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1 Introduction

In this paper we study the situation, where the financial market consists of a number
of liquid assets and an illiquid asset, and derive risk-minimizing hedging strategies for a
general payment stream. The criterion of risk-minimization was originally proposed by
Föllmer and Sondermann (1986) as an approach to hedging in incomplete markets. By
minimizing a certain squared error process, they derived optimal hedging strategies for
a contingent claim with a fixed finite time horizon. This idea was extended to payment
processes in Møller (2001), where insurance payment processes driven by Markov chains
were studied. For a review of risk-minimization and related criteria, see Schweizer (2001).
Here, we derive risk-minimizing hedging strategies within a setting of mixed dynamic and
static hedging by requiring that the risk process is minimized at the fixed trading points
for the illiquid asset. In this way, the dynamic investments in the traditional risky assets
and the static investments in the illiquid asset are determined uniquely. The optimal
deposit in the savings account is then determined by subsequently minimizing the risk
process between the trading times for the illiquid asset. The optimal mixed dynamic and
static risk-minimizing strategies are related to the fully dynamic strategies for the case
where the illiquid asset may also be traded dynamically. We point out similarities and
identify correction terms that arise when trading is restricted to discrete times for the
illiquid asset.

Schweizer (1994) studied the problem of hedging under restricted information. This frame-
work encompasses the situation where the hedger only observes the prices of the risky as-
sets at fixed discrete time points. In that setting, Schweizer (1994) derived risk-minimizing
strategies. The main results state that risk-minimizing strategy under restricted informa-
tion may be obtained as a suitable projection of the risk-minimizing strategies under
normal/full information. For the special case of piecewise constant information, the re-
sulting optimal strategies are typically not piecewise constant, since they typically include
some deterministic time-dependence between the time points where new information is
available. For comparison, we include a short review of these results.

As a main application of our general results we consider a life insurance company which is
exposed to both interest rate risk and mortality/longevity risk. Here there exists a liquid
market for bonds and interest rate swaps which can be used to manage the interest rate
risk, whereas mortality and longevity risk can be controlled by reinsurance or by investing
in the illiquid market for mortality derivatives. Main examples of mortality derivatives
are longevity bonds and survivor swaps, see e.g. Cairns, Blake and Dowd (2008) for a
recent review of mortality derivatives and mortality risk management. A longevity bond
is an annuity bond, whose coupon payments are linked to the development of a given
underlying portfolio of individuals. Typically, the coupons would be proportional to the
number of survivors in this portfolio. The market value of the longevity bond depends
on the current interest rate level and on the expected future number of survivors. If the
mortality decreases, both the market value of the longevity bond and the market value
associated with a portfolio of life annuities would increase. Thus, by investing in longevity
bonds, the insurance company would in principle be able to hedge the risk associated
with general changes in the underlying mortality. With a survivor swap, the insurance
company would receive the difference between the current number of survivors and the
expected number of survivors. We study the model presented in Dahl, Melchior and
Møller (2008), where survivor swaps were used for dynamic hedging together with more
traditional assets. Here, we examine the consequences of restricting trading of the survivor
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swap to a set of fixed times. As a special case, we analyse the situation where the survivor
swap is purchased at time 0 and held until maturity of the contract.

The paper is organized as follows. Section 2 presents the general model, and Section 3
contains a brief review on risk-minimization for payment processes and the main results
when hedging under restricted information. In Section 4, the general mixed dynamic and
static risk-minimizing strategies are derived. The mortality model and survivor swaps
are introduced in Section 5. Section 6 contains the optimal mixed dynamic and static
strategies for the survivor swap, and Section 7 presents a numerical study of the efficiency
of the mixed dynamic and static strategies.

2 General framework

Consider a filtered probability space (Ω,F , P ) with a filtration IF describing the amount
of information available. We study a financial market with a savings account B and
d + 1 risky assets with discounted price process (X,Y ) = (X1, . . . ,Xd, Y ). Here, X is
interpreted as the price process associated with traditional liquid and dynamically traded
financial assets, whereas Y is the price process associated with an additional illiquid asset,
which may be traded at fixed discrete times only. We fix throughout a martingale measure
Q such that the IF -adapted process (X,Y ) is a (d + 1)-dimensional martingale.

We consider a payment process A which describes the liabilities of the hedger. More
precisely, A(t) is the accumulated outflow of payments during [0, t] from the hedger. In
addition, we introduce the discounted payment process A∗(t) given by A∗(t) = A(0) +∫ t

0 B(u)−1dA(u). The process A is assumed to be adapted to the filtration IF .

3 Risk-minimization for payment processes

In this section, we consider the usual situation where both X and Y can be traded dynam-
ically and briefly review classical results on risk-minimization in continuous time within
this setting, see Föllmer and Sondermann (1986) and Møller (2001).

A strategy is a sufficiently integrable process ϕ = (ξ, ϑ, η), where ξ is a d-dimensional IF -
predictable process, ϑ is IF -predictable and η is IF -adapted. The process ξ is the number
of liquid risky financial assets held, ϑ is the number of illiquid risky assets, and η is the
discounted deposit in the savings account. The discounted value at time t associated with
the strategy is given by V ∗(t, ϕ) = ξ(t)X(t) + ϑ(t)Y (t) + η(t). We restrict ourselves to
so-called 0-admissible strategies, i.e. strategies with terminal value 0, that is V ∗(T,ϕ) = 0.
The cost process at time t is defined by

C(t, ϕ) = V ∗(t, ϕ) −
∫ t

0
ξ(u)dX(u) −

∫ t

0
ϑ(u)dY (u) + A∗(t). (3.1)

According to this definition, the accumulated costs at time t are simply the discounted
value V ∗(t, ϕ) of the investment portfolio, reduced by discounted trading gains and added
discounted payments. We emphasize that the strategies considered are not necessarily
self-financing.

A strategy ϕ is called risk-minimizing if it minimizes the risk process R(·, ϕ) defined by

R(t, ϕ) = EQ

[(
C(T,ϕ) − C(t, ϕ)

)2
∣∣∣∣F(t)

]
, (3.2)
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for all t. It follows from Föllmer and Sondermann (1986) and Møller (2001) that the strat-
egy in this case can be determined from the Galtchouk-Kunita-Watanabe decomposition
given by

V ∗,Q(t) = EQ [A∗(T )|F(t)]

= V ∗,Q(0) +

∫ t

0
ξA(u)dX(u) +

∫ t

0
ϑA(u)dY (u) + LA(t), (3.3)

where ξA and ϑA are predictable processes, and where LA is a zero-mean Q-martingale
which is orthogonal to (X,Y ). More precisely, there exists a unique 0-admissible risk-
minimizing strategy ϕ∗ = (ξ∗, ϑ∗, η∗), given by

(ξ∗(t), ϑ∗(t), η∗(t)) = (ξA(t), ϑA(t), V ∗,Q(t) − ξA(t)X(t) − ϑA(t)Y (t) − A∗(t)), (3.4)

see Møller (2001, Theorem 2.1). The minimum obtainable risk process is given by

R(t, ϕ∗) = EQ
[
(LA(T ) − LA(t))2

∣∣F(t)
]
. (3.5)

3.1 Hedging under restricted information

Schweizer (1994) studies the situation where the strategy ϕ = (ξ, ϑ, η) is adapted to two
smaller filtrations IG ⊆ IG′ ⊆ IF . More precisely, it is assumed that the process (ξ, ϑ) is
IG-predictable and η is IG′-adapted. One example where this could be of interest is the case
where the prices for the risky assets are only available at discrete times and where hedging
can only be based on this restricted information.

