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UNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN 

UNIVERSAL LIFE POLICIES 

 

ABSTRACT 

Universal life policies are the most popular insurance contract design 

in the United States. They have either a level death benefit paying a 

fixed face amount, or an increasing death benefit, which additionally 

to a fixed benefit pays the available cash value, and both types include 

the option to switch from one to the other. In this paper, we are 

interested in the fact that––unlike a switch from level to increasing––a 

switch from increasing to level death benefit requires neither fees nor 

additional evidence of insurability. To assess the impact of the death 

benefit switch option, we develop a model framework of increasing 

universal life policies embedding the option. Consideration of 

heterogeneity in respect of mortality via a stochastic frailty factor 

allows an investigation of adverse exercise behavior. In a 

comprehensive simulation analysis, we quantify the net present value 

of the option from the insurer’s perspective using risk-neutral 

valuation under stochastic interest rates assuming empirical exercise 

probabilities. Based on our results, we provide policy 

recommendations for life insurers. 

 

Keywords: Increasing death benefit; Death benefit switch option; 

Heterogeneity in respect of mortality 
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1. INTRODUCTION 

 

First introduced in 1979, universal life is now the most important individual life insurance 

contract type in the United States. Lifelong universal life policies offer flexibility with respect 

to frequency and amount of premium payments and two death benefit options to choose from 

(see Cherin and Hutchins (1987, p. 691) and D’Arcy and Lee (1987, p. 453)). The level death 

benefit pays a constant specified face amount; the increasing death benefit pays the available 

cash value (or policy reserve) in addition to a fixed face value. Either type of contract 

typically embeds the option to switch from level to increasing or vice versa (the death benefit 

switch option). A switch from level to increasing benefits requires new evidence of 

insurability and, possibly, an extra fee since the death benefit immediately increases by the 

current amount of cash value at the time the option is exercised. In contrast, when switching 

from increasing to level benefits, the death benefit is fixed at the current value. Thus, in the 

latter case, the switch does not affect the net amount at risk, i.e., the difference between death 

benefit and cash value, at the switch exercise time and so there are usually no special 

requirements or fees involved in making this type of switch (see Smith and Hayhoe (2005, p. 

2); see also, e.g., www.sagicorcapitallife.com). However, development of the net amount at 

risk after the switch depends on premium payment behavior. Thus, there is some question as 

to whether insurers should be concerned about death benefit switches under otherwise 

unchanged actuarial assumptions. 

In the present paper, we examine the death benefit switch option in a pool of increasing 

universal life policies with the goal of enhancing understanding of this feature. To accomplish 

this, we develop a model framework for increasing universal life contracts with death benefit 

switch option that incorporates heterogeneity in respect of mortality, switch probabilities, and 

stochastic interest rates. Based on this model, we evaluate the option under different premium 

payment assumptions after switching and for various exercise scenarios. By considering 
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results for adverse exercise behavior depending on an insured’s health status, we derive policy 

implications and, in particular, analyze whether a requirement of charges or evidence of 

insurability would be advisable.  

The literature about universal life insurance is mainly concerned with the return on 

universal life policies (e.g., Belth, 1982; Cherin and Hutchins, 1987; Chung and Skipper, 

1987; D’Arcy and Lee, 1987). Carson (1996) finds determinants for universal life cash values, 

and Carson and Forster (2000) examine policy yields of whole and universal life contracts. 

Costs of universal and term life insurance are compared in Corbett and Nelson (1992). Carson 

(1996), Cherin and Hutchins (1987), and Chung and Skipper (1987) empirically study the 

return characteristics of increasing universal life policies. However, to date there have been no 

attempts to develop a model of universal life contracts with increasing death benefit, much 

less any study of the death benefit switch option. The same is true regarding premium 

payment options in universal life policies. Most studies are restricted to the paid-up option 

(i.e., stopping premium payments) in participating life insurance contracts (Kling, Russ, and 

Schmeiser, 2006; Linnemann, 2003, 2004; Steffensen, 2002). In addition to the paid-up 

option, Gatzert and Schmeiser (2007) integrate the resumption option (i.e., resumption of 

premium payments after having made the contract paid-up) in their framework for 

participating policies. 

To the best of our knowledge, increasing universal life policies and the death benefit 

switch option have not yet been studied. We provide an actuarial model framework of a 

universal life contract with increasing death benefit and incorporate the death benefit switch 

option. Since universal life policies are lifelong contracts that pay a death benefit, we account 

for mortality risk as a central risk factor. Mortality varies among insureds, and thus 

heterogeneity in respect to mortality is modeled by a stochastic frailty factor on a given 

deterministic mortality table. The concept of frailty was originally defined by Vaupel et al. 

(1979) in terms of the continuous force of mortality. In this paper, we use the term "frailty 
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factor" in the discrete context in order to express the factor’s stochasticity, as well as 

respective distributional characteristics. An examination of adverse exercise behavior with 

respect to an insured’s health status is of importance, as exercise of the death benefit switch 

option does not require evidence of insurability. The new level death benefit contract is thus 

based on unchanged actuarial assumptions. 

After switching, premium payments are adjusted since the former increasing policy 

premium is no longer adequate for the new level policy. Due to the full flexibility in premium 

payments for universal life contracts, the modification is not prescribed by the insurer; the 

only restriction is prevention of policy lapse.1 An evaluation of the switch option thus 

necessarily involves assumptions about modified premium payment behavior after switch. It 

is this combination of options—the death benefit switch option and premium payment 

options—that can have substantial negative effects for the insurer. We consider two viable 

premium payment scenarios, one with constant premiums and one with flexible payments.  

To gain detailed insight into the death benefit switch option of increasing universal life 

policies, we conduct a comprehensive investigation for different switch probabilities. In a 

simulation analysis, we quantify the net present value of the option using risk-neutral 

valuation under stochastic interest rates based on the Vasicek model. We then study the effect 

of adverse exercise behavior by assuming different switch probabilities depending on an 

insured’s health status and on the time since policy inception (and thus on the amount of 

policy cash value). This procedure allows an investigation of the necessity of requiring 

evidence of insurability. Finally, we conduct a sensitivity analysis with respect to the frailty 

factor distribution. 

                                                           

1 A universal life policy lapses if the cash value is insufficient to pay policy costs (see Carson, 1996, p. 675). 

In this case, the contract is terminated without payout to the policyholder. During a one-month grace period, 

catch-up premium payments can be made to avoid policy lapse. After that period, reinstatement of the policy 

requires new evidence of insurability as well as payment of all outstanding premiums (see Trieschmann, 
Hoyt, and Sommer, 2005, p. 341). This understanding of policy lapse is in contrast to exercise of the 

surrender option, when the cash surrender value of the policy is paid out. 
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Results show that the value of the death benefit switch option is strongly dependent on 

premium payment behavior after exercise and on the health status of an exercising insured. 

From our findings, we derive policy implications and provide recommendations for insurers, 

which can be applied depending on specific––mortality and behavioral––experience in an 

insurance portfolio. 

The remainder of the paper is structured as follows. Section 2 presents the model 

framework, including the model of a universal life policy with increasing death benefit and 

the model of the death benefit switch option. In Section 3, the valuation approach is presented 

and Section 4 contains numerical results. Policy implications for insurers are discussed in 

Section 5; a summary is found in Section 6. 

