
Risk–Reward Optimisation for Long-Run Investors:

an Empirical Analysis∗

Manfred Gillia & Enrico Schumannb

a Department of Econometrics, University of Geneva and Swiss Finance Institute

b Department of Econometrics, University of Geneva

21 August 2009

Abstract
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A common approach in portfolio selection is to characterise a portfolio of assets by a

desired property, the ‘reward’, and something undesirable, the risk. These properties

are often identified with mean and variance of returns, respectively, even though, given

the non-Gaussian nature of financial time series, alternative specifications like partial

and conditional moments, quantiles, and drawdowns seem theoretically more appro-

priate. We analyse the empirical performance of portfolios selected by optimising risk–

reward ratios constructed from such alternative functions. We find that in many cases

these portfolios outperform our benchmark (minimum-variance), in particular when

long-run returns are concerned. We also find, however, that all the strategies tested

(including minimum-variance) are sensitive to relatively small changes in the data. The

main theme throughout our analysis is that minimising risk, as opposed to maximising

reward, leads to good out-of-sample performance. Adding a reward-function to the

selection criterion usually improves a given strategy only marginally.

Keywords: Portfolio optimisation, Optimisation heuristics, Downside risk

jel codes: g11

1 Introduction

In modern portfolio theory (Markowitz, 1952), a portfolio of financial assets is characterised

by a desired property, the ‘reward’, and something undesirable, the ‘risk’. Balancing finan-

cial aspects against statistical and, particularly, computational limitations, Markowitz iden-

tified reward and risk with the expectation and the variance of returns, respectively. An

alleged weakness of the resulting mean–variance optimisation is that selecting portfolios

∗The authors gratefully acknowledge financial support from the eu Commission through mrtn-ct-2006-
034270 comisef.
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only on the basis of the first two moments of portfolio returns should not be appropriate,

given the considerable body of evidence of the non-Gaussian nature of financial time series

(Cont, 2001).

This paper investigates this criticism. We empirically evaluate portfolio selection criteria

that have been proposed as alternatives to the mean–variance rule, thus we replace the mean

and variance by alternative measures of ‘reward’ and ‘risk’. These alternative functions

explicitly take into account certain empirical regularities (‘stylised facts’) of financial prices

like fat tails or asymmetric return distributions.

Our paper contributes to the literature by giving evidence of the empirical effectiveness

of selection criteria for financial assets portfolios. We also provide robustness checks for

our empirical results by trying to capture the uncertainty around the point estimates that

are usually presented in empirical studies on portfolio optimisation. To solve the portfolio

problems we use a heuristic optimisation technique, Threshold Accepting, which is capa-

ble of optimising portfolios under all the different selection criteria discussed. Threshold

Accepting works directly on the empirical distribution function of portfolio returns, it does

not require approximating the data by a parametric distribution.

The paper links to two strands of the financial literature. Firstly, there is the large num-

ber of studies investigating the empirical performance of mean–variance optimisation. The

main finding here is that a straightforward estimation of the required parameters, that is

the assets’ means and their variance–covariance matrix, and their ‘plugging-into’ the objec-

tive function, often lead to badly diversified portfolios that perform poorly out-of-sample.

Secondly, there are several theoretical studies on desirable properties of risk and perfor-

mance measures, in particular such measures that capture non-Gaussian properties of the

data. Related is the literature on performance measurement and performance attribution,

which often comes from a more practical or accounting background. We briefly review

some results of these studies here.

With highly-correlated data series, portfolios obtained from mean–variance optimisation

are very sensitive to the required input parameters (means, variances and correlations), with

small changes in the estimated parameters leading to large changes in portfolio holdings.

Thus, even under a stable data-generating process, the in-sample efficient frontier is very

difficult to estimate, which makes it often a poor predictor of the out-of-sample frontier

(in which we are naturally more interested). Hence, portfolios that appear mean–variance

efficient in one period are often far from efficient and perform poorly in the next period.

These estimation difficulties are by now well documented; early studies are Cohen and

Pogue (1967); Frankfurter et al. (1971), see also Jobson and Korkie (1980); Jorion (1985, 1986);

Best and Grauer (1991); Chopra et al. (1993); Board and Sutcliffe (1994). Brandt (forthcom-

ing) gives a very good overview. The general result of these studies is that in finite samples

parameter estimates are usually very imprecise; the means in particular are most difficult

to estimate (though also most rewarding if measured correctly). One extreme reaction to

these estimation problems is to completely disregard any historical information, a strategy

that has recently received a lot of attention with DeMiguel et al. (2009). Empirically, how-

ever, there is evidence of persistent characteristics in financial time series. For instance,
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when compared with constant predictors, recent past variances seem to be good predictors

of future variances, so it seems strange not to exploit this knowledge. An optimal data

strategy will thus very likely include at least some historical information, though (just as

likely) not all information. This is a well-known principle for forecasts based on noisy data:

to reduce overfitting and to obtain better out-of-sample results, sample information needs

to be ignored; otherwise, we will fit (‘overfit’) the model to the noise. Under this principle,

seemingly contradictory strategies (like removing noise by applying principal components

analysis, or adding additional noise by resampling) achieve the same result.

