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Abstract

We extend the classical analysis of the endowmemiract on a single life to multiples lives.
The two lives case covering the joint-life and tast-survivorship status is discussed
thoroughly. In practice actuarial values of theftdrook are calculated under the simplifying
assumption of independent future lifetimes. lthisrefore important to measure the impact of
this assumption under the observation that indegecelis not fulfilled in real life. In the two
lives case the maximal impact can be measured ubi@gwell-known Ho6ffding-Fréchet
lower and upper bounds. The independence assumptarestimates the joint-life net single
and level premiums and underestimates the lastvauraet single and level premiums. The
maximal deviations are obtained by perfect positigpendence. Some formulas illustrate the
application to multiple life insurance contracts foore than two lives, which point out to
further possible developments.
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1. Introduction

The purpose of this study is to extend the claksinalysis of the endowment contract on a
single life to multiples lives. The two lives casevering the joint-life and the last-

survivorship status is discussed thoroughly. Sowendlas illustrate the application to

multiple life insurance contracts for more than tives, which point out to further possible

developments.

2. The Notion of a General L ife Status

The extension of life insurance for a single lilemultiple lives is based on the notion of
general life statusfor which there are definitions of survival aralldire. Consider a group of

g lives aged x, X,,...,X, and let T, =T(x, ) denote the random future lifetime of the
single life aged x,,k =1,...,g. Based on these elements a stau§ with random future
lifetime T =T(u) will be defined such that, p, = P(T(u) >t) is the probability that the
status will survive to timet >0 and ,q, = P(T(u)<t) is the probability that the status will
fail to time t >0. We will develop models fdife insurancegpayable upon the failure of the
status andife annuitiespayable as long as the status survives. DenoteDy) (u) the net
single premium(NSP) of a life insurance with one unit of benglityment payable at the end
of the m-thly period of a year following failure of the sia, where mD[O,l]. For a yearly
period m=1 one sets by conventio®(u) = D(u) and for a continuous payment mode
m=0 one writes D (u) = D(u). Similarly, denote bya® (u) the NSP of a life annuity of
one unit per year payable in instalments of fractional units at the beginning of each
payment cycle of lengthc [ [0,1] of a year as long as the status survives. Feaay period
c=1 one sets by conventiona®(u)=a(u) and for the limiting case of continuous
paymentsc= Oone definesa® (u)=a(u).

The most important instances of a general $fatus, which will suffice to specify
completely the endowment insurance on two lives tlae following four ones:

Single life status

A single life aged x defines a statusi = x that survives while(x) lives.

Joint-life status

A status that exists as long as all members ofjtbap are alive and fails upon the first death

is called ajoint-life statusand is denoted by u=x:X, :....X,. Its future lifetime is

described by the random variablig(u) = min(Tl,...,Tg).

Last-survivorship status

A status that exists as long as at least one meailike group is alive and fails upon the last
death is called #ast-survivorship statusind is denoted byu=x : X, :...1 X, . It has the

future lifetime T(u) = max(Tl,...,Tg).
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Term certain status

The term certain status, which is denoted oy n, defines a life status surviving for exactly
n years and then failing. It has the deterministic futiieme T(n)=n. This particular

status is useful when describing temporary life insuraanddife annuities. For example, the
general life statusu = x: n defines the NSP of single life endowment insuranéde type

A™ (x: n), mD[O,l]. It defines also the NSP of temporary life anmgitiof the type
a®(x:n), cD[O,l]. In this framework, the@et level premiunNLP) of single life endowment
insurances with benefit payment cychaD[O,l] and premium payment cycIeD[O,l] and
one unit of sum insured is determined by the qubtie

A™(x:n)

a®(x:n)

NLP™® (x:n)= , mofo3], cOfo] (2.1)

3. Probabilities of Survival and Failure

To describe the endowment insurance on two livesrequires probabilities for the joint-life
status u=x:y and the last-survivorship status=x:y. Let X,Y be the age-at-deaths
of the lives(x),(y ) and T(x)=X-x,T(y)=Y -y the corresponding future lifetimes.
Given the joint survival function S(x,y) = P(X > x,Y >y) of the couple (X,Y), the
survival probabilities of the future lifetimes T(x:y)=min(T(x),T(y))  and
T(x:y)=maxT(x),T(y)) are obtained as follows:

