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Abstract

We study superhedging of securities that give random payments possi-

bly at multiple dates. Such securities are common in practice where, due

to illiquidity, wealth cannot be transferred quite freely in time. We gen-

eralize some classical characterizations of superhedging to markets where

trading costs may depend nonlinearly on traded amounts and portfolios

may be subject to constraints. In addition to classical frictionless markets

and markets with transaction costs or bid-ask spreads, our model covers

markets with nonlinear illiquidity effects for large instantaneous trades.

The characterizations are given in terms of stochastic term structures

which generalize term structures of interest rates beyond fixed income

markets as well as martingale densities beyond stochastic markets with a

cash account. The characterizations are valid under a topological condi-

tion and a minimal consistency condition, both of which are implied by

the no arbitrage condition in the case of classical perfectly liquid market

models. We give alternative sufficient conditions that apply to market

models with general convex cost functions and portfolio constraints.

Key words: Superhedging, illiquidity, claim process, premium process,
stochastic term structure

1 Introduction

Much of trading in practice consists of exchanging random sequences of cash
flows where payments occur at several dates. This is the case, for example, in
swap contracts where a stochastic sequence is traded for a deterministic one.
Other examples can be found in various insurance contracts where premiums are
usually paid e.g. quarterly instead of a single payment at the beginning. Distin-
guishing between payments at different dates is important since, in real illiquid
markets, wealth cannot be transfered quite freely in time. This is in contrast
with most market models in the literature of superhedging. In real markets,
there are also instantaneous illiquidity effects when transferring wealth between
different assets. For example, in double auction markets, the cost of a market
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order is nonlinear in the traded amount. The nonlinearities bring up phenom-
ena such as decreasing returns to scale that are not present in classical perfectly
liquid market models nor in conical models with proportional transaction costs
and conical constraints.

The present paper can be seen as an extension of Dermody and Rockafel-
lar [11, 12] where superhedging of fixed income instruments was studied in a
deterministic market model with nonlinear illiquidity effects. We extend [11, 12]
by considering stochastic market models and dynamic trading strategies. More-
over, we study superhedging in terms of general premium processes which may
give premium payments at several dates. This allows us to cover e.g. swaps
and various insurance contracts where premiums are paid over time instead of
a single payment at the beginning.

Superhedging of stochastic claim processes has been studied e.g. by Napp [31]
and Jaschke and Küchler [20] but they considered conical market models which
do not allow for nonlinear illiquidity effects. Staum [47] included nonlinearities
in an abstract “market ask pricing function” but that suppresses the role of a
premium process and its relationship with the market model. In [4], Bion-Nadal
studied the dynamics of superhedging prices in an abstract convex market model
with a cash account. Our study is closely related to the theory of convex risk
measures for processes but there the emphasis is mostly on capital requirements
as opposed to pricing in terms of general premium processes; see for example
Pflug and Ruszczyński [37], Frittelli and Scandolo [18], Cheridito, Delbaen and
Kupper [8] and Acciaio, Föllmer and Penner [1] and their references.

We examine superhedging in terms of general claim and premium processes
in a market model with nonlinear illiquidity effects and portfolio constraints.
We extend some classical dual characterizations to this more general setting.
Although superhedging is often not quite a practical premise, it forms a basis
for more realistic approaches based on risk preferences. The results of this
paper contribute towards extending risk based pricing approaches for realistic
illiquid markets with general premium and claim processes. Moreover, given the
extensive literature on superhedging, our results are also of purely theoretical
interest in showing how known phenomena in superhedging are affected when
illiquidity is taken into account.

We will use a nonlinear discrete time model from Pennanen [34, 35] where
trading costs are given by convex cost functions and portfolios may be subject
to convex constraints. The existence of a cash account is not assumed a priori
so that claim processes cannot be simply accumulated at the end using the cash
account. The model generalizes many better-known models such as the classical
linear model, the transaction cost model of Jouini and Kallal [21], the sublinear
model of Kaval and Molchanov [26], the illiquidity model of Çetin and Rogers [6]
as well as the linear models with portfolio constraints of Pham and Touzi [38],
Napp [32], Evstigneev, Schürger and Taksar [14] and Rokhlin [44]. Our model
covers nonlinear illiquidity effects associated with instantaneous trades (market
orders) but we assume, like in the above references, that agents have no mar-
ket power in the sense that trades do not affect the costs of subsequent trades.
This is analogous to the models of Çetin, Jarrow and Protter [5], Çetin, Soner
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and Touzi [7] and Rogers and Singh [43], the last one of which gives economic
motivation for the assumption. We avoid long term price impacts because they
interfere with convexity which is essential in many aspects of pricing and hedg-
ing. Convexity becomes an important issue also in numerical calculations; see
e.g. Edirisinghe, Naik and Uppal [13] or Koivu and Pennanen [28].

The notion of arbitrage is often given a central role when studying pricing
and hedging of contingent claims in financial markets. In classical perfectly
liquid market models, there are two good reasons for this. First, a violation
of the no arbitrage condition leads to an unnatural situation where one can
find self-financing trading strategies that generate infinite proceeds out of zero
initial investment. Second, as discovered by Schachermayer [45], the no arbitrage
condition implies the closedness of the set of claims that can be superhedged
with zero cost. The closedness yields dual characterizations of superhedging
conditions in terms of e.g. martingale measures and state price deflators.

In illiquid markets, however, things are different. A violation of the no
arbitrage condition no longer means that one can generate infinite proceeds
by simple scaling of arbitrage strategies. Indeed, illiquidity effects may come
into play when trades get larger; see e.g. Dermody and Prisman [10], Çetin and
Rogers [6] or [34, 35]. On the other hand, even in the case of linear models, the no
arbitrage condition is not necessary for closedness of the set of claims hedgeable
with zero cost. There may exist other economically meaningful conditions that
yield the closedness and corresponding dual characterizations of superhedging
conditions.

This paper gives sufficient closedness conditions that apply to claim processes
under general nonlinear cost functions and portfolio constraints. The conditions
are quite natural and they are satisfied e.g. in double auction markets when one
is not allowed to go infinitely short in any of the traded assets. We also give a
minimal condition under which pricing problems are well-defined and nontrivial
in convex, possibly nonlinear market models. This is a simple algebraic condition
generalizing the condition of “no arbitrage of the second kind” in Ingersoll [19]
or the “weak no arbitrage” condition in [12]. It is also closely related to the
“law of one price” in the case of classical perfectly liquid markets.

Under these two conditions, we obtain dual characterizations of superhedging
in terms of stochastic term structures which generalize term structures of inter-
est rates beyond fixed income markets as well as martingale densities beyond
stochastic markets with a cash account. In the presence of nonlinear illiquidity
effects, a nonlinear penalty term appears in pricing formulas much like in dual
representations of convex risk measures which are not positively homogeneous.
This extends Föllmer and Schied [16, Proposition 16] where analogous expres-
sions were given in the presence of convex constraints in the classical linear
model with a cash-account; see also Klöppel and Schweizer [27, Section 4].