 

2. THE MODEL FRAMEWORK 

 

The universal life contract with increasing death benefit 

We consider a lifelong universal life insurance contract with increasing death benefit. The 

policy is issued at time 0t =  for an insured of age { }min, ,x x ω∈ …  at inception, where minx  is 

the minimum entry age admitted. The contract matures at time 1T xω= − + , where ω  is the 

limiting age of a mortality table, i.e., the one-year probability of dying at age ω , qω′ , is equal 

to 1. In what follows, death or survival probabilities based on the mortality table will be 

denoted with a prime (`) mark. The one-year table probability of death at age x t+  is thus 

given by , 0, , 1x tq t T+′ = −… . 

In case of death during policy year t  (between time t – 1 and t), the death benefit is paid in 

arrears at the end of the year, i.e., at time { }1, ,t T∈ … . The increasing death benefit consists 

of the sum of a fixed face value Y and the cash value tV  at time t :  

, 1, ,t tY Y V t T= + = … . 
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 To focus on the pure effect of the death benefit switch option in increasing universal life 

policies, our model framework does not account for charges or surrenders. According to a 

standard actuarial valuation (see, e.g., Bowers et al. (1997) and Linnemann (2004)), for 

annual premium payments , 0, , 1tB t T= −…  paid at the beginning of each year t in which 

the insured is alive, the cash value is given by the following recursive formula: 

( ) ( ) ( )1 1 1 11 1 , 1, ,x t t t t x t tq V V B i q Y t T+ − − − + −′ ′− = + ⋅ + − = … ,                                (1) 

where 0 0V = . We assume that a constant annual interest rate i  is credited to cash value and 

premium. Each policy year, this amount is reduced by the cost of insurance, i.e., the product 

of death benefit and table probability of death. Calculations are hence based on the actuarial 

assumptions of a constant annual interest rate i  and probabilities of death according to the 

mortality table. With t tY Y V= + , the recursion formula for policy reserves in Equation (1) 

reduces to 

( ) ( )1 1 11 , 1, , .t t t x tV V B i q Y t T− − + −′= + ⋅ + − = …                      (2) 

Defining the savings premium at time 1t −  as ( ) ( ) 1

1 11S
t t tB V i V

−
− −= + −  and the cost of insurance 

(risk premium) at the same time as ( ) ( ) 1

1 1 1R
t x tB q Y i

−
− + −′= + , it turns out from Equation (2) that 

( ) ( )
1 1 1

S R
t t tB B B− − −= + . From the definition of the savings premium, we obtain the following 

expression for the cash value: 

( ) ( )
1

0

1
t

t hS
t h

h

V B i
−

−

=

= +∑
. 

Given that ( ) ( )
1 1 1

S R
t t tB B B− − −= − , we can also write  

( )( )( ) ( )( )( )

( ) ( )

1 1
1

0 0

1 1
1

0 0

1 1 1

1 1 .

t t
t h t hR

t h h h x h
h h

t t
t h t h

h x h
h h

V B B i B q Y i i

B i Y q i

− −
− − −

+
= =

− −
− − −

+
= =

′= − + = − + +

′= + − +

∑ ∑

∑ ∑
        (3)  
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 Since universal life contracts allow for flexible premium payments, we need to make certain 

assumptions in this regard. Universal life policies are usually paid by means of constant 

periodic premiums. These constant payments aim to reflect the general savings pattern of life 

insurance policies, where savings are accumulated during the earlier years of the contract term 

when the costs of insurance are low in order to finance the higher costs of insurance later in 

life. We, therefore, base our analysis on constant annual premium payments 

, 0, , 1tB B t T= = −… . Given the premium B, the cash value should be positive until 

maturity to avoid policy lapse (see Carson (1996, p. 675)). The minimum (constant annual) 

premium to fulfill this condition is the amount for which the cash value at maturity equals 0. 

Thus, we solve 0TV =  for B (see Equation (3)), which is equal to solving the equivalence 

principle, and obtain 

( )

( )

1
1

0
1

0

1

1

T
t h

x h
h

T
t h

h

q i
B Y

i

−
− −

+
=

−
−

=

′ +
= ⋅

+

∑

∑
.                         (4) 

In general, the net amount at risk tR  for a universal life policy at time { }1, ,t T∈ …  is 

given as the difference between the death benefit tY  and the cash value tV : 

, 1, , .t t tR Y V t T= − = …                                    (5) 

In the case of an increasing death benefit, the death benefit at time t  is the sum of the 

fixed face value and the current cash value, and, thus, the net amount at risk for an increasing 

policy is constant and equals the face amount Y  throughout the contract term.  

Based on the above assumptions, Figure 1 illustrates the premiums, cash value, death 

benefit, and net amount at risk of a universal life policy with increasing death benefit from 

inception to maturity. 
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Figure 1: Premiums, cash value, death benefit, and net amount at risk of universal life policy 
with increasing death benefit 

 

 

For constant annual premium payments throughout the policy term—calculated according 

to Equation (4)—the cash value first increases and then decreases over time until it becomes 

zero at maturity. The decrease in cash value near maturity is due to high costs of insurance at 

higher ages that exceed the interest earnings of the cash value and premiums (see Equation 

(2)). The death benefit is given by the sum of the fixed face value Y and the cash value and 

thus develops analogously to the latter. Hence, the term ”increasing death benefit” is 

employed irrespective of the fact that the death benefit may also decrease if the cash value 

does. Chung and Skipper (1987) account for this point and use the more precise term “non-

level death benefit.” In insurance practice, however, the term “increasing” is common. It 

suggests that the policy––in contrast to a policy with a level death benefit––includes a 

dynamic component that increases death benefit coverage in the course of accumulating cash 

value. Since the cash value must be positive to keep the policy in force, the increasing death 

benefit is always at least as high as a constant level death benefit for the same face amount. 

The net amount at risk is equal to the fixed face value Y from policy inception to maturity. 

 

The death benefit switch option 

Increasing universal life policies typically give the policyholder the right to switch the 

death benefit from increasing to level without charges or additional evidence of insurability. 

When exercising the death benefit switch option at time { }1, , 1Tτ ∈ −… , the death benefit is 

switched to level and fixed at the current value Y Y Vτ τ= + . In our model, the option may be 

exercised only once and at discrete exercise times, namely, at the beginning of each policy 
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year. Exercise of the option at time τ  can also be interpreted as terminating the increasing 

death benefit contract and, based on otherwise unchanged actuarial assumptions, purchasing a 

new contract with level death benefit Yτ . The death benefit at time t  given exercise at time τ  

is denoted by 

( ) , 1, ,

, 1, ,
t

t

Y t
Y

Y t T
τ

τ

τ
τ
=

=  = +

…

…
.                          (6) 

When the death benefit switch option is exercised in the accumulation phase of the cash 

value, the switch halts further increase of the death benefit by fixing it at the attained level Yτ . 

Compared to the case without switch, future death benefit amounts are thus lower until the 

increasing death benefit falls below the fixed level again. A switch at or after the peak of the 

death benefit curve implies a higher level death benefit until maturity than under increasing 

policy conditions. However, in both cases, at the point in time when the switch option is 

exercised (and only at this point), the net amount at risk remains unchanged. This is in 

contrast to a switch from level to increasing, which immediately increases the death benefit, 

and thus the net amount at risk, by the current amount of cash value. Therefore, a switch from 

increasing to level does not require any charges or evidence of insurability. 

However, future development of net amount at risk depends on future premiums. Hence, 

when evaluating the death benefit switch option, it is crucial to take into account possible 

changes in premium payment behavior after exercise of the option. When switching before 

the peak of the cash value curve, previously calculated premiums for the increasing death 

benefit contract (see Equation (4)) are too high for the new level policy. A switch near (some 

policy years before), at, or after the peak results in higher premiums due to fixing a higher 

death benefit than in the “increasing” case. Thus, it is not possible to simply analyze the death 

benefit switch option alone: we need to make assumptions about the premium payment 

behavior after switch, which leads to a combined examination of the death benefit switch 

option and premium payment options. Again, with universal life policies, policyholders are 
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free to choose the frequency and amount of premium payments as long as the cash value stays 

positive.  