We review here the main results in the simplest situation where there is only one risky
asset X. We assume that d〈X〉(t) = σ(t)dt, i.e. the variance process of X is absolutely
continuous with respect to the Lebesgue measure. In this case, Schweizer (1994, Theo-
rem 2.5) proves the existence of a unique (IG, IG′)-risk-minimizing strategy for a payment H
at the fixed time T corresponding to a payment process A∗(t) = H1{t≥T}. More precisely,
this strategy is given by

ξ∗,IG,IG′

(t) =
EQ
[
σ(t)ξA(t)

∣∣G(t−)
]

EQ [σ(t)| G(t−)]
,

η∗,IG,IG′

(t) = EQ
[
H − ξ∗,IG,IG′

(t)X(t)
∣∣∣ G′(t)

]
.

In particular, if IG is piecewise continuous, i.e. G(t) = G(tk) for t ∈ [tk, tk+1), 0 = t0 < t1 <
· · · < tn = T , we get for t ∈ (tk, tk+1]

ξ∗,IG,IG′

(t) =
EQ
[
σ(t)ξA(t)

∣∣G(tk)
]

EQ [σ(t)| G(tk)]
.

We note that this strategy is not in general piecewise continuous. In particular, this
implies that trading will in general take place continuously and between the times tk
where information about the price process is being updated.

4 Mixed dynamic and static hedging

In this section, we derive a mixed continuous and discrete time strategy for market
(B∗,X, Y ), where B∗ = 1 is the discounted savings account, X are the liquid risky fi-
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nancial assets and Y is the illiquid financial asset. We assume that Y can be traded in
discrete time only.

We study risk-minimizing hedging strategies in the case, where the illiquid asset may be
traded at fixed (deterministic) times 0 = t0 < t1 < · · · < tn = T only. We assume that
both X and Y are IF -adapted, such that the both price processes may be observed at
any time t and not only the discrete time points ti, i = 0, . . . , n. In this setting, we
modify the definition of a trading strategy slightly. Here, a trading strategy is a process
ϕ = (ξ, ϑ, η) where the process (ξ, ϑ) is IF -predictable, ϑ is piecewise constant on the
intervals (ti, ti+1], i = 0, . . . , n − 1, and η is adapted. In addition, the strategy satisfies
certain integrability conditions. We focus on 0-admissible strategies, i.e. V ∗(T,ϕ) = 0.
Thus, we assume that Y is observed at any time, whereas it may only be traded at the
fixed times 0 = t0 < t1 < · · · < tn = T , i.e. during the period (ti, ti+1] we keep ϑ(t) fixed
and equal to ϑ(ti), which is F(ti)-measurable. Note that with this definition of ϑ, the
process is predictable, as required.

We work with the following optimality criterion:

Definition 4.1 A strategy ϕ∗ = (ξ∗, ϑ∗, η∗) with ϑ∗ piecewise constant on the intervals
(ti, ti+1], i = 0, . . . , n−1, is said to be mixed discrete- and continuous-time risk-minimizing
if ϕ∗ = (ξ∗, ϑ∗, η∗) minimizes the risk process R(ti, ϕ) = R(ti, ξ, ϑ, η) for i = 0, . . . , n − 1,
and, in addition, (ξ, η) minimizes R(t, ξ, ϑ∗, η) for all t among all strategies with ϑ = ϑ∗.

The first part of the definition states that the strategy should minimize the risk process
at the discrete trading points. This condition is in fact sufficient to fix the optimal values
of (ξ, ϑ), whereas η is not determined uniquely at all times t ∈ [0, T ] from this condition.
The second part of the definition states that given the optimal choice of ϑ, the pair (ξ, η)
should in addition minimize the risk process at all remaining time points. This additional
condition is indeed sufficient to fix the choice of η uniquely.

4.1 The Galtchouk-Kunita-Watanabe decomposition

As in the traditional case, the continuous-time Galtchouk-Kunita-Watanabe decompo-
sition (3.3) of the intrinsic value process under Q is useful for determining the risk-
minimizing strategy. Recall that LA is orthogonal to (X,Y ), whereas the two martingales
X and Y will typically not be orthogonal. We therefore decompose Y as

dY (t) = ξY (t)dX(t) + dLY (t) , (4.1)

using the Galtchouk-Kunita-Watanabe decomposition for the martingale Y . Thus, LY is a
zero-mean Q-martingale, which is orthogonal to X and ξY is IF -predictable. In (4.1), the
dynamics of the discounted price process Y are decomposed into a term which is related
to the price process X and a term which is orthogonal to X. This decomposition will be
useful later, where we assume that Y can be traded in discrete time only. In this case the
decomposition quantifies the risk associated with Y which can be hedged by investing in
X.

If we insert (4.1) in the continuous time Galtchouk-Kunita-Watanabe decomposition (3.3),
we obtain

V ∗,Q(t) = V ∗,Q(0) +

∫ t

0

(
ξA(u) + ϑA(u)ξY (u)

)
dX(u) +

∫ t

0
ϑA(u)dLY (u) + LA(t) . (4.2)
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Thus, we have rewritten the decomposition (3.3) into an alternative decomposition with
orthogonal processes X and LY . Note that the process ϑA now also appears in the integral
with respect to X.

As mentioned above, we assume that Y can be traded at the fixed times 0 = t0 < t1 <
· · · < tn = T only, i.e., for t ∈ (ti, ti+1] we have ϑ(t) = ϑ(ti). This means that we are
looking for a decomposition with an integrand ϑ̂A(t), which is piecewise constant on the
intervals (ti, ti+1]. We therefore rewrite the decomposition (4.2) on the form

V ∗,Q(ti) = V ∗,Q(t0) +

∫ ti

0

(
ξA(u) + ϑA(u)ξY (u)

)
dX(u)

+

i∑

j=1

(∫ tj

tj−1

ϑA(u)dLY (u) + ∆LA(tj)
)

, (4.3)

where ∆LA(tj) = LA(tj) − LA(tj−1).

4.2 The risk-minimizing strategy

For any given strategy ϕ = (ξ, ϑ, η), where ϑ is not necessarily piecewise constant, we can
use decomposition (4.1) to rewrite the cost process (3.1) as

C(t, ϕ) = V ∗(t, ϕ) −
∫ t

0
(ξ(u) + ϑ(u)ξY (u))dX(u) −

∫ t

0
ϑ(u)dLY (u) + A∗(t). (4.4)

Since ϕ is 0-admissible, we get

C(T,ϕ) = −
∫ T

0
(ξ(u) + ϑ(u)ξY (u))dX(u) −

∫ T

0
ϑ(u)dLY (u) + A∗(T ). (4.5)

Using the decomposition (4.2) for t = T , and since V ∗,Q(T ) = A∗(T ), we get

A∗(T ) = V ∗,Q(T ) = V ∗,Q(t) +

∫ T

t

(ξA(u) + ϑA(u)ξY (u))dX(u) (4.6)

+

∫ T

t

ϑA(u)dLY (u) + (LA(T ) − LA(t)).