Different less extreme methods have been proposed in the literature to improve estima-

tion, for instance shrinkage estimation or the usage of factor models (Briner and Connor,

2008; Brandt, forthcoming). Though often motivated differently, the prescription of these

techniques is similar: they either constrain the input parameters to be ‘more equal’, or set

up maximum holding sizes. Either approach results in less extreme portfolio weights and

more diversification. There are several recurrent findings concerning these different ap-

proaches. Not allowing short sales improves performance, as does disregarding the means

altogether and only minimising a portfolio’s variance (see Board and Sutcliffe (1994) for UK

stocks, Chan et al. (1999) for US stocks). In fact, the robust empirical performance of this

minimum-variance (mv) portfolio led to considerable interest in improving the estimation

of the variance–covariance matrix. Various shrinkage and ‘portfolio of estimators’ methods

seem to improve performance, even though empirically it seems hard to distinguish a truly

best method (Chan et al., 1999; Disatnik and Benninga, 2007), with negligible advantages

of more elaborate models over simpler ones. Still, this suggests a long-only mv portfolio as

a natural benchmark for alternative portfolio construction methods.

If a riskless asset is available, mean–variance optimisation reduces to maximising a

portfolio’s Sharpe ratio (Sharpe, 1966, 1994), ie, the ratio of a portfolio’s excess return over

the riskfree rate to its standard deviation. Hence the Sharpe ratio, though probably the

most widely used mapping of a portfolio’s desirability into a single real number, inherits

the alleged weakness of mean–variance optimisation. In recent years, a large number of

alternative risk and performance measures have been proposed (for an overview, see for

example Rachev et al. (2005)). The development and usage of these measures was driven

to a considerable extent by theoretical studies on desirable properties of risk measures

(Artzner et al., 1999; Pedersen and Satchell, 1998, 2002; De Giorgi, 2005) (often related to the

regulatory discussion on the use of Value-at-Risk and Expected Shortfall in banks), and the

growth of asset classes like hedge funds and derivatives which exhibit very non-Gaussian

return characteristics.

In practice, these new performance measures are mainly used for ex post comparison

of different funds or strategies (Bacon, 2008), but rarely for ex ante optimisation. There are

so far only few papers that extend the empirical studies on mean–variance optimisation to

alternative specifications of the objective functions, in particular by replacing the variance

by an alternative specification like Value-at-Risk (var) or drawdown. The main reason is

the difficulty to optimise portfolios with such objective functions, in particular in conjunc-

tion with constraints and real-world data, since the resulting optimisation problems are
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often not convex and cannot be solved with standard techniques (like linear or quadratic

programming). The few existing papers (eg, Biglova et al. (2004), Farinelli et al. (2008)) con-

sequently either use only a very small number of assets and do not test realistic conditions

like transaction costs, or restrict themselves to those models to which standard solvers can

be applied (eg, Racheva-Iotova and Stoyanov (2008)). Thus, so far there exists little evidence

regarding the general ‘value-added’ of these measures when applied in portfolio optimisa-

tion. On the contrary, there are studies that compare the rankings of funds (in particular

hedge funds) according to downside risk measures with those obtained from Sharpe ratios.

Even though using rankings may not be equivalent to a veritable portfolio optimisation, the

result is quite clear: while many funds demonstrably do not have Gaussian distributions,

the Sharpe rankings are virtually identical to rankings based on alternative performance

measures (Eling and Schuhmacher, 2007; Brooks and Kat, 2002).

Our approach is to decompose alternative performance measures into their building

blocks, like partial moments or quantiles, and then to test whole classes of performance

measures (risk–reward ratios) based on these building blocks. As an example, we do not

just investigate the ratio of lower to upper partial moment with exponent one (the Omega

function, see Keating and Shadwick (2002)), but test such ratios of partial moments for

many different exponents. This gives us an indication whether, generally, partial moments

are an effective element to be included in portfolio selection criteria.

Our overall results indicate that incorporating alternative reward and risk measures into

the portfolio optimisation process does result in improvements over mv. This improvement

is clearest when long-run returns are concerned, where for instance portfolios selected by

minimising lower partial moments perform very well; even after risk-adjustment alterna-

tive selection criteria seem preferable to mv. Our aim is not to conduct a true ‘horse race’

between different objective functions, but rather to investigate statistical properties of dif-

ferent portfolio strategies. We thus provide statistics on out-of-sample returns, volatilities,

and other moments.

We do not discuss estimation issues in this paper. This is not because this issue is not

relevant – on the contrary, it is the main issue in portfolio optimisation. Changing the objec-

tive function, in particular using selection criteria that only consider functions of the lower

tail of the return distribution as risk, considerably exacerbates the estimation problem. It is

important to stress that these estimation difficulties are not just a nuisance: without taking

care of the data, there is evidence that optimised portfolios give at best results similar to

those of simple strategies (eg, portfolios of equal weights). Instead on relying solely on

historical data, we thus use a resampling method to approximate the distribution func-

tion of returns. This technique greatly mitigates the overfitting, and leads to enormous

improvements in out-of-sample performance (see Gilli and Schumann (2009a)).

Finally we should mention optimisation. Many of the portfolio optimisation problems

discussed in this paper lead to non-convex optimisation problems that are in most cases in-

feasible for classical optimisation methods. We use Threshold Accepting, which incidently

was, to our knowledge, the first optimisation heuristic used for (non-mean–variance) port-

folio optimisation (Dueck and Winker, 1992). This paper focuses on the empirical results,
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thus we do not discuss the optimisation technique. A detailed description of the applica-

tion of Threshold Accepting in portfolio management can be found in Gilli and Schumann

(in press). Winker (2001) gives a thorough description of the algorithm in general.

The remainder of this paper is structured as follows: Section 2 details the methodology:

the investment problem, alternative selection criteria, and the data. Section 3 discusses

results, Section 4 concludes.

2 Data and Methodology

2.1 The investment problem

An investor wants to allocate an intial wealth v0 among nA risky assets (there is no riskfree

asset). Given a vector of initial prices p0 of these assets, the budget constraint is

v0 = x′p0 , (1)

where x is the vector of holdings in terms of shares or contracts; corresponding weights w

can be obtained by dividing Equation (1) by v0.