The rest of this paper is organized as follows, The next section defines the
market model. Sections 3 and 4 define the hedging and pricing problems for
claim and portfolio processes and study their properties in algebraic terms.
Section 5 derives dual characterizations of the superhedging conditions for in-
tegrable processes in terms of bounded stochastic term structures. This is done
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under the assumption that the set of claims hedgeable with zero cost is closed in
probability. Section 6 derives sufficient conditions for the closedness. Section 7
makes some concluding remarks.

2 The market model

Consider a financial market where trading occurs over finite discrete time t =
0, . . . , T . Let (Ω,F , P ) be a probability space with a filtration (Ft)

T
t=0 describing

the information available to an investor at each t = 0, . . . , T . For simplicity, we
assume that F0 is the trivial σ-algebra {∅,Ω} and that each Ft is complete with
respect to P . The Borel σ-algebra on R

J will be denoted by B(RJ ).

Definition 1 A convex cost process is a sequence S = (St)
T
t=0 of extended

real-valued functions on R
J × Ω such that for t = 0, . . . , T ,

1. the function St(·, ω) is convex, lower semicontinuous and vanishes at 0 for
every ω ∈ Ω,

2. St is B(RJ ) ⊗Ft-measurable.

A cost process S is said to be nondecreasing, nonlinear, polyhedral, positively
homogeneous, linear, . . . if the functions St(·, ω) have the corresponding property
for every ω ∈ Ω.

The interpretation is that buying a portfolio xt ∈ R
J at time t and state ω

costs St(xt, ω) units of cash. The measurability property implies that if the port-
folio xt is Ft-measurable then the cost ω 7→ St(xt(ω), ω) is also Ft-measurable
(see e.g. [42, Proposition 14.28]). This just means that the cost is known at
the time of purchase. We pose no smoothness assumptions on the functions
St(·, ω). The measurability property together with lower semicontinuity in Def-
inition 1 mean that St is an Ft-measurable normal integrand in the sense of
Rockafellar [39]; see also Rockafellar and Wets [42, Chapter 14].

Definition 1, originally given in [33], was motivated by the structure of dou-
ble auction markets where the costs of market orders are polyhedral convex
functions of the number of shares bought. The classical linear market model
corresponds to St(x, ω) = st(ω) · x, where s = (st)

T
t=0 is an R

J -valued (Ft)
T
t=0-

adapted price process. Definition 1 covers also many other models from litera-
ture; see [35].

We allow for general convex portfolio constraints where at each t = 0, . . . , T
the portfolio xt is restricted to lie in a convex set Dt which may depend on ω.

Definition 2 A convex portfolio constraint process is a sequence D = (Dt)
T
t=0

of set-valued mappings from Ω to R
J such that for t = 0, . . . , T ,

1. Dt(ω) is closed, convex and 0 ∈ Dt(ω) for every ω ∈ Ω,

2. the set-valued mapping ω 7→ Dt(ω) is Ft-measurable.
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A constraint process D is said to be polyhedral, conical, . . . if the sets Dt(ω)
have the corresponding property for every ω ∈ Ω.

The classical case without constraints corresponds to Dt(ω) = R
J for every

ω ∈ Ω and t = 0, . . . , T . In addition to obvious “short selling” restrictions,
portfolio constraints can be used to model situations where one encounters dif-
ferent interest rates for lending and borrowing. This can be done by introducing
two separate “cash accounts” whose unit prices appreciate according to the two
interest rates and restricting the investments in these assets to be nonnegative
and nonpositive, respectively. A simple example that goes beyond conical and
deterministic constraints is when there are nonzero bounds on market values of
investments.

Remark 3 (Market values) Large investors usually view investments in terms
of their market values rather than in units of shares; see [23] and [29]. If
s = (st)

T
t=0 is a componentwise strictly positive R

J -valued process, we can write

St(x, ω) = ϕt(Mt(ω)x, ω)

where ϕt(h) := St((h
j/sj

t )j∈J ) and Mt(ω) is the diagonal matrix with entries

sj
t (ω). Everything that is said below can be stated in terms of the variables

hj
t (ω) := sj

t (ω)xj
t (ω). If st(ω) is a vector of “market prices” of the assets J ,

then the vector ht(ω) gives the “market values” of the assets held. Market prices
are usually understood as the unit prices associated with infinitesimal trades. If
the cost function St(·, ω) is smooth at the origin, then st(ω) = ∇St(0, ω) is the
natural definition. If St(ω) is nondifferentiable at the origin, then st(ω) could
be any element of the subdifferential

∂St(0, ω) := {s ∈ R
J |St(x, ω) ≥ St(0, ω) + s · x ∀x ∈ R

J}.

In double auction markets, ∂St(0, ω) is the product of the intervals between the
bid and ask prices of the assets J ; see [35].

3 Superhedging

When wealth cannot be transfered freely in time (due to e.g. different interest
rates for lending and borrowing) it is important to distinguish between pay-
ments that occur at different dates. A (contingent) claim process is a real-valued
stochastic process c = (ct)

T
t=0 that is adapted to (Ft)

T
t=0. The value of ct is in-

terpreted as the amount of cash the owner of the claim receives at time t. Such
claim processes are quite common in practice. For example, most insurance
contracts, fixed income products as well as dividend paying stocks have several
payout dates. In the presence of a cash account, discrimination between pay-
ments at different dates would be unnecessary (see Example 4 below) but in
real markets it is essential. The set of claim processes will be denoted by M.

In problems of superhedging, one usually looks for the initial endowments
(premiums) that allow, without subsequent investments, for delivering a claim
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with given maturity. Since in illiquid markets, cash at different dates are gen-
uinely different things, it makes sense to study superhedging in terms of “pre-
mium processes”. A premium process is a real-valued adapted stochastic process
p = (pt)

T
t=0 of cash flows that the seller receives in exchange for delivering a claim

c = (ct)
T
t=0. Allowing both premiums as well as claims to be sequences of cash

flows is not only mathematically convenient (claims and premiums live in the
same space) but also practical since much of trading consists of exchanging se-
quences of cash flows. This is the case e.g. in swap contracts where a stochastic
sequence of payments is exchanged for a deterministic one. Also, in various
insurance contracts premiums are paid annually instead of a single payment at
the beginning.

