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UNDERSTANDING THE DEATH BENEFIT SWITCH OPTION IN

UNIVERSAL LIFE POLICIES

ABSTRACT
Universal life policies are the most popular ingwwe contract design
in the United States. They have either a levelldéanefit paying a
fixed face amount, or an increasing death bengfich additionally
to a fixed benefit pays the available cash valuod, l@oth types include
the option to switch from one to the other. In thaper, we are
interested in the fact that—unlike a switch frawdl to increasing—a
switch from increasing to level death benefit regsiineither fees nor
additional evidence of insurability. To assessithpact of the death
benefit switch option, we develop a model framewofkincreasing
universal life policies embedding the option. Cdesation of
heterogeneity in respect of mortality via a stotlabailty factor
allows an investigation of adverse exercise behmavim a
comprehensive simulation analysis, we quantifyritbepresent value
of the option from the insurer's perspective usirigk-neutral
valuation under stochastic interest rates assummpirical exercise
probabilities. Based on our results, we provide igyol

recommendations for life insurers.

Keywords: Increasing death benefit; Death benefittch option;

Heterogeneity in respect of mortality



1. INTRODUCTION

First introduced in 1979, universal life is now tim@st important individual life insurance
contract type in the United States. Lifelong unsatiife policies offer flexibility with respect
to frequency and amount of premium payments anddeath benefit options to choose from
(see Cherin and Hutchins (1987, p. 691) and D’Aagl Lee (1987, p. 453)). Thevel death
benefit pays a constant specified face amountintreasingdeath benefit pays the available
cash value (or policy reserve) in addition to aefixface value. Either type of contract
typically embeds the option to switch from leveliareasing or vice versa (tldeath benefit
switch optiop. A switch from level to increasing benefits regsi new evidence of
insurability and, possibly, an extra fee since dieath benefit immediately increases by the
current amount of cash value at the time the opg8aexercised. In contrast, when switching
from increasing to level benefits, the death bensffixed at the current value. Thus, in the
latter case, the switch does not affect the netuamat risk, i.e., the difference between death
benefit and cash value, at the switch exercise tamé so there are usually no special
requirements or fees involved in making this typeswitch (see Smith and Hayhoe (2005, p.
2); see also, e.g., www.sagicorcapitallife.com)wedwer, development of the net amount at
risk after the switch depends on premium paymehawer. Thus, there is some question as
to whether insurers should be concerned about deeftefit switches under otherwise
unchanged actuarial assumptions.

In the present paper, we examine the death beswilith option in a pool of increasing
universal life policies with the goal of enhancungderstanding of this feature. To accomplish
this, we develop a model framework for increasing/ersal life contracts with death benefit
switch option that incorporates heterogeneity speet of mortality, switch probabilities, and
stochastic interest rates. Based on this modekwaéuate the option under different premium

payment assumptions after switching and for variemercise scenarios. By considering



results for adverse exercise behavior dependiranansured’s health status, we derive policy
implications and, in particular, analyze whethereguirement of charges or evidence of
insurability would be advisable.

The literature about universal life insurance isimyaconcerned with the return on
universal life policies (e.g., Belth, 1982; Cheand Hutchins, 1987; Chung and Skipper,
1987; D'Arcy and Lee, 1987). Carson (1996) findseedainants for universal life cash values,
and Carson and Forster (2000) examine policy yiefdehole and universal life contracts.
Costs of universal and term life insurance are crexgbin Corbett and Nelson (1992). Carson
(1996), Cherin and Hutchins (1987), and Chung akigpg@r (1987) empirically study the
return characteristics of increasing universal piédicies. However, to date there have been no
attempts to develop a model of universal life cacis with increasing death benefit, much
less any study of the death benefit switch optibhe same is true regarding premium
payment options in universal life policies. Mosidies are restricted to the paid-up option
(i.e., stopping premium payments) in participatiiig insurance contracts (Kling, Russ, and
Schmeiser, 2006; Linnemann, 2003, 2004; Steffen2002). In addition to the paid-up
option, Gatzert and Schmeiser (2007) integraterédsamption option (i.e., resumption of
premium payments after having made the contract-pg) in their framework for
participating policies.

To the best of our knowledge, increasing univetsal policies and the death benefit
switch option have not yet been studied. We prowadeactuarial model framework of a
universal life contract with increasing death bé&nafid incorporate the death benefit switch
option. Since universal life policies are lifeloagntracts that pay a death benefit, we account
for mortality risk as a central risk factor. Mortgl varies among insureds, and thus
heterogeneity in respect to mortality is modeledabgtochastic frailty factor on a given
deterministic mortality table. The concept of fiailvas originally defined by Vaupel et al.

(2979) in terms of the continuous force of monalin this paper, we use the term "frailty



factor" in the discrete context in order to expréiss factor's stochasticity, as well as

respective distributional characteristics. An exaation of adverse exercise behavior with
respect to an insured’s health status is of impodaas exercise of the death benefit switch
option does not require evidence of insurabilitheThew level death benefit contract is thus
based on unchanged actuarial assumptions.

After switching, premium payments are adjusted esiice former increasing policy
premium is no longer adequate for the new levekgoDue to the full flexibility in premium
payments for universal life contracts, the modifa is not prescribed by the insurer; the
only restriction is prevention of policy lap5eAn evaluation of the switch option thus
necessarily involves assumptions about modifiesnpren payment behavior after switch. It
is this combination of options—the death benefititehw option and premium payment
options—that can have substantial negative effemtdéhe insurer. We consider two viable
premium payment scenarios, one with constant pramiand one with flexible payments.

To gain detailed insight into the death benefittslwvioption of increasing universal life
policies, we conduct a comprehensive investigatandifferent switch probabilities. In a
simulation analysis, we quantify the net presenue/aof the option using risk-neutral
valuation under stochastic interest rates basdt@wasicek model. We then study the effect
of adverse exercise behavior by assuming diffessvitch probabilities depending on an
insured’s health status and on the time since ypohception (and thus on the amount of
policy cash value). This procedure allows an ingasion of the necessity of requiring
evidence of insurability. Finally, we conduct a siéimity analysis with respect to the frailty

factor distribution.

1 A universal life policy lapses if the cash valsdrisufficient to pay policy costs (see Carson,6139 675).

In this case, the contract is terminated withoytopd to the policyholder. During a one-month graeeiod,
catch-up premium payments can be made to avoidyplalpse. After that period, reinstatement of tbécy
requires new evidence of insurability as well agnpant of all outstanding premiums (see Trieschmann,
Hoyt, and Sommer, 2005, p. 341). This understandihigolicy lapse is in contrast to exercise of the
surrender option, when the cash surrender valtizegbolicy is paid out.



Results show that the value of the death benefitcewoption is strongly dependent on
premium payment behavior after exercise and orh#adth status of an exercising insured.
From our findings, we derive policy implicationsdaprovide recommendations for insurers,
which can be applied depending on specific—maytalnd behavioral—experience in an
insurance portfolio.