The chosen portfolio x is held over a specified horizon until time T. There is no portfolio

rebalancing between time 0 and time T, hence end-of-period wealth is

vT = x′pT ,

with corresponding portfolio return

rT =
vT

v0
− 1 .

Since pT is not known at time 0, final wealth and thus portfolio returns will be a random

variable. A selection criterion for the investor is a function that maps this random variable

(or a function of it) into a real number.

2.2 Selection criteria

Information about returns can be summarised by computing moments, hence for a sample

of nS oberservations, let

ℳ1 =
1

nS

nS

∑
s=1

rs

and

ℳ2 =
1

nS − 1

nS

∑
s=1

(

rs −ℳ1(r)

)2
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be the mean and variance of returns, respectively. Markowitz’s selection rule states to

choose portfolios that are mean–variance efficient. A corresponding objective function, to

be minimised, can be written as

ℳ2 − λℳ1 ,

with λ a measure of risk-aversion. This function includes only mean and variance, without

regard to the overall shape of the return distribution. Furthermore, it only cares for final

wealth, not for the path that wealth takes between time 0 and T.

More generally, we may argue that a portfolio of risky assets has a desirable property

(here mean return) and an undesirable one (here variance of returns), where we refer to

these properties as ‘reward’ and ‘risk’, respectively. Below we discuss several ‘building

blocks’ for alternative reward and risk functions. We will only look at such selection criteria

(we use the term ‘objective function’ interchangeably with ‘selection criterion’) that are

based on end-of-period returns; we will not investigate criteria which need the time path

of wealth (like drawdown, see Gilli and Schumann (2009a)).

Our objective functions Φ will be ratios of risk and reward to be minimised. There are

many special cases that have been proposed in the literature, the best-known certainly being

the Sharpe ratio (Sharpe, 1966). For this ratio, reward is the mean portfolio return and risk

is the standard deviation of portfolio returns. (Throughout this paper, we set the riskfree

rate to zero.) Rachev et al. (2005) gives an overview of various alternative measures that

have been proposed in the academic literature; further possible specifications come from

financial advisors, in particular from the hedge fund and cta field (Bacon, 2008, ch. 4). Ra-

tios have the advantage of being easy to communicate and interpret (Stoyanov et al., 2007).

Even though numerically, linear combinations are often more stable and thus preferable,

working with ratios practically never caused problems in our experiments. We generally

‘safeguarded’ our objective function, though, for cases where numerator or denominator

could switch signs while moving through the search space. Ratios that use the mean return

for reward, for instance, are not directly interpretable anymore if mean returns are negative.

The optimisation problem can be summarised as follows: let x = [x1 x2 . . . xnA ]
′ be

the holdings of the individual assets, and J be the set of assets in the portfolio. Then the

problem, including constraints, can be written as

min
x

Φ

xinf
j ≤ xj ≤ x

sup
j j ∈ J ,

Kinf ≤ #{J } ≤ Ksup .

(2)

xinf
j and x

sup
j are minimum and maximum holding sizes, respectively, for those assets in-

cluded in the portfolio (ie, those in J ). Kinf and Ksup are cardinality constraints which set a

minimum and maximum number of assets in J .
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Partial moments

Partial moments are a convenient way to distinguish between returns above and below a

desired return threshold rd, and to capture potential asymmetry around this threshold. For

a sample of nS return observations, partial moments P
(⋅)
γ (rd) can be estimated as

P+
γ (rd) =

1

nS
∑
r>rd

(r − rd)
γ , (3a)

P−
γ (rd) =

1

nS
∑
r<rd

(rd − r)γ . (3b)

The superscripts + and − indicate the tail (ie, upside and downside). Partial moments

take two more parameters: an exponent γ, and the threshold rd. The expression ‘r > rd’

indicates to sum only over those returns that are greater than rd.

A well-known partial moment is the semivariance, given by P−
2 (ℳ1). The square root

of this expression, sometimes called ‘downside deviation’, is used as the risk function in

several performance measures like the Sortino and the Upside Potential ratio (Sortino et al.,

1999).

Conditional moments

Conditional moments can be estimated by

C+
γ (rd) =

1

#{r > rd}
∑
r>rd

(r − rd)
γ , (4a)

C−
γ (rd) =

1

#{r < rd}
∑
r<rd

(rd − r)γ , (4b)

where again + and − indicate the tail, and ‘#{r > rd}’ is a counter for the number of return

observations higher than rd.

Conditional and partial moments are closely related. For a threshold rd, the lower partial

moment of order γ equals the lower tail’s conditional moment of the same order, times the

lower partial moment of order 0. That is,

P+
γ (rd) = C+

γ (rd)P
+
0 (rd) ,

P−
γ (rd) = C−

γ (rd)P
−
0 (rd) .

The partial moment of order 0 is simply the probability of obtaining a return beyond rd.

So in words, conditional moments measures the magnitude of returns around rd, while

partial moments also take into account the probability of such returns. For a fixed rd, both

conditional and partial moments convey different information, since both the probability

and the conditional moment need to be estimated from the data to obtain a partial moment.
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Quantiles

A quantile of a sample r = [r1 r2 . . . rnS ]
′ is defined as

Qq = CDF−1(q) = min{r ∣ CDF(r) ≥ q} ,

where CDF is the cumulative distribution function and q may range from 0% to 100% (we

drop the %-sign in subscripts). Thus, the qth quantile is a number Qq such that q of the

observations are smaller, and (100% − q) larger than Qq. Generally, for a given sample

several numbers satisfy this definition (Hyndman and Fan, 1996). We always work with the

order statistics of the portfolio returns [r[1] r[2] . . . r[nS ]]
′, that is, a step function: if k is the

smallest integer not less than q × nS , then the qth quantile is the max(k, 1)th order statistic.