In order to minimize the risk process (3.2), we need to study the future costs C(T,ϕ) −
C(t, ϕ). Using (4.4)–(4.6), we obtain the following expression for the future costs

C(T,ϕ) − C(t, ϕ) =(V ∗,Q(t) − A∗(t) − V ∗(t, ϕ)) (4.7)

+

∫ T

t

(
ξA(u) + ϑA(u)ξY (u) − (ξ(u) + ϑ(u)ξY (u))

)
dX(u)

+

∫ T

t

(ϑA(u) − ϑ(u))dLY (u) + (LA(T ) − LA(t)).

Since the martingales X, LY and LA are orthogonal, we get

R(t, ϕ) = EQ
[
(C(T,ϕ) − C(t, ϕ))2

∣∣F(t)
]

(4.8)

= (V ∗,Q(t) − A∗(t) − V ∗(t, ϕ))2

+ EQ

[(∫ T

t

(
ξA(u) + ϑA(u)ξY (u) − (ξ(u) + ϑ(u)ξY (u))

)
dX(u)

)2
∣∣∣∣∣F(t)

]

+ EQ

[(∫ T

t

(ϑA(u) − ϑ(u))dLY (u)

)2
∣∣∣∣∣F(t)

]
+ EQ

[
(LA(T ) − LA(t))2

∣∣F(t)
]
.

5



If (ξ, ϑ, η) could be chosen freely, we could eliminate the first three terms by taking ξ = ξA,
ϑ = ϑA, and by choosing η such that V ∗(ϕ) = V ∗,Q −A∗. This would give the usual risk-
minimizing strategy (3.4) for the case, where all assets are traded continuously.

Here, part of the strategy ϑ is required to be piecewise constant, such that we cannot
in general eliminate the squared term involving

∫
(ϑA − ϑ)dLY , and we cannot minimize

the risk process at any time t. For any given ϑ we can, however, eliminate the first two
terms by taking ξ = ξA + ξY (ϑA − ϑ) and ensuring that V (ϕ) = V ∗,Q −A∗ by choosing η
appropriately.

Now consider the risk process R(tj, ϕ) at the discrete time points tj, j = 0, . . . , n− 1, and
a strategy ϕ where ϑ is piecewise continuous. It follows that we need to minimize the
terms

EQ



(∫ T

tj

(ϑA(u) − ϑ(u))dLY (u)

)2
∣∣∣∣∣∣
F(tj)




=

n−1∑

i=j

EQ

[(∫ ti+1

ti

ϑA(u)dLY (u) − ϑ(ti)∆LY (ti+1))

)2
∣∣∣∣∣F(tj)

]
, (4.9)

where we have used that ϑ is piecewise constant on the intervals (ti, ti+1] and introduced
∆LY (ti+1) = LY (ti+1) − LY (ti). In addition, we have exploited that Y is a martingale.
Thus, we need to minimize the terms

EQ

[(∫ ti+1

ti

ϑA(u)dLY (u) − ϑ(ti)∆LY (ti+1))

)2
∣∣∣∣∣F(ti)

]
, (4.10)

where ϑ(ti) is F(ti)-measurable, and where we have used the tower property to obtain a
conditional expected value with respect to F(ti). Differentiating in (4.10) with respect to
ϑ(ti), we get the solution

ϑ̂(ti) =

EQ

[∫ ti+1

ti
ϑA(u)dLY (u)∆LY (ti+1)

∣∣∣∣F(ti)

]

EQ

[
(∆LY (ti+1))

2

∣∣∣∣F(ti)

] , (4.11)

for i = 0, . . . , n − 1, which minimizes (4.9) and hence minimizes the risk process (4.8) at
times t0, . . . , tn−1. Thus, we have shown the following.

Theorem 4.2 The unique mixed discrete- and continuous-time risk-minimizing strategy
associated with the discounted payment process A∗ is given by

ϑ̂∗(t) = ϑ̂A(tj−1) =

EQ

[∫ tj
tj−1

ϑA(u)dLY (u)∆LY (tj)

∣∣∣∣F(tj−1)

]

EQ

[
(∆LY (tj))

2

∣∣∣∣F(tj−1)

] , t ∈ (tj−1, tj ],

ξ̂∗(t) = ξ̂A(t) = ξA(t) + ξY (t)(ϑA(t) − ϑ̂A(tj−1)) , t ∈ (tj−1, tj ] ,

η(t) = V ∗,Q(t) − A∗(t) − ξ̂A(t)X(t) − ϑ̂A(tj−1)Y (t) , t ∈ (tj−1, tj ] .

We note that discrete-time trading in the asset Y also affects the investment in X. More
precisely, the investment strategy for X is given by the original strategy ξA from continuous
time and a correction term ξY (ϑA − ϑ̂A), which is the strategy for Y in continuous time
reduced by the Y -strategy from discrete time and multiplied by ξY .
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4.3 A mixed continuous- and discrete-time decomposition

The risk-minimizing strategy can be found from a modified version of the Galtchouk-
Kunita-Watanabe decomposition. We rewrite (4.3) in order to obtain the mixed continuous-
and discrete-time version of the Galtchouk-Kunita-Watanabe decomposition. This is done
by adding and subtracting the approximation ϑ̂A(tj−1)∆LY (tj). It follows that

V ∗,Q(ti) = V ∗,Q(t0) +

∫ ti

0

(
ξA(u) + ϑA(u)ξY (u)

)
dX(u)

+

i∑

j=1

(
ϑ̂A(tj−1)∆LY (tj) + ∆L̂A(tj)

)
,

where

∆L̂A(tj) =

∫ tj

tj−1

ϑA(u)dLY (u) − ϑ̂A(tj−1)∆LY (tj) + ∆LA(tj),

and where we have used the quantity ϑ̂A(tj−1) defined in Lemma 4.2 above. Finally, we
use that

∆LY (tj) = ∆Y (tj) −
∫ tj

tj−1

ξY (u)dX(u),

to obtain a decomposition which involves X and Y . We collect the results in the following
proposition.

Proposition 4.3 Consider the market (B∗,X, Y ) and the continuous-time Galtchouk-
Kunita-Watanabe decomposition (3.3) for the intrinsic value process. Assume that Y can
be traded in discrete time only. The corresponding mixed continuous- and discrete-time
version of the Galtchouk-Kunita-Watanabe decomposition is given by

V ∗,Q(ti) = V ∗,Q(t0) +

∫ ti

0
ξ̂A(u)dX(u)

+

i∑

j=1

(
ϑ̂A(tj−1)∆Y (tj) + ∆L̂A(tj)

)
, (4.12)

for i = 1, . . . , n, where

ϑ̂A(tj−1) =

EQ

[∫ tj
tj−1

ϑA(u)dLY (u)∆LY (tj)

∣∣∣∣F(tj−1)

]

EQ

[
(∆LY (tj))

2

∣∣∣∣F(tj−1)

] ,

ξ̂A(t) = ξA(t) + ξY (t)(ϑA(t) − ϑ̂A(tj−1)) , t ∈ [tj−1, tj),

and

∆L̂A(tj) =

∫ tj

tj−1

ϑA(u)dLY (u) − ϑ̂A(tj−1)∆LY (tj) + ∆LA(tj) . (4.13)
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Note that since we can trade the illiquid asset Y in discrete time only, the integral in (3.3)
with respect to Y is replaced in (4.13) by a sum of the terms ϑ̂A(tj−1)∆Y (tj).