Py = P(T(x:y) >t) =P(X > x+t0OY > y +{{X > x,Y > y)
_Slx+ty+t) (3.1)
S(x,y)

Py =PT(xTy) >t)=P(X > x+t0Y > y+ X > xY > y)
S(x+t,y)+S(x,y+t)-S(x+t,y +1) (3.2)
S(x, y)

Though in general the random variables show a rieiat dependence structure, it is
common practice to assume for pricing purposes thatlives (x) and (y) are

independent. In this simplified situation, the pabliities of survival depend on the life table
of the single lives only and are given by

t Pxy =t Py [t Py tpﬂ = Pty Py, = Pyy (3-3)

Remark 3.1. In a recent paper, Youn et al.(2002) have mattd@@ugh analysis of the more
general assumption of “partial independencg’,, +, Py =t Pt Py (suggested by
Bowers et al.(1986)), which simplifies much mukéigife calculations. In particular, in case

of a married couple, they show that this identitydis under the assumption that the mortality
rate of the wife or the husband should not dependiwether they have a surviving spouse or
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not, nor on the surviving spouse’s age. This isegally assumed in practice. Insurance
companies do not classify according to whether loa® a surviving spouse or not, nor to

spouse’s age. It can be shown that the partiapedence assumption also holds for certain
special survival functions:

Common shock survival model S(x, y) = S,(x) [ S,(x) [ R(max(x, y)), where
S/(X), S,(x), R(x) are survival distributions (see Denuit et al.@0f@r an application)

Fréchet copula model C(u,v) = (1- 6)[uv+ & Imin(u,v), #0[01]

4. Premiums

Let mD[O,l],cD[O,l] be the benefit and premium payment cycles of ghdowment
insurance on two lives.

Net single premiums of life insurances

A™ (x: n) : NSP of an-year endowment insurance for a single life

D™ (x: n) : NSP of an-year term insurance payable at failure of sinige |
E(x:n) : NSP of an-year pure endowment payable at survival of sitifge
A™ (x: y: n) : NSP of an-year endowment insurance for a joint-life

D™ (x:y:n) : NSP of an-year term insurance payable at failure of joife-li
E(x:y:n) : NSP of an-year pure endowment payable at survival of joifiet-|
AM (ﬂ n) : NSP of an-year endowment insurance for a last-survivor

D™ (ﬂ n) : NSP of an-year term insurance payable at failure of lastisor
E(Ty: n) : NSP of an-year pure endowment payable at survival of lastigar

The endowment NSP is the sum of the term insurandgure endowment NSP’s:

A™(x:n)=D™(x:n)+E(x:n) (4.1)
A™(x:y:n)=D™(x:y:n)+E(x:y:n) (4.2)
A™(x:y:n)=D™(x:y:n)+E(x:y:n) (4.3)

Denote by v=1/(1+i) the discount factor to thechnical interest ratei. The NSP’s are
determined by the formulas:

va @—1)@1 Py dl_m px+(j—l)Eh)’ m>0
D™(x:n)={ = (4.4)
[vdp, . ds m=0
0

E(x:n)=v"[Jp, (4.5)
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ZVI@ [ Pxy [(1 m P(j-nmy+(j-nm ) m>0
D(m) x y: n =1 (4.6)
[V @p,, Qs + 1. )ds m=0
0
X y: n :Vn m pxy (47)
DM (ﬂ n): D(m)(x: n)+ D(m)(y: n)— D™ (x: y: n) (4.8)
E(ﬂ;n):vnmpﬂ:E(x:n)+E(y:n)—E(x:y:n) (4.9)

Net single premiums of life annuities

a®(x:n) : NSP of an-year life annuity for a single life
a9(x:y:n) : NSP of an-year life annuity for a joint-life
a (ﬂ n) . NSP of an-year life annuity for a last-survivor

The NSP’s are determined by the following formulas:

-1

=]