This is consistent with the convention in many statistical packages that Q0 is the minimum

of the sample (an estimator for the worst-case return), and Q100 is the maximum.

Value-at-Risk (var) is the loss only to be exceeded with a given, usually small, proba-

bility at the end of a defined horizon. Thus, var is a quantile of the return distribution; in

our notation, var for a probability of 1% can be written as Q1. Quantiles may also be used

as reward measures; we could for example maximise a higher quantile (eg, the 90th).

2.3 Scenario generation and optimisation

Our data set consists of more than 500 price series of European companies from the Dow

Jones Euro stoxx universe, all denominated in EUR. The data runs from January 1998 to

March 2008, thus including phases of rising and declining share prices. For each company,

we also have a market capitalisation series; for a given period, we keep only companies with

a reasonable minimum market value (more than AC 4 billion) as a rough proxy for market

liquidity, which leaves between 150 to 200 assets from which to select in a given period.

We use scenario optimisation to obtain portfolio weights. Thus, we firstly construct

scenarios, and then find a portfolio that optimises the selection criterion for these scenarios

(Dembo, 1991). This approach is not restrictive: if we preferred to work with a parametric

model instead, we could use every historical return as one scenario and then estimate the

necessary parameters from the scenarios.

In general, the method by which scenarios are generated has great influence on the out-

of-sample results of selected portfolios (Gilli and Schumann, 2009a; Gilli et al., 2008). Since

our selection criteria only capture cross-sectional dependence (ie, resorting returns would

not change the results), we only model the cross-section of returns by a simple regression

model, that is

ri = αi + βi rM + γi r2
M + δi r3

M + ǫi i = 1, . . . , nA (5)

where ri is the return of the ith asset, rM is the return of an index, and ǫi is the part of the

return that is uncorrelated with the chosen index. After having estimated α, β, γ and δ for

each of the nA assets, we resample from the index and from the residuals to obtain new

return scenarios. For the results presented here, we used the Euro stoxx 600 as our index.
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This approach to scenario generation is not motivated by computational convenience, but

the aim is to reduce overfitting by ‘throwing away’ part of the cross-sectional dependence

that is observed in-sample.

In Equations (2), we set xinf = 1% and xsup = 5%. The minimum number of assets

in the portfolio Kinf is 10, the upper cardinality is 50. We do not include a riskless asset.

Since our algorithm works with actual positions sizes, not weights, a small fraction (order

of magnitude of less than 1% of the portfolio) is usually left uninvested.

The portfolio problem described in Equations (2) cannot be solved by standard optimisa-

tion techniques like gradient-based methods. There exist approaches to simplify the model

until it can be rewritten, for instance, as a linear programme (eg, Mausser et al. (2006)).

Such attempts are, however, usually inflexible and cannot accommodate constraints like

cardinality restrictions. We will thus use a heuristic method, Threshold Accepting, to solve

the problem. Threshold Accepting was introduced by Dueck and Scheuer (1990) and was

probably the first heuristic used for non-mean–variance portfolio optimisation (Dueck and

Winker, 1992). Winker (2001) gives a thorough overview, Gilli and Schumann (in press)

describe the practical implementation for portfolio optimisation.

The optimisation algorithms are written for Matlab R2008a and can be downloaded

from http://comisef.eu. A single portfolio optimisation over several thousand scenarios

takes less than 10 seconds on a pc with an Intel t9300 2.5 GHz with 2 GB of ram (this

includes the generation of the scenarios).

2.4 Moving-window backtest, rebalancing and transaction costs

We implement a rolling-window backtest, thus we optimise the model at point in time t1

on data from t1 − H to t1 − 1; H is set to around 260 days (one year). The resulting portfolio

is held until t2 = t1 + F, with F set to around 90 days (three months). At this point, the

portfolio is reoptimised, using data from t2 − H until t2 − 1, and held until t3 = t2 + F,

and so on. In other words, we construct a portfolio using data from the last year, hold the

portfolio for three months, and then rebalance. In this manner, we ‘walk forward’ through

the data to compute a wealth trajectory. All results presented later are computed from the

out-of-sample paths of wealth, spanning the period from 7 January 1999 to 19 March 2008.

t1−H t1 t1+F
H

Fperiod 1

period 2

t2−H t2 t2+F

rebalance

Transaction costs were set to 10 basis points. We also ran backtests with higher transac-

tion costs, and, alternatively, with turnover constraints (not reported here). We found that

transaction costs did not significantly influence the results, whereas turnover constraints

led to a markedly worse performance.
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2.5 Uncertainty

Computing a wealth trajectory from a data set masks a high degree of uncertainty. Firstly,

the historical data (both in-sample and out-of-sample) on which the whole procedure is

based represents just one realisation of some unknown return-generating process. Sec-

ondly, we rely on a resampling procedure to model the data, hence repeatedly generating

new scenario sets will generate different optimal portfolios with different ouf-of-sample re-

sults. A final source of uncertainty results from the optimisation procedure itself: Threshold

Accepting is a stochastic algorithm, hence the resulting optimal portfolios of repeated runs

will likely differ from one another (Gilli and Winker, 2009), again producing different re-

sults in the out-of-sample periods. These sources of uncertainty are, to our knowledge,

rarely addressed in the literature (Gilli and Schumann, 2009b).