We say that p ∈ M is a superhedging premium for c ∈ M if there exists an
adapted R

J -valued portfolio process x = (xt)
T
t=0 with xT = 0 such that1

xt ∈ Dt, St(xt − xt−1) + ct ≤ pt

almost surely for every t = 0, . . . , T . Here and in what follows, we always set
x−1 = 0. The vector xt is interpreted as a portfolio that is held over the period
[t, t + 1]. At the terminal date, we require that everything is liquidated so the
budget constraint becomes ST (−xT−1)+ cT ≤ 0. The above is a numeraire-free
way of writing the superhedging property; see Example 4. In the case of a stock
exchange, the interpretation is that the portfolio is updated by market orders
in a way that allows for delivering the claim without any investments over time.
In particular, when ct is strictly positive, the cost St(xt −xt−1) of updating the
portfolio from xt−1 to xt has to be strictly negative (market order of portfolio
xt − xt−1 involves more selling than buying).

We are thus looking at situations where one sequence of payments is ex-
changed for another and the problem is to characterize those exchanges where
residual risks can be completely hedged by an appropriate trading strategy.
Much research has been devoted to the case where premium is paid only at
the beginning and claims only at the end. This corresponds to the case p =
(p0, 0, . . . , 0) and c = (0, . . . , 0, cT ). To our knowledge, superhedging of claim
processes in terms of general premium processes has not been studied before in
the presence of nonlinear illiquidity effects.

Superhedging can be conveniently studied in terms of the set

C := {c ∈ M|∃x ∈ N0 : xt ∈ Dt, St(∆xt) + ct ≤ 0, t = 0, . . . , T}

of claim processes that are freely available in the market, i.e. can be superhedged
with zero cost. Here N0 denotes the set of all adapted portfolio processes with
xT = 0. A p ∈ M is a superhedging premium process for a claim process c ∈ M
if and only if

c − p ∈ C. (1)

1Given an Ft-measurable function zt : Ω → R
J , St(zt) denotes the extended real-valued

random variable ω 7→ St(zt(ω), ω). By [42, Proposition 14.28], St(zt) is Ft-measurable when-
ever zt is Ft-measurable.
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Example 4 (Numeraire and stochastic integrals) Assume that there is a
perfectly liquid asset, say 0 ∈ J , such that

St(x, ω) = x0 + S̃t(x̃, ω),

Dt(ω) = R × D̃t(ω),

where x = (x0, x̃) and S̃ and D̃ are the cost process and the constraints for the
remaining risky assets J̃ = J \ {0}. Given x̃ = (x̃t)

T
t=0, we can define

x0
t = x0

t−1 − S̃t(x̃t − x̃t−1) − ct t = 0, . . . , T − 1,

so that the budget constraint holds as an equality for t = 1, . . . , T − 1 and

x0
T−1 = −

T−1
∑

t=0

S̃t(x̃t − x̃t−1) −
T−1
∑

t=0

ct.

We then get the expression

C = {c ∈ M|∃x̃ : x̃t ∈ D̃t,

T
∑

t=0

S̃t(x̃t − x̃t−1) +

T
∑

t=0

ct ≤ 0}.

Thus, when a numeraire exists, hedging of a claim process can be reduced to
hedging of cumulated claims at the terminal date. If in addition, the cost process
S̃ is linear with S̃t(x̃) = s̃t · x̃, we can write the cumulated trading costs in terms
of a stochastic integral as

T
∑

t=0

S̃t(x̃t − x̃t−1) =
T
∑

t=0

s̃t · (x̃t − x̃t−1) = −
T−1
∑

t=0

x̃t · (s̃t+1 − s̃t),

so that

C = {c ∈ M|∃x̃ : x̃t ∈ D̃t,

T
∑

t=0

ct ≤
T−1
∑

t=0

x̃t · (s̃t+1 − s̃t)}.

This is essentially the market model studied e.g. in [16], [17, Chapter 9] and
[27, Section 4], where constraints on the risky assets were considered.

The set
rc C := {c | c′ + αc ∈ C ∀c′ ∈ C, α > 0}

consists of claim processes that are freely available in the market at unlimited
amounts when starting at any position c′ ∈ C. Our subsequent analysis will be
largely based on the following simple observation. Here M− denotes the set of
nonpositive claim processes.

Lemma 5 The set C is convex and M− ⊂ rc C. If S is sublinear and D is
conical, then C is a cone and rc C = C.
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Proof. The fact that M− ⊂ rc C is obvious from the definition of C. The rest
comes from [35, Lemma 4.1]. �

In the terminology of convex analysis, rc C is the recession cone of C; see [40,
Section 8]. When C is algebraically closed (i.e. {α ∈ R | c + αc′ ∈ C} is a closed
interval for every c, c′ ∈ M), we have the simpler expression

rc C =
⋂

α>0

αC

and thus that rc C is the largest convex cone contained in C. This follows from
the fact that 0 ∈ C and the following result which is well-known in convex
analysis.

Lemma 6 Let C be a convex subset of a vector space. The recession cone of C
is a convex cone. If C is algebraically closed, then y ∈ rcC if there exists even
one x ∈ C such that x + αy ∈ C for every α > 0.

Proof. It is clear that rcC is a cone. As for convexity, let y1, y2 ∈ rcC and
λ ∈ [0, 1]. It suffices to show that x + α(λy1 + (1 − λ)y2) ∈ C for every x ∈ C
and α > 0. Since yi ∈ rcC, we have x + αyi ∈ C and then, by convexity of C,
x + α(λy1 + (1 − λ)y2) = λ(x + αy1) + (1 − λ)(x + αy2) ∈ C.

Let x ∈ C and y 6= 0 be such that x + αy ∈ C ∀α > 0 and let x′ ∈ C and
α′ > 0 be arbitrary. It suffices to show that x′ + α′y ∈ C. Since x + αy ∈ C for
every α ≥ α′, we have, by convexity of C,

x′ + α′y +
α′

α
(x − x′) = (1 −

α′

α
)x′ +

α′

α
(x + αy) ∈ C ∀α ≥ α′.

Since C is algebraically closed, we must have x′ + α′y ∈ C. �

4 Pricing by superhedging

In many situations, a premium process p ∈ M is given and the question is what
multiple of p will be sufficient to hedge a claim c ∈ M. This is the case e.g. in
some defined benefit pension plans where the premium process is a fraction (the
contribution rate) of the salary of the insured. In swap contracts, the premium
process is often defined as a multiple of a constant sequence. Given a premium
process p ∈ M, we define the superhedging cost of a c ∈ M by

π(c) := inf{α | c − αp ∈ C}. (2)

In the case p = (1, 0, . . . , 0), π(c) gives the least initial investment sufficient
to superhedge c ∈ M without subsequent investments. In a pension contract,
where processes c and p are the monthly pension and salary, respectively, π(c)
gives the least contribution rate sufficient for superhedging the pensions pay-
ments.

