experience

Reference is to a life annuity portfolio

Mortality risks only are focused

�
risk of random fluctuations

�

longevity risk

other risks (i.e.: market, operational, and so on) are disregarded

Application: within an internal model, for the assessment of the capital
required to face the specific risks of an insurance portfolio
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Introduction ( cont)

The traditional actuarial tool-kit for the valuation of mortality in a life
annuity portfolio is based on the best estimate life table

a projected life table X

it provides a deterministic repre-
sentation of future mortality

but: a stochastic approach is re-
quired for risk modeling

constructed by some indepen-
dent institution (thus, reflecting
some general experience)

validation issues vs the need
for a risk assessment consistent
with the specific risk profile

The idea: to extend some classical results about the modeling of the
number of deaths joint to the modeling of parameter uncertainty.
Calibration based on the best estimate life table and, through
inference, on portfolio experience

What follows is based on joint work with Ermanno Pitacco, University of Trieste (Italy)
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Basic assumptions, notation, terminology

Portfolio of life annuities:
annuities are immediate, in arrears and with fixed benefits
Time of issue of the portfolio: t0
Entry age: x0; maximum age: ω (known)
Annual amount: b

Annual payout: b Nt

number of annuitants at time t

Number of annuitants Number of deaths

time (since issue)
1 2 . . . t . . .

cu
rr

en
ta

ge

x0

...
x Nx,t

...
ω

total #
annui-
tants

N1 N2 . . . Nt . . .

Nt = Nt−1 − Dt

time (since issue)
1 2 . . . t . . .

cu
rr

en
ta

ge

x0

...
x Dx,t

...
ω

total #
deaths

D1 D2 . . . Dt . . .

IAA Life 2009 – p. 4/33



ao

Basic assumptions, notation, terminology ( cont)

The annual number of deaths is random because of

random fluctuations

systematic deviations

Random fluctuations

If the size of the portfolio is large enough, then with high probability

random number of deaths

mortality rate:
Dx,t

nx,t−1
≈ q∗x,t : best estimate (BE) mortality rate

number of annuitants (observed),
beginning of the year

Due to the actual size of the portfolio: Dx,t

nx,t−1
R q∗x,t
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Basic assumptions, notation, terminology ( cont)

Representation

One cohort
Assuming independence among the lifetimes (conditional on the BE
mortality rate):

[Dx,t| q∗x,t; nx,t−1] ∼ Bin(nx,t−1, q
∗
x,t)

Possibly approximated as: [Dx,t|q∗x,t; nx,t−1] ∼ Poi(nx,t−1 q∗x,t)

More than one cohort
If we accept the Poisson approximation (and independence among
cohorts, conditional on the BE life table):

[Dt|{q∗x,t}; {nx,t−1}] ∼ Poi(
∑ω

x=x0
nx,t−1 q∗x,t)
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Basic assumptions, notation, terminology ( cont)

Systematic deviations

High probability that Dx,t

nx,t−1
is not close to q∗x,t also in very large

portfolios ⇒ deviation in aggregate mortality

Representation : random mortality rate, Qx,t

The deviation in aggregate mortality can be . . .

. . . temporary

Typically an upward shock, reasonably independent of previous
ones

. . . permanent

The underlying trend, for the whole population or for some
cohorts, is other than what described by the q∗x,t’s

Reasonably, deviations are (positively) correlated in time
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The mortality rate

Refer to one cohort only

Two approaches (at least)

1. model the mortality rate Qx,t directly

2. model an adjustment to the BE mortality rate

Example of a direct modeling of the mortality rate

Let Qx,t ∼ Beta(ax,t, bx,t) ⇒ 0 ≤ Qx,t ≤ 1

Setting Qx,t = q, we take: [Dx,t| q; nx,t−1] ∼ Bin(nx,t−1, q)

Then: [Dx,t|nx,t−1] ∼ Beta-Binomial law

with age- and time-dependent parameters

IAA Life 2009 – p. 8/33



ao

The mortality rate ( cont)

Example of a stochastic adjustment to the BE mortality rate

Take the multiplicative model: Qx,t = q∗x,t Zx,t

where Zx,t (Zx,t > 0, but such that 0 ≤ Qx,t ≤ 1) is a (random)
coefficient expressing deviations in aggregate mortality

A particular choice:

Zx,t ∼ Gamma(αx,t, βx,t) ⇒ Qx,t ∼ Gamma
(

αx,t,
βx,t

q∗

x,t

)

Setting Qx,t = q we take: [Dx,t| q; nx,t−1] ∼ Poi(nx,t−1 q)]

Then: [Dx,t| nx,t−1] ∼ NBin
(

αx,t,
θx,t

θx,t+1

)