The remainder of the paper is structured as follo#sction 2 presents the model
framework, including the model of a universal Igelicy with increasing death benefit and
the model of the death benefit switch option. letie® 3, the valuation approach is presented
and Section 4 contains numerical results. Policplications for insurers are discussed in

Section 5; a summary is found in Section 6.

2. THE M ODEL FRAMEWORK

The universal life contract with increasing dea#nbfit

We consider a lifelong universal life insurance tcact with increasing death benefit. The
policy is issued at timé=0 for an insured of ageID{ xnm,...,w} at inception, wherec,,, is
the minimum entry age admitted. The contract matatdimeT = w— x+1, wherew is the
limiting age of a mortality table, i.e., the oneaygrobability of dying at agev, q,,, is equal
to 1. In what follows, death or survival probaliég based on the mortality table will be
denoted with a prime (') mark. The one-year tabtbability of death at ag&+t is thus
given byq,,,, t=0,..,T—-1

In case of death during policy yeti(between time — 1 andt), the death benefit is paid in
arrears at the end of the year, i.e., at tlrﬂ{l,... ,T} . The increasing death benefit consists
of the sum of a fixed face valieand the cash valug, at timet:

Y, =Y+V, t=1..,T.



To focus on the pure effect of the death benefitchwoption in increasing universal life
policies, our model framework does not accountdioarges or surrenders. According to a
standard actuarial valuation (see, e.g., Bowerale(1997) and Linnemann (2004)), for

annual premium payment3,, t=0,..,T —1 paid at the beginning of each ye&an which

the insured is alive, the cash value is given lyftilowing recursive formula:

(L=t =(Mat B) O+ ) - dorY, EL0T, (1)
whereV, =0. We assume that a constant annual interestirégecredited to cash value and

premium. Each policy year, this amount is reducedhie cost of insurance, i.e., the product
of death benefit and table probability of deathlcGlations are hence based on the actuarial
assumptions of a constant annual interest rasé®d probabilities of death according to the

mortality table. WithY, = Y + \/, the recursion formula for policy reserves in Hopra (1)

reduces to

V. =(Vy+By) {2+ i)-d..Y, =1..,T 2)
Defining the savings premium at time-1 as B®) =V, (1+i)" —V,_, and the cost of insurance
(risk premium) at the same time &85 = q..Y(1+ i), it turns out from Equation (2) that

B.,= B}(_S1)+ 3(_? From the definition of the savings premium, wetamb the following

expression for the cash value:

t-1

\/t — Z Br(1$) (1+ i)t—h

h=0

Given thatB[(_Sl) =B_,- B(_? we can also write

(B~ B9)(+ )" =3 (B Y1+ )2+ )

-1
h=0 h=0 (3)

t

=3B, (1+1) " =YY (1 )

t—
h= h=0

t

V. =

t



Since universal life contracts allow for flexibleemium payments, we need to make certain
assumptions in this regard. Universal life policeag usually paid by means of constant
periodic premiums. These constant payments aimaftect the general savings pattern of life
insurance policies, where savings are accumulaiadglthe earlier years of the contract term
when the costs of insurance are low in order tarfae the higher costs of insurance later in
life. We, therefore, base our analysis on constamnual premium payments

B,=B, t=0,..,T-1 Given the premiumB, the cash value should be positive until

maturity to avoid policy lapse (see Carson (19966%b)). Theminimum(constantannual)
premium to fulfill this condition is the amount farhich the cash value at maturity equals 0.

Thus, we solveV; =0 for B (see Equation (3)), which is equal to solving #uivalence

principle, and obtain

- t-h-1
Z q;(+h (1+ I)

B =Y =0 , (4)

T-1

(i)

=

In general, the net amount at rigk for a universal life policy at timé D{l,...,T} is
given as the difference between the death beNgfind the cash value, :

R=Y-YV, t=1...,T. (5)
In the case of an increasing death benefit, thehdeanefit at timet is the sum of the
fixed face value and the current cash value, dng, tthe net amount at risk for an increasing

policy is constant and equals the face amadnthroughout the contract term.
Based on the above assumptions, Figure 1 illustrdte premiums, cash value, death

benefit, and net amount at risk of a universal fidicy with increasing death benefit from

inception to maturity.



Figure 1. Premiums, cash value, death benefit, and net ahatursk of universal life policy
with increasing death benefit
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For constant annual premium payments throughouptiiey term—calculated according
to Equation (4)—the cash value first increasesthed decreases over time until it becomes
zero at maturity. The decrease in cash value nesurity is due to high costs of insurance at
higher ages that exceed the interest earningseotalsh value and premiums (see Equation
(2)). The death benefit is given by the sum of fiked face valuey and the cash value and
thus develops analogously to the latter. Hence, tdien “increasing death benefit” is
employed irrespective of the fact that the deathebemay also decrease if the cash value
does. Chung and Skipper (1987) account for thistpand use the more precise term “non-
level death benefit.” In insurance practice, howetbke term “increasing” is common. It
suggests that the policy—in contrast to a poliagthva level death benefit—includes a
dynamic component that increases death benefitrageen the course of accumulating cash
value. Since the cash value must be positive tp kiee policy in force, the increasing death
benefit is always at least as high as a constaet eath benefit for the same face amount.

The net amount at risk is equal to the fixed faaki@Y from policy inception to maturity.

The death benefit switch option
Increasing universal life policies typically givlaet policyholder the right to switch the

death benefit from increasing to level without ges or additional evidence of insurability.
When exercising the death benefit switch optiotimé TD{l,... nl —ZI} , the death benefit is
switched to level and fixed at the current valje= Y+ \/. In our model, the option may be

exercised only once and at discrete exercise timasely, at the beginning of each policy



year. Exercise of the option at tintecan also be interpreted as terminating the inargas
death benefit contract and, based on otherwiseamggd actuarial assumptions, purchasing a

new contract with level death benefit. The death benefit at timlegiven exercise at time

is denoted by

Y(T):{Yt’ t:1,...,T
t

: 6
Y, t=r+1...,T ©)

When the death benefit switch option is exercigedhie accumulation phase of the cash

value, the switch halts further increase of thetliléanefit by fixing it at the attained lev¥) .

Compared to the case without switch, future deathebit amounts are thus lower until the
increasing death benefit falls below the fixed leagain. A switch at or after the peak of the
death benefit curve implies a higher level deathelie until maturity than under increasing
policy conditions. However, in both cases, at tlnpin time when the switch option is
exercised (and only at this point), the net amaaintisk remains unchanged. This is in
contrast to a switch from level to increasing, whimmediately increases the death benefit,
and thus the net amount at risk, by the currentusrhof cash value. Therefore, a switch from
increasing to level does not require any chargesmience of insurability.

However, future development of net amount at rispahds on future premiums. Hence,
when evaluating the death benefit switch optionsitrucial to take into account possible
changes in premium payment behavior after exemigbe option. When switching before
the peak of the cash value curve, previously catedl premiums for the increasing death
benefit contract (see Equation (4)) are too hightlie new level policy. A switch near (some
policy years before), at, or after the peak resmlteigher premiums due to fixing a higher
death benefit than in the “increasing” case. Tlius,not possible to simply analyze the death
benefit switch option alone: we need to make assiomp about the premium payment
behavior after switch, which leads to a combinednexation of the death benefit switch

option and premium payment options. Again, withvensal life policies, policyholders are
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free to choose the frequency and amount of prenpiagments as long as the cash value stays
positive.