Proof of Proposition 4.3: We have to show the orthogonality in (4.12). Clearly, L̂A

and X are orthogonal, since both LA and LY are orthogonal to X. It therefore only
remains to show that Y and L̂A are orthogonal. From (3.3) we have that Y is orthogonal
to LA. To show the orthogonality between Y and the first two terms in L̂A, we use
decomposition (4.1). Since X is orthogonal to both L̂A and LA it holds that

∫
ξY dX is

obviously orthogonal to the first two terms in L̂A. Furthermore, we have that

EQ

[
∆LY (tj)

(∫ tj

tj−1

ϑA(u)dLY (u) − ϑ̂A(tj−1)∆LY (tj)

)∣∣∣∣∣F(tj−1)

]

= EQ

[
∆LY (tj)

(∫ tj

tj−1

ϑA(u)dLY (u)

−
EQ

[∫ tj

tj−1

ϑA(u)dLY (u)∆LY (tj)

∣∣∣∣F(tj−1)

]

EQ
[
(∆LY (tj))

2

∣∣∣F(tj−1)
] ∆LY (tj)

)∣∣∣∣∣F(tj−1)

]

= EQ

[∫ tj

tj−1

ϑA(u)dLY (u)∆LY (tj)

∣∣∣∣F(tj−1)

]

−
EQ

[∫ tj

tj−1

ϑA(u)dLY (u)∆LY (tj)

∣∣∣∣F(tj−1)

]

EQ
[
(∆LY (tj))

2

∣∣∣F(tj−1)
] EQ

[(
∆LY (tj)

)2 ∣∣F(tj−1)
]

= 0 .

That is, the product of ∆LY and the first two parts of ∆L̂A is a Q-martingale and therefore
orthogonal. We conclude that the orthogonality requirement in (4.12) is fulfilled.

�

Remark 4.4 For t ∈ (ti, ti+1), the decomposition (4.12) may be written as

V ∗,Q(t) = V ∗,Q(ti) +

∫ t

ti

ξ̂A(u)dX(u) + ϑ̂A(ti) (Y (t) − Y (ti))

+

∫ t

ti

ϑA(u)dLY (u) − ϑ̂A(ti)(L
Y (t) − LY (ti)) + (LA(t) − LA(ti)).

Here, the second line represents the orthogonal terms.

�

5 A stochastic mortality model and survivor swaps

In this section, we describe the model introduced in Dahl et al. (2008) in order to examine
the mixed dynamic and static risk-minimizing strategies.
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5.1 The basic model

The filtration IF is generated by a standard Brownian motion W r,Q driving the interest
rate, a 2-dimensional standard Brownian motion W µ,Q driving the mortality intensity, and
a 2-dimensional counting process N which counts the number of deaths in two portfolios.
The three processes W r,Q, W µ,Q and N are associated with the sub-filtrations IG, II and
IH, respectively. We assume that W r,Q and (W µ,Q, N) are independent.

5.2 The standard financial market

The basic financial market consists of two traded assets; a savings account with price
process B (a risk free asset), and a zero coupon bond with price process P (·, T ), where T
is the time of maturity. We assume that both assets can be traded freely in continuous
time. The short rate is modeled by a Vasiček model and has the following dynamics under
Q

dr(t) = (γr − δrr(t))dt + σrdW r,Q(t) , (5.1)

where W r,Q is a standard Brownian motion under Q. A Vasiček model has the desir-
able property of an affine term structure, which means that the zero coupon bond price
processes can be written on the form

P (t, T ) = EQ
[
e−

∫ T
t

r(u)du
∣∣∣Ft

]
= eAr(t,T )−Br(t,T )r(t) . (5.2)

Here, Ar and Br are given by

Br(t, T ) =
1

δr

(
1 − e−δr(T−t)

)
,

Ar(t, T ) =
(Br(t, T ) − T + t)(γrδr − 1

2 (σr)2)

(δr)2
− (σrBr(t, T ))2

4δr
,

see e.g. Björk (2004). By applying Itô’s formula and using that the discounted price
process is a Q-martingale, we get the bond price dynamics under Q

dP (t, T ) = r(t)P (t, T )dt − σrBr(t, T )P (t, T )dW r,Q(t) .

The dynamics of the savings account are

dB(t) = r(t)B(t)dt , B(0) = 1 .

5.3 The insurance portfolios

We consider two different portfolios; one representing an insurance portfolio and the other
representing some population. The mortality intensities for the two portfolios are

µj(x, t) = µ0
j(x + t)ζj(x, t) , j = 1, 2 ,

where µ0
j(x+t) is the initial mortality intensity at age x+t, and the mortality improvement

process ζ = (ζ1, ζ2) is defined by the Q-dynamics

dζj(x, t) = (γj(x, t) − δj(x, t)ζj(x, t))dt +
√

ζj(x, t)σj(x, t)dW µ,Q(t) .

9



Here j = 1, 2 is referring to the insurance portfolio and the population, respectively, σj is
a two-dimensional vector controlling the possible correlation between the processes, and
W µ,Q is a two-dimensional standard Brownian motion.

Using Itô’s lemma, we get the following Q-dynamics for the mortality intensities

dµj(x, t) = (γµ
j (x, t) − δµ

j (x, t)µj(x, t))dt +
√

µj(x, t)σµ
j (x, t)dW µ,Q(t) , j = 1, 2 ,

where

γµ
j (x, t) = µ0

j(x + t)γj(x, t) ,

δµ
j (x, t) = δj(x, t) −

d
dt

µ0
j(x + t)

µ0
j(x + t)

,

σµ
j (x, t) =

√
µ0

j(x + t)σj(x, t) .

The assumption needed to ensure strict positivity on the mortality intensity is given by

2γµ
j (x, t) ≥

(
σµ

j (x, t)
)(

σµ
j (x, t)

)tr
=
(
σµ

j,1(x, t)
)2

+
(
σµ

j,2(x, t)
)2

,

where atr denotes the vector a transposed.

Let nj, j = 1, 2, be the number of lives in each portfolio, all aged x years at time 0.
We assume that the portfolios consist of different lives, and that the lifetimes in each
portfolio are mutually independent and identically distributed conditional on the mortality
intensities.

We define the survival probabilities under Q by

SQ
j (x, t, T ) = EQ

[
e−

∫ T

t
µ

Q
j (x,u)du

∣∣∣F(t)
]
.

Since we have an affine mortality structure, see e.g. Dahl (2004), the Q-survival probabil-
ities SQ

j (x, t, T ), j = 1, 2, are given by

SQ
j (x, t, T ) = eA

µ,Q
j (x,t,T )−B

µ,Q
j (x,t,T )µQ

j (x,t),

where Aµ,Q
j and Bµ,Q

j are determined from a set of differential equations, see Dahl and
Møller (2006).