To judge the sensitivity of our problem with respect to small data changes, we imple-

ment a robustness check based on the following idea: assume a small number of in-sample

observations is randomly selected and deleted. The historical return series change, the

scenarios will be different, and the composition of the optimal portfolio will change. If the

portfolio selection method is robust, we would expect the resulting portfolio to be similar to

the original one, as the change in the historical data is only small, and we would also expect

the new portfolio to exhibit a similar performance. Repeating this procedure many times,

we obtain a sampling distribution of portfolio weights, and hence also a sampling distribu-

tion of out-of-sample paths, which gives us an indication of the sensitivity of our selection

strategy to a particular data set. This procedure is analogous to repeatedly reestimating

a regression equation from jackknifed data to approximate the sampling distribution of

the coefficients. We do not compare the differences in the obtained portfolio weights – this

would be the equivalent to the regression coefficients – since it is difficult to judge what

a given norm of the difference between two weight-vectors practically means. Rather, we

look at the changes in out-of-sample results. (In the regression model analogy, the analyst

would look at a distribution of forecast errors.) The whole procedure is summarised in

Algorithm 1.

Algorithm 1 Robustness check.

1: set D = {t1, t2, . . .} (rebalancing dates)
2: set H = length of historical window, F = length of out-of-sample window
3: set N = number of replications
4: for n = 1 : N do
5: for i = 1 : #{D} do
6: perturb data from ti−H to ti−1
7: create scenarios from perturbed data
8: optimise portfolio
9: store portfolio performance from ti to ti+F

10: end for
11: construct nth out-of-sample path
12: end for

N is set to 100. Algorithm 1 suggests a variety of possible experiments, as different

methods for scenario generation may be combined with different criteria to select portfolios.
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For this study, scenarios are always generated with the linear regression model (5), and the

data perturbation is a jackknifing of about 10% of the observations. Note that we never

perturb the out-of-sample data.

3 Results

Our database is not directly comparable with a specific stock market index, so we use as

benchmarks minimum-variance (mv) portfolios without short-sales; we also compute 1/N-

portfolios (DeMiguel et al., 2009). There is evidence that both of these strategies lead to

good out-of-sample results (DeMiguel et al., 2009; Board and Sutcliffe, 1994; Chan et al.,

1999; diBartolomeo, 2007). Both selection rules restrict the use of historical data: in the

mv case, only variances and covariances are needed, not the means; the 1/N-strategy re-

quires no historical data at all. Figure 1 shows in its upper panel the out-of-sample growth

of AC 1 invested in the respective strategy from 7. January 1999 to 23. March 2008. (All port-

folios, including mv, are computed through resampled scenarios. Rebalancing dates are

the same for the benchmarks and the alternative portfolios. The appendix briefly compares

the results for MV for historical data; see also Gilli and Schumann (2009a, Section 4.5).) As

we stressed above, such a trajectory suggests a precision that is simply not there (for the

sake of completeness: the 1/N-strategy returned 7.4% per year, compared with 13.5% for

mv). We apply our robustness check, and end up with 100 paths, which give us a ‘band’ of

outcomes, shown in the middle panel. Rescaling final wealth, we obtain a distribution of

annual returns for mv.

More compactly, we can put this distribution into a table. The dark grey bar shows the

interquartile range, the lighter grey ‘whiskers’ show the range between the 10th to the 90th

quantile of the data. This likely underestimates the true variability of the returns, since

the 10th and 90th quantiles from only 100 observations should not be estimated from order

statistics, but still, the method gives an idea of the variability of results. The symbol ‘c’

stands for ‘constant’, so reward equal to c and risk equal to ℳ2 gives the mv-portfolio.

reward risk median
20%15%10%5%0%

c ℳ2 13.23 mv-portfolio

20%15%10%5%0%

For mv, we have a median return of 13.23%, with a range of about 1.5 percentage points

when leaving out the 10 best and the 10 worst paths. We will use two kinds of such tables:

the first type (to which the small table just given belongs) contains only information on

returns. These tables will appear in the text and are not numbered. Other statistics are

presented in full-page tables at the end of the paper; those tables are numbered.

3.1 Partial moments

The following table gives results for selected ratios built from partial moments (results for

alternative exponent values can be found in Gilli and Schumann (2009a)).
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Figure 1: Minimum-variance and 1/N-portfolio.

reward risk median
20%15%10%5%0%

c ℳ2 13.23 mv-portfolio

P+
0 P−

0 15.56

P+
1 P−

1 15.83 Omega

P+
1 P−

2 15.56 Upside Potential ratio

P+
1.5 P−

1.5 16.23

P+
1.5 P−

2 15.95

P+
2 P−

2 15.32 Volatility skewness

P+
3 P−

2 6.35

P+
4 P−

2 2.38

P+
4 P−

3 7.76

20%15%10%5%0%

The average annual returns from selection criteria based on partial moments are in

many cases 2 to 2.5% higher than for mv. ‘In many cases’ is to be read as follows: a

robust suggestion on how to construct the objective function is not to rely on upper partial

moments of a higher order (higher than 1.5, say). Portfolios based on objective functions

12



with P+ of order 3 or higher perform always poorly, sometimes even resulting in losses

over the whole test period. In any case, the curvature of the objective function should

be more pronounced for losses than for gains. That is, the exponent γ of the moments

should be chosen higher for losses than for gains. The examples at the bottom of the table

demonstrate the effect of relying on upper partial moments of higher order.

A further result is that using partial moments of order 0 (ie, frequencies of losses or

gains) works well in many instances. The ratio of the frequencies of losses to frequencies of

gains, for instance, is a successful objective function even though it ignores any information

on the magnitude of returns; combining the frequencies of gains as the reward with a lower

partial moment of higher order gives consistently good results.