In the following, we restrict our analysis to tweemium payment scenarios that can be
regarded as general cases from the insurer’s pirgpas they constitute minimum premium
payment schedules where premiums are just highgintmuavoid policy lapse. In particular,
they represent theinimum constanannual premium payments amdnimum flexibleannual
premium payments that will ensure a positive caaslnes throughout the contract term. Any
other constant annual or flexible payments keefliegcontract in force until maturity need to

exceed these premium amounts.

In the first, “level premium,” scenario, constamiaal level premiumsB(T) paid after the
switch are calculated based on the equivalenceipt@) taking into account the present cash

value V, at the exercise date as an additional single payri@is can be interpreted as

terminating the former increasing death benefitiar and starting a new level death benefit
contract with an initial premium payment in the amb of the current cash value. For
universal life policies, insurers chiefly use camtannual “level” premiums to project policy
values (cash value, cash surrender value, deathfitjethat imply a zero cash value at
maturity (so-called policy illustrations). After tpn exercise, updated policy illustrations are
usually provided. Annual premium notices are oftased on the premium values contained
in these projections. Although holders of univetdalpolicies are not forced to pay the stated
premium amount, they likely do so, unless a cerg@ament makes them depart from the
prescribed premium schedule. Since a switch frormareasing to a level death benefit does
not require additional evidence of insurability, madity and interest rate assumptions remain
the same. The equivalence principle requires thegmt value of future premium payments to
equal the present value of future benefits (sag, B8owers et al. (1997) and Linnemann

(2004)) i.e.,
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T-1-1 T-r-1

B(T) Z t p;"'f (1+ i)_t +\/T = Yr t Q@r Q+r+t(1+ )_(t*'l) .
t=0

t=0

If the initial single premiunV, exceeds the present value of future benefits ®@hntw level

policy, the annual premium is set to zero. SolfisrgB() thus yields

T-7-1

Y, > Br G (1 )P -,

B = max =0 ol

> P (1+1)”

t=0

For simplification purposes, we do not include sicenario where, if the available cash value
exceeds the present value of future benefits, dla¢ghdoenefit amount of a universal life policy
might as well be increased in order to maintairaia ¢ontract according to the employed
technical basis. However, this assumption would féneorable from the policyholder’s
perspective and would increase negative effectseo$witch option value for the insurer, thus
implying that the obtained switch option value hetpresent analysis represents a lower
bound to the ‘actual’ option value (which can athgabe substantial). As regards the
policyholder perspective, we assume that the datigd switch may sometimes be made for
other than financially rational reasons, and thdgspite disadvantages in the premium
amount, doing so can still be beneficial for thdigyiolder, despite the fixed death benefit.

Premium payments at tinfefor a policy switched at time are denoted by

(7) B’ t:O,...,T_l
= (7)

v B@t=r,... T-1
The new death benefl‘t{(r) and new premium paymenﬁ(r) must be taken into account

when calculating cash Va|lJ¢(r) and net amount at risR(r) after exercise of the switch

option, analogously to Equation (1) and Equation rspectively.
Figure 2 shows premium payments, cash value, deatéfit, and net amount at risk based

on the “level premium” scenario. In Part a), thatslw occurs before the peak of the cash
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value curve; in Part b), the switch occurs at gaak.

Figure 2: “Level premium” scenario—premiums, cash valuatkéenefit, and net amount at
risk of universal life policy with increasing dedibnefit switched to level at time
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After the switch, the contract, in principle, worlke a traditional whole life insurance
contract with constant premiums. If the switch ascat timer before the cash value curve
peaks (see Figure 2, Part a)), premiums drop testaoh annual level premiums. These
reduced payments result in slower growth of thdr eadue. A switch at the peak of the cash
value curve (see Figure 2, Part b)) implies thghér level premiums are necessary, with a
consequent increase of the cash value. The inagatath benefit is fixed at the switch
exercise time. As the cash value increases aftgclswthe net amount at risk lies below the
constant amounY in the nonswitch case.

In the second premium payment scenario (“risk poemi), premium payments are
stopped immediately after switch at timeand not resumed until the cash value is exhausted.
When switching from an increasing to a level ddsghefit, the death benefit amount is frozen
at the switch exercise time, offering the policydesl the opportunity to maintain the attained
death benefit level by deferring premium paymentsl wepletion of the cash value. From

then on, the risk premium is paid in only such amant that the cash value remains zero
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until maturity. The premium arrangement is thuselblasn natural premiums, as they are
related to the amount of benefit. We refer to thesting as a “risk premium scenario” to
emphasize that once the cash value is exhaustedpdlicyholder must pay the full risk
premium to keep the contract in fordéhis scenario is typically exercised in the seconda
market for life insurance, where the policies ofureds with reduced life expectancy are
traded. Life settlement companies aim to “optimipegmium payments in the sense of the
risk premium scenario by paying only the minimunemrum necessary to keep a policy in
force, speculating on early deaths of the insureds their portfolio (see, e.g.,
www.settlementwatch.com; www.lifesettlementguidg;or www.idealsettlements.eu;
www.lifesettlementgrp.com).

The above assumptions imply the following formuta premium payments, which is

derived from the recursive development of the cadhe in Equation (1), Wher‘d[(fl) is set to

Zero:

(1) B’ t=0,...,T—1
B/ =

- : 8
X max{ qu;HYthl)(l_'_ i) 1_Vt(r)} Jt=r1,...T-1 (8)

(7)

If the cash valueV,'’ at time t exceeds the discounted risk premium for yéa(i.e.,

q'XHYt(fl) (1+ i)_l), no premium payment is necessary. Ok{é@ is less than the required risk

premium for the first time, the remainder\zﬁr) is exhausted and the outstanding difference

(7)

is covered by the premium payment. After the zeneel of V.'/ has been reached, it is

sustained by premiums equaling exactly the amounthe discounted annual cost of
insuranceq;HY(r) (1+ i)_l. Again, we illustrate the course of premiums, caalue, death

t+1

benefit, and net amount at risk in Figure 3.
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Figure 3: “Risk premium” scenario—premiums, cash valuetldéanefit, and net amount at
risk of universal life policy with increasing dedibnefit switched to level at time
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3. CONTRACT VALUATION

The previous section makes apparent that the sfigicthe death benefit switch option
depend on switch exercise time and premium payivemavior after switch. When evaluating
the option, however, mortality as a third (randasojnponent also needs to be considered.
Since the option value is determined by the contlinaof premium payment method, switch
exercise time, and time of death, we account foeesk option exercise behavior. That is, we
consider mortality heterogeneous insureds whosecisgebehavior depends on their health
status or mortality expectation. This enables apretmensive examination of the option and
an investigation of whether fees or evidence adiriability are recommended.