The forward mortality intensities under Q are for j = 1, 2 given by

fµj ,Q(x, t, T ) = − ∂

∂T
log SQ

j (x, t, T ) = µQ
j (x, t)

∂

∂T
Bµ,Q

j (x, t, T ) − ∂

∂T
Aµ,Q

j (x, t, T ).

The remaining lifetimes at time 0 are random variables defined as Tj,1, . . . , Tj,nj
, and the

Q-probability of one individual surviving time t given the development of the mortality
intensity until time t, is given by

Q(Tj,1 > t|I(t)) = e−
∫ t
0

µj(x,s)ds , j = 1, 2.

Furthermore, we describe the number of deaths in portfolio j at time t ∈ [0, T ] by the
counting process Nj(x) = (Nj(x, t))t∈[0,T ], that is

Nj(x, t) =

nj∑

i=1

1{Tj,i≤t} , j = 1, 2 .
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The stochastic intensity process λj(x) = (λj(x, t))t∈[0,T ] related to Nj(x) is given by

λj(x, t)dt = EQ[dNj(x, t)|H(t−) ∨ I(t)] = (nj − Nj(x, t−))µj(x, t)dt . (5.3)

Finally, we let the Q-martingales MQ
j (x) = (MQ

j (x, t))t∈[0,T ] be defined by the dynamics

dMQ
j (x, t) = dNj(x, t) − λj(x, t)dt , j = 1, 2.

5.4 Numerical illustrations of the mortality model

The initial mortality intensity is assumed to follow the Gompertz-Makeham model

µ0
j(x + t) = aj + bjc

x+t
j ,

and the parameters for the initial mortality intensity used in the numerical examples
throughout are listed in Table 1. The parameters associated with the insurance portfo-
lio are taken from Dahl and Møller (2006), and the modified list of parameters for the
population is taken from Dahl et al. (2008). The parameters for the mortality develop-

Portfolio (j) a b c

1 0.0001340 0.0000353 1.1020000

2 0.0001360 0.0000350 1.1030000

Table 1: Gompertz-Makeham parameters.

ment processes are given in Table 2. We note that σ2,1 = 0. That is, W µ,Q
1 affects the

uncertainty in the insurance portfolio only, and W µ,Q
2 is used to model the uncertainty of

the mortality intensities in general. The parametrization of the development process in

Portfolio (j) γj(x, t) δj(x, t) σj,1(x, t) σj,2(x, t)

1 0.0001800 0.0080 0.006 0.018

2 0.0001805 0.0081 0.000 0.019

Table 2: Parameters for the development process.

Table 2 leads to an expected relative yearly decline of 0.80% in the insurance portfolio and
0.81% in the population (the δj value). The mean reversion level is given by

γj

δj
; see Dahl

and Møller (2006). That is, the mean reversion level is 0.0225 for the insurance portfolio
and 0.0223 for the population, which are both negligible given the time horizon used here
since we take ζ1(x, 0) = ζ2(x, 0) = 1.

In Figure 1 the density functions of ζj are plotted for different time horizons. The first
main observation from Figure 1 is that due to the decreasing trend, the average values of
ζj are decreasing. The second major observation is that the variability of ζj , and thus the
systematic mortality risk, is an increasing function of the time horizon. That is, when we
look at long time horizons the systematic risk is more important compared to short time
horizons. We note that ζ1 has a slightly higher expected value compared to ζ2.
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Figure 1: Density of ζj for different time horizons (the densities are based on 50,000
simulations with 30 steps per year).
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Figure 2: Realizations of the development process ζj in different scenarios. The grey curve
is a realization with the parameters from Table 2, and the black line is the associated trend.
For ζ1, the solid black curves are realizations with σ1,1 doubled, and the dotted curves are
realizations with σ1,2 doubled. For ζ2, the solid black curves are realizations with σ2,2

doubled.

In order to illustrate the fluctuation when we change σ, we have included some realizations
of ζj in Figure 2 for different values of σ; we double σ1,1 and σ1,2 (one at a time) in the
insurance portfolio case, and we double σ2,2 on the population.

In Table 3 we list the quantiles of ζ(x, 20). We note that the quantiles for ζ1 are slightly
higher than those for ζ2 due to a lower expected relative yearly decline. Furthermore, we
note that doubling σ1,2 has a greater impact on the uncertainty than doubling σ1,1. This

is in line with the intentions, since we want W µ,Q
1 to play a minor role on the mortality

intensity compared to W µ,Q
2 .

Portfolio (j) σj,1 σj,2 5% 10% 25% 50% 75% 90% 95%

1 0.006 0.018 0.734 0.760 0.804 0.854 0.906 0.954 0.985

1 0.012 0.018 0.719 0.748 0.798 0.855 0.914 0.969 1.003
1 0.006 0.036 0.637 0.683 0.765 0.859 0.960 1.055 1.114
2 0.000 0.019 0.733 0.758 0.802 0.853 0.904 0.953 0.982
2 0.000 0.038 0.627 0.676 0.759 0.859 0.964 1.062 1.124

Table 3: Quantiles of ζ(x, 20) for various parameter values (the numbers are based on
50,000 simulations with 30 steps per year).
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5.5 The insurance contract

We study the general life insurance contract from Dahl et al. (2008), which allows for
a single premium at time 0, a continuous premium paid until retirement contingent on
survival, a single payment at retirement, a single payment upon death before retirement
and a life annuity payment. The payment process associated with the insurance portfolio
is defined by

dA(t) = −n1π
s(0)d1{t≥0} − πc(t)(n1 − N1(x, t))1{0≤t<T }dt

+ (n1 − N1(x, T ))ar(T )d1{t≥T } + ap(t)(n1 − N1(x, t))1{T≤t≤T}dt

+ ad(t)1{0≤t<T }dN1(x, t) , (5.4)

where n1 is the number of lives in the insurance portfolio, N1(x, t) is the number of deaths
during [0, t] in the portfolio, T is the time of retirement and T is the end of the insurance
period. The single premium at time 0 is denoted πs, the continuously paid premium is
denoted πc and the benefits are labeled ar, ap and ad representing the retirement payment,
the annuity payment and the payment upon death before retirement, respectively. It is
assumed that πc, ap and ad are piecewise continuous function.

The intrinsic value process of the discounted payment process A∗ is defined by the following
conditional expected value

V ∗,Q(t) = EQ

[∫ T

0−
dA∗(τ)

∣∣∣∣F(t)

]
= EQ

[∫ T

0−
e−

∫ τ
0

r(u)dudA(τ)

∣∣∣∣F(t)

]

=

∫ t

0−
e−

∫ τ
0

r(u)dudA(τ) + EQ

[∫ T

t

e−
∫ τ
0

r(u)dudA(τ)

∣∣∣∣F(t)

]

= A∗(t) + Ṽ ∗,Q(t) = A∗(t) + (n1 − N1(x, t))Ṽ ∗,Q
p (t) , 0 ≤ t ≤ T ,

where Ṽ ∗,Q is called the discounted market reserve and represents the discounted condi-
tional expected value of future payments. In addition, we have introduced Ṽ ∗,Q

p (t), which

is interpreted as the individual market reserve. An explicit expression for Ṽ ∗,Q
p (t) can be

found in Dahl and Møller (2006).