In the following, we restrict our analysis to two premium payment scenarios that can be 

regarded as general cases from the insurer’s perspective as they constitute minimum premium 

payment schedules where premiums are just high enough to avoid policy lapse. In particular, 

they represent the minimum constant annual premium payments and minimum flexible annual 

premium payments that will ensure a positive cash value throughout the contract term. Any 

other constant annual or flexible payments keeping the contract in force until maturity need to 

exceed these premium amounts.  

In the first, “level premium,” scenario, constant annual level premiums ( )B τ  paid after the 

switch are calculated based on the equivalence principle, taking into account the present cash 

value Vτ  at the exercise date as an additional single payment. This can be interpreted as 

terminating the former increasing death benefit contract and starting a new level death benefit 

contract with an initial premium payment in the amount of the current cash value. For 

universal life policies, insurers chiefly use constant annual “level” premiums to project policy 

values (cash value, cash surrender value, death benefit) that imply a zero cash value at 

maturity (so-called policy illustrations). After option exercise, updated policy illustrations are 

usually provided. Annual premium notices are often based on the premium values contained 

in these projections. Although holders of universal life policies are not forced to pay the stated 

premium amount, they likely do so, unless a certain event makes them depart from the 

prescribed premium schedule. Since a switch from an increasing to a level death benefit does 

not require additional evidence of insurability, mortality and interest rate assumptions remain 

the same. The equivalence principle requires the present value of future premium payments to 

equal the present value of future benefits (see, e.g., Bowers et al. (1997) and Linnemann 

(2004)) i.e., 
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( ) ( ) ( )
1 1

( 1)

0 0

1 1 .
T T

t t

t x t x x t
t t

B p i V Y p q i
τ τ

τ
τ τ τ τ τ

− − − −
− − +

+ + + +
= =

′ ′ ′+ + = +∑ ∑
 

If the initial single premium Vτ  exceeds the present value of future benefits of the new level 

policy, the annual premium is set to zero. Solving for ( )B τ  thus yields 

( )
( )

( )

1
( 1)

0
1

0

1
max ,0

1

T
t

t x x t
t

T
t

t x
t

Y p q i V
B

p i

τ

τ τ τ τ
τ

τ

τ

− −
− +

+ + +
=

− −
−

+
=

 ′ ′ + −  =  
 ′ +
  

∑

∑
. 

For simplification purposes, we do not include the scenario where, if the available cash value 

exceeds the present value of future benefits, the death benefit amount of a universal life policy 

might as well be increased in order to maintain a fair contract according to the employed 

technical basis. However, this assumption would be favorable from the policyholder’s 

perspective and would increase negative effects of the switch option value for the insurer, thus 

implying that the obtained switch option value in the present analysis represents a lower 

bound to the ‘actual’ option value (which can already be substantial). As regards the 

policyholder perspective, we assume that the decision to switch may sometimes be made for 

other than financially rational reasons, and that, despite disadvantages in the premium 

amount, doing so can still be beneficial for the policyholder, despite the fixed death benefit. 

Premium payments at time t  for a policy switched at time τ  are denoted by 

( )
( )

,   0, , 1

, , 1,
t

B t
B

t TB

τ
τ

τ
τ

 = −=  = −

…

…
.                                    (7) 

The new death benefit ( )
tY τ

 and new premium payments ( )
tB τ

 must be taken into account 

when calculating cash value ( )
tV τ

 and net amount at risk ( )
tRτ

 after exercise of the switch 

option, analogously to Equation (1) and Equation (5), respectively. 

Figure 2 shows premium payments, cash value, death benefit, and net amount at risk based 

on the “level premium” scenario. In Part a), the switch occurs before the peak of the cash 
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value curve; in Part b), the switch occurs at this peak. 

 

Figure 2: “Level premium” scenario––premiums, cash value, death benefit, and net amount at 

risk of universal life policy with increasing death benefit switched to level at time τ  
a) Switch before peak of cash value curve 

 

 

b) Switch at peak of cash value curve 
 

 

 

After the switch, the contract, in principle, works like a traditional whole life insurance 

contract with constant premiums. If the switch occurs at time τ  before the cash value curve 

peaks (see Figure 2, Part a)), premiums drop to constant annual level premiums. These 

reduced payments result in slower growth of the cash value. A switch at the peak of the cash 

value curve (see Figure 2, Part b)) implies that higher level premiums are necessary, with a 

consequent increase of the cash value. The increasing death benefit is fixed at the switch 

exercise time. As the cash value increases after switch, the net amount at risk lies below the 

constant amount Y  in the nonswitch case.  

In the second premium payment scenario (“risk premium”), premium payments are 

stopped immediately after switch at time τ  and not resumed until the cash value is exhausted. 

When switching from an increasing to a level death benefit, the death benefit amount is frozen 

at the switch exercise time, offering the policyholder the opportunity to maintain the attained 

death benefit level by deferring premium payments until depletion of the cash value. From 

then on, the risk premium is paid in only such an amount that the cash value remains zero 
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until maturity. The premium arrangement is thus based on natural premiums, as they are 

related to the amount of benefit. We refer to this setting as a “risk premium scenario” to 

emphasize that once the cash value is exhausted, the policyholder must pay the full risk 

premium to keep the contract in force. This scenario is typically exercised in the secondary 

market for life insurance, where the policies of insureds with reduced life expectancy are 

traded. Life settlement companies aim to “optimize” premium payments in the sense of the 

risk premium scenario by paying only the minimum premium necessary to keep a policy in 

force, speculating on early deaths of the insureds in their portfolio (see, e.g., 

www.settlementwatch.com; www.lifesettlementguide.org; www.idealsettlements.eu; 

www.lifesettlementgrp.com).  

The above assumptions imply the following formula for premium payments, which is 

derived from the recursive development of the cash value in Equation (1), where ( )
1tV τ

+  is set to 

zero: 

( )
( ) ( ) ( ){ }1

1

,                                          0, , 1
  

max 0, 1 , , , 1t
x t t t

B t
B

q Y i V t T
τ

τ τ

τ
τ−

+ +

 = −=  ′ + − = −

…

…
.                                          (8) 

If the cash value ( )
tV τ

 at time t  exceeds the discounted risk premium for year t  (i.e., 

( ) ( ) 1

1 1x t tq Y iτ −
+ +′ + ), no premium payment is necessary. Once ( )

tV τ
 is less than the required risk 

premium for the first time, the remainder of ( )
tV τ

 is exhausted and the outstanding difference 

is covered by the premium payment. After the zero level of ( )
tV τ

 has been reached, it is 

sustained by premiums equaling exactly the amount of the discounted annual cost of 

insurance ( ) ( ) 1

1 1x t tq Y iτ −
+ +′ + . Again, we illustrate the course of premiums, cash value, death 

benefit, and net amount at risk in Figure 3. 
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Figure 3: “Risk premium” scenario––premiums, cash value, death benefit, and net amount at 

risk of universal life policy with increasing death benefit switched to level at time τ  

a) Switch before peak of cash value curve 
 

 

b) Switch at peak of cash value curve 
 

 

 

3. CONTRACT VALUATION 

 

The previous section makes apparent that the effects of the death benefit switch option 

depend on switch exercise time and premium payment behavior after switch. When evaluating 
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exercise time, and time of death, we account for adverse option exercise behavior. That is, we 

consider mortality heterogeneous insureds whose exercise behavior depends on their health 

status or mortality expectation. This enables a comprehensive examination of the option and 

an investigation of whether fees or evidence of insurability are recommended. 
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behavior. Generally, two approaches can be distinguished. First, under financially rational 

exercise, policyholders attempt to identify an optimal exercise strategy that maximizes the 

option value. This is implemented by solving an optimal stopping problem. In our setting, 
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interaction between mortality and financial factors as well as further options embedded in a 
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universal life contract. In particular, the switch exercise decision, inter alia, depends on 

decisions regarding frequency and amount of premium payments before and after switch, 

lapse option exercise, the insured’s health status, and the interest rate. Therefore, tackling this 

problem is an extensive undertaking and requires assumptions regarding many decision 

variables. 