Option valuation can be conducted in different wdgpending on policyholder exercise
behavior. Generally, two approaches can be dishgd. First, under financially rational
exercise, policyholders attempt to identify an oy exercise strategy that maximizes the
option value. This is implemented by solving aniropt stopping problem. In our setting,
determining an optimal exercise strategy is highipbitious because of the complex

interaction between mortality and financial factasswell as further options embedded in a
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universal life contract. In particular, the switelxercise decision, inter alia, depends on
decisions regarding frequency and amount of prempayments before and after switch,
lapse option exercise, the insured’s health statud,the interest rate. Therefore, tackling this
problem is an extensive undertaking and requiresimptions regarding many decision
variables.

In addition, even though an ever greater numbgobtyholders may be taking advantage
of increased transparency in the insurance martee thus making more rational exercise
decisions, empirically observed exercise behawar still vary from this assumption. Hence,
the option value under rational exercise is lik@yoverestimate the value actually generated
in insurance portfolios. From the option value lohsa an optimal exercise strategy, it is
therefore difficult to derive policy recommendatsdior insurers.

For these reasons, we focus on the second valuappnoach and integrate exercise
probabilities into our model. The investigationc@nducted from an insurer’s perspective for
a pool of policyholders who do not necessarily edser their options in a rational way.
Instead, exercise decisions are exogenously madénfmncial or other, possibly personal,
reasons. In the current market situation, our matlevs an assessment of the risk associated
with the switch option in a portfolio of insureds avell as the derivation of policy
implications, as is done in Section 4 and 5, rethpalg. Thus, in the following, optionalue
or net present valuef the option refers to the value of the deathefierswitch option
calculated using this approach.

As data regarding empirical switch exercise behaarm@ not available, we conduct our
analysis by studying comprehensive exercise sa@naAn insurer can employ the model
using its own switch exercise experience to deteenthe impact of the switch option in a
portfolio. However, caution is needed when impletimgnthis approach as using exercise
probability estimates from historical data is notirely without problems because deviations

between actual and estimated probabilities caresgmt a risk for the insurer.
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Heterogeneity in respect of mortality

To examine adverse option exercise behavior ang tiwe impact of an insured’s health
status, we evaluate the death benefit switch opgtpriaking into account heterogeneity in
respect of mortality. As in Hoermann and Russ (200& integrate heterogeneity in respect
of mortality by use of a frailty model (see, e.dpnes (1998, pp. 80-83), Pitacco (2004, p.
14), and Vaupel, Manton, and Stallard (1979, p.)34ince the date of the benefit payment
and thus also the amount of premiums paid intoctiregract depend on insureds’ mortality,
the value of the option to switch from one deatimde scheme to another will also so
depend. The introduction of a frailty factor and,particular, its stochasticity will allow a
more detailed analysis of the death benefit switption with respect to the policyholder’s
individual mortality level and exercise behavior.

The one-year individual probability of death foperson agex is obtained by multiplying

an individual frailty factord with the probabilities of death, of a deterministic mortality

table:
dig, dig< 1

g, =11, x=min[ X3{0,.. &} :d0g=1  forx3{ 0. ¢} andg = 1fork .
0, otherwise

If the resulting product is greater than or eqoal for any ages, the individual probability

of death is set equal to 1 for the youngest ofdlaxges; for all other ageg, it is set to 0. The

random variabIeK(X) describes the remaining curtate lifetime of anividial agex. Its

distribution function, q, at a pointk ON is given by
k-1

Fe (K) =P(K(X)<K)=, g =1-, p;l—H(l— Gr):

where , p, is the individualk-year survival probability of ar-year-old andP denotes the

objective (real-world) probability measure. Thetdimsition of the remaining curtate lifetime
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thus depends on the individual frailty factor. Argmn with a frailty factord less than 1
indicates that the insured is impaired with a reduexpected remaining lifetime.
The parameted can be interpreted as a realization of a stoahéstilty factor D. The

distribution F, of D specifies the portion of individuals whose mottals lower or higher

than a certain percentage of table mortality. Itharacterized as follows (see, e.g., Ainslie
(2000, p. 44), Butt and Haberman (2002, p. 5), Haud (1984, pp. 75, 79), and Pitacco
(2004, p. 15)). We assume a continuous frailtyridistion such that it can represent fine
differences between remaining life expectanciess tinly defined for positive values af
and for d =0, it equals zero. The distribution is right-skewéé., high values ofd —
corresponding to high mortalities—can occur. Itpented value is equal to 1, such that the
deterministic mortality table describes an indiatlwith average life expectancy.

For our analyses, we use a distribution that engplsya suitable choice of parameters for
the characteristics listed above, and that is anaomchoice for frailty models: a gamma
distribution (see, e.g., Butt and Haberman (20Q2, 8-9), Hougaard (1984, p. 76), Jones
(1998, p. 82), Olivieri (2006, pp. 29-30), and B (2004, p. 17), all of which refer to
Vaupel et al. (1979, pp. 441-442)). Vaupel etE.70) initially chose the gamma distribution
as it is one of the best-known nonnegative distrdms, is convenient to work with, and is
very flexible. Although some advantageous propsrtethe gamma frailty distribution are
lost when applied to a deterministic mortality &lohstead of a continuous mortality law, it
remains a reasonable assumption. Since mortaldpgilities near zero are unrealistic, the

distribution is shifted by a positive value gf, resulting in a generalized gamma distribution,

F(a,,B,y). For its probability density function, we empldetfollowing formula:

d

_ 1 a-1 Y
f(;ﬁ]y)(d)—W(d—y) e #, for dzy,yOR,a,8> 0.
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Switch probabilities
Let 7 denote the time of switch and Is( t) be the switch probability that depends on the

time t since policy inception. As there is a prescribededlopment of the cash value in our
setting, dependence on tinfecan be interpreted as the switch probability ddpenon the

amount of cash value in the policy. The distribntad 7 at a point in timek 0N is given by

7. (9= P(r= 1) =3 { ] 1~

Moreover, the switch probability can take differealues depending on an insured’s health

status measured by the frailty factbr—a realization ofD ~ F, i.e., S( t, d). However, in

the following we omit the inded to simplify the notation.

Short-rate process
For the short-rate process, we follow Briys andvdeenne (1994), Hansen and Miltersen
(2002), and Jgrgensen (2006) and use the Vasicakelm®asicek, 1977), which is a

Gaussian Ornstein-Uhlenbeck process. Under theneskral measurel), the short-rate

processr (t) evolves as

dr(t) =« (0-r(t))dt + odwe (1),

where (W@ (t)) 0<t<Tis a standard Brownian motion on a probabilitycspéQ,F, @),
and (), 0 <t < T is the filtration generated by the Brownian motidrhe interest rate

volatility ¢ is deterministic, the mean reversion level is deddbyd, and the parameter

determines the speed of mean reversion.