The next lemma regarding the intrinsic value process of an insurance portfolio is taken
from Dahl et al. (2008). It gives a stochastic representation of the insurance contract,
which will be very useful later on.

Lemma 5.1 Let A∗ be the general discounted payment process for the insurance portfolio
introduced in (5.4). The intrinsic value process admits the representation

V ∗,Q(t) = V ∗,Q(0) +

∫ t

0
νV,Q(u)dMQ

1 (x, u) +

∫ t

0
ηV,Q(u)dW r,Q(u) +

∫ t

0
ρV,Q(u)dW µ,Q(u) ,

where

νV,Q(t) = B(t)−1ad(t) − Ṽ ∗,Q
p (t) ,

ηV,Q(t) = −σr(n1 − N1(x, t−))

(∫ T

t

Br(t, u)P ∗(t, u)SQ
1 (x, t, u)

×
(

ad(u)fµ1,Q(x, t, u) − πc(u)1{0≤u≤T } + ap(u)1{T≤u≤T}

)
du

+Br(t, T )P ∗(t, T )SQ
1 (x, t, T )ar(T )1{t<T }

)
,
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and where

ρV,Q
j (t)

= −σµ
1,j(x, t)

√
µ1(x, t)(n1 − N1(x, t−))

(∫ T

t

P ∗(t, u)Bµ,Q
1 (x, t, u)SQ

1 (x, t, u)

×
(

ad(u)

(
fµ1,Q(x, t, u) −

∂
∂u

Bµ,Q
1 (x, t, u)

Bµ,Q
1 (x, t, u)

)
− πc(u)1{0≤u≤T } + ap(u)1{T≤u≤T}

)
du

+P ∗(t, T )Bµ,Q
1 (x, t, T )SQ

1 (x, t, T )ar(T )1{t<T }

)
, j = 1, 2.

5.6 Survivor swaps

The survivor swap is a financial instrument, where one exchanges a fixed expected number
of survivors with the actual number of survivors in an agreed portfolio on a fixed period
of time, see e.g. Dowd, Blake, Cairns and Dawson (2006). That is, when the contract is
settled, both parties (the buyer and the seller) agree on a fixed survival probability at
time 0 given by

tp̃x = e−
∫ t
0

µ̃0(x,u)du ,

where µ̃0 is the fixed mortality intensity. The survivor swap is also called a mortality swap
in the literature.

We describe the survivor swap by a payment process Aswap
j , where j = 1, 2 represents

the insurance portfolio and the population, respectively. The dynamics of the payment
process are given by

dAswap
j (x, t) = (nj − Nj(x, t))dt − nj tp̃xdt . (5.5)

The term (nj − Nj(x, t)) is the number of survivors in portfolio j at time t, and we see
that there is a payment, if the number of survivors differs from the agreed fixed number of
survivors. The contract where the owner receives the fixed payments and pays the variable
payments connected with the stochastic number of deaths is called a receiver swap, and if
the owner takes the other side, the swap is called a payer swap.

Now, we introduce the conditional expected discounted value of Aswap
j given by Z∗,Q

j ,
where we condition on all information available at time t and take the expected value
under some fixed martingale measure Q. The process is called the intrinsic value process
and is given by

Z∗,Q
j (x, t) = EQ

[∫ T

0
dA∗, swap

j (x, u)

∣∣∣∣F(t)

]

= EQ

[∫ T

0
e−

∫ u

0
r(τ)dτdAswap

j (x, u)

∣∣∣∣F(t)

]
. (5.6)

By rewriting (5.6), we obtain

Z∗,Q
j (x, t) = A∗, swap

j (x, t) + e−
∫ t
0

r(τ)dτEQ

[∫ T

t

e−
∫ u
t

r(τ)dτdAswap
j (x, u)

∣∣∣∣F(t)

]

= A∗, swap
j (x, t) + Z̃∗,Q

j (x, t) ,
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where Z̃∗,Q
j is called the discounted market value of future payments. Note that the market

value depends on the choice of measure. Exploited the independence between r and (µ,N)
yields the following expression for Z̃∗,Q

j

Z̃∗
j (x, t) = e−

∫ t

0
r(τ)dτ EQ

[∫ T

t

e−
∫ u

t
r(τ)dτ

(
(nj − Nj(x, u)) − nj up̃x

)
du

∣∣∣∣F(t)

]

=

∫ T

t

P ∗(t, u)EQ
[
nj − Nj(x, u)

∣∣F(t)
]
du − nj

∫ T

t

P ∗(t, u)up̃xdu

= (nj − Nj(x, t))

∫ T

t

P ∗(t, u)SQ
j (x, t, u)du − nj tp̃x

∫ T

t

P ∗(t, u)u−tp̃x+tdu ,

where P ∗(t, u) is the discounted price at time t of a zero coupon bond with maturity u,
which is given by

P ∗(t, u) = EQ

[
e−

∫ u

0
r(τ)dτ

∣∣∣∣F(t)

]
, t ≤ u . (5.7)

The following lemma is taken from Dahl et al. (2008).

Lemma 5.2 A survivor swap on portfolio j with fixed survival probability tp̃x admits the
representation

dZ∗,Q
j (x, t) = νZ,Q

j (t)dMQ
j (x, t) + ηZ,Q

j (t)dW r,Q(t) + ρZ,Q
j (t)dW µ,Q(t),

where ρZ,Q
j = (ρZ,Q

j,1 , ρZ,Q
j,2 ) and

νZ,Q
j (t) = −

∫ T

t

P ∗(t, u)SQ
j (x, t, u)du , (5.8)

ηZ,Q
j (t) = −σr(nj − Nj(x, t−))

∫ T

t

Br(t, u)P ∗(t, u)SQ
j (x, t, u)du

+ nj tp̃xσr

∫ T

t

Br(t, u)P ∗(t, u)u−tp̃x+tdu , (5.9)

ρZ,Q
j,i (t) = −σµ

j,i(x, t)
√

µj(x, t)(nj − Nj(x, t−))

×
∫ T

t

Bµ,Q
j (t, u)P ∗(t, u)SQ

j (x, t, u)du , i = 1, 2 . (5.10)

We see that there are three types of risk associated with the value of the survivor swap:
the process MQ

j drives the unsystematic mortality risk, the interest rate risk is related to

W r,Q, and W µ,Q = (W µ,Q
1 ,W µ,Q

2 ) generates the systematic mortality risk.

6 Risk-minimization with a survivor swap

We now turn to study more specific cases in discrete time. We derive risk-minimizing
strategies in the markets (B,P,Zj) for j = 1, 2, where Z1 is a survivor swap on the
insurance portfolio and Z2 is a survivor swap on the population. We consider two different
discrete time setups; one where the swap can be traded at time 0 only, and a second where
the swap can be traded at time 0 and time 30 only.
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6.1 Parameters for numerical study

We apply the parameters from Dahl et al. (2008). Thus, we consider an insurance portfolio
with policy-holders aged 30 at time 0, who pay a continuous premium of πc(t) = 0.2 during
[0, T ], where T = 30. In case of a death at time t the insurance company pays a lump
sum of ad(t) = 5 · 1{0≤t<T }. At the age of retirement, which is 60 years, a lump sum of

ar(T ) = 3 is paid to all survivors. Finally, the contract contains a 30 year life annuity
starting at age 60 with a rate of ap(t) = 1, which implies that T = 60.