In addition, even though an ever greater number of policyholders may be taking advantage 

of increased transparency in the insurance market and are thus making more rational exercise 

decisions, empirically observed exercise behavior can still vary from this assumption. Hence, 

the option value under rational exercise is likely to overestimate the value actually generated 

in insurance portfolios. From the option value based on an optimal exercise strategy, it is 

therefore difficult to derive policy recommendations for insurers.  

For these reasons, we focus on the second valuation approach and integrate exercise 

probabilities into our model. The investigation is conducted from an insurer’s perspective for 

a pool of policyholders who do not necessarily exercise their options in a rational way. 

Instead, exercise decisions are exogenously made for financial or other, possibly personal, 

reasons. In the current market situation, our model allows an assessment of the risk associated 

with the switch option in a portfolio of insureds as well as the derivation of policy 

implications, as is done in Section 4 and 5, respectively. Thus, in the following, option value 

or net present value of the option refers to the value of the death benefit switch option 

calculated using this approach. 

As data regarding empirical switch exercise behavior are not available, we conduct our 

analysis by studying comprehensive exercise scenarios. An insurer can employ the model 

using its own switch exercise experience to determine the impact of the switch option in a 

portfolio. However, caution is needed when implementing this approach as using exercise 

probability estimates from historical data is not entirely without problems because deviations 

between actual and estimated probabilities can represent a risk for the insurer. 
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Heterogeneity in respect of mortality 

To examine adverse option exercise behavior and thus the impact of an insured’s health 

status, we evaluate the death benefit switch option by taking into account heterogeneity in 

respect of mortality. As in Hoermann and Russ (2008), we integrate heterogeneity in respect 

of mortality by use of a frailty model (see, e.g., Jones (1998, pp. 80–83), Pitacco (2004, p. 

14), and Vaupel, Manton, and Stallard (1979, p. 440)). Since the date of the benefit payment 

and thus also the amount of premiums paid into the contract depend on insureds’ mortality, 

the value of the option to switch from one death benefit scheme to another will also so 

depend. The introduction of a frailty factor and, in particular, its stochasticity will allow a 

more detailed analysis of the death benefit switch option with respect to the policyholder’s 

individual mortality level  and exercise behavior.  

The one-year individual probability of death for a person age x is obtained by multiplying 

an individual frailty factor d  with the probabilities of death xq′  of a deterministic mortality 

table: 

{ } { }
,                                1

1, min 0, , : 1 for 0, ,  and : 1 for 1

0,                                       otherwise

x x

x x

d q d q

q x x d q x q dωω ω
 ′ ′⋅ ⋅ <
 ′= =  ∈ ⋅ ≥  ∈ = <  



ɶ
ɶ … … . 

If the resulting product is greater than or equal to 1 for any ages xɶ , the individual probability 

of death is set equal to 1 for the youngest of those ages; for all other ages  xɶ , it is set to 0. The 

random variable ( )K x  describes the remaining curtate lifetime of an individual age x. Its 

distribution function k xq  at a point 0k ∈ℕ  is given by 

( ) ( ) ( )( ) ( )
1

0

1 1 1
k

k x k x x hK x
h

F k K x k q p q
−

+
=

= ≤ = = − = − −∏P ,    

where k xp  is the individual k-year survival probability of an x-year-old and P  denotes the 

objective (real-world) probability measure. The distribution of the remaining curtate lifetime 
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thus depends on the individual frailty factor. A person with a frailty factor d less than 1 

indicates that the insured is impaired with a reduced expected remaining lifetime. 

The parameter d  can be interpreted as a realization of a stochastic frailty factor D . The 

distribution DF  of D specifies the portion of individuals whose mortality is lower or higher 

than a certain percentage of table mortality. It is characterized as follows (see, e.g., Ainslie 

(2000, p. 44), Butt and Haberman (2002, p. 5), Hougaard (1984, pp. 75, 79), and Pitacco 

(2004, p. 15)). We assume a continuous frailty distribution such that it can represent fine 

differences between remaining life expectancies. It is only defined for positive values of d  

and for 0d = , it equals zero.  The distribution is right-skewed, i.e., high values of d —

corresponding to high mortalities—can occur. Its expected value is equal to 1, such that the 

deterministic mortality table describes an individual with average life expectancy.  

For our analyses, we use a distribution that employs as a suitable choice of parameters for 

the characteristics listed above, and that is a common choice for frailty models: a gamma 

distribution (see, e.g., Butt and Haberman (2002, pp. 8–9), Hougaard (1984, p. 76), Jones 

(1998, p. 82), Olivieri (2006, pp. 29–30), and Pitacco (2004, p. 17), all of which refer to 

Vaupel et al. (1979, pp. 441–442)). Vaupel et al. (1979) initially chose the gamma distribution 

as it is one of the best-known nonnegative distributions, is convenient to work with, and is 

very flexible. Although some advantageous properties of the gamma frailty distribution are 

lost when applied to a deterministic mortality table instead of a continuous mortality law, it 

remains a reasonable assumption. Since mortality probabilities near zero are unrealistic, the 

distribution is shifted by a positive value of γ , resulting in a generalized gamma distribution, 

( ), ,α β γΓ . For its probability density function, we employ the following formula:  

( ) ( ) ( ) ( ) 1

, ,

1
,   for , , , 0.

d

f d d e d
γ

α β
α β γ α γ γ γ α β

α β

−−−Γ = − ≥ ∈ >
Γ

ℝ
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Switch probabilities 

Let τ  denote the time of switch and let ( )s t  be the switch probability that depends on the 

time t  since policy inception. As there is a prescribed development of the cash value in our 

setting, dependence on time t  can be interpreted as the switch probability depending on the 

amount of cash value in the policy. The distribution of τ  at a point in time 0k ∈ℕ  is given by 

( ) ( ) ( ) ( )( )
1

1 1

1
hk

h

F k k s h sτ
ν

τ ν
−

= =

= ≤ = −∑ ∏P . 

Moreover, the switch probability can take different values depending on an insured’s health 

status measured by the frailty factor d––a realization of DD F∼ , i.e., ( ),s t d . However, in 

the following we omit the index d to simplify the notation.  

 
Short-rate process 

For the short-rate process, we follow Briys and de Varenne (1994), Hansen and Miltersen 

(2002), and Jørgensen (2006) and use the Vasicek model (Vasicek, 1977), which is a 

Gaussian Ornstein-Uhlenbeck process. Under the risk-neutral measure Q , the short-rate 

process ( )r t  evolves as 

( ) ( )( ) ( )dr t r t dt dW tκ θ σ= − + Q , 

where ( )( )W tQ , 0 ≤ t ≤T is a standard Brownian motion on a probability space ( )Ω Q, ,F , 

and (Ft), 0 ≤ t ≤ T is the filtration generated by the Brownian motion. The interest rate 

volatility σ is deterministic, the mean reversion level is denoted by θ, and the parameter κ 

determines the speed of mean reversion. 