θx,t =
βx,t

nx,t−1 q∗

x,t
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The mortality rate ( cont)

Beta-Binomial vs Poisson-Gamma model

Against the Poisson-Gamma model

approximation at old ages (from Poisson assumption) possibly
of poor impact when more than one cohort are referred to

the range of possible values of the mortality rate (Gamma
distribution) possibly negligible when multiple cohorts are
addressed

Advantages of the Poisson-Gamma model

generalizations to the case of more than one cohort are
straightforward

correlation in time among the mortality rates can be modeled
naturally, without explicit assumptions

possible extension: accounting for the rate of decrease of the
annual payout (rather than simply the mortality rate)

 In the following: Poisson-Gamma model
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The Poisson-Gamma model

For one cohort only

Mortality rate: Qx,t = q∗x,t Zx,t

Zx,t ∼ Gamma(αx,t, βx,t) ⇒ Qx,t ∼ Gamma
(

αx,t,
βx,t

q∗

x,t

)

Expected mortality rate: E[Qx,t] = αx,t

βx,t
︸︷︷︸

q∗x,t

magnitude of the
systematic deviation

Coefficient of variation: CV[Qx,t] =

√
Var[Qx,t]

E[Qx,t]
= 1

√
αx,t

 Idea: set (initially) αx,t

βx,t
according to a benchmark for the magnitude

of systematic deviations (e.g.: αx,t

βx,t
= 1 for portfolio valuation; αx,t

βx,t
< 1

for capital allocation), with αx,t consistent with data on volatility (if
available)
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The Poisson-Gamma model ( cont)

Number of deaths

disregarding deviations in
aggregate mortality

[Dx,t| q∗x,t; nx,t−1] ∼ Poi(nx,t−1 q∗x,t)

allowing for deviations in
aggregate mortality

[Dx,t| nx,t−1] ∼ NBin
(

αx,t,
θx,t

θx,t
︸︷︷︸
βx,t

nx,t−1 q∗
x,t

+1

)

Expected number of deaths

disregarding deviations in
aggregate mortality

E[Dx,t|q∗x,t; nx,t−1] = nx,t−1 q∗x,t

allowing for deviations in
aggregate mortality

E[Dx,t|nx,t−1] =
αx,t

βx,t
︸︷︷︸

nx,t−1 q∗x,t

magnitude of the systematic
deviation (over the cohort)
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The Poisson-Gamma model ( cont)

More than one cohort

We let: [Dt|{q∗x,t}; {nx,t−1}] ∼ Poi(
∑ω

x=x0
nx,t−1 q∗x,t)

We assume: Qx,t = q∗x,t Zt for any age x

REMARK: the adjustment coefficient Zt is common to all the cohorts in-force at

time t ⇒ it accounts for period effects only; cohort effects are missed

Then: [Dt|{zq∗x,t}; {nx,t−1}] ∼ Poi(z
∑ω

x=x0
nx,t−1 q∗x,t)

Taking Zt ∼ Gamma(αt, βt) we have

[Dt| {nx,t−1}] ∼ NBin

(

αt,
θt

θt + 1

)

θt = βt∑
ω
x=x0

nx,t−1 q∗

x,t
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The Poisson-Gamma model ( cont)

Expected number of deaths

disregarding deviations in
aggregate mortality

E[Dt|{q∗x,t}; {nx,t−1}] =
∑ω

x=x0
nx,t−1 q∗x,t

allowing for deviations in
aggregate mortality

E[Dx,t|{nx,t−1}] =
αt

βt
︸︷︷︸

∑ω

x=x0
nx,t−1 q∗x,t

magnitude of the systematic
deviation (over the whole

population)
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Accounting for correlation in time among mortality
rates: updating parameters to experience

Assumption: the Qx,t’s are correlated in time

Further assumption: the mortality experience from the portfolio is
reliable as an evidence of the trend of the cohort (or the population)

⇒ An inferential procedure can be defined for
updating the parameters of the pdf of Qx,t (or the
parameters of the number of deaths) to experience
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Updating parameters to experience ( cont)

Reference to one cohort

Valuation at time 0

Issue time; no previous experience available

nx0,0 annuitants at time 0

Zx,t ∼ Gamma(ᾱ, β̄) for all times t (and ages x = x0 + t)

Dx0,1 ∼ NBin
(

αx0,1,
θx0,1

θx0,1+1

)

αx0,1 = ᾱ

θx0,1 = β̄

nx0,0 q∗

x0,1
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Updating parameters to experience ( cont)

Valuation at time 1

Let Dx0,1 = dx0,1 be the observed number of deaths in (0, 1)

Then nx0+1,1 = nx0,0 − dx0,1

We can calculate the posterior pdf of Qx0,1, conditional on
Dx0,1 = dx0,1. It turns out