The parameters used for the mortality model are listed in Section 5.4, and the parameters
for the financial market are listed in Table 4.

r(0) γr δr σr

0.03 0.011 0.2 0.01

Table 4: Parameters for the financial market.

6.2 Trading of survivor swaps at initiation of the contract

From Proposition 4.3 we get the discrete-time version of the Galtchouk-Kunita-Watanabe
decomposition, and we see that the optimal number of survivor swaps, when we can trade
at time 0 only, is given by

ϑ̂A
j (0) =

EQ

[∫ T

0 ϑA
j (u)dLZ∗

j ,Q(u)∆LZ∗

j ,Q(T )

∣∣∣∣F(0)

]

EQ

[(
∆LZ∗

j ,Q(T )
)2
∣∣∣∣F(0)

] . (6.1)

Here, ϑA
j is determined from the continuous time Galtchouk-Kunita-Watanabe decompo-

sition (3.3) of the intrinsic value process. Explicit expressions can be found in Dahl et al.
(2008, Propositions 5.1 and 5.2) and are repeated here for completeness:

ϑA
1 (t) =

νV,Q(t) + ρV,Q
1 (t)(κQ

1,1(t))
−1χZ,Q

1,1 (t) + ρV,Q
2 (t)(κQ

1,2(t))
−1χZ,Q

1,2 (t)

νZ,Q
1 (t) + ρZ,Q

1,1 (t)(κQ
1,1(t))

−1χZ,Q
1,1 (t) + ρZ,Q

1,2 (t)(κQ
1,2(t))

−1χZ,Q
1,2 (t)

, (6.2)

ϑA
2 (t) =

ρV,Q
1 (t)(κQ

2,1(t))
−1χZ,Q

2,1 (t) + ρV,Q
2 (t)(κQ

2,2(t))
−1χZ,Q

2,2 (t)

νZ,Q
2 (t) + ρZ,Q

2,1 (t)(κQ
2,1(t))

−1χZ,Q
2,1 (t) + ρZ,Q

2,2 (t)(κQ
2,2(t))

−1χZ,Q
2,2 (t)

, (6.3)

where for ρZ,Q
i,j (t) 6= 0,

κQ
i,j(t) =

νZ,Q
i (t)λQ

i (x, t)

ρZ,Q
i,j (t)

. (6.4)

and χZ,Q
i,j (t) = 1

{ρZ,Q
i,j (t)6=0}

, for i, j ∈ {1, 2}. For interpretation of these quantities, we refer

to Dahl et al. (2008).

Furthermore, ∆LZ∗

j ,Q(T ) = LZ∗

j ,Q(T ) − LZ∗

j ,Q(0). The orthogonal parts in the decompo-
sition (4.1) for dZ∗,Q

j can be found in Lemma 5.2, and are given by

LZ∗

j ,Q(T ) =

∫ T

0
νZ,Q

j (u)dMQ
j (x, u) +

∫ T

0
ρZ,Q

j (u)dW µ,Q(u) .
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In order to calculate ϑ̂A
j (0) in (6.1) we apply Monte Carlo simulation. Table 5 shows the

results for different values of n1 and n2. The numbers in the table reflect the interaction

n1 n2 Portfolio (1) Portfolio (2)

100 1,000 0.14 0.033

100 10,000 0.14 0.0052

1,000 10,000 0.39 0.051

1,000 100,000 0.39 0.0055

10,000 100,000 0.56 0.055

Table 5: Number of survivor swaps ϑ̂A
j (0) in the market (B,P,Zj), where we can trade

the survivor swap Zj at time 0 only (based on 10,000 simulations).

between systematic and unsystematic mortality risk in the insurance portfolio and the
survivor swaps. First, we note that ϑ̂A

1 (0) is independent of n2 as expected. In addition,
we see that the optimal number of survivor swaps on portfolio 1 increases as a function of
n1. We explain this by the fact that the unsystematic risk becomes negligible, as the size
of the portfolio increases. In order to compare the optimal number of swaps on portfolio
2, the results should be multiplied by the ratio n2/n1. After this multiplication, we see
that the quantity increases with n2, which may again be explained by the fact that the
systematic mortality risk is the main mortality risk for large portfolios.

The discrete and continuous time investment strategies in three scenarios are depicted in
Figure 3 for comparison for the case where n1 = 10.000 and n2 = 100.000. The figure

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of survivor swaps on the insurance portfolio

Year

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Number of survivor swaps on the population

Year

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Figure 3: Number of survivor swaps in continuous and discrete time.

shows the optimal number of survivor swaps in the two situations where the insurance
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company has access to a survivor swap Z1 on the company’s own portfolio and a swap Z2

on the population. For the situation where the number of swaps on the company’s own
portfolio (figure to the left) can be rebalanced dynamically (continuously), the optimal
number of swaps increases from about 0.35 at time 0 to 1 at time 30. After time 30, the
optimal number remains constant and equal to 1. The corresponding optimal constant
strategy obtained from (6.1) for the period (0, 60] is equal to 0.56, which is included in
Figure 3 for comparison. Finally, we have included a piecewise constant strategy, where
the optimal number of swaps may be updated at time 30 using Proposition 4.3.

For the strategy based on the population swap (figure to the right), the optimal number
of swaps at time 0 are around 0.035 and increases to around 0.093 at time 30. Shortly
before time 60, the strategy decreases to 0. The corresponding constant strategy consists
of buying 0.055 population swaps and holding these until the final term T = 60. The
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Figure 4: Number of survivor swaps at time 0 with a continuous strategy (ϑA
j (0)) as a

function of the number of policy-holders n1.

optimal strategies depend on the number of individuals in the two portfolios. We have
illustrated this dependence in Figure 4. The left figure shows the optimal number of
survivor swaps on portfolio 1 at time 0, in the situation where the number of swaps
may be updated continuously. The optimal number increases as a function of n1 and
converges to about 0.35; for small value of n1, the optimal number at time 0 is negative.
These differences may be explained by the relation between unsystematic and systematic
mortality risk. The right figure highlights the fact that the optimal number of swaps on
portfolio 2 essentially increases linearly with n1 for fixed n2.

6.3 Trading of survivor swaps at initiation of the contract and retire-

ment

We apply Proposition 4.3 for calculating the number of swaps at time 0 and 30. One
could have chosen to calculate the number of swaps at time 30 by taking into account the
development until time 30 in each case. This is not done here though due to computational
performance issues. The numerical results can be found in Table 6. We note that a
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n1 n2 Portfolio (1) Portfolio (1) Portfolio (2) Portfolio (2)

t = 0 t = 30 t = 0 t = 30

100 1,000 0.03 1 0.032 0.051

100 10,000 0.03 1 0.0049 0.0086

1,000 10,000 0.32 1 0.049 0.086

1,000 100,000 0.32 1 0.0052 0.0093

10,000 100,000 0.53 1 0.052 0.093

Table 6: Number of survivor swaps ϑ̂A
j (t) in the market (B,P,Zj), where we can trade the

survivor swap Zj at time 0 and 30 only (based on 10,000 simulations).

perfect hedge is obtained by holding exactly 1 survivor swap on the insurance portfolio
from t = 30. If we compare the optimal number of swaps for the interval (0, 30] with the
optimal number for the interval (0, 60] in Table 5, we see a relatively small difference for
portfolio 2. For portfolio 1, the largest differences appear for small portfolio sizes. The
discrete and continuous time investment strategies for the three scenarios are collected
in Figure 3 for comparison. Here we see that the hedging strategies with rebalancing of
the number of swaps at time 30 are much more similar to the optimal strategies with
continuous rebalancing of the swaps.