8



The effective domain

dom π := {c ∈ M|π(c) < +∞} =
⋃

α∈R

(C + αp)

of π consists of the claim processes that can be superhedged with some multiple
of p in a market described by a cost process S and constraints D. In general,
dom π 6= M but in many applications it is natural to assume that domπ contains
all bounded claim processes. This holds in particular when p = (1, 0, . . . , 0)
(single premium payment at the beginning) and when arbitrary long positions
in cash are allowed.

Proposition 7 The following properties are always valid.

1. π is convex,

2. π is monotone: π(c) ≤ π(c′) if c ≤ c′,

3. π(c + λp) = π(c) + λ for all λ ∈ R and c ∈ M,

4. π(0) ≤ 0.

If C is a cone, then

5. π is positively homogeneous.

Proof. Let λi > 0 be such that λ1 + λ2 = 1 and let ci ∈ dom π and ε > 0 be
arbitrary. If π(ci) > −∞ let αi ≤ π(ci)+ε be such that ci−αip ∈ C. Otherwise,
let αi ≤ −1/ε be such that ci − αip ∈ C. Since C is convex,

λ1c1 + λ2c2 − (λ1α1 + λ2α2)p = λ1(c1 − α1p) + λ2(c2 − α2p) ∈ C

and thus,
π(λ1c1 + λ2c2) ≤ λ1α1 + λ2α2.

Since ε > 0 was arbitrary, the convexity follows. The monotonicity property
follows from M− ⊂ rc C. The translation property is immediate from the defi-
nition of π and π(0) ≤ 0 holds because 0 ∈ C. As to the positive homogeneity,
let c ∈ dom π, ε > 0 and let α ≤ π(c) + ε be such that c − αp ∈ C. If C
is a cone and λ > 0, then λc − λαp ∈ C so that π(αc) ≤ λα ≤ λ(π(c) + ε)
and thus, π(λc) ≤ λπ(c). On the other hand, since λ > 0 was arbitrary,
π(c) = π(λc/λ) ≤ π(λc)/λ, so that π(λc) = λπ(c) for every c ∈ dom π and
λ > 0. This also shows that dom π is a cone, so that π(λc) = λπ(c) holds for all
c ∈ M. �

We see that π has properties close to those of a convex risk measure; see e.g.
[17, Chapter 4]. Consequently, we can use similar techniques in its analysis; see
Section 5.

The nonpositive number π(0) is the smallest multiple of the premium p one
needs in order to find a riskless strategy in the market. If one has to deliver
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a claim c ∈ M, one needs π(c) − π(0) units more. This is analogous to [12,
Definition 4.1] in the case of deterministic fixed income markets with a single
premium payment at the beginning. More generally, we define the superhedging
selling price of a c ∈ M for an agent with initial liabilities c̄ ∈ M as

P (c̄; c) = π(c̄ + c) − π(c̄).

Analogously, the superhedging buying price of a c ∈ M for an agent with initial
liabilities c̄ ∈ M is given by π(c̄) − π(c̄ − c) = −P (c̄;−c). It follows from
convexity of π that

−P (c̄;−c) ≤ P (c̄; c)

which means that agents with similar liabilities and similar market expectations
should not trade with each other if they aim at superhedging their positions.

It is intuitively clear that the value an agent assigns to a claim should depend
not only on the market expectations but also on the liabilities the agent might
have already before the trade. For example, the selling price P (c̄IC ; c) of a
home insurance contract c ∈ M for an insurance company may be lower than
the buying price −P (c̄HO;−c) for a home owner, even if the two had identical
market expectations. Here c̄IC would be the claims associated with the existing
insurance portfolio of the company while c̄HO would be the possible losses to the
home owner associated with damages to the home. Another example would be
the exchange of futures contracts between a wheat farmer and a wheat miller. In
fact, many derivative contracts exist precisely because of the differences between
initial liabilities of different parties.

A minimal condition for a pricing problem to be sensibly posed is that p /∈
rc C. In other words, when looking for compensation for delivering a claim it
does not make sense to ask for something that is freely available in the market
at unlimited quantities.

Proposition 8 If C is algebraically closed, then the conditions

(a) π(c) > −∞ for some c ∈ dom π,

(b) π(0) > −∞,

(c) π(c) > −∞ for every c ∈ dom π,

(d) p /∈ rc C

are equivalent and imply that π(c) = inf{α | c − αp ∈ C} is attained for every
c ∈ dom π. If C is conical, (b) is equivalent to

(e) π(0) = 0.

Proof. By definition of the recession cone, p ∈ rc C means that π(c) = −∞ for
every c ∈ dom π so (a) and (d) are equivalent. The implication (c) ⇒ (b) is
obvious and (b) ⇒ (a) holds by Proposition 7(4). If C is algebraically closed,
then by Lemma 6, (c) is equivalent to (d).
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The attainment of the infimum follows directly from the definition of alge-
braic closedness. When C is a cone, (b) means that π(0) ≥ 0. By Proposi-
tion 7(4), this is equivalent to (d). �

Thus, if C is algebraically closed and π(0) > −∞, then the price P (c̄; c) is
well defined and finite for every c̄ ∈ dom π and c + c̄ ∈ dom π. In particular, if
p = (1, 0, . . . , 0) and arbitrary long positions in cash are allowed, then P (c̄; c) is
well defined and finite for every bounded c̄ and c.

In the case of perfectly liquid markets and the premium p = (1, 0, . . . , 0),
the condition π(0) ≥ 0 means that there is no “arbitrage of the second kind”
in the sense of Ingersoll [19]. In the fixed income market model of [11, 12],
the condition π(0) ≥ 0 was called the “weak no arbitrage” condition. When
p = (1, 0, . . . , 0), the condition π(0) ≥ 0 is also related to the “law of one price”
well known in classical perfectly liquid market models. While π(0) ≥ 0 means
that it is not possible to superhedge the zero claim when starting from strictly
negative initial wealth, the law of one price means that it is not possible to
replicate the zero claim when starting with strictly negative wealth; see e.g. [9].

Proposition 8 shows that the natural generalization of the condition π(0) ≥ 0
to nonconical market models is the weaker requirement that π(0) be finite.
When C is algebraically closed, the finiteness of π(0) is necessary and sufficient
for the superhedging cost π to be a proper convex function on M. In general,
the stronger condition π(0) ≥ 0 means that −αp /∈ C for all α < 0 or equivalently
that p /∈ pos C, where

pos C :=
⋃

α>0

αC

is a convex cone known as the positive hull of C. Clearly, rc C ⊆ pos C where
equality holds iff C is conical. The sets pos C and rc C are closely related to the
“marginal” and “scalable” arbitrage opportunities studied in [35].