P(O,t) denotes the price of a zero-coupon bond at tirpaydng $1 at maturity, where

r(O):r. Since the zero-coupon bond price in the Vasicaddeh has an affine term

structure, the expectation can be represented by



P(o,t) = EQ[G_I"r(U)du] = exD{[l_e_Kt }(0—0—22— rJ —t(e—a—zzj ‘U_Z(l—e'”)z}. (9)
K 2K n?) &

Hence, once all input parameters have been defittez,entire term structure can be

determined as a function of the current shortrate

Net present value of the death benefit switch aptio

Based on the above mortality assumption and the-shi@ process, the net present value
(NPV) of an increasing death benefit policy can be wdated as the expected discounted
premium payments less the expected discounted duatéfit, using risk-neutral valuation
given a complete, perfect, and frictionless finahenarket (see, e.g., Bjork (2004)). In the
analysis, we assume independence between shorrdtenortality dynamics. Furthermore,
the market is assumed to be risk-neutral with retsfpemortality risk, such that the objective

(real-world) probability measuré coincides with the risk-neutral probability meas@

(see, e.g., Bacinello (2003, p. 468) and Dahl (2@04L24)). From the insurer’s perspective,
pooling effects are achieved for a sufficient numbkpolicyholders since, at the portfolio
level, only expected values and thus the mortalisgribution in the pool are of relevance in
evaluating the contract. According to our assurmgtion the frailty distribution, the expected
value of the frailty factor is equal to 1, implyirigat, on average, mortality in the pool is
described by the deterministic mortality table. Fopolicy with increasing death benefit
throughout its term, the net present value contili@nD = d under the risk-neutral measure

Q thus results in
K(9
NPV( d) = EQ(Z gk j EQ( Def J
ok j E@[Z Yo Do rﬂr(”)d“j (10)

=>B,pP(0.)-> Y., Rq, RO, t 1.
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When policyholders have the option to switch thatddenefit scheme, the stochastic switch
exercise date is included in the net present value calculatieor. the net present value of
the policy with switch option fob = d, we hence obtain
T-1 t T-1 t+

() ( d) = E© 7 o | _ o ) o "
NPV (d) =E (; B0 e © E%| 2 AT d . (11)
The death benefl‘t’tﬂ? is given by Equation (6) and premiurﬂér) are given by Equations (7)
and (8) for the “level premium” and “risk premiuratenario, respectively.

Equation (11) contains three sources of randommessgly, the remaining lifetimig(x),

the time of switchz, and stochastic interest rates. The equation durthustrates that
1<7<K(x), i.e., the option can be exercised only as lonh@snsured is alive. Since we let

the switch rate depend on an insured's healthsstatd thus on the frailty factat , switch
probabilities and probabilities of death are degsmd Again, assuming independence

between the stochastic frailty factor and interatgs, Equation (11) can be rewritten as

:iEiBt(k)P(r:k)J]P(K(x)z ) R0, t)—H(Z YOP(7 = w)jP( 3= ) Ko, #1
S

SS9 - €0) ). 00 )-3( 3 ¥ 6 (- €], pa .

Thus, the expected value of Equations (10) andigldbtained by
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NPV =E%( NPV( D) (12)
and
NPV =E°( NPV ( D), (13)

respectively. In the context of heterogeneity ispext of mortality implied by a gamma
distributed frailty factor, closed-form solutionseagenerally not feasible for the above net
present values.

To assess the value of the death benefit switcilompive subtract the net present value of

the increasing policy without switch in Equatior2)from Equation (13) and denote the value
by NPV°". Hence,

NPV = NPV — NP\. (14)

4. NUMERICAL ANALYSIS

This section presents results from a simulationlystsp as to quantify the impact of the
death benefit switch option. First, we consideriti@easing universal life contract. Next, we
integrate the switch option and illustrate effefts deterministic switch exercise times and
times of death. We then derive net present valfiéiseooption from the insurer’s perspective
for different switch probabilities depending on thealth status of insureds and for some
specific exercise scenarios. In addition, a sesisiti analysis with respect to the

parameterization of the frailty distribution is prded.

Input parameters
We examine a universal life insurance contract witlieasing death benefit with a policy
face value ofY = $100,000 for a male insured aged 45 years at inception. The actuarial

minimum interest rate is set iat 3.5%. The minimum guaranteed interest rate fovarsal
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life products is usually around 4%. For newer patdu it is often 3% (see, e.g.,
www.aegon.com). To be conservative, numerical aeslyare based on the U.S. 1980
Commissioners Standard Ordinary (CSO) male ultincaeposite mortality table with a
limiting age W= 99. Composite means that smokers and nonsmokensoa distinguished.
An older mortality table with low limiting age—Ekkthe 1980 CSO table—is conservative
regarding death risk in the sense that it tendsverstate probabilities of death. In contrast,
modern life tables account for mortality improvermand usually have a limiting age of 120.

For the generalized gamma distribution of the tyahctor, we employ the parameterization

used in Hoermann and Russ (2008), givenmﬁr(2.0;0.25;0.$ The parameter values

lead to a frailty distribution that fulfils the remements laid out in Section 3. A shift by

y=0.5 means that individual probabilities of death can di most half the size of the

mortality table probabilities but not less thantihae later vary distributional assumptions to
examine the sensitivity of switch option valueptwameterization changes.

For the stochastic interest rate, we use the ipptameters given in Hansen and Miltersen
(2002) with speed of mean reversior 0.30723, mean reversion lev@+ 3.7%, interest rate
volatility g= 0.02258, and(0) = 3.7%. As is common in the life insurance busingis,
interest rate credited to the account value (H2&90) is slightly below the interest earned by
the insurance company in the long term (this déffee is larger in European countries, e.g.,
in Germany the minimum guaranteed interest ratigently 2.25%). Numerical results are
derived using Monte Carlo simulation with 50,000ngée paths (see Glasserman, 2004). In

all simulation runs, we use the same set of randombers to ensure comparability of results.

Value of the universal life contract with increagideath benefit
The constant annual premium for the increasingcpatalculated according to Equation

(4) is given byB = $5,937. The risk-neutral net present value fthminsurer's perspective
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results inNPV= $2,866, as determined by Equation (12) underideration of stochastic
interest rates and the stochastic frailty factoar&lprecisely, in a Monte Carlo simulation,
50,000 frailty factors are generated that imply0B0, individual mortality distributions. Based
on these probabilities of death, th#V can be determined. It would be zero when using
D =1, i.e,, solely the mortality table, as well as taculation interest raté instead of

stochastic interest rates.

Value of the death benefit switch option by swéércise time and time of death

The option to switch from an increasing to a ledehth benefit can be exercised only once
during the policy term and if done, must be donéhatbeginning of a year until the year of
death. After switch, premiums are adjusted. In fiblllowing, we evaluate the option and
compare results for the two previously describeshpum scenarios to identify the effect of
future premium payments on the switch option valoethe “level premium” case, constant
annual premiums are paid after switch, which arleutated based on the equivalence
principle, taking the current cash value at theetioh switch as a single premium. In the “risk
premium” case, premium payments are stopped agxbecise date and not resumed until the

cash value is exhausted. From then on, the minimsknpremium is paid that will keep the
cash value at zero and thus avoid policy lapse. MR/ of the death benefit switch option
is given by the difference between NPV of the increasing policy with switch option and
theNPV of the contract without switch (see Equation (14))

To provide a first impression of the impact of theath benefit switch option, we calculate
risk-neutral values for different deterministic #mof switch exercise and times of death. For
deterministic switch date and date of deatk(x), Equation (11) simplifies to

NPV =Y B9 CR0,§ - ¥, OO, K}

Note that in order to examine the effect of thetslwoption in a portfolio, these deterministic
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values have to be weighted with respective proliasilof switch and survival. Results are

displayed in Figure 4 for “level premiums” (Par} ahd “risk premiums” (Part b)).