The higher returns come with a higher variability of returns, at least when measured

in terms of volatility. Table 1 shows various statistics for the portfolios. (All statistics are

computed from monthly data and are, if applicable, annualised. For the Sharpe and Sortino

ratio, the riskfree rate and minimum acceptable return are set to zero. Kurtosis is defined

such that a Gaussian variate has a kurtosis of three.) Volatility is mostly similar to the

mv case if the lower partial moment included is of order higher then unity and the upper

partial moment is of lower order. Interestingly, lower volatility seems to correlate with

higher kurtosis and (slightly) higher skewness.

A main result, which is a recurring theme also for other objective functions, is that solely

minimising a risk function, and disregarding reward altogether, also leads to the selection

of well-performing portfolios. In fact, this is suggested already by the performance of the

mv-strategy which is a risk-only strategy. Solely minimising a lower partial moment out-

performs mv, even though using upper partial moments of order 0 to 1.5 helps to improve

the performance further. The following table and Table 2 present results for lower partial

moments. We also added the mean return as the reward function since this conforms with

specific objective functions discussed in the literature, for instance the ‘Kappa’ (Kaplan and

Knowles, 2004). As can be seen, including the mean return often improves the average

result, but at the price of increased data sensitivity, that is wider distributions, and also

higher volatility.

reward risk median
20%15%10%5%0%

c ℳ2 13.23 mv-portfolio

c P−
0 15.00

ℳ1 P−
0 16.23

c P−
1 14.90

ℳ1 P−
1 16.18 Kappa1

c P−
1.5 14.80

ℳ1 P−
1.5 16.11

c P−
2 14.61

ℳ1 P−
2 16.18 Sortino ratio, Kappa2

c P−
3 14.83

ℳ1 P−
3 15.67 Kappa3

20%15%10%5%0%

Minimising a lower partial moment of higher order even leads to portfolios with a lower

out-of-sample volatility (albeit only marginally so) than mv, but higher returns.
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Maximising reward

The results indicate that minimising the historic variability of returns seems an advisable

strategy; lower partial moments may be just an alternative way to measure this variability.

Upper partial moments are meant to capture reward, but they confound return and risk,

since maximising an upper partial moment inevitably also increases variability. In fact, a

strategy of solely maximising an upper partial moment (of any order) leads to portfolios

that perform very poorly, with a final wealth often barely breaking even over the whole

period. In contrast, the rather counterintuitive strategy of minimising an upper partial mo-

ment (ie, minimising reward) gives at least positive returns, albeit low ones when compared

with other strategies (see table below).

reward risk median
20%15%10%5%0%

c ℳ2 13.23 mv-portfolio

P+
2 c −0.70

P+
3 c −0.96

c P+
2 12.56

c P+
3 13.16

20%15%10%5%0%

3.2 Conditional moments

The following table gives the results (in terms of annualised returns) for minimising lower

conditional moments of order one, where the threshold rd is defined by a certain quantile.

This specification corresponds to minimising Expected Shortfall.

reward risk median
20%15%10%5%0%

c ℳ2 13.23 mv-portfolio

c C−
1 (Q1) 14.88

c C−
1 (Q5) 14.98

c C−
1 (Q10) 14.58

c C−
1 (Q20) 14.80

20%15%10%5%0%

We see that again we improve on mv in terms of returns, with comparable volatility, see

Table 3.

Conditional moments offer more possibilities than Expected Shortfall. The following

table gives results for ratios of upper to lower conditional moments of different orders. In

the literature, this ratio has also been called the Generalised Rachev ratio (Biglova et al.,

2004).

reward risk median
20%15%10%5%0%

c ℳ2 13.23 mv-portfolio

C+
1 (Q80) C−

1 (Q20) 15.98

C+
1 (Q80) C−

2 (Q20) 15.54

C+
1.5(Q80) C−

1.5(Q20) 15.84

C+
2 (Q80) C−

2 (Q20) 15.21

C+
1 (Q50) C−

1 (Q50) 16.36

C+
1 (Q50) C−

2 (Q50) 15.50

C+
1.5(Q50) C−

1.5(Q50) 16.95

C+
2 (Q50) C−

2 (Q50) 16.57

20%15%10%5%0%
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In terms of annualised returns, these ratios improve by two to three percentage points

over mv. Table 4 gives additional results. Again, we see that volatility is low if the order

(the exponent γ) of the lower moment is higher than the order of the upper moment.

We may also use the mean return as a reward function; results are given below.

reward risk median
20%15%10%5%0%

c ℳ2 13.23 mv-portfolio

ℳ1 C−
1 (Q20) 16.75

ℳ1 C−
1.5(Q20) 16.27

ℳ1 C−
2 (Q20) 15.99

ℳ1 C−
3 (Q20) 15.83

20%15%10%5%0%

Again, the results suggest that lower conditional moments alone (ie, the risk measures)

are already effective selection criteria for portfolios. Including the mean increases the re-

turn, but also the volatility. Increasing γ for the lower moment reduces volatility.

3.3 Quantiles

The following table gives results for var. The quantiles have been chosen to correspond to

the tests for Expected Shortfall, given in the table on page 14. Average returns improve over

mv by about less than one percentage points but the results are less stable (ie, wider distri-

butions). Table 6 also shows that skewness is lower, often negative, indicating unfavourably

asymmetric distributions.

reward risk median
20%15%10%5%0%

c ℳ2 13.23 mv-portfolio

c Q1 14.44

c Q5 14.17

c Q10 14.19

c Q20 13.70

20%15%10%5%0%

We also form ratios of the form −Qlo/Qhi, where we assume and check that Qlo is neg-

ative, and Qhi is positive. The results, given below, show no improvements over just min-

imising var; average returns deteriorate slightly, and data sensitivity increases.