5 Duality

There exist several pricing formulas where the value of a security is expressed
as a weighted sum of its cash flows. In particular, in fixed income markets
where the cash flows are deterministic, the value of an asset can be expressed
in terms of future cash flows weighted according to the current term structure
representing time values of cash. When valuing assets with random payouts one
can often write the value as an expectation where the cash flows are weighted
with a martingale density. Such martingale representations rely on the existence
of a cash account (or a numeraire) which, on the other hand, means that the
time value of cash is constant. When moving to illiquid markets under stochastic
uncertainty one needs richer dual objects that encompass both the time value
of money as well as the random nature of cash flows.

In classical perfectly liquid market models or in models with proportional
transaction costs, superhedging conditions can be described in terms of the
same dual variables that characterize the no arbitrage condition; see e.g. [17]
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or [24]. In the presence of nonlinear illiquidity effects, this is no longer true.
Instead, we obtain dual characterizations of superhedging conditions in terms
of the “support function” of the set of integrable claims in C. We then give
an expression for the support function in terms of S and D, which allows for a
more concrete characterizations of superhedging. In the classical case, familiar
dual expressions are obtained as a special case. Our results hold under the
assumption that C is closed in probability, a condition which is known to be
satisfied under the no arbitrage condition in the case of classical perfectly liquid
models; see [45]. In Section 6, we will give alternative closedness conditions that
apply to general S and D.

Let M1 and M∞ be the spaces of integrable and essentially bounded, re-
spectively, real-valued adapted processes. Let

C1 := C ∩M1,

be the set of integrable claim processes that can be superhedged with zero
cost. While the elements of M1 represent claim processes, the elements of M∞

represent stochastic term structures that will be used in dual representations of
superhedging conditions and superhedging costs defined in Sections 3 and 4.

The bilinear form

(c, y) 7→ E
T
∑

t=0

ctyt

puts M1 and M∞ in separating duality; see [41, page 13]. One can then use
classical convex duality arguments to describe hedging conditions. This will
involve the support function σC1 : M∞ → R of C1 defined by

σC1(y) = sup
c∈C1

E

T
∑

t=0

ctyt.

In the terminology of microeconomic theory, σC1 is called the profit function
associated with the “production set” C1; see e.g. Aubin [3] or Mas-Collel, Whin-
ston and Green [30]. In the present context, C1 consists of the integrable claim
processes one can produce in the market without costs, while σC1(y) gives the
largest profit one could generate by selling an element of C1 at prices given by
y. The following lists some basic properties of σC1 .

Proposition 9 The function σC1 : M∞ → R is nonnegative and sublinear. Its
effective domain

dom σC1 = {y ∈ M∞ |σC1(y) < ∞}

is a convex cone in the set M∞
+ of nonnegative bounded processes. If arbi-

trary long positions in cash are allowed, then dom σC1 is contained in the set of
nonnegative supermartingales.

Proof. The sublinearity is immediate and the nonnegativity follows from 0 ∈
C1. That dom σC1 is a convex cone follows from sublinearity. Since C1 contains
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all nonpositive integrable claim processes, domσC1 is contained in M∞
+ . If

arbitrary long positions in cash are allowed, then

C1 ⊃ {−(∆x0
t )

T
t=0 |x

0 ∈ M∞
+ , x0

T = 0},

so that

σC1(y) ≥ sup{−E
T
∑

t=0

∆x0
t yt |x

0 ∈ M∞
+ , x0

T = 0}

= sup{E
T−1
∑

t=0

x0
t ∆yt+1 |x

0 ∈ M∞
+ }

= sup{E
T−1
∑

t=0

x0
t E[∆yt+1 | Ft] |x

0 ∈ M∞
+ }

=

{

0 if E[∆yt+1 | Ft] ≤ 0 for t = 0, . . . , T − 1,

+∞ otherwise.

Thus, σC1(y) = +∞ unless y is a supermartingale. �

If C is closed in probability then C1 is closed in the norm topology of M1 and
the classical bipolar theorem (see e.g. [40, Theorem 14.5] or [3, Section 1.4.2])
says that c ∈ C1 if and only if

E
T
∑

t=0

ctyt ≤ 1

for every y ∈ M∞ such that σC1(y) ≤ 1. This immediately yields a dual charac-
terization of the superhedging condition (1) for integrable claims and premiums.
The following gives a dual representation for the superhedging cost (2).

Theorem 10 Assume that C is closed in probability and let p ∈ M1. We have
π(0) > −∞ if and only if there is a y ∈ dom σC1 such that E

∑T

t=0 ptyt = 1.
In that case, π is a proper lower semicontinuous (both in norm and the weak
topology) convex function on M1 with the representation

π(c) = sup
y∈M∞

{

E

T
∑

t=0

ctyt − σC1(y)

∣

∣

∣

∣

∣

E

T
∑

t=0

ptyt = 1

}

.

Proof. When p ∈ M1, the restriction π̄ of π to M1 can be written as π̄(c) =
inf{α | c−αp ∈ C1}. The convex conjugate π̄∗ : M∞ → R of π̄ can be expressed
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as

π̄∗(y) = sup
c∈M1

{E
T
∑

t=0

ctyt − π(c)}

= sup
c∈M1,α∈R

{E
T
∑

t=0

ctyt − α | c − αp ∈ C1}

= sup
c′∈M1,α∈R

{E
T
∑

t=0

(c′t + αpt)yt − α | c′ ∈ C1}

= sup
c′∈M1,α∈R

{E
T
∑

t=0

c′tyt +

(

E
T
∑

t=0

ptyt − 1

)

α | c′ ∈ C1}

=

{

σC1(y) if E
∑T

t=0 ptyt = 1,

+∞ otherwise.

The representation for π on M1 thus means that π̄ equals the conjugate of π̄∗.
By [41, Theorem 5], this holds exactly when π̄ is proper and lower semicontin-
uous. Since, by assumption, C is closed in probability it is also algebraically
closed and then, by Proposition 8, π̄ is proper iff π(0) > −∞. It thus suffices
to show that π̄ is lower semicontinuous in norm, or equivalently, that the set

levγ π̄ = {c ∈ M1 | π̄(c) ≤ γ}

is norm closed for every γ ∈ R. Lower semicontinuity in the weak topology then
follows by the classical separation argument.

Let (cν)∞ν=1 be a sequence in levγ π̄ that converges in norm to a c̄ ∈ M1.
By Proposition 8, there are αν ∈ R such that αν ≤ γ and cν − ανp ∈ C1. If
(αν)∞ν=1 has an accumulation point ᾱ, we get ᾱ ≤ γ and, by closedness of C1,
that c̄− ᾱp ∈ C1. This means that π̄(c̄) ≤ γ. It thus suffices to show that under
the condition π(0) > −∞, the sequence (αν) has to be bounded from below.