Figure 4: Net present valud\PV°™) of switch option by time of switch exercise airde of
death for 45-year-old insureds
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If policyholders pay level premiums after switch @i®wn in Part a), the switch option
value falls below zero for insureds, deceasingrat®ut 40 policy years (age 85). This is
because insureds with high life expectancy “savet—to speak—on premiums over time
when choosing to exercise the switch option in coiion with level premium payments.
Without switch, in contrast, they are likely to gwe until the time when the death benefit
decreases again toward maturity (approachihig Hence, they do not benefit from the
“increasing” death benefit feature anyway. Opti@aiues are lower the earlier the year of
switch and the later death occurs. In the “levaednpium” case, negative values are thus
generated by insureds with high life expectancgeemlly when exercising the switch option
in early policy years.

In the “risk premium” scenario, option values cdgspabecome negative from the insurer’s
perspective. This is the case if death occurs esdthr switch, such that premiums for the
remaining lifetime are covered by the availablehceaslue and no high risk premiums become
due. In contrast, option values are extremely hiigleath occurs late and risk premiums are

paid after the cash value is exhausted.

Value of the death benefit switch option by swaidbability

To obtain theNPV®™ of the death benefit switch option, individual &hi probabilities,
as well as individual probabilities of death, néedbe taken into account. Results for different
constant switch probabilities betweesr 0% ands= 100% are displayed in Figure 5 for risk
and level premium payments.

Figure 5 shows that the two premium payment scesdrave very different outcomes. In
the “level premium” case, the net present valuenftbe insurer’'s perspective is negative for

all switch probabilities; however, it remains potin the “risk premium” scenario. In the

latter case, thdNPV™®™ at most reduces to $115 as the switch probabifir@aches 100%,

implying early switch. Hence, for risk premiumsghinet present values (see Figure 4 Part
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b)) cause theNPV™® of the switch option to always remain positivetire example even
though the probability of occurrence of such exegesvents (e.g., survival untikE 45, i.e.,
age 90) is very low. This implies switch profitsr fthe insurer if switch probabilities are
constant in the portfolio of insureds. Howeverngureds terminated contracts (policy lapse)

instead of paying high risk premiums after depletd the cash value, as discussed in Section
2, the NPV® turns negative, looks similar to the “level premitcurve.

Figure 5: Net present vaIueNPVopt) of switch option for different switch probabiés for
45-year-old insureds
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For switch probabilities higher than or equal t&®Qhe “level premium” case leads to
negative net present values to about $-2,000 incHidration employed. This is due to
considerably negative values for early exerciseesinwhich are weighted more heavily for
high switch probabilities (see Figure 4, Part d@j)us, depending on the premium payment
method, the switch option can have negative effent&n insurer’s portfolio even if switch
probabilities are assumed to be constant over taneassumption that we will relax in the

following analysis.

Value of the death benefit switch option by swiicdbability and health status
Since the value of the death benefit switch opisostrongly dependent on an insured’s life

expectancy, as demonstrated in Figure 4, we nexingre the effect of adverse exercise
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behavior with respect to health status on the afgtidsk-neutral valueNPV™™ . This is done
by calculating the option value for switch probélas that vary depending on an insured’s
individual mortality. We distinguish persons witHrailty factor greater than or equal to one
(d = 1, average or below-average life expectancy) adgms with a frailty factod < 1
(above-average life expectancy). Results are displan Figure 6 for “level premium” (Part
a)) and “risk premium” (Part b)).

The “level premium” graph in Part a) of Figure 6seals strong discrepancies in the

NPV if the option exercise behavior depends on anrawss health status. In this case,
from the insurer’s perspective, risk-neutral valtemain positive only if persons with above-
average life expectancy have very low switch prdhigs and thus tend to switch—if at all—
late in the contract term. The value of the deathelit switch option becomes negative if

they exercise the option with higher probabilithig effect is more pronounced the lower the

switch probabilities are for insureds with beloweeage life expectancy, with thIPV™
reaching negative values up to about $-3,500. iEhis line with results in Figure 4 Part a),
where negative values are generated for early Bwiittes and late times of death.

In the “risk premium” scenario, shown in Part b)Fagure 6, differences depending on the
health status are less distinct, but still visibie.particular, the “risk premium” scenario
generates negative values for the insurer onlers@ns with below-average life expectancy
exercise the option and switch probabilities areo Zer insureds with above-average life
expectancy. This observation is in line with th@s@ning that individuals with impaired
health are likely not to pay high risk premiumseaftiepletion of the cash value due to
expectations of early death. If insureds survivél wash value exhaustion, increasing death
probabilities imply high risk premiums and thusdda positive net present values from the

insurer’s perspective. Altogether, strong advefets can be observed.
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Figure 6: Net present value NPV®™) of switch option for different switch probabits

depending on health status for 45-year-old insureds
a) “Level premium”

1do/AdN

] o X
) © B
S e 30PN
NS £28539 K
RS e3R8~
Switch probability if d<1 ©Q <

o o X
88c " e85 % 8% ° , N
(above-average life expectancy) ~8 é § S8~ Switch probability if d>=1
S @ (average or below-average
life expectancy)
b) “Risk premium”
—— |
T T $2'000
_,_,_.---"""'"_'_ o TTTe—

— $1'500

1doAdN

: S e °

= =

) S ®2 8 g =
Switch probability if d<1 53 ) ,Cé gw»

. Switch probability if d>=1
(above-average life expectancy) (average or below-average

life expectancy)




29

Additional exercise scenarios

Based on the previous analyses, certain substahedrse effects can be seen for specific
exercise scenarios that depend on health statusvaithch option exercise time. If the switch
option is exercised around the time the cash vedaehes its peak, for instance, the level
death benefit for the remaining contract term ighkr than in the case of the original
increasing death benefit as set out in Section [#s Ts because—without switch—the
“increasing” death benefit would actualtiecreasean line with the cash value, down to the
fixed level Y at maturity (see Figure 1). Hence, when switchihg,new level death benefit is
in fact higher than the original death benefitlod increasing contract at certain times during
the contract term. Such comparably higher deatrefiieamounts can be obtained without
having to pay additional fees or providing new evide of insurability. Thus, depending on
the insured’s health status, particular exercideabi@r can have a considerable influence on
contract value, which may have serious consequenbes considering a pool of insureds.
To further emphasize the potential risk of advesfects regarding the death benefit switch

option, we study several alternative exercise stefésee Table 1).