( )0,P t  denotes the price of a zero-coupon bond at time 0 paying $1 at maturity t, where 

( )0r r= . Since the zero-coupon bond price in the Vasicek model has an affine term 

structure, the expectation can be represented by 
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( )
( ) ( )

2 2 2
2

2 2 3
00, exp

2 2 4

1
1

t
r u du

t

t

t r t
e

P e e
κ

κσ σ σ
θ θ

κ κ κκ

−− −= Ε = − − − − −
    −    ∫ −               

ℚ .    (9) 

Hence, once all input parameters have been defined, the entire term structure can be 

determined as a function of the current short rate r. 

 

Net present value of the death benefit switch option 

Based on the above mortality assumption and the short-rate process, the net present value 

(NPV) of an increasing death benefit policy can be calculated as the expected discounted 

premium payments less the expected discounted death benefit, using risk-neutral valuation 

given a complete, perfect, and frictionless financial market (see, e.g., Björk (2004)). In the 

analysis, we assume independence between short-rate and mortality dynamics. Furthermore, 

the market is assumed to be risk-neutral with respect to mortality risk, such that the objective 

(real-world) probability measure P  coincides with the risk-neutral probability measure ℚ

(see, e.g., Bacinello (2003, p. 468) and Dahl (2004, p. 124)). From the insurer’s perspective, 

pooling effects are achieved for a sufficient number of policyholders since, at the portfolio 

level, only expected values and thus the mortality distribution in the pool are of relevance in 

evaluating the contract. According to our assumptions on the frailty distribution, the expected 

value of the frailty factor is equal to 1, implying that, on average, mortality in the pool is 

described by the deterministic mortality table. For a policy with increasing death benefit 

throughout its term, the net present value conditional on D = d under the risk-neutral measure 

Q  thus results in 

( ) ( )( )

( )
( )( )

( ){ }
( )

( ){ }
( )

( ) ( )

1

0 0

1

0 0

1
0

1 1

1
0 0

1 1

1
0 0

1 1

0, 0, 1 .

t K x

t t

K x
r u du r u du

K x
t

T Tr u du r u du

tK x t K x t
t t

T T

t x t t x x t
t t

NPV d B e Y e

B e Y e

B p P t Y p q P t

+

+

− −

+
=

− −− −

+≥ =
= =

− −

+ +
= =

   ∫ ∫= Ε ⋅ − Ε ⋅    
  

   ∫ ∫= Ε ⋅ ⋅ − Ε ⋅ ⋅   
   

= − +

∑

∑ ∑

∑ ∑

Q Q

Q Q                (10) 
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When policyholders have the option to switch the death benefit scheme, the stochastic switch 

exercise date τ  is included in the net present value calculation. For the net present value of 

the policy with switch option for D = d, we hence obtain 

( ) ( ) ( )
( ){ }

( ) ( )
( ){ }

( )
1

0 0

1 1

1
0 0

1 1
t tT Tr u du r u du

t tK x t K x t
t t

NPV d B e Y eτ τ τ
+− −− −

+≥ =
= =

   ∫ ∫= Ε − Ε   
   
∑ ∑Q Q .                (11) 

The death benefit ( )
1tY τ

+  is given by Equation (6) and premiums ( )
tB τ  are given by Equations (7) 

and (8) for the “level premium” and “risk premium” scenario, respectively. 

Equation (11) contains three sources of randomness, namely, the remaining lifetime K(x), 

the time of switch τ, and stochastic interest rates. The equation further illustrates that 

( )1 K xτ≤ ≤ , i.e., the option can be exercised only as long as the insured is alive. Since we let 

the switch rate depend on an insured`s health status and thus on the frailty factor d , switch 

probabilities and probabilities of death are dependent. Again, assuming independence 

between the stochastic frailty factor and interest rates, Equation (11) can be rewritten as 

( )
( )

( ){ }( ) ( ) ( )
( ){ }( ) ( )

1 1

1
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Thus, the expected value of Equations (10) and (11) is obtained by
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( )( )ENPV NPV D= Q                       (12) 

and 

( ) ( ) ( )( )ENPV NPV Dτ τ= Q ,                     (13) 

respectively. In the context of heterogeneity in respect of mortality implied by a gamma 

distributed frailty factor, closed-form solutions are generally not feasible for the above net 

present values. 

To assess the value of the death benefit switch option, we subtract the net present value of 

the increasing policy without switch in Equation (12) from Equation (13) and denote the value 

by OptNPV . Hence, 

( )OptNPV NPV NPVτ= − .                       (14) 

 
4. NUMERICAL ANALYSIS 

 

This section presents results from a simulation study so as to quantify the impact of the 

death benefit switch option. First, we consider the increasing universal life contract. Next, we 

integrate the switch option and illustrate effects for deterministic switch exercise times and 

times of death. We then derive net present values of the option from the insurer’s perspective 

for different switch probabilities depending on the health status of insureds and for some 

specific exercise scenarios. In addition, a sensitivity analysis with respect to the 

parameterization of the frailty distribution is provided. 

 

Input parameters 

We examine a universal life insurance contract with increasing death benefit with a policy 

face value of Y = $100,000 for a male insured aged x = 45 years at inception. The actuarial 

minimum interest rate is set at i = 3.5%. The minimum guaranteed interest rate for universal 
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life products is usually around 4%. For newer products, it is often 3% (see, e.g., 

www.aegon.com). To be conservative, numerical analyses are based on the U.S. 1980 

Commissioners Standard Ordinary (CSO) male ultimate composite mortality table with a 

limiting age ω = 99. Composite means that smokers and nonsmokers are not distinguished. 

An older mortality table with low limiting age––like the 1980 CSO table––is conservative 

regarding death risk in the sense that it tends to overstate probabilities of death. In contrast, 

modern life tables account for mortality improvement and usually have a limiting age of 120. 

For the generalized gamma distribution of the frailty factor, we employ the parameterization 

used in Hoermann and Russ (2008), given by ( )2.0;0.25;0.5 .D ∼ Γ  The parameter values 

lead to a frailty distribution that fulfils the requirements laid out in Section 3. A shift by 

0.5γ =  means that individual probabilities of death can be at most half the size of the 

mortality table probabilities but not less than that. We later vary distributional assumptions to 

examine the sensitivity of switch option values to parameterization changes. 

For the stochastic interest rate, we use the input parameters given in Hansen and Miltersen 

(2002) with speed of mean reversion κ = 0.30723, mean reversion level θ = 3.7%, interest rate 

volatility σ= 0.02258, and r(0) = 3.7%. As is common in the life insurance business, the 

interest rate credited to the account value (here, 3.5%) is slightly below the interest earned by 

the insurance company in the long term (this difference is larger in European countries, e.g., 

in Germany the minimum guaranteed interest rate is currently 2.25%). Numerical results are 

derived using Monte Carlo simulation with 50,000 sample paths (see Glasserman, 2004). In 

all simulation runs, we use the same set of random numbers to ensure comparability of results. 

 

Value of the universal life contract with increasing death benefit 

The constant annual premium for the increasing policy calculated according to Equation 

(4) is given by B = $5,937. The risk-neutral net present value from the insurer’s perspective 
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results in NPV = $2,866, as determined by Equation (12) under consideration of stochastic 

interest rates and the stochastic frailty factor. More precisely, in a Monte Carlo simulation, 

50,000 frailty factors are generated that imply 50,000 individual mortality distributions. Based 

on these probabilities of death, the NPV can be determined. It would be zero when using 

1D ≡ , i.e., solely the mortality table, as well as the calculation interest rate i instead of 

stochastic interest rates. 