VIGp,, >0

O

a®(x:n)= (4.10)

j=
vagpxds c=0
0

-1

Zvj%px:y’ c>0

a9(x:y:n)={ 1 (4.11)
JVS J px:yds’ c=0
0

a® (x_y : n) =a®(x:n)+a®(y:n)-a®(x: y:n) (4.12)

o | S

Net level premiums of endowment insurances

NLP(™e) (x: n) . yearly NLP of an-year endowment insurance for a single life
NLP™ (x: y: n) . yearly NLP of an-year endowment insurance for a joint-life
NLP(™e) (x: y: n) . yearly NLP of an-year endowment insurance for a last-survivor

The net level premium rates (NLPR) for a unit omsinsured and the NLP’s for a sum
insured SI and a general life status are determined by the following formulas:
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A™(u:n)

m,c) . =

NLPR™ (u: n) o) (4.13)
NLP™(u: n) = NLPR™ (u: n)CSI (4.14)

Level premiums of endowment insurances

Consider the following level premiums (LP) of endoent insurances with a sum insured
S| for a two-life status:

LP™9(x: n) . LP of an-year endowment insurance for a single life
Lp(me) (x: y: n) : LP of an-year endowment insurance for a joint-life
Lpme (x: y: n) : LP of an-year endowment insurance for a last-survivor

Level premiums include the cover for all kind ofpexses an insurance company may have.
Similarly to Gerber(1986), Chap. 10, four typeerpenses are considered:

Acquisition costs

Expenses related to the sale of a new life ins@aoatract are single costs, which are paid at
the beginning of the contract at the rateaf per unit of sum insured.

Premium proportional operating costs

These are variable recurring expenses at the fajé, oper unit of level premium.

Constant operating costs

These are recurring operating expenses of fixedtaohvalue 5, .

Operating costs proportional to the insurance henef

These are variable recurring operating expensteatte of y per unit of sum insured.

The level premium suffices to finance in expectatlig the insurance benefits and costs. The
level premium rate (LPR) per unit of sum insuredaaf-year endowment insurance with a
general life statusu satisfies the equation:

LPR™ (u:n)@®(u:n)= A™(u:n)+a+ (ﬁv [LPR™ (u:n)+ y+%) @9 (u:n) (4.15)
It follows that the level premium for a generaélgtatusu is given by

NLP™ (u n)+( +yJ (Bl + g,

_a
a“(u:n)

LP™(u:n)= =5

(4.16)
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5. Mathematical Reserves, Actuarial Reservesand Premium Reserves

For a life status (u) with random future lifetimeT =T(u) one considers the following
random variables associated to it:

K(u)=[T(u)] . the number of completed future years livedHgystatus(u), also
called curtate-future-lifetime
S(u)=T(u)-K(u) : the fractional portion of a year the statusdiin the year of failure

S™(u)=mr_S(u) +1]  : the fractional portionS(u) rounded up to the next-th of a
year, mJ(01]
TM(u)=K(u)+S™(u) : the moment of benefit payment in case the stitils

For a group of g lives aged x,, X,, ..., X, With status (u ) and a timet> 0 let (u+t)
denote the status obtained frou) with each life agedx, +t,k =1,...,g . For example, if
(u)=(x:y) is the joint-life status on two lives, thefu+t)=(x+t:y+t). The random

prospective lossat contract timet >0 of a n-year endowment insurance with life status
(u) and sum insuredS! is the random variable defined by

m.c . — +,min{T™ (u+t),n- m.c . :(c
L9 (y 2 ) =yl o) g - NP ’(u.n)l:a%(m, (5.1)
/N i(c) +i c _
where 4 :1%, de© :'_(C)’ j © :(1'—)1, (5.2)
d 1+cl C

denotes an-yearannuity certainof one unit per year payable in instalmentsaffractional
units at the beginning of each payment cycle ofjtlen cD(O,l]. In the limiting case of

i : , 1-v"
continuous payments =0 one defines and set&'” =

=a, where d=In(1+i) is
n
the force of interest. Obviously one hdisg éir{‘:) =a.. To define actuarial reserves properly,
C—

it is necessary to consider the possible statégtasscan take over future time. In the case of
a single life agedx at contract timet =0, one observes that with respect to the mortality
risk the life can be in two different states, 0{1,2} attime t > Q which are defined by