Table 1: Net present valuesNPV®™) of switch option for specific exercise scenarios
depending on the health status for 45-year-oldreds

s=100% s=10% $5=10% tos=100%* s=10%
att=41 (peak) t=25 tot=41 t=25 tot=41 t=5 tot=15
All d=1 d<1 | Al d=1 d<1 | Al d=1 d<1 | Al d=1 d<1
Level
_ -365 12 -377| -750194 -945 |-1'023 293 -1'315/-1'189 856 -2'045
premium
Risk 1'324 -89 1'413(1'332-108 1'440|1'576 -123 1'700| 758 -204 962
premiurn
Risk

premium 808 10 799 | 288 -37 325 | 229 -42 272| -740 128 -867

(lapse
Notes: d >1: insureds with average or below-average life expecyad <1: insureds with
above-average life expectancy, *: linear increase.
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First, for insureds with above-average life expecya the switch option is valuable in
combination with the “level premium” scenario. kezcised around the peak of the cash
value curve, a high death benefit is maintainedgamed to the decreasing benefit that occurs
without switch. Even though new level premiums higher than the original premiums in
this case, option exercise may still give rise ¢gative values for the insurer, which can be
observed in Table 1 (first column, “Level premiumThe scenarios=100% att=41 (peak)”
compares results when either all insureds, onlyrads with average or below-average

(d=1), or only insureds with above-average life experyatd <1) exercise the switch

option with probability 1 at the peak of the cagiue curve (i.e., at age 86).

Second, one would suspect that the switch opti@specially valuable for insureds with
below-average life expectancy in combination wikie t‘'risk premium” scenario. When
exercised around the peak of the cash value curnveld or age 86, persons with reduced life
expectancy preserve a high death benefit withowingathe underlying mortality table
adjusted. Furthermore, future premiums can moslfianced from the available cash value.
For insureds with higher-than-average life expegyaon the other hand, this exercise pattern
would imply high risk premium payments as the polpproaches maturity and thus switch
profits for the insurer. These expectations ardicord by the numerical results in Table 1
(“s=100% att=41 (peak)”, “Risk premium”). However, risk-neutraalues are much less
negative in this case than they are for adverseceeeby healthy insureds in the level
premium case.

For risk premium payments, we additionally consi@acenario in which policyholders let
the policy lapse, e.g., due to financial distr@sssoon as risk premium amounts exceed 10%
of the new level death benefit (first column, “Rglemium (lapse)” in Table 1). The value of
10% was chosen by intuition; however, further testealed that results remain robust with
respect to changes in the percentage parameterp&ethto the risk premium scenario

without lapse (second row of Table 1), such behalas a considerable negative impact on
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the net present value from the insurer’s perspedfionly insureds with above-average life

expectancy are concerned. In particular, BV is almost cut in half due to the lack of
high risk premium payments. In contrast, if impdirasureds let the policy lapse when high
risk premiums become due, negative effects areviated and the net present value is
increased because soon expected death benefit ptsydenot have to be made.

We further extend the analysis and consider opgiarcise prior to cash value peak given
a constant switch probability of 10% from age #)26) to age 86t€41) (second column in
Table 1). Results show that option values are snlistly affected. In particular, they are
more negative from the insurer’'s perspective in‘theel premium” case for insureds with
above-average life expectancy. The latter net ptessue decreases even more if the switch
probability is linearly raised from= 10% at age 70 to = 100% at age 86 (third column in
Table 1). There are two effects responsible fos¢haggravated results. First, if the time of
cash value peak is not the only possible time ticem{but instead ranges from between age
70 and age 86), option exercise, on average, o@artier. From Figure 4 Part a) we know
that the earlier the option is exercised by inssin@ith long remaining lifetime, the lower are
the option values. And second, observed effectssamnger due to the larger number of
insureds still alive at age 70, compared to at8§eand thus able to exercise the option.

We now turn to the case where the switch optioexisrcised after five to fifteen policy
years, i.e., between ages 50 and 60 (fourth colimmable 1), given a constant switch
probability of 10%. A reason for switching earlyrohg the term of the policy could, e.g., be
the wish to reduce premium payments. In this séenagsults are even more pronounced
than in the case of exercising around the casheislpeak. As discussed previously, it is
particularly in the “level premium” scenario thatverse exercise behavior by insureds with
high life expectancy generates negative net prasduaes in an insurance portfolio.

These adverse exercise scenarios assume thatdasare well informed about their

individual mortality, i.e., whether they have aroae- or below-average life expectancy. The
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examples indicate that it is those exercise scesdhat are intuitively rational that pose the
greatest threat to insurers: namely, if insuredb above-average life expectancy switch early
and thus “save” risk premiums by making level pagtagand if impaired insureds set out
premium payments after switch, being aware that wié possibly not survive until high risk
premiums have to be paid. In fact, the switch optall be even more valuable if insureds
follow optimal exercise strategies to maximize th#ion value, a topic that is, however,

beyond the scope of this paper.

Sensitivity analysis with respect to the frailtgtdbution

The variance of life expectancies in a portfolioirgureds can be an important risk driver
when considering policies with death benefit paytaeio assess the impact of the frailty
factor distribution, we compare switch profits fdifferent parameterizations of, and
different switch probabilities, leaving all othearameters unchanged. Part a) of Figure 7

displays the basic scenario with the gamma fradlistribution D ~ I (2;0.25;0.5 with

varianceVar(D) = 0.125 (left hand side in Figure 7) and the respeatet present values
NPVP™ (right hand side in Figure 7) as shown in FigureTBe net present value for an
increasing policy is given biMPV = $2,866. We find that varying the frailty diswifion has

very little effect on switch profits in the “risk@mium” case. For “level premiums,” however,

effects are much more dramatic.
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Figure 7: Net present value\NP\V°™) of switch option for different parameterizationfsthe
frailty distribution for 45-year-old insureds
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Part b) of Figure 7 illustrates that a change tthaaner” frailty factor distribution results
in a much lower net present value PV = $1,581 (compared to $2,866). This is because
individuals’ probabilities of death disperse lesmni average death probabilities according to
the mortality table{ar(D) = 0.0625), i.e., the effect of heterogeneity in sztpf mortality
is reduced. Hence, théP\P™ for high switch probabilities in the “level premiti case is not
as negative as in the basic scenario and valudggifrisk premium” case are closer to zero.
Altogether, we find that the difference between tlve premium payment scenarios is less
distinct with the thinner frailty distribution.

For the “wider” gamma distribution shown in Partaf)Figure 7 where/ar(D) = 0.135,
switch values for “level premiums” decrease comg@dcethe base case, which is particularly
important for negative results at high switch rates

Tremendous differences can be observed for the amtipely “heavy tailed” distribution
in Part d) of Figure 7. This assumption impliesreater variance of life expectancies in the
portfolio (Var(D) = 0.375). Changes can also be observed for NR&°™ in the “risk
premium” case. Net present values are much higimer a peak around a switch probability of
5% is more pronounced. The “level premium” curverdases substantially over all switch
probabilities. TheNPV of the policy without switch option nearly triplesNPV = $8,507.