By Proposition 8, the condition π(0) > −∞ is equivalent to p /∈ rc C. Since
C is convex, algebraically closed and 0 ∈ C this means that there is a λ > 0 such
that p /∈ λC. Since C1 is closed, there is a neighborhood U of p such that

U ∩ λC1 = ∅. (3)

Assume that (αν) is not bounded from below. Then, since (cν) converges, there
is a ν such that p− cν/αν ∈ U and 1

−αν ≤ λ. Since cν −ανp ∈ C1, we also have

p −
cν

αν
∈

1

−αν
C1 ⊂ λC1,

where the inclusion holds since C1 is convex and 0 ∈ C1. This contradicts (3) so
(αν) has to bounded from below. �

On one hand, the processes y in Theorem 10 generalize martingale densities
beyond classical perfectly liquid markets with a cash account; see Corollary 15
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below. On the other hand, they generalize term structures of interest rates
beyond fixed income markets. In particular, the dual representation for π can
be seen as an extension of [11, Theorem 3.2] to stochastic models and general
premium processes. When arbitrary long positions in cash are allowed, then by
Proposition 9, the processes y in the dual representation of π can be taken non-
negative supermartingales. Much as in [1], one can then use the Itô-Watanabe
decomposition (see [15]) to write each term structure in the representation as
a product y = MA of a martingale M and a nonincreasing predictable process
A with values in [0, 1]. Whereas M may be interpreted as the density process
of a “pricing measure”, A represents a discounting factor that accounts for the
absence of a cash account.

The representation of π is analogous to the dual representation of the super-
hedging cost of [16, Proposition 16] in the case of classical linear models with
a cash account and convex constraints on the risky assets; see also [17, Corol-
lary 9.30]. While [16, Proposition 16] applies to claims and premiums with single
payout dates, the abstract result in [20, Theorem 2] allows for general claim and
premium processes like Theorem 10 but there the model is conical. Nonconical
models have been studied in [47, 4] but there the premium was hidden in an
abstract “ask pricing function”. Theorem 10 gives a precise characterization of
the premium processes for which the dual representation is valid.

The profit function σC1 plays a similar role in superhedging of claim processes
as the “penalty function” does in the theory of convex risk measures; see e.g. [17,
Chapter 4]. In the conical case (see Lemma 5), Theorem 10 simplifies much like
the dual representation of a coherent risk measure.

Corollary 11 Assume that C is conical and closed in probability. Let p ∈ M1

and

D∞ = {y ∈ M∞ |E
T
∑

t=0

ctyt ≤ 0 ∀c ∈ C1}.

We have π(0) ≥ 0 if and only if there is a y ∈ D∞ such that E
∑T

t=0 ptyt = 1.
In that case, π is a proper lower semicontinuous sublinear function on M1 with
the representation

π(c) = sup
y∈D∞

{

E
T
∑

t=0

ctyt

∣

∣

∣

∣

∣

E
T
∑

t=0

ptyt = 1

}

.

Proof. By Proposition 8, the condition π(0) > −∞ is equivalent to π(0) ≥ 0
in the conical case. When C is a cone the set C1 is also a cone so that

σC1(y) =

{

0 if y ∈ D∞,

+∞ otherwise.

The claim thus follows from Theorem 10. �

For the traditional superhedging problem with a single premium payment at
the beginning and single claim payment at the end, Corollary 11 can be written
as follows.
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Corollary 12 Assume that C is conical and closed in probability, that p =
(1, 0, . . . , 0) and c = (0, . . . , 0, cT ) for a cT ∈ L1(Ω,FT , P ). Then π(0) ≥ 0 if
and only if there is a y ∈ D∞ such that y0 = 1. In that case, π is a proper
lower semicontinuous (both in norm and the weak topology) sublinear function
on M1 with the representation

π(c) = sup
y∈D∞

{EcT yT | y0 = 1} .

When S is integrable (see below), we can express σC1 and thus Theorem 10
and its corollaries more concretely in terms of S and D. This will involve the
space N 1 of R

J -valued adapted integrable processes v = (vt)
T
t=0 and the integral

functionals
vt 7→ E(ytSt)

∗(vt) and vt 7→ EσDt
(vt)

associated with the normal integrands

(ytSt)
∗(v, ω) := sup

x∈RJ

{x · v − yt(ω)St(x, ω)}

and

σDt
(v, ω) := sup

x∈RJ

{x · v |x ∈ Dt(ω)}.

The first one gives the maximum value of a position in the underlying assets
and cash when the assets are priced by v and cash by y(ω). The function
v 7→ σDt

(v, ω) gives the maximum value of a position in the underlying asset
over the feasible set. Since St(0, ω) = 0 and 0 ∈ Dt(ω) for every t and ω, the
functions (ytSt)

∗ and σDt
are nonnegative. That (ytSt)

∗ and σDt
do define

normal integrands follows from [42, Theorem 14.50].
We say that a cost process S = (St)

T
t=0 is integrable if the functions St(x, ·)

are integrable for every t = 0, . . . , T and x ∈ R
J . In the classical linear case

St(x, ω) = st(ω) · x, integrability means that the marginal price s is integrable
in the usual sense. The following is from [35].

Lemma 13 If S is integrable, then for y ∈ M∞
+ ,

σC1(y) = inf
v∈N 1

{

T
∑

t=0

E(ytSt)
∗(vt) +

T−1
∑

t=0

EσDt
(E[∆vt+1|Ft])

}

,

while σC1(y) = +∞ for y /∈ M∞
+ . The infimum is attained for every y ∈ M∞

+ .

In the conical case, Lemma 13 yields the following expression for the polar
cone of C1 in Corollary 11.

Corollary 14 If S is sublinear and integrable and if D is conical, then the polar
of C1 can be expressed as

D∞ = {y ∈ M∞
+ | ∃s ∈ N : ys ∈ M1, st ∈ Zt, E[∆(ytst) | Ft−1] ∈ D∗

t },

where Zt(ω) = {s ∈ R
J | s · x ≤ St(x, ω) ∀x ∈ R

J} and D∗
t (ω) is the polar cone

of Dt(ω).
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Proof. If S is sublinear and D is conical, we have, by Theorems 13.1 and 13.2
of [40], that

(ytSt)
∗(v, ω) =

{

0 if v ∈ yt(ω)Zt(ω),

+∞ otherwise

and

σDt(ω)(v, ω) =

{

0 if v ∈ Dt(ω)∗,

+∞ otherwise.