X, =1 - (T™x)>t) ((x) isalive at timet > 0)
X, =2 « [T™(x)<t) ((x) is dead at timet > 0

Generalizing to a couple of lives aged and y at t =0, one observes that with respect to
the mortality risk the couple can be in four diéfiet statesX, 0{ 1234} attimet> Q

-

o [T™x)>t,T™(y)>t) (both (x) and (y) are alive at timet > 0)

o [Ty >t T
(T™ () <t, T (y)

o [Tmeg<t, T

) ((x) isalive and(y )is dead at timet > )0
) ((x) isdead and(y) is alive at timet >0)
) (both (x) and (y ) are dead at time > )0

X X X X

1
A W NP
0
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Obviously, a group of g lives can be in2° different states X, =i, i D{LZ,...ZQ} at a
future time t>0. In general, themathematical reservat time t>0 of a n-year
endowment insurance with a life stat{s) in state X, =i attime t>0 is defined to be

the conditional expectation of the prospective lgs®&n (u) is in state X, =i at time
t >0, which is denoted and calculated as follows:

V™ (u:n)= E[L™ (u:n)X, =i}, i0{L2....2%}. (5.3)
For a single life (x) the mathematical reserve in state, = ganishes and the
mathematical reserve in staté, = id given by (dropping as usual the index ) 1

VmI(x:n)= A™(x+t:n—t)BI- NLP™ (x:n)@°(x+t:n-t) (5.4)

Similarly, for a joint-life (x:y) the mathematical reserves in the stadés= 234 vanish
and the mathematical reserve in sta{e =1 is given by

V™ (x:yin)

55
= A" (x+t:y+t:n—t)BI- NLP™(x: y:n)@®(x+t:y+t:n-t) &5

In contrast to this, for a last-survivor stat(Fy), only the mathematical reserve in the state
X, =4 vanishes and the mathematical reserves in tiesstd, = 123 are given by (see
e.g. Bowers et al.(1986), p. 501, for the speaakdm,c) = (00))

Vi by )=l ey T (9 > 01 () > o

0= (5.6)
= A‘m)(x+t: y+t: n—t)[SI - NLP(”"C)(X: y: n)@(”(xﬂ: y+t: n—t)

VI (x:y e n) = E|Lme (xy nl(T(m)(x) >, T™(y) <t 5 7
= A™(x+t:n-1)[5I - NLP™ (x: y: n) @@ (x+t: n—t) &0
leryn)- el oyl o s oo

=A™ (y+t:n-t)BI- NLP('“'C)(X: y: n)@(‘”(yﬂ:n—t)

Besides the mathematical reserves, which depentieostates of a status, one considers the
net premium reservat time t >0, which is defined to be the conditional expectaid the
prospective loss given survival to time> 0 (e.g. Bowers et al.(1986), Chap.17.7, p. 500):

Vo fun) = el T ) > = S v el = 100> 69

For a single life (x), respectively a joint-life (x:y), the net premium reserve (5.9)
coincides with the mathematical reserves (5.4)aetbely (5.5). For a last-survivor status
(u):(x_y) the net premium reserve is a probability weighsedh of the mathematical
reserves (5.6) to (5.8) determined as follows ([@ayvers et al.(1986), Chap.17.7, p. 502):
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V(m,C)(ﬁ.n)
_ tpxyW1(mc(X y: n)+ px(l_t py)w(m‘”(x y: n)+ py(l—t px)w(mc)(x:y:n) (5.10)
Py + D= B, )+ P, (- D))

Corresponding to the state dependent mathematsairves, we consider state dependent
deferred acquisition costsvhich for a life status(u) in state X, =i attime t>0 are

denoted and defined by
VE™ (u:n) = —aSI-V,™(u:n)), i0{12,...2¢}. (5.11)

Besides the state independent net premium resexvansider the state independexpense
reserve which for a life status(u) attime t>0 is denoted and defined by

VE™ (u: n)=-a fsI-V ™ (u:n)) (5.12)

The state dependeattuarial reservesire defined to be the sum of the mathematicaftvese
and the deferred acquisition costs and are dermyted

VAT (U n)= V™ (u: nl+ VE™ (u:n), i0{12,...29}. (5.13)

The state independeptemium reservés defined to be the sum of the net premium reserv
and the expense reserve and is denoted by

VA™) (42 n)=V ™ (u: n)+ VE™ (u: n). (5.14)

Remark 5.2. The concept of state independent reserves folaitesurvivor status has been
introduced by Frasier(1978) (see also “The Actuedyg)” and Margus(2002)). The choice
between state independent and state dependentessipends upon loss recognition in the
balance sheet (recognition or not of a status aljan\yith state independent reserves, the
insurance company administers the contract ashéidt no knowledge of any deaths, as long
as at least one insured survives.