 

Value of the death benefit switch option by switch exercise time and time of death 

The option to switch from an increasing to a level death benefit can be exercised only once 

during the policy term and if done, must be done at the beginning of a year until the year of 

death. After switch, premiums are adjusted. In the following, we evaluate the option and 

compare results for the two previously described premium scenarios to identify the effect of 

future premium payments on the switch option value. In the “level premium” case, constant 

annual premiums are paid after switch, which are calculated based on the equivalence 

principle, taking the current cash value at the time of switch as a single premium. In the “risk 

premium” case, premium payments are stopped at the exercise date and not resumed until the 

cash value is exhausted. From then on, the minimum risk premium is paid that will keep the 

cash value at zero and thus avoid policy lapse. The OptNPV  of the death benefit switch option 

is given by the difference between the ( )NPV τ
 of the increasing policy with switch option and 

the NPV of the contract without switch (see Equation (14)). 

To provide a first impression of the impact of the death benefit switch option, we calculate 

risk-neutral values for different deterministic times of switch exercise and times of death. For 

deterministic switch date τ  and date of death K(x), Equation (11) simplifies to 

 

( ) ( ) ( )
( )

( )
( ) ( )( )1

0

0, 0, 1
K x

t K x
t

NPV B P t Y P K xτ τ τ
+

=

= ⋅ − ⋅ +∑
.  

Note that in order to examine the effect of the switch option in a portfolio, these deterministic 
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values have to be weighted with respective probabilities of switch and survival. Results are 

displayed in Figure 4 for “level premiums” (Part a)) and “risk premiums” (Part b)).  

Figure 4: Net present value (NPVOpt) of switch option by time of switch exercise and time of 
death for 45-year-old insureds 

a) “Level premium” 

 

b) “Risk premium” 
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If policyholders pay level premiums after switch as shown in Part a), the switch option 

value falls below zero for insureds, deceasing after about 40 policy years (age 85). This is 

because insureds with high life expectancy “save”––so to speak––on premiums over time 

when choosing to exercise the switch option in combination with level premium payments. 

Without switch, in contrast, they are likely to survive until the time when the death benefit 

decreases again toward maturity (approaching Y). Hence, they do not benefit from the 

“increasing” death benefit feature anyway. Option values are lower the earlier the year of 

switch and the later death occurs. In the “level premium” case, negative values are thus 

generated by insureds with high life expectancy, especially when exercising the switch option 

in early policy years. 

In the “risk premium” scenario, option values can also become negative from the insurer’s 

perspective. This is the case if death occurs early after switch, such that premiums for the 

remaining lifetime are covered by the available cash value and no high risk premiums become 

due. In contrast, option values are extremely high if death occurs late and risk premiums are 

paid after the cash value is exhausted. 

 

Value of the death benefit switch option by switch probability 

To obtain the OptNPV  of the death benefit switch option, individual switch probabilities, 

as well as individual probabilities of death, need to be taken into account. Results for different 

constant switch probabilities between s = 0% and s = 100% are displayed in Figure 5 for risk 

and level premium payments. 

Figure 5 shows that the two premium payment scenarios have very different outcomes. In 

the “level premium” case, the net present value from the insurer’s perspective is negative for 

all switch probabilities; however, it remains positive in the “risk premium” scenario. In the 

latter case, the OptNPV  at most reduces to $115 as the switch probability approaches 100%, 

implying early switch. Hence, for risk premiums, high net present values (see Figure 4 Part 
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b)) cause the OptNPV  of the switch option to always remain positive in the example even 

though the probability of occurrence of such extreme events (e.g., survival until t = 45, i.e., 

age 90) is very low. This implies switch profits for the insurer if switch probabilities are 

constant in the portfolio of insureds. However, if insureds terminated contracts (policy lapse) 

instead of paying high risk premiums after depletion of the cash value, as discussed in Section 

2, the OptNPV  turns negative, looks similar to the “level premium” curve. 

Figure 5: Net present value ( OptNPV ) of switch option for different switch probabilities for 

45-year-old insureds 

 

For switch probabilities higher than or equal to 20%, the “level premium” case leads to 

negative net present values to about $-2,000 in the calibration employed. This is due to 

considerably negative values for early exercise times, which are weighted more heavily for 

high switch probabilities (see Figure 4, Part a)). Thus, depending on the premium payment 

method, the switch option can have negative effects on an insurer’s portfolio even if switch 

probabilities are assumed to be constant over time, an assumption that we will relax in the 

following analysis. 

 

Value of the death benefit switch option by switch probability and health status 

Since the value of the death benefit switch option is strongly dependent on an insured’s life 
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behavior with respect to health status on the option’s risk-neutral value OptNPV . This is done 

by calculating the option value for switch probabilities that vary depending on an insured’s 

individual mortality. We distinguish persons with a frailty factor greater than or equal to one 

(d ≥ 1, average or below-average life expectancy) and persons with a frailty factor d < 1 

(above-average life expectancy). Results are displayed in Figure 6 for “level premium” (Part 

a)) and “risk premium” (Part b)). 

The “level premium” graph in Part a) of Figure 6 reveals strong discrepancies in the 

OptNPV  if the option exercise behavior depends on an insured’s health status. In this case, 

from the insurer’s perspective, risk-neutral values remain positive only if persons with above-

average life expectancy have very low switch probabilities and thus tend to switch––if at all––

late in the contract term. The value of the death benefit switch option becomes negative if 

they exercise the option with higher probability. This effect is more pronounced the lower the 

switch probabilities are for insureds with below-average life expectancy, with the OptNPV  

reaching negative values up to about $-3,500. This is in line with results in Figure 4 Part a), 

where negative values are generated for early switch times and late times of death. 

In the “risk premium” scenario, shown in Part b) of Figure 6, differences depending on the 

health status are less distinct, but still visible. In particular, the “risk premium” scenario 

generates negative values for the insurer only if persons with below-average life expectancy 

exercise the option and switch probabilities are zero for insureds with above-average life 

expectancy. This observation is in line with the reasoning that individuals with impaired 

health are likely not to pay high risk premiums after depletion of the cash value due to 

expectations of early death. If insureds survive until cash value exhaustion, increasing death 

probabilities imply high risk premiums and thus lead to positive net present values from the 

insurer’s perspective. Altogether, strong adverse effects can be observed. 
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Figure 6: Net present value ( OptNPV ) of switch option for different switch probabilities 

depending on health status for 45-year-old insureds 
a) “Level premium” 

 

b) “Risk premium” 
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Additional exercise scenarios 

Based on the previous analyses, certain substantial adverse effects can be seen for specific 

exercise scenarios that depend on health status and switch option exercise time. If the switch 

option is exercised around the time the cash value reaches its peak, for instance, the level 

death benefit for the remaining contract term is higher than in the case of the original 

increasing death benefit as set out in Section 2. This is because––without switch––the 

“increasing” death benefit would actually decrease in line with the cash value, down to the 

fixed level Y at maturity (see Figure 1). Hence, when switching, the new level death benefit is 

in fact higher than the original death benefit of the increasing contract at certain times during 

the contract term. Such comparably higher death benefit amounts can be obtained without 

having to pay additional fees or providing new evidence of insurability. Thus, depending on 

the insured’s health status, particular exercise behavior can have a considerable influence on 

contract value, which may have serious consequences when considering a pool of insureds. 

To further emphasize the potential risk of adverse effects regarding the death benefit switch 

option, we study several alternative exercise scenarios (see Table 1). 