By Lemma 13, the polar cone D∞ = {y ∈ M∞ |σC1(y) ≤ 0} can thus be written

D∞ = {y ∈ M∞
+ | ∃v ∈ N 1 : vt ∈ ytZt, E[∆vt | Ft−1] ∈ D∗

t t = 1, . . . T},

so it suffices to make the substitution vt = ytst. �

In classical perfectly liquid models where St(x, ω) = st(ω) · x and Dt(ω) =
R

J , we have Zt(ω) = {st(ω)} and D∗
t (ω) = {0} so Corollary 14 says that

D∞ = {y ∈ M∞
+ | (ytst) is a martingale}

as long as s is integrable. In particular, if one of the assets has nonzero constant
price then every y ∈ D∞ is a martingale. In this case, Theorem 10 can be
written in the following more familiar form; see e.g. Theorem 2 on page 55 of
Ingersoll [19] for the case of finite probability spaces.

Corollary 15 Consider the classical linear model with a cash account and an
integrable price process s. If C is closed, then the existence of a martingale
density for s is equivalent to the condition π(0) ≥ 0 with the premium p =
(1, 0, . . . , 0). In this case,

π(c) = sup
Q∈P

EQ

T
∑

t=0

ct,

where P is the set of martingale measures that are absolutely continuous with
respect to P .

Proof. As noted above, the elements D∞ are martingales y such that ys is also
a martingale. The existence of a martingale density is thus equivalent to the
existence of a y ∈ D∞ such that y0 = 1. By Corollary 12, this is equivalent to
π(0) ≥ 0 with the premium process p = (1, 0, . . . , 0). The representation then
follows from the correspondence dQ/dP = yT between absolutely continuous
martingale measures and terminal values of the term structures y ∈ D∞. �

In the classical linear model with a cash account, the closedness of C and
the condition π(0) ≥ 0 with p = (1, 0, . . . , 0) both hold under the no arbitrage
condition; see Schachermayer [45]. The stronger no arbitrage condition also
implies the existence of a strictly positive martingale density. The relationships
between no arbitrage conditions and the existence of strictly positive stochastic
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term structures in general convex models have been studied in [35]. However,
in nonconical models, neither arbitrage nor the associated strictly positive term
structures are relevant when it comes to superhedging. In particular, the no
arbitrage condition does not imply the closedness of C in general; see Example 17
below.

The condition π(0) ≥ 0 is like the “law of one price” except that it allows
for throwing away of money. On one hand, the condition π(0) ≥ 0 yields the
nonnegativity of the dual variables while the law of one price only yields the
existence of a martingale which could take negative values; see [9]. On the other
hand, allowing for throwing away of money in the definition of π we have to
impose the closedness of C explicitly. In classical perfectly liquid models, the
set of claims that can be exactly replicated with zero cost is always closed; see
[25].

6 Closedness of C

In light of the above results, the closedness of C in probability becomes an
interesting issue. It was shown by Schachermayer [45] that when S is a linear
cost process with a cash account (see Example 4) and D = R

J , the closedness
is implied by the classical no arbitrage condition. This section, gives sufficient
conditions for other choices of S and D that guarantee that C is closed in
probability.

In classical linear models, the finiteness of Ω is known to be sufficient for
closedness even when there is arbitrage. More generally, we have the following.

Example 16 If S and D are polyhedral and Ω is finite then C is closed.

Proof. By [40, Theorem 19.1] it suffices to show that C is polyhedral. The set
C is the projection of the convex set

E = {(x, c) ∈ N0 ×M|xt ∈ Dt, St(∆xt) + ct ≤ 0, t = 0, . . . , T}.

When S and D are polyhedral, we can describe the pointwise conditions xt ∈ Dt

and St(∆xt)+ct ≤ 0 by a finite collection of linear inequalities. When Ω is finite,
the set E becomes an intersection of a finite collection of closed half-spaces. The
set C is then polyhedral since it is a projection of a polyhedral convex set; see
[40, Theorem 19.3]. �

In a general nonlinear model, however, the set C may fail to be closed already
with finite Ω and even under the no arbitrage condition.

Example 17 Consider Example 4 in the case T = 1, so that

C = {c ∈ M|∃x̃0 ∈ D̃0 : c0 + c1 ≤ x̃0 · (s1 − s0)}.

Let Ω = {ω1, ω2}, J̃ = {1, 2}, D̃0 = {(x1, x2) |xj ≥ −1, (x1 + 1)(x2 + 1) ≥ 1},
s̃0 = (1, 1) and

s̃1(ω) =

{

(1, 2) if ω = ω1,

(1, 0) if ω = ω2.
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Since s̃1 is constant, we get

C = {c ∈ M|∃x̃2
0 ∈ D̃2

0 : c0 + c1 ≤ x̃2
0(s

2
1 − s2

0)},

where D̃2
0 is the projection of D̃0 on the second component. Since D̃2

0 = (−1,+∞),
s2
1(ω

1) − s2
0 = 1 and s2

1(ω
2) − s2

0 = −1, we get

C = {c ∈ M|∃x̃0 > −1 : c0 + c1(ω
1) ≤ x̃2

0, c0 + c1(ω
2) ≤ −x̃2

0}

= {c ∈ M| c0 + c1(ω
1) + c0 + c1(ω

2) ≤ 0, c0 + c1(ω
2) < 1},

which is not closed even though the no arbitrage condition C ∩ M+ = {0} is
satisfied.

In order to find sufficient conditions for nonlinear models with general Ω, we
resort to traditional closedness criteria from convex analysis; see [40, Section 9].
Given an α > 0, it is easily checked that

(α ⋆ S)t(x, ω) := αSt(α
−1x, ω)

defines a convex cost process in the sense of Definition 1. If S is positively
homogeneous, we have α ⋆S = S, but in general, α ⋆S decreases as α increases;
see [40, Theorem 23.1]. The upper limit

S∞
t (x, ω) := sup

α>0
α ⋆ St(x, ω),

known as the recession function of St(·, ω), describes the behavior of St(x, ω)
infinitely far from the origin; see [40, Section 8]. Analogously, if D is conical, we
have αD = D, but in general, αD gets smaller when α decreases. Since Dt(ω)
is closed and convex, the intersection

D∞
t (ω) =

⋂

α>0

αDt(ω),

coincides with the recession cone of Dt(ω); see [40, Corollary 8.3.2].
An R

J -valued adapted process s = (st) will be called a market price process
if st ∈ ∂St(0) almost surely for every t = 0, . . . , T ; see [35]. Here,

∂St(0, ω) := {v ∈ R
J |St(x, ω) ≥ St(0, ω) + v · x ∀x ∈ R

J}

is the subdifferential of St at the origin. If St(·, ω) happens to be smooth at the
origin, then ∂St(0, ω) = {∇St(0, ω)}.