7 Comparison of the intrinsic risk at time 0

In this section we compare the efficiency of different strategies. The comparison is carried
out by calculating and comparing the intrinsic risks at time 0, R(0, ·) in different markets.

First we concentrate on the discrete-time case. In order to calculate intrinsic risk at time
0 in the discrete-time case, we keep ϑ̂A

j (t) constant and equal to ϑ̂A
j (0) in the time interval

[0, T ]. From the unhedgeable part in (4.13) we have that the intrinsic risk can be calculated
as

Rdisc(0) = Rcont(0) + Rextra(0) ,

where

Rcont(0) = EQ

[(∫ T

0
dLA(u)

)2
]

,

is the intrinsic risk from continuous time, and

Rextra(0) = EQ

[∫ T

0

(
ϑA(u) − ϑ̂A(0)

)2
d〈LZ∗

j ,Q〉(u)

]
,

is the extra term from (4.13) concerning the additional discrete-time part. When we carry
out the numerical integration, we use that

d〈LZ∗

j ,Q〉 = (νZ,Q
j )2d〈Mj〉 + (ρZ,Q

j )2d〈W µ,Q〉

=
(
(νZ,Q

j )2λj + (ρZ,Q
j,1 )2 + (ρZ,Q

j,2 )2
)
dt .
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The results can be found later in Table 7 along with the intrinsic risks from the continuous
time cases.

We start out by writing down the intrinsic risk processes for the basic markets (B) and
(B,P ). First, we consider the market (B), where we can invest only in the savings account
B. Then from Lemma 5.1 and the theory of risk-minimization, we get the intrinsic risk
process

R(t, ϕ∗
V ) = EQ



∫ T

t

((
νV,Q(τ)

)2
λ1(x, τ) +

(
ηV,Q(τ)

)2
+

2∑

j=1

(
ρV,Q

j (τ)
)2
)

dτ

∣∣∣∣F(t)


 .

The intrinsic risk process for the (B,P )-market containing the savings account and a zero
coupon bond is taken from Dahl et al. (2008), and it is given by

R(t, ϕ∗
B) = EQ



∫ T

t


(νV,Q(τ)

)2
λ1(x, τ) +

2∑

j=1

(
ρV,Q

j (τ)
)2


 dτ

∣∣∣∣F(t)


 .

Similarly, the intrinsic risk processes for the markets containing the survivor swaps are
given by

R(t, ϕ∗
1) = EQ

[(∫ T

t

(
νV,Q(τ) − ϑA

1 (τ)νZ,Q
1 (τ)

)2
λQ

1 (x, τ)

+
2∑

j=1

(
ρV,Q

j (τ) − ϑA
1 (τ)ρZ,Q

1,j (τ)
)2
)

dτ

∣∣∣∣F(t)

]
,

and

R(t, ϕ∗
2) = EQ

[(∫ T

t

(
νV,Q(τ)

)2
λQ

1 (x, τ) +
(
ϑA

2 (τ)νZ,Q
2 (τ)

)2
λQ

2 (x, τ)

+

2∑

j=1

(
ρV,Q

j (τ) − ϑA
2 (τ)ρZ,Q

2,j (τ)
)2
)

dτ

∣∣∣∣∣F(t)

]
.

In Table 7 we have listed the intrinsic risks calculated at time 0 in the different markets.
Note that ϕ∗

j represents continuous time trading with survivor swap j, and ϕ∗
Di

j

is discrete-

time trading, where D1
j indicates that the survivor swap can be traded at time 0 only, and

D2
j indicates that the survivor swap can be traded both at time 0 and 30.

First we note, that ϕ∗
V , ϕ∗

B , ϕ∗
1, ϕ∗

D1
1

and ϕ∗
D2

1

are independent of n2. So the numbers in

case 1 and 2 and case 3 and 4 are equal for the markets, which do not involve the swap
on the population.

It is shown in Dahl et al. (2008) that extending the market to contain a zero coupon bond
eliminates all the financial risk generated by W r, and we see in Table 7 that this is by
far the most significant risk factor. Furthermore, we observe that in the (B,P )-market,
the intrinsic risk decreases when the portfolio gets larger, due to diversification of the
unsystematic mortality risk.

When we introduce the different types of survivor swaps, we see that even more risk can
be eliminated. First of all we note that in a continuous time trading setup, the survivor
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n1 n2

√
R(0,ϕ∗

V
)

n1

√
R(0,ϕ∗

B
)

n1

√
R(0,ϕ∗

1
)

n1

√
R(0,ϕ∗

2
)

n1

100 1,000 0.634 0.111 0.048 0.103

100 10,000 0.634 0.111 0.048 0.098

1,000 10,000 0.627 0.062 0.032 0.037

1,000 100,000 0.627 0.062 0.032 0.035

10,000 100,000 0.626 0.055 0.013 0.020

n1 n2

√
R(0,ϕ∗

D1
1

)

n1

√
R(0,ϕ∗

D1
2

)

n1

√
R(0,ϕ∗

D2
1

)

n1

√
R(0,ϕ∗

D2
2

)

n1

100 1,000 0.105 0.104 0.073 0.104

100 10,000 0.105 0.100 0.073 0.100

1,000 10,000 0.045 0.040 0.038 0.039

1,000 100,000 0.045 0.039 0.038 0.037

10,000 100,000 0.022 0.026 0.019 0.024

Table 7: Intrinsic risks calculated at time 0, where D1
j and D2

j indicate that the survivor
swap can be traded at time 0 only and at time 0 and 30, respectively (based on 5,000
simulations).

swap on the insurance portfolio is superior to the survivor swap based on the population.
This is due to the fact that the swap on the insurance portfolio hedges the systematic
mortality risk closer than the swap on the population, because it takes W µ

1 into account
too; see Table 2. Beside that, it hedges against unsystematic mortality risk, whereas the
swap on the population actually adds a new source of unsystematic mortality risk to the
market.

Considering the discrete-time trading scenarios, we see that an interesting point appears.
When we can trade the survivor swap on the insurance portfolio at time 0 only, we loose the
ability to react to unsystematic mortality changes, and in that case we actually get a lower
intrinsic risk by investing in the survivor swap on population, compared to investing in the
swap on insurance portfolio, when the portfolio is small. In general, we see that when the
portfolio gets smaller the unsystematic mortality risk gets more significant. Furthermore,
we see that being able to trade at time 30 also reduces the intrinsic risk significantly for
the swap on the portfolio, whereas the swap on the population is more or less unaffected.
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