Thus, even though the main results are essentralbust, this sensitivity analysis
demonstrates the importance and the impact of dggeeity in respect of mortality in a

portfolio, as well as the relation between prempagment method and mortality distribution.

5. PoLICcY IMPLICATIONSFOR AN | NSURER

Our results do not have straightforward implicasidor insurance companies. In particular, it

turns out not to be sufficient to simply requirad@nce of insurability or impose additional

fees in order to reduce the risk inherent in thathidenefit switch option. Instead, we
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identified four key factors that are of relevanag the option value and that must be
considered simultaneously when taking action: iedst life expectancies, the chosen
premium payment method after switch, switch proligs (and thus the time of switch), and
lapsation. It is the combination of these factdmattcan make the switch option either
valuable or risky for an insurer.

The first question for an insurer is whether toreeffer the switch option. As the demand
for insurance protection can decrease or increase time, policyholders might choose to
surrender if switching is not included in the cawtr Signing a new contract, however, has
several disadvantages: evidence of insurabilityraeguired, updated actuarial pricing
assumptions may be applied, and charges have pmideto initiate the contract. Hence, a
switch may be more attractive than surrenderingpiblecy. From the insurer’'s perspective,
offering the option to switch from increasing toéé has the advantage of keeping those
contracts in its book of business and of reducingesder rates. In this case, careful
monitoring of the four factors listed above—inghgl empirical switch probabilities in the
pool of policyholders, possible adverse exercignados, and the mortality distribution in
the portfolio of insureds—is vital to avoid risks the portfolio that originate from switch
option exercise.

Overall, there are several reasons why the swiptiom is of practical interest to insurers.
First, the option can become valuable when exeatasely as well as late during the contract
term, depending on the respective premium paynearasios. The latter might even become
more important in the future given demographic dgwment and longevity risk, i.e., if
insureds have longer life expectancies. Second,otiieon is also relevant in that the
opportunity to switch might prevent some policyreskl from surrendering the contract.
Third, our analysis of thBIPV of the switch option shows that in a pool of iresis for given
switch probabilities, the switch option can havesubstantial value, even though many

insureds in the pool may not survive to higher agben the value of the option is most
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intuitive.

Given empirical exercise probabilities and the esponding premium payment behavior,
our model allows insurers to check whether thentfpbbos might be negatively affected by
the switch option. For instance, if an insurer obse that, typically, constant level premiums
are paid after switch with an annual switch prolgbof about 5%, caution is advised as
negative values can result from the insurer’'s pEaBye, given the contract calibration in our
examples (see Figure 5). If policyholders tend top spremium payments after switch,
implications are not as obvious and must be andlygemore detail. In particular, adverse
exercise experience may pose a risk for insureitsisfmostly the impaired individuals who
exercise this way.

If monitoring reveals possible negative net preseties for an insurer, action should be
taken to reduce the risk by considering the fowr fleetors. First, requiring new evidence of
insurability before allowing policyholders to switérom increasing to level death benefits
could help identify an insured’s health status.sTwould, in principal, allow the adjustment
of actuarial pricing assumptions and, in particuthe mortality table in the case of impaired
individuals. However, since the requirement of jpdovg evidence of insurability, and its
costs, would apply to all insureds and thus peaaliealthy insureds, such a requirement
could have the effect of intensifying adverse d@fec

To reduce negative effects originating from adversercise behavior of healthy insureds
who pay level premiums after switch, adequate awifgr the death benefit switch option
could be imposed. In general, fees should be bbgné¢he group of insureds causing the
undesirable adverse effect. However, as the swofaion value is strongly linked to the
premium payment method after switch and to the toheswitch, charges can hardly be
calculated independent of these factors. A solutimuld be the prescription of premium
payments after switch, combined with charges toicaamlverse effects. In our examples,

requiring level premium payments after switchingame that healthy insureds are charged
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higher premiums than impaired individuals. Yetsthpproach would also imply a change
from universal life to whole life contracts and shauloss in flexibility for policyholders.
Furthermore, due to the dependence of the swittioropalue on the time the option is
exercised (in our examples, negative values wezdgminantly generated for early exercise
times), insurers could restrict switch exerciseprezefined time ranges to control for adverse
effects. Finally, if a shift toward rational exeseibehavior is noticed, premium pricing needs
to be adjusted based on the maximum option valtermeed as the solution of an optimal

stopping problem.

6. SUMMARY

Universal life policies with increasing death benhefk well as the death benefit switch
option have not been investigated in the literatioredate. In this paper, we develop an
actuarial model framework and conduct a detailedneration of this option. The model
includes heterogeneity in respect to mortality gsanfrailty model and switch probabilities.
We point out situations where the death benefit@dwoption can have considerably negative
effects on an insurer and we provide policy imglmas to reduce the existing risk potential.

One main finding is that the value of the deathabéswitch option is strongly dependent
on premium payment behavior after exercise and hen health status of the exercising
insured. A switch in the “risk premium” scenariosharedominantly positive effects in the
examples considered, but the option can actualheigge severe negative net present values
from the insurer’s perspective in the “level premiucase. Both scenarios share the result
that option values decrease with increasing swptcibability, i.e., the greater the number of
insureds who switch early in the contract term,rtigge the option values decrease. However,
the extent varies when exercise probabilities diffepending on insureds’ life expectancies.

In the case of risk premium payments, negativeesloccur if it is only impaired persons
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who switch early in the contract term, while in tegel premium scenario, it is insureds with
good health status who generate highly negativeegalSimilar results are obtained if policies
are switched at or near the peak of the cash valnee, logging in highest possible death
benefit values. Altogether, we find that combineéreise of the switch option and premium
payment options can generate substantial negaitepresent values from the insurer’s
perspective due to adverse effects regarding idsuhealth status.

Results are stable with respect to parameterizatidghe frailty distribution. However, the
spread between positive results in the risk premsgenario and negative results in the level
premium scenario is enhanced with greater variantiée expectancies, i.e., heterogeneity of
insureds’ mortality. Hence, careful consideratioml @stimation of the mortality distribution
in an insurance portfolio is crucial.

In summary, our findings indicate that the deathdfi¢ switch option can pose a threat to
insurers in case of adverse exercise behavior veifipect to insureds’ health status. This
result depends on the premium payment method sfigching and is even intensified when
additionally considering the amount of cash valaeaarigger for option exercise. Overall,
insurers should be aware of the potential impaetdisath benefit switch option can have and
should consider implementing risk reduction measutair policy implications are based on a
broad analysis from an insurer’s perspective fpoal of insureds covering a wide range of
possible exercise scenarios. Depending on the wixbezxercise behavior in an insurance
portfolio, insurers could require evidence of irahility or charge fees in case of option
exercise, prescribe the premium payment method aRercise, or restrict possible option
exercise times. If insureds followed an optimal reise strategy, resulting switch option
values could in fact be much higher. Determinatodrthe latter would be an interesting
subject of further research, but also a very chglley one due to complex interactions
between frequency and amount of premium paymeritsdand after switch, lapsation, the

insured’s health status, and interest rates.
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