Table 1: Net present values ( OptNPV ) of switch option for specific exercise scenarios 

depending on the health status for 45-year-old insureds 

 
s=100% 

at t=41 (peak) 

s=10% 

t=25 to t=41 

s=10% to s=100%* 

t=25 to t=41 

s=10% 

t=5 to t=15 

  All 1d ≥  1d <  All 1d ≥  1d <  All 1d ≥  1d <  All 1d ≥  1d <  

Level 

premium 
-365 12 -377 -750 194 -945 -1’023 293 -1’315 -1’189 856 -2’045 

Risk 

premium 
1’324 -89 1’413 1’332 -108 1’440 1’576 -123 1’700 758 -204 962 

Risk 

premium 

(lapse) 

808 10 799 288 -37 325 229 -42 272 -740 128 -867 

Notes: 1d ≥ : insureds with average or below-average life expectancy, 1d < : insureds with 

above-average life expectancy, *: linear increase. 
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First, for insureds with above-average life expectancy, the switch option is valuable in 

combination with the “level premium” scenario. If exercised around the peak of the cash 

value curve, a high death benefit is maintained compared to the decreasing benefit that occurs 

without switch. Even though new level premiums are higher than the original premiums in 

this case, option exercise may still give rise to negative values for the insurer, which can be 

observed in Table 1 (first column, “Level premium”). The scenario “s=100% at t=41 (peak)” 

compares results when either all insureds, only insureds with average or below-average 

( )1d ≥ , or only insureds with above-average life expectancy ( 1d < ) exercise the switch 

option with probability 1 at the peak of the cash value curve (i.e., at age 86). 

Second, one would suspect that the switch option is especially valuable for insureds with 

below-average life expectancy in combination with the “risk premium” scenario. When 

exercised around the peak of the cash value curve at t=41 or age 86, persons with reduced life 

expectancy preserve a high death benefit without having the underlying mortality table 

adjusted. Furthermore, future premiums can mostly be financed from the available cash value. 

For insureds with higher-than-average life expectancy, on the other hand, this exercise pattern 

would imply high risk premium payments as the policy approaches maturity and thus switch 

profits for the insurer. These expectations are confirmed by the numerical results in Table 1 

(“s=100% at t=41 (peak)”, “Risk premium”). However, risk-neutral values are much less 

negative in this case than they are for adverse exercise by healthy insureds in the level 

premium case. 

For risk premium payments, we additionally consider a scenario in which policyholders let 

the policy lapse, e.g., due to financial distress, as soon as risk premium amounts exceed 10% 

of the new level death benefit (first column, “Risk premium (lapse)” in Table 1). The value of 

10% was chosen by intuition; however, further tests revealed that results remain robust with 

respect to changes in the percentage parameter. Compared to the risk premium scenario 

without lapse (second row of Table 1), such behavior has a considerable negative impact on 
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the net present value from the insurer’s perspective if only insureds with above-average life 

expectancy are concerned. In particular, the OptNPV  is almost cut in half due to the lack of 

high risk premium payments. In contrast, if impaired insureds let the policy lapse when high 

risk premiums become due, negative effects are alleviated and the net present value is 

increased because soon expected death benefit payments do not have to be made. 

We further extend the analysis and consider option exercise prior to cash value peak given 

a constant switch probability of 10% from age 70 (t=25) to age 86 (t=41) (second column in 

Table 1). Results show that option values are substantially affected. In particular, they are 

more negative from the insurer’s perspective in the “level premium” case for insureds with 

above-average life expectancy. The latter net present value decreases even more if the switch 

probability is linearly raised from s = 10% at age 70 to s = 100% at age 86 (third column in 

Table 1). There are two effects responsible for these aggravated results. First, if the time of 

cash value peak is not the only possible time to switch (but instead ranges from between age 

70 and age 86), option exercise, on average, occurs earlier. From Figure 4 Part a) we know 

that the earlier the option is exercised by insureds with long remaining lifetime, the lower are 

the option values. And second, observed effects are stronger due to the larger number of 

insureds still alive at age 70, compared to at age 86, and thus able to exercise the option. 

We now turn to the case where the switch option is exercised after five to fifteen policy 

years, i.e., between ages 50 and 60 (fourth column in Table 1), given a constant switch 

probability of 10%. A reason for switching early during the term of the policy could, e.g., be 

the wish to reduce premium payments. In this scenario, results are even more pronounced 

than in the case of exercising around the cash value’s peak. As discussed previously, it is 

particularly in the “level premium” scenario that adverse exercise behavior by insureds with 

high life expectancy generates negative net present values in an insurance portfolio. 

These adverse exercise scenarios assume that insureds are well informed about their 

individual mortality, i.e., whether they have an above- or below-average life expectancy. The 
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examples indicate that it is those exercise scenarios that are intuitively rational that pose the 

greatest threat to insurers: namely, if insureds with above-average life expectancy switch early 

and thus “save” risk premiums by making level payments, and if impaired insureds set out 

premium payments after switch, being aware that they will possibly not survive until high risk 

premiums have to be paid. In fact, the switch option will be even more valuable if insureds 

follow optimal exercise strategies to maximize the option value, a topic that is, however, 

beyond the scope of this paper. 

 

Sensitivity analysis with respect to the frailty distribution 

The variance of life expectancies in a portfolio of insureds can be an important risk driver 

when considering policies with death benefit payments. To assess the impact of the frailty 

factor distribution, we compare switch profits for different parameterizations of DF  and 

different switch probabilities, leaving all other parameters unchanged. Part a) of Figure 7 

displays the basic scenario with the gamma frailty distribution ( )2;0.25;0.5D Γ∼  with 

variance Var(D) = 0.125 (left hand side in Figure 7) and the respective net present values 

NPVOpt (right hand side in Figure 7) as shown in Figure 5. The net present value for an 

increasing policy is given by NPV = $2,866. We find that varying the frailty distribution has 

very little effect on switch profits in the “risk premium” case. For “level premiums,” however, 

effects are much more dramatic. 
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Figure 7: Net present value (NPVOpt) of switch option for different parameterizations of the 

frailty distribution for 45-year-old insureds 

a) Basic scenario 

 

( )2;0.25;0.5D Γ∼  

  

NPVOpt (NPV = $2,866) 

 

b) “Thinner” 

 

( )4;0.125;0.5D Γ∼  

 

NPVOpt (NPV = $1,581) 

 

c) “Wider” 

 

( )6;0.15;0.1D Γ∼  

 

NPVOpt (NPV = $3,584) 

 

d) “Heavy tailed” 

 ( )1.5;0.5;0.25D Γ∼  

 

NPVOpt (NPV = $8,507) 

 

Notes: PDF = probability density function of frailty factor distribution. 
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Part b) of Figure 7 illustrates that a change to a “thinner” frailty factor distribution results 

in a much lower net present value of NPV = $1,581 (compared to $2,866). This is because 

individuals’ probabilities of death disperse less from average death probabilities according to 

the mortality table (Var(D) = 0.0625), i.e., the effect of heterogeneity in respect of mortality 

is reduced. Hence, the NPVOpt for high switch probabilities in the “level premium” case is not 

as negative as in the basic scenario and values in the “risk premium” case are closer to zero. 

Altogether, we find that the difference between the two premium payment scenarios is less 

distinct with the thinner frailty distribution. 

For the “wider” gamma distribution shown in Part c) of Figure 7 where Var(D) = 0.135, 

switch values for “level premiums” decrease compared to the base case, which is particularly 

important for negative results at high switch rates. 