[Qx0,1|Dx0,1 = dx0,1] ∼ Gamma
(

ᾱ + dx0,1,
β̄

q∗

x0,1
+ nx0,0

)

and hence:

[Zx,t|Dx0,1 = dx0,1] ∼ Gamma(ᾱ + dx0,1, β̄ + nx0,0 q∗x0,1)
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Updating parameters to experience ( cont)

Then we have

[Dx0+1,2| nx0,0, dx0,1] ∼ NBin

(

αx0+1,2,
θx0+1,2

θx0+1,2 + 1

)

αx0+1,2 = ᾱ + dx0,1 θ2 =
β̄+nx0,0 q∗

x0,1

nx0+1,1 q∗

x0+1,2

For the expected number of deaths, we have

E[Dx0+1,2| nx0,0, dx0,1] =
ᾱ + dx0,1

β̄ + nx0,0 q∗x0,1
︸ ︷︷ ︸

updated (previously: ᾱ

β̄
)

nx0+1,1 q∗x0+1,2

Depending on experience:
ᾱ+dx0,1

β̄+nx0+0,0 q∗

x0,1
R ᾱ

β̄
⇒ E[Dx0+1,2| nx0,0, dx0,1] R E[Dx0+1,2| nx0,0]

Valuation at time t: . . . (similar results follow)
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Updating parameters to experience ( cont)

Reference to more than one cohort

We accept the assumptions

Qx,t = q∗x,t Zt

[Dt|{zq∗x,t}; {nx,t−1}] ∼ Poi(z
∑ω

x=x0
nx,t−1 q∗x,t)

at time 0: Zt ∼ Gamma(ᾱ, β̄) for all t

An inferential procedure similar to the case of one cohort can be
defined, with the advantage of relying on a wider data set (i.e. on the
number of deaths observed in the population). In particular
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Updating parameters to experience ( cont)

At time 0

[D1|{nx,0}] ∼ NBin
(

α1,
θ1

θ1+1

)

α1 = ᾱ θ1 = β̄
∑

ω
x=x0

nx,0 q∗

x0,1

At time 1

Let D1 = d1
︸︷︷︸

be the observed number of deaths in (0, 1)
∑ω

x=x0
dx,1

Then

[D2|{nx,0}; D1 = d1] ∼ NBin
(

α2,
θ2

θ2+1

)

α2 = ᾱ + d1 θ2 =
β̄+

∑ω
x=x0

nx,0 q∗

x,1
∑

ω
x=x0

nx,1 q∗

x0,2

At time t: . . . (similar results follow)
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Application

The mortality model is experience-based
⇒ suitable for internal models
Particular application: capital allocation

Implementation through a

deterministic . . .

. . . approach

the expected numbers of deaths
(or the expected mortality rates) only are involved

stochastic . . .
the numbers of deaths are stochastically
simulated

deterministic via stochastic . . .
short-cut formulae, constructed according to
simulated findings
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Application ( cont)

Deterministic implementation

Refer to the Solvency 2 standard formula

Capital charge for longevity risk (in terms of the SCR – Solvency
Capital Requirement): change in the net value of assets minus
liabilities (∆NAV) against a permanent 25% decrease in mortality rates
for each age

Under our assumptions, this reduces to

Lifelong,t = V
(Π)[−25%]
t − V

(Π)[BE]
t

expected present value of future
payments in portfolio Π, under
the shock assumption
(BE −25%)

expected present value of future
payments in portfolio Π, under
BE assumptions
(or: portfolio reserve, net of the
risk margin)
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Application ( cont)

At time t = 0: shock scenario −25%

E[Zx,t]
︸ ︷︷ ︸

one cohort

= E[Zt]
︸ ︷︷ ︸

multiple cohorts

= ᾱ

β̄
= 0.75

set ᾱ according to data on trend volatility, if available, or experts’
opinion

At time t = 1: shock scenario updated to experience

α1 = ᾱ → α2 = ᾱ +

{

dx0,1 one cohort

d1 =
∑

x dx,1 multiple cohorts

β1 = β̄ → β2 = β̄ +

{

nx0,0 q∗x0,1 one cohort
∑

x nx,0 q∗x,1 multiple cohorts

⇒ shock scenario: 1 −
{

E[Zx,t|dx0,1] = 1 − αx0+1,2

βx0+1,2

E[Zt|d1] = 1 − α2

β2

At time t . . .
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Application ( cont)

Example:
One cohort; initial age: x0 = 65; males
Best estimate life table: IPS55 (projected life table for Italian males, cohort 1955)

(Initial) parameters of the pdf of Zx,t: ᾱ = 0.75β̄, β̄ = 100, so that

CV[Qx,t] =

√
Var[Qx,t]