reward risk median
20%15%10%5%0%

c ℳ2 13.23 mv-portfolio

Q80 Q10 13.30

Q90 Q10 13.26

Q80 Q20 13.46

Q90 Q20 13.72

20%15%10%5%0%

3.4 Asymmetric return distributions

One objection against variance as a risk measure is that is penalises not just the downside,

but also positive (desirable) returns. Since the selection criteria presented here are capable

of capturing asymmetry in the returns, we would like to see that this asymmetry is reflected

in the out-of-sample distributions of portfolios returns.
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To make the comparison easier, we rescale the out-of-sample returns of all strategies

such that they have an annualised volatility of 14.89% (the median volatility of mv). Next

we compute upside and downside deviation, ie, the square roots of P+
2 and P−

2 . The

following table shows the distributions of upside and downside deviation for a selection of

objective functions.

reward risk upside deviation in % (scaled) downside deviation in % (scaled)

131211 1098

c ℳ2 mv-portfolio

P+
0 P−

0

P+
1 P−

1 Omega

P+
1 P−

2 Upside Potential ratio

P+
1.5 P−

1.5

P+
1.5 P−

2

P+
2 P−

2 volatility skewness

c P−
0

ℳ1 P−
0

c P−
1

ℳ1 P−
1 Kappa1

c P−
1.5

ℳ1 P−
1.5

c P−
2

ℳ1 P−
2 Sortino ratio, Kappa2

c P−
3

ℳ1 P−
3 Kappa3

c C−
1 (Q1)

c C−
1 (Q5)

c C−
1 (Q10)

c C−
1 (Q20)

C+
1 (Q80) C−

1 (Q20)

C+
1 (Q80) C−

2 (Q20)

C+
1.5(Q80) C−

1.5(Q20)

C+
2 (Q80) C−

2 (Q20)

C+
1 (Q50) C−

1 (Q50)

C+
1 (Q50) C−

2 (Q50)

C+
1.5(Q50) C−

1.5(Q50)

C+
2 (Q50) C−

2 (Q50)

ℳ1 C−
1 (Q20)

ℳ1 C−
1.5(Q20)

ℳ1 C−
2 (Q20)

ℳ1 C−
3 (Q20)

c Q1 var

c Q5 var

c Q10 var

c Q20 var

131211 1098

The vertical lines show the median upside and downside deviation of mv. We see that

even for mv we have an asymmetry (upside deviation is higher than downside deviation),

stemming from the generally positive out-of-sample performance. This asymmetry is more
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pronounced for many alternative selection criteria. For partial moments, there is again the

‘rule’ to weigh losses higher than gains, so with γ higher for losses than for gains, we

observe this favourable asymmetry. Criteria that minimise lower conditional moments also

exhibit this asymmetry.

The results are less clear for ratios of conditional moments; for portfolios built by min-

imising quantiles we observe unfavourably skewed distributions. The effects are small,

anyway: the advantage of an alternative criterion over mv rarely reaches half a percentage

point in improvement in either downside or upside. Still, given the general improvement

of alternative criteria over mv in terms of returns and variability, this asymmetry is cer-

tainly a positive ‘side effect’ which may be improved further by more dynamic investment

strategies.

3.5 Risk, reward and sensitivity

The results given above indicate that solely minimising a risk function leads to portfolios

that perform well in terms of returns, while at the same time resulting in portfolio with

comparably low return variation (quantiles do not improve on mv, but give reasonable

portfolios as well). Adding a reward function often improves the performance of a given

portfolio in terms of returns. For instance, for partial moments (see the table on page 13)

the average annual return per year was often more than one percentage point higher when

a reward function was added. This improvement comes, however, at the cost of higher

volatility, and also higher sensitivity to changes in the data. Only looking at the average

returns over time cannot demonstrate this, we need to look at single investment periods. In

fact, better performance is often caused by only a few periods. Since discussing all selection

criteria in detail is well beyond the scope of this paper, we look into concrete example: the

Sortino ratio. For convenience we give the returns here again.

reward risk median
20%15%10%5%0%

c ℳ2 13.23 mv-portfolio

c P−
2 14.61

ℳ1 P−
2 16.18 Sortino ratio, Kappa2

20%15%10%5%0%

These results suggest that Sortino-optimal portfolios clearly outperform those that solely

minimise the downside deviation (the ratio’s risk function). We conduct a simple test: we

bootstrap from our 40 investment periods, and on the in-sample part (after perturbation)

compute a portfolio that only minimises risk, and a portfolio that minimises the risk–reward

ratio. We resample 10 000 times, and in each run concatenate the returns of 40 periods (ie,

about 10 years, roughly our actual out-of-sample horizon). The distributions of average

yearly returns are given in the upper panel in Figure 2.

The picture demonstrates the great variability in returns; the return advantage of the

Sortino portfolio is visible with the Sortino ratio’s median return more than one percentage

points higher. From our 10 000 resampled paths, we get the following probabilities for

outperformance of the Sortino ratio.
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Figure 2: Bootstrapped distributions of yearly returns: All periods (upper panel), best 10%
of periods removed (lower panel).

After 1 period (three months): 55% ,

after 4 periods (one year): 63% ,

after 80 periods (twenty years:) 91% .
So even after twenty years, we are not certain that the Sortino ratio outperforms its

simpler counterpart without a reward function. In fact, if we remove the best 10% of the

periods (4 out of 40), we obtain the following probabilities:

After 1 period (three months): 50% ,

after 4 periods (one year): 51% ,

after 80 periods (twenty years): 47% .
There no more advantage for the Sortino ratio; the lower panel of Figure 2 shows the

resulting return distributions. This underlines that there is no stable, continuous outper-

formance of the risk–reward ratio over the risk-only criterion. Adding the reward ratio is

no free lunch in the sense that it does no harm: including reward increases volatility, and

also data sensitivity. Recall that for our robustness check we deleted 10% of the original

in-sample data, computed a portfolio, and looked at its out-of-sample performance. The

average out-of-sample range of returns for one period was 3.4% for risk-only (the same

as for mv). For the Sortino ratio, this range grows to 5.5%. In other words, deleting ran-

domly 10% of the in-sample data creates a variation of 5.5% in out-of-sample returns for

one period (three months).
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4 Conclusion

In this paper we investigated the empirical performance of alternative (ie, non-mean–

variance) selection criteria in portfolio optimisation problems. Our main findings are that

alternative risk and performance measures in many cases improve on the mv-benchmark.