6. Premium Components

In the following only the most realistic casen=c> 8 discussed. Corresponding to the
dual situation of state dependent and state indbpgnreserves, two types of premium
decompositions are considered.

6.1. State dependent Premium Components

Quantities are expressed as actuarial functioiseoétatus (u) and the stateX, =i at the

discrete timeg =k [¢, k = O,],...,D -1 whenever relevant.
C
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Risk Premium
RE™) (U n) = v° [J G [(SI—HCVi‘”‘*C) (u: n)) i D{12,...29} (6.1)

Saving Premium

SB™ (u:n) = vV, ™ u:n)-v ™ (u:n), i0{12..2°} (6.2)

The sum of the risk premium and saving premiumroissistentith the net level premium at
contract issue:

RP™) (u:n)+ SR™ (u:n)= NLP™(u:n), i0{12,...29} (6.3)

Expense Premium

EP™(u:n)=LP™ (u:n)- NLP™(u:n) (6.4)

Risk Component Expense Premium

REF™ (u:n)=a RP™ (u:n), i0{12....2°} (6.5)

Saving Component Expense Premium

SER™(u:n)=EP™ (u:n)-RER™ (u:n), i0{12,...2°} (6.6)

Operating Cost Charge

OC™ (u:n)= v VE™ (u: n)+SER™ (u: n)k,, VE™ (u:n), i0{12..29} (6.7)

t+e,i t+c

Acquisition Cost Charge

AC™ (u:n)=v° EP™) (u:n)-0C™ (u:n), i0{12...2°} (6.8)

t+c,i t+c,i

6.2. State independent Premium Components

Quantities are expressed as actuarial functionthefstatus (u) at the discrete times

t=kle,k=0L..., n -1 whenever relevant.
c

Risk Premium
RFt)(m,c) (U : n) =\° g q(u+t) EQSI_HCV(m'C) (U : n)) (69)

Saving Premium

SE™ (u:n)=vel V™ (u:n)-V ™ (u:n) (6.10)
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The sum of the risk premium and saving premiuroissistenwith the net level premium:
RP™ (u:n)+SP™ (u:n)= NLP™ (u: n) (6.11)

Expense Premium

EP™ (u:n)=LP™(u:n)= NLP™ (u:n) (6.12)

Risk Component Expense Premium

REF™ (u:n)=a RR™ (u:n) (6.13)

Saving Component Expense Premium

SEB™ (u:n)=EP™ (u:n)-RP™ (u: n) (6.14)

Operating Cost Charge

OC? (u:n)= v VE™ (u: n)+ SER™ (u:n)l+ VE™(u:n)  (6.15)

t+c t+c

Acquisition Cost Charge

AC™ (u:n)=v EP™ (u:n)-0C™ (u:n) (6.16)

t+c t+cC

7. Reduction of Calculation

The preceding formulas show that all actuarial @altelated to the multiple life endowment
insurance depend solely on the actuarial functia¥® (u:n) and a®(u:n). In fact, under
the popular uniform distribution of deaths assuomtihe formulas can be further reduced to
the calculation of D(u:n) and E(u:n) only. Following Gerber(1986), p. 27-28, one
shows that

-i-D(u:n), m>0

j(m)

D™(u:n)=
(u:n) iMD(u:n), m=0

(7.1)

where i™ is equal to them-thly nominal technical interest rate convertibje times in a
year in casem> Qwhich is defined by

: (7.2)
m

and i is the technical force of interest (standard notaid), which is defined as the
limiting value of i™ as m — 0 and equal to
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jim D7 =1