Theorem 18 The set C is closed in probability if

D∞
t (ω) ∩ {x ∈ R

J |S∞
t (x, ω) ≤ 0} = {0}

almost surely for every t = 0, . . . , T . This holds, in particular, if there exists a
componentwise strictly positive market price process and if D∞ ⊂ R

J
+.
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Proof. Let (cν)∞ν=1 be a sequence in C converging to a c. By passing to a
subsequence if necessary, we may assume that cν → c almost surely. Let xν ∈ N0

be a superhedging portfolio process for cν , i.e.

xν
t ∈ Dt, St(x

ν
t − xν

t−1) + cν
t ≤ 0

almost surely for t = 0, . . . , T and xν
−1 = xν

T = 0. We will show that the
sequence (xν)∞ν=1 is almost surely bounded.

Assume that xν
t−1 is almost surely bounded and let at−1 ∈ L0 be such that

xν
t−1 ∈ at−1B almost surely for every ν. Defining ct(ω) = inf cν

t (ω) we then get
that

xν
t (ω) ∈ Dt(ω) ∩ {x ∈ R

J |St(x − xν
t−1(ω), ω) + cν

t (ω) ≤ 0}

⊂ Dt(ω) ∩
[

{x ∈ R
J |St(x, ω) + cν

t (ω) ≤ 0} + at−1(ω)B
]

⊂ Dt(ω) ∩
[

{x ∈ R
J |St(x, ω) + ct(ω) ≤ 0} + at−1(ω)B

]

.

By [40, Theorem 8.4], this set is bounded exactly when its recession cone consists
only of the zero vector. By Corollary 8.3.3 and Theorems 9.1 and 8.7 of [40],
the recession cone can be written as

D∞
t (ω) ∩ {x ∈ R

J |S∞
t (x, ω) ≤ 0},

which equals {0}, by assumption. It thus follows that (xν
t )∞ν=1 is almost surely

bounded and then, by induction, the whole sequence (xν)∞ν=1 has to be almost
surely bounded.

By Komlos’ principle of subsequences (see e.g. [17, Lemma 1.69]), there is a
sequence of convex combinations

x̄µ =

∞
∑

ν=µ

αµ,νxν

that converges almost surely to an x. Since cν → c almost surely, we also get
that

c̄µ :=

∞
∑

ν=µ

αµ,νcν → c P -a.s..

By convexity, of D and S,

x̄µ
t ∈ Dt, St(x̄

µ
t − x̄µ

t−1) + c̄µ
t ≤ 0

and then, by closedness of Dt(ω) and lower semicontinuity of St(·, ω),

xt ∈ Dt, St(xt − xt−1) + ct ≤ 0.

Thus, c ∈ C and the first claim follows.
If s ∈ ∂S(0) is a market price process, then st(ω) · x ≤ St(x, ω) for every

x ∈ R
J and thus st(ω) · x ≤ S∞

t (s, ω) for every x ∈ R
J . If we also have

D∞ ⊂ R
J
+, then

D∞
t (ω) ∩ {x ∈ R

J |S∞
t (x, ω) ≤ 0} ⊂ R

J
+ ∩ {x ∈ R

J | st(ω) · x ≤ 0},

which reduces to the origin when s is strictly positive. �
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The set D∞
t (ω) consists of portfolios that can be scaled by arbitrarily large

positive numbers without ever leaving the set Dt(ω) of feasible portfolios. By
[40, Theorem 8.6], the set

{x ∈ R
J |S∞

t (x, ω) ≤ 0}

gives the set of portfolios x such that the cost St(αx, ω) is nonincreasing as a
function of α. Since St(0, ω) = 0, we also have St(x, ω) ≤ 0 for every x with
S∞

t (x, ω) ≤ 0.
The existence of a strictly positive market price process in Theorem 18 is a

natural assumption in many situations. In double auction markets, for example,
it means that ask prices of all assets are always strictly positive. The condition
D∞

t (ω) ⊂ R
J
+ means that if a portfolio x ∈ R

J has one or more negative
components then αx leaves the set Dt(ω) for large enough α > 0. This holds in
particular if portfolios are not allowed to go infinitely short in any of the assets.

Example 17 shows that the no arbitrage condition does not imply the condi-
tions of Theorem 18 (in Example 17, D∞

0 (ω) = R×R
2
+ and S∞

t (x, ω) = st(ω)·x).
On the other hand, the conditions of Theorem 18 may very well hold (and thus,
C be closed) even when the no arbitrage condition is violated.

Example 19 Let St(x, ω) = st(ω) ·x where s = (st) is a componentwise strictly
positive marginal price process. It is easy to construct examples of s that allow
for arbitrage in an unconstrained market. Let x̄ ∈ N0 be an arbitrage strategy in
such a model and consider another model with constraints defined by Dt(ω) =
{x ∈ R

J |x ≥ x̄t(ω)}. In this model, x̄ is still an arbitrage strategy but now the
conditions of Theorem 18 are satisfied so C is closed.

Sufficient conditions for closedness of C can also be derived from the re-
sults of Schachermayer [46], Kabanov, Rásonyi and Stricker [22] as well as the
forthcoming paper Pennanen and Penner [36]. Whereas [46] and [22] deal with
conical models, [36] allows for more general convex models. In these papers,
closedness is obtained for the larger set of portfolio-valued claims. However,
this is not necessary when studying claims with cash delivery as in this paper.
More importantly, none of the above papers allows for portfolio constraints.

7 Conclusions

This paper extended some classical dual characterizations of superhedging to
illiquid markets with general claim and premium processes. The characteriza-
tions were given in terms of stochastic term structures which generalize term
structures of interest rates beyond fixed income markets as well as martingale
densities beyond stochastic markets with a cash account. The characterizations
are valid whenever the set of freely available claim processes is closed in proba-
bility and the superhedging cost of the zero claim is finite. In the special case of
classical perfectly liquid markets with a single premium payment at the begin-
ning, both conditions are implied by the no arbitrage condition. Section 6 gives
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alternative closedness conditions for general convex cost functions and convex
constraints. They apply, in particular, in double auction markets when one is
not allowed to go infinitely short in any of the traded assets.

Most of the results in this paper were stated in terms of the set C of claim
processes hedgeable with zero cost. This means that the results are not tied
to the particular market model presented in Section 2 but apply to any model
where the set C is closed in probability and has the properties in Lemma 5. In
particular, one could look for conditions that yield convexity in market models
with long terms price impacts; see e.g. Alfonsi, Schied and Schulz [2].

In reality, one rarely looks for superhedging strategies when trading in prac-
tice. Instead, one (more or less quantitatively) sets bounds on acceptable levels
of “risk” when taking positions in the market and when quoting prices. Risk
based pricing has been extensively studied in the case of classical perfectly liquid
market models; see e.g. [17, Chapter 8]. Allowing for risky positions takes us
beyond the completely riskless superhedging formulations studied in this paper.
Nevertheless, closedness and duality results such as the ones derived here will
be in an important role when extending risk based pricing to illiquid market
models with general claim and premium processes. This will be studied in a
separate paper.
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