All the strategies tested (including mv) seem very sensitive to relatively small changes in

the data.

The results of any study on financial investment depend heavily on the selectable assets

and, in particular, the time period under consideration. Hence all quantitative results must

be considered conditional on our setting. Still, we can also make some qualitative state-

ments. The recurring theme throughout our study was that minimising risk, as opposed

to maximising reward, often lead to good out-of-sample performance; stated differently,

low historical variability of portfolio returns was a predictor of good future performance.

Our suggestion for constructing objective functions is thus to spend most effort here, as

there seem better ways to measure this variability than variance. Selection criteria based on

partial and conditional moments performed well, with functions based on quantiles being

less satisfying. A careful design of a reward function may improve the strategy in terms

of returns, but in many of our tests it also lead to higher return variability and a higher

sensitivity to changes in the data sample.
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A Minimum variance portfolios with scenarios and historical data

Our benchmark mv-portfolios were computed from resampled scenarios. We tested the

change in performance when using historical data instead, but results were roughly similar.

Data sensitivity was higher for historical data, annual returns spanned a range of more

than five percentage points (11 to 16% instead of 12 to 15%, see Figure 1). While median

returns were slightly higher for historical data (13.7% compared with 13.2% for scenarios), a

main difference concerned the skewness of the distribution: on historical data, the selected

portfolios exhibited a markedly lower, often even negative, skewness.

−1.5 −1 −0.5 0 0.5 1 1.5
0  

0.1

0.5

0.9

1  

Skewness

 

 

historical data scenarios

Figure 3: Skewness of mv-portfolios.

Hence, to have a fair comparison, we compared results for portfolio optimised on re-

sampled data.

B Tables

The following tables give various statistics for the different selection criteria. All statistics

are computed from monthly return data and are, if applicable, annualised. For the Sharpe

and Sortino ratio, the riskfree rate and minimum acceptable return, respectively, are set to

zero. Kurtosis is defined such that a Gaussian variate has a kurtosis of three.
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reward risk returns in % Sharpe ratio Sortino ratio volatility in % skewness kurtosis

201510 10.750.5 1.81.41 181512 10-1 1173

c ℳ2 mv-portfolio

P+
0 P−

0

P+
1 P−

1 Omega

P+
1 P−

2 Upside Potential ratio

P+
1.5 P−

1.5

P+
1.5 P−

2

P+
2 P−

2 volatility skewness

201510 10.750.5 1.81.41 181512 10-1 1173

Table 1: Minimising ratios of partial moments.

reward risk returns in % Sharpe ratio Sortino ratio volatility in % skewness kurtosis

201510 10.750.5 1.81.41 181512 10-1 1173

c ℳ2 mv-portfolio

c P−
0

ℳ1 P−
0

c P−
1

ℳ1 P−
1 Kappa1

c P−
1.5

ℳ1 P−
1.5

c P−
2

ℳ1 P−
2 Sortino ratio, Kappa2

c P−
3

ℳ1 P−
3 Kappa3

201510 10.750.5 1.81.41 181512 10-1 1173

Table 2: Minimising partial moments.
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reward risk returns in % Sharpe ratio Sortino ratio volatility in % skewness kurtosis

201510 10.750.5 1.81.41 181512 10-1 1173

c ℳ2 mv-portfolio

c C−
1 (Q1)

c C−
1 (Q5)

c C−
1 (Q10)

c C−
1 (Q20)

201510 10.750.5 1.81.41 181512 10-1 1173

Table 3: Minimising conditional moments: Expected Shortfall.

reward risk returns in % Sharpe ratio Sortino ratio volatility in % skewness kurtosis

201510 10.750.5 1.81.41 181512 10-1 1173

c ℳ2 mv-portfolio

C+
1 (Q80) C−

1 (Q20)

C+
1 (Q80) C−

2 (Q20)

C+
1.5(Q80) C−

1.5(Q20)

C+
2 (Q80) C−

2 (Q20)

C+
1 (Q50) C−

1 (Q50)

C+
1 (Q50) C−

2 (Q50)

C+
1.5(Q50) C−

1.5(Q50)

C+
2 (Q50) C−

2 (Q50)

201510 10.750.5 1.81.41 181512 10-1 1173

Table 4: Minimising ratios of conditional moments.

reward risk returns in % Sharpe ratio Sortino ratio volatility in % skewness kurtosis

201510 10.750.5 1.81.41 181512 10-1 1173

c ℳ2 mv-portfolio

ℳ1 C−
1 (Q20)

ℳ1 C−
1.5(Q20)

ℳ1 C−
2 (Q20)

ℳ1 C−
3 (Q20)

201510 10.750.5 1.81.41 181512 10-1 1173

Table 5: Minimising ratios of conditional moments: mean as the reward function.
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reward risk returns in % Sharpe ratio Sortino ratio volatility in % skewness kurtosis

201510 10.750.5 1.81.41 181512 10-1 1173

c ℳ2 mv-portfolio

c Q1 var

c Q5 var

c Q10 var

c Q20 var

201510 10.750.5 1.81.41 181512 10-1 1173

Table 6: Minimising var.
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