) . d
o=i?® =|limi™ = =—
m-0 m-0 m ax

@+i) ] o=In@+i). (7.3)

Similarly, d™ is equal to than-thly nominal technical interest rate in advanctre in
case m>0 by

d(m) B i(m)

= (7.4)

Since 1 m+ L one recovers in the limiting case as - 0 the technical force of

d(m) j (m
interest
d@ = Iirrz)d‘”‘) = Iirrg)i‘”‘) =0. (7.5)
From (7.1) it follows that
A™ (u:n)= Alu:n)+ (5 -1)D(u:n). (7.6)

Furthermore, following Gerber(1986), p.36-37, asthg (7.6) one shows the relationship

2 (u:n) = 1- A(;C()c()u: n)_1- Alu: n)_((j'fc)) -1)iD(u:n) | a7

Clearly, the relations (7.6) and (7.7) completedasired reduction of calculation.

8. Impact of | ndependence Assumption on Premium Calculation

Since actuarial values of the tariff book have beamftculated under the simplifying
assumption of independent future lifetimd@qx and T(y ) it is important to measure the

impact of this assumption under the observatiohitidependence is not fulfilled in real life.
In the two lives case the maximal impact can beswmesl using the Fréchet lower and upper
bounds introduced in H6ffding(1940) and Fréchet(@2nd first applied to life insurance by
Carriére and Chan(1986). Consider the Fréchet cdbafl bivariate distributions with fixed

margins ,q, =P(T(x)<t) and ,q, =P(T(y)<t). The Fréchet upper bounds the
distribution FY(s,t) = P(T(x) < s, T(y) <t)=min(,q,., qy) and theFréchet lower bounds
the distribution  F'(st)=P(T(x)<sT(y) <t)=max,q, + q, - 10). Any joint

distribution F(s,t) = P(T(x)s s, T(y) st) with fixed margins is constrained from above
and below by

F-(st) < F(s,t) < FY(st). (8.1)

The Fréchet bounds generate four different futifieéirhes for the joint-life and last-survivor
status. Their survival distributions are denoted determined by
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P, =P(T"(x: y) >t)=max, p, +, p, - 10), (8:2)
P, =PV (x: y) > t)=min(, p,. B, ), 8.3)

pL; = P(T-(x: y) > ) = min(, p, +, p, 1), (8.4)
Y =P(TV(x1y) > t)=max, p,., p,). (8.5)

For comparison purposes, the survival distributiohshe future lifetimes for the joint-life
and last-survivor status under the independenaargdson are denoted and determined by

oL, =PTe(x:y) >t)= p, Tp,, (8.6)

oo, =P(T0y) > )= b+ p, = by, 8.7)
The defined survival distributions satisfy the inelities
t p>l<_y St pry St pl;():y’ tp%, St p%, St p)l(%y’ (88)

which imply that the corresponding random futurffetimes are ordered in the stochastic
dominance sense such

TG Y) S  TICY) S TV Y), TV Y) S T y) S, THX:y). (8.9)

The reduction of calculation obtained in Sectiof 8hows that it suffices to analyze the
maximal impact of the independence assumption empm calculation for the one-year
case m=c= 1For a general life statugu dhe NSP and the NLP of the multi-life-year

endowment insurance in this situation are deterdhinethe actuarial functions

NSHu:n)=1-d [&(u:n), NLP(u:n)= -d, (8.10)

a(u:n)

where the multi-lifen -year life annuity is calculated from the formula
n-1
n)=> v*p, - (8.11)
k=0

Inserting the six different life distributions (8-@8.7) into (8.11) and using the stochastic
inequalities (8.8)-(8.9), one obtains the followimgunding inequalities between the different
joint-life and last-survivom -year life annuities

a*(x:y:n)<a”(x:y:n)<a’(x:y:n), (8.12)

—_—

a’(x:y:n)<a’(x:y:n)<at(x:y:n), (8.13)
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which according to (8.10) imply the following inegjities between the NSP’s and the NLP’s

NSP’ (x:y:n)< NSP'(x: y:n)< NSP(x:y:n), (8.14)
NLP(x:y:n)< NLP?(x:y:n)< NLP'(x: y:n), (8.15)
NSPL(Ty: n)s NSP](ﬂ: n)s NSP (x_y n), (8.16)
NLP*(x: y:n)< NLP"(x:y:n)< NLP* (x: y:n). (8.17)