Tremendous differences can be observed for the comparatively “heavy tailed” distribution 

in Part d) of Figure 7. This assumption implies a greater variance of life expectancies in the 

portfolio (Var(D) =  0.375). Changes can also be observed for the NPVOpt in the “risk 

premium” case. Net present values are much higher, and a peak around a switch probability of 

5% is more pronounced. The “level premium” curve decreases substantially over all switch 

probabilities. The NPV of the policy without switch option nearly triples to NPV = $8,507. 

Thus, even though the main results are essentially robust, this sensitivity analysis 

demonstrates the importance and the impact of heterogeneity in respect of mortality in a 

portfolio, as well as the relation between premium payment method and mortality distribution. 

 

5. POLICY IMPLICATIONS FOR AN INSURER 

 

Our results do not have straightforward implications for insurance companies. In particular, it 

turns out not to be sufficient to simply require evidence of insurability or impose additional 

fees in order to reduce the risk inherent in the death benefit switch option. Instead, we 
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identified four key factors that are of relevance for the option value and that must be 

considered simultaneously when taking action: insureds’ life expectancies, the chosen 

premium payment method after switch, switch probabilities (and thus the time of switch), and 

lapsation. It is the combination of these factors that can make the switch option either 

valuable or risky for an insurer. 

The first question for an insurer is whether to even offer the switch option. As the demand 

for insurance protection can decrease or increase over time, policyholders might choose to 

surrender if switching is not included in the contract. Signing a new contract, however, has 

several disadvantages: evidence of insurability is required, updated actuarial pricing 

assumptions may be applied, and charges have to be paid to initiate the contract. Hence, a 

switch may be more attractive than surrendering the policy. From the insurer’s perspective, 

offering the option to switch from increasing to level has the advantage of keeping those 

contracts in its book of business and of reducing surrender rates. In this case, careful 

monitoring of the four factors listed above––including empirical switch probabilities in the 

pool of policyholders, possible adverse exercise scenarios, and the mortality distribution in 

the portfolio of insureds––is vital to avoid risks in the portfolio that originate from switch 

option exercise. 

Overall, there are several reasons why the switch option is of practical interest to insurers. 

First, the option can become valuable when exercised early as well as late during the contract 

term, depending on the respective premium payment scenarios. The latter might even become 

more important in the future given demographic development and longevity risk, i.e., if 

insureds have longer life expectancies. Second, the option is also relevant in that the 

opportunity to switch might prevent some policyholders from surrendering the contract. 

Third, our analysis of the NPV of the switch option shows that in a pool of insureds for given 

switch probabilities, the switch option can have a substantial value, even though many 

insureds in the pool may not survive to higher ages when the value of the option is most 
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intuitive. 

Given empirical exercise probabilities and the corresponding premium payment behavior, 

our model allows insurers to check whether their portfolios might be negatively affected by 

the switch option. For instance, if an insurer observes that, typically, constant level premiums 

are paid after switch with an annual switch probability of about 5%, caution is advised as 

negative values can result from the insurer’s perspective, given the contract calibration in our 

examples (see Figure 5). If policyholders tend to stop premium payments after switch, 

implications are not as obvious and must be analyzed in more detail. In particular, adverse 

exercise experience may pose a risk for insurers if it is mostly the impaired individuals who 

exercise this way. 

If monitoring reveals possible negative net present values for an insurer, action should be 

taken to reduce the risk by considering the four key factors. First, requiring new evidence of 

insurability before allowing policyholders to switch from increasing to level death benefits 

could help identify an insured’s health status. This would, in principal, allow the adjustment 

of actuarial pricing assumptions and, in particular, the mortality table in the case of impaired 

individuals. However, since the requirement of providing evidence of insurability, and its 

costs, would apply to all insureds and thus penalize healthy insureds, such a requirement 

could have the effect of intensifying adverse effects. 

To reduce negative effects originating from adverse exercise behavior of healthy insureds 

who pay level premiums after switch, adequate charges for the death benefit switch option 

could be imposed. In general, fees should be borne by the group of insureds causing the 

undesirable adverse effect. However, as the switch option value is strongly linked to the 

premium payment method after switch and to the time of switch, charges can hardly be 

calculated independent of these factors. A solution would be the prescription of premium 

payments after switch, combined with charges to avoid adverse effects. In our examples, 

requiring level premium payments after switching means that healthy insureds are charged 
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higher premiums than impaired individuals. Yet, this approach would also imply a change 

from universal life to whole life contracts and thus a loss in flexibility for policyholders. 

Furthermore, due to the dependence of the switch option value on the time the option is 

exercised (in our examples, negative values were predominantly generated for early exercise 

times), insurers could restrict switch exercises to predefined time ranges to control for adverse 

effects. Finally, if a shift toward rational exercise behavior is noticed, premium pricing needs 

to be adjusted based on the maximum option value determined as the solution of an optimal 

stopping problem. 

 

6. SUMMARY  

 

Universal life policies with increasing death benefit as well as the death benefit switch 

option have not been investigated in the literature to date. In this paper, we develop an 

actuarial model framework and conduct a detailed examination of this option. The model 

includes heterogeneity in respect to mortality using a frailty model and switch probabilities. 

We point out situations where the death benefit switch option can have considerably negative 

effects on an insurer and we provide policy implications to reduce the existing risk potential. 

One main finding is that the value of the death benefit switch option is strongly dependent 

on premium payment behavior after exercise and on the health status of the exercising 

insured. A switch in the “risk premium” scenario has predominantly positive effects in the 

examples considered, but the option can actually generate severe negative net present values 

from the insurer’s perspective in the “level premium” case. Both scenarios share the result 

that option values decrease with increasing switch probability, i.e., the greater the number of 

insureds who switch early in the contract term, the more the option values decrease. However, 

the extent varies when exercise probabilities differ depending on insureds’ life expectancies. 

In the case of risk premium payments, negative values occur if it is only impaired persons 



 38

who switch early in the contract term, while in the level premium scenario, it is insureds with 

good health status who generate highly negative values. Similar results are obtained if policies 

are switched at or near the peak of the cash value curve, logging in highest possible death 

benefit values. Altogether, we find that combined exercise of the switch option and premium 

payment options can generate substantial negative net present values from the insurer’s 

perspective due to adverse effects regarding insureds’ health status. 

Results are stable with respect to parameterization of the frailty distribution. However, the 

spread between positive results in the risk premium scenario and negative results in the level 

premium scenario is enhanced with greater variance of life expectancies, i.e., heterogeneity of 

insureds’ mortality. Hence, careful consideration and estimation of the mortality distribution 

in an insurance portfolio is crucial. 

In summary, our findings indicate that the death benefit switch option can pose a threat to 

insurers in case of adverse exercise behavior with respect to insureds’ health status. This 

result depends on the premium payment method after switching and is even intensified when 

additionally considering the amount of cash value as a trigger for option exercise. Overall, 

insurers should be aware of the potential impact the death benefit switch option can have and 

should consider implementing risk reduction measures. Our policy implications are based on a 

broad analysis from an insurer’s perspective for a pool of insureds covering a wide range of 

possible exercise scenarios. Depending on the observed exercise behavior in an insurance 

portfolio, insurers could require evidence of insurability or charge fees in case of option 

exercise, prescribe the premium payment method after exercise, or restrict possible option 

exercise times. If insureds followed an optimal exercise strategy, resulting switch option 

values could in fact be much higher. Determination of the latter would be an interesting 

subject of further research, but also a very challenging one due to complex interactions 

between frequency and amount of premium payments before and after switch, lapsation, the 

insured’s health status, and interest rates. 
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