E[Qx,t]
= 11.52%

Experienced mortality

as the shock scenario as the BE scenario

(# deaths ≃ 75% of what expected) (# deaths ≃ 100% of what expected)

0.7

0 time t

b b b b b b b
b
b
b b

b b b b
b b b b b b

b b
b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b

u
u u u u

u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u ur r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r0.75

1

αx,t

βx,t

n65,0 = 100

n65,0 = 1 000,10 000

0.7

0 time t

b b b b
b
b
b
b
b
b b

b b
b
b
b b

b
b
b
b
b
b
b
b
b
b
b b b b

b b b
b b b b b b b b b b b b b b b b b b b b

u

u

u

u

u

u

u

u

u

u

u
u
u
u
u
u
u
u
u
u u

u u
u u u

u u u
u u u u u u u u u u u u

u u u u u u u u u u u u u

r

r

r

r

r
r
r
r r

r r
r r r

r r r r r
r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r

0.75

1

αx,t

βx,t

n65,0 = 100

n65,0 = 1 000

n65,0 = 10 000

time t
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Application ( cont)

Stochastic implementation: a possible rule for an internal model

Reference to one cohort only

Let At be the amount of portfolio assets at time t

At = At−1 (1 + i) − b Nx0+t,t (t = z + 1, z + 2, . . .)

with Az given at the valuation time z and i the investment yield
(assumed to be the risk-free rate)

Then

Mt = At − V
(Π)[BE]
t

portfolio reserve, net of
the risk margin

represents the assets available to meet risks (to be split into risk
margin and required capital)
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Application ( cont)

A reasonable solvency rule: set Mz such that

[R1] P[(Mz+1 ≥ 0) ∩ (Mz+2 ≥ 0) ∩ · · · ∩ (Mz+T ≥ 0)|nx0+z,z] = 1 − ε

where

ε accepted default probability

T time-horizon for solvency ascertainment

Requirement [R1] needs a stochastic model, and stochastic
simulations

advantage: the capital required is consistent with risks

disadvantage: stochastic simulations are time-consuming ⇒
possibly, look for short-cut formulae, consistent with the output of
the stochastic model
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Application ( cont)

Example

One cohort; initial age: x0 = 65; males
Best estimate life table: IPS55 (projected life table for Italian males, cohort 1955)
Maximum age: ω = 119, whence the maturity of the portfolio at time z is:
m = 119 − 65 − z

Initial parameters of the pdf of Zx,t: ᾱ = 0.75β̄, β̄ = 100

Risk-free rate and investment yield: 3% p.a.
Annual amount: b = 1

Internal model with default probability: ε = 0.005, time-horizon: T = m (for consistency

with Solvency 2)
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Application ( cont)

initial size n65,0

b b b b b b b b b b b

u

u
u u

u u u u

u
u

u

r

r
r r

r r r r

r
r

r

valuation time z = 0

(0)

(1),(2)

initial size n65,0

b b b b b b b b b b b

u

u

u

u

u

u
u

u
u u

u

r

r

r r

r r r r r r r

valuation time z = 5

(0)

(1)

(2)

(0) Solvency 2: M [Solv2]
z

V
(Π)[BE]

z

=
Lifelong,z+RMz

V
(Π)[BE]

z

(1)–(2) Rule [R1], with T = m: M [R1]
z

V
(Π)[BE]

z

(1) with updated parameters, experience as the best estimate life table
(2) with updated parameters, experience as the Solvency 2 shock scenario (BE−25%)
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Application ( cont)

valuation time z

b

b

b

b

b

b

u

u u
u

u

u

r

r

r

r

r

r

initial size n65,0 = 1 000

(0)

(1)

(2)

(0) Solvency 2: M [Solv2]
z

V
(Π)[BE]

z

=
Lifelong,z+RMz

V
(Π)[BE]

z

(1)–(2) Rule [R1], with T = m: M [R1]
z

V
(Π)[BE]

z

(1) with updated parameters, experience as the best estimate life table
(2) with updated parameters, experience as the Solvency 2 stress scenario (BE−25%)
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Concluding remarks

The mortality models described can be useful within an internal
valuation model allowing for mortality risks

Even though the insurer does not have the expertise to deal with the
methodologies underlying the best estimate table or does not have
access to the relevant data set, a simple structure may lead to a
satisfactory assessment of the impact of mortality risks, including both
random fluctuations and systematic deviations

Statistical tests required, especially for setting the initial volatility
parameter

Possible extensions (for example: rate of reduction in the total payout
instead of the number of deaths, in order to account for
adverse-selection)

Short-cut (factor-based) formulae for capital requirements within an
internal model

. . . . . . . . .
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Many thanks for your kind attention
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