To measure the impact of the independence assumjitis natural to assume that the future
lifetimes T(x) and T(y) are positively quadrant dependent and follownapte Fréchet

distribution
F°(s,t) = (- 6)Qa, Dg, +omin(,q,, q,) o0[o1], (8.18)

which satisfies the inequalityF " (s,t) < F%(s,t) < FY (st . )Using (8.10) one obtains the
following deviations between independence assumpiod Fréchet assumption (8.18) for
the NSP’s and the NLP’s

NSP’(u:n)-NSP(u:n)=d@da"(u:n)-a’(u:n)), (8.19)

NLP"(u:n)- NLP?(u:n)= aD(SJ-: ) - )+ BEﬂaU]iu =) (8.20)

Using (8.12) and (8.13) it is clear that (8.19) 4Bd20) are non-negative for the joint-life
status u=x:y and non-positive for the last-survivorship status= x: y. Therefore the
independence assumption overestimates the jomtNBP’s and NLP’s and underestimates
the last-survivor NSP’s and NLP’s. The maximal d¢ens are obtained for a perfect
positive dependenced =1. Note that the dependence parametér can be interpreted as
Spearman’s grade correlation coefficient (e.g. ifi@hn(2004), Section 3.1). The Table 3.1
below illustrates the maximal deviations numericalVe assume that the marginal future
lifetimes follow the distribution of Gompertz(182&ee also Willemse and Kopelaar(2000)),

which is defined by
_[ﬂ) t
P, = ex%e b EEl— ebJ} : (8.21)

The parameters of the Gompertz distribution areegatl to a =85 b= 1Qwhich are close
to those listed in the study by Milevsky and Po&@01), Table 4.
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Table 3.1: Maximal deviations for NSP’s and NLP’s for theotliwves endowment insurance

interest |male female |term maximal deviations in per mill
i X y n ASP,..., wn |ALP... |ALP—
2% 30 30 10 0.4 -0.4 0.3 -0.3
20 24 -2.4 0.5 -0.4
30 7.4 -7.4 0.8 -0.7
40 17.8 -17.8 1.3 -1.2
50 34.5 -34.5 2.1 -1.9
4% 30 30 10 0.8 -0.8 0.3 -0.3
20 3.7 -3.7 0.5 -0.5
30 9.7 -9.7 0.8 -0.8
40 20.0 -20.0 1.3 -1.3
50 33.7 -33.7 2.0 -1.9
2% 40 40 10 1.2 -1.2 0.7 -0.7
20 6.4 -6.4 1.2 -1.2
30 18.5 -18.5 21 -1.9
40 38.5 -38.5 3.3 -2.8
50 56.7 -56.7 4.5 -3.6
4% 40 40 10 21 2.1 0.8 -0.8
20 9.6 -9.6 1.3 -1.3
30 24.2 -24.2 2.2 -2.0
40 44.3 -44.3 3.3 -3.0
50 59.5 -59.5 4.3 -3.7
2% 50 50 10 3.2 -3.2 2.0 -2.0
20 15.9 -15.9 3.4 3.1
30 39.6 -39.6 5.5 -4.5
40 61.9 -61.9 7.5 -5.6
50 66.9 -66.9 8.0 -5.9
4% 50 50 10 5.5 -5.5 21 -2.0
20 24.1 -24.1 3.6 -3.3
30 52.9 -52.9 5.7 -4.8
40 75.5 -75.5 7.4 -5.9
50 79.8 -79.8 7.8 -6.1
2% 60 60 10 8.1 -8.1 5.7 -5.2
20 34.2 -34.2 9.6 -7.5
30 61.7 -61.7 135 -9.3
40 68.1 -68.1 14.6 -9.7
50 68.2 -68.2 14.6 -9.7
4% 60 60 10 14.0 -14.0 5.9 -5.4
20 52.4 -52.4 10.0 -8.0
30 86.2 -86.2 13.7 -9.9
40 93.0 -93.0 14.5 -10.3
50 93.0 -93.0 14.5 -10.3
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