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Market Risk Prediction under Long Memory:
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Abstract

Multi-period value-at-risk (VaR) forecasts are essential in many financial risk

management applications. This paper addresses financial risk prediction for

equity markets under long range dependence. We present the major prop-

erties of long memory, its implications for risk management and a novel ap-

proach to multi-period market risk prediction under long memory. Our em-

pirical study of established equity markets covers daily index observations

during the period January 1975 to December 2007. We document substan-

tial long range dependence in absolute as well as squared returns, indicating

a significant influence of long memory effects on volatility. We account for

long memory in multi-period value-at-risk forecasts via a scaling based mod-

ification of the GARCH(1,1) forecast. Our results show that (i) traditional

value-at-risk forecasting techniques underestimate market risk while (ii) our

new approach outperforms traditional techniques with as short as 10 or more

trading days.
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1 Introduction

Several periods of financial market stress (including the market crash of October
1987, a number of accounting scandals at the beginning of the new millennium and
the recent 2007/08 banking crisis) have increased both the regulatory as well as
the industry demand for effective risk management. A major problem, which risk
managers are typically confronted with is to forecast market volatility. To be able
to solve this problem, it is necessary to understand the so called "stylized facts"
of assets returns. One of these stylized facts is the scaling property denoted as
"long memory" or "long range dependence". Long memory implies, that returns
in the past affect volatility. Hence, risk managers should take this stylized fact
into account to forecast volatility accurately. According to Basel rules1 of capital
adequacy banks must calculate value-at-risk (VaR) numbers for a minimum holding
period of at least 10 days with a confidence level of 99%. Despite their high practical
relevance most focus has been placed on one-day ahead forecasts.

In this paper we provide new insights into risk prediction under long memory by
analyzing the long range properties of equity market data. We show that multi-day
VaR forecasts can be enhanced significantly by using long memory features. As
a result, we develop a new scaling based GARCH(1,1)-LM model for multi-period
risk predictions. To our best knowledge, we are the first to improve long-term
GARCH volatility forecasts by scaling with the self-affinity index H and by using
long memory weights.2 Despite their high practical importance for risk manage-
ment scaling-based long memory models are considered sparsely. A few notable
exceptions are Embrechts et al. (2005) and Ghysels et al. (2009) who investigate
long-term behavior of traditional scaling methods,3 yet without long memory.

While GARCH models generate volatility forecasts for the very next period,
long-term VaR measures usually require volatility predictions for much longer pe-
riods of weeks or even several months. Ederington and Guan (2009) evaluate
volatility forecasts over longer horizons for non-LM GARCH models and the ab-
solute restricted least squares (ARLS) model. Their results show, that the ARLS
is inferior to GARCH type models when index data is considered. The reason for

1If one searches the new Basel Accord of the Basel Committe on Banking Supervision (2004)
for an instruction for quantitative standards of market risk management systems, one is referred
to an earlier version of the Basel Committe on Banking Supervision (1996). It’s not necessary to
forecast multi-period VaR at once. As such banks are allowed to scale one-day risk measures up
to multi-day risk measures.

2A detailed description is provided in Section 4.
3The square-root-of-time rule is very popular amongst practitioners. Our contribution is to

develop a more sophisticated concept, which uses long memory for efficient long-term risk predic-
tions.
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this is, that index data is more persistent as for example FX data. Further, the
ARLS assumes that log returns are normally distributed. The summary statistics
of our data clearly indicates that this is not the case for index data. In addition,
Andersen et al. (1999) try to improve DM-$ return volatility forecasts for horizons
of five minutes up to one month by using high frequency data. The authors find,
that the RSME of all investigated horizons declinces if one considers intraday high
frequency data.4 Our aim is to provide a solution for evaluating daily equity mar-
ket data, since this frequence is the most available and most used sample frequence
in empirical finance.

Especially, in the case of VaR forecasts being estimated over a longer holding
period, the influence of long memory increases. Therefore, our contribution is to
evaluate long-term equity market risks with a consistent framework. There are
several economic, practical and theoretical reasons for this intention. Firstly, the
Basel Committee enforces banks to compute their risk metrics for a risk horizon of
at least 10 days and nsurance companies must even use a risk horizon of one year.
Longer holding periods are desired. Secondly, risk horizons longer than one day
are particularly important for financial actors with long time horizons, like pension
funds or insurance firms. Several such investors have to rely on longer horizons
for long term strategic global asset allocation. Thirdly, the current financial crises
demonstrates that long term management is relevant, as financial institutions are
not able to improve their equity basis during a crises. Hence, it is necessary that the
equity cushion is adequate in advance of a stress period such institutions do not run
into liquidity demand during a downturn. On the other hand, banks should not use
too conservative VaR figures which lead to unnecessary bound money. Berkowitz
and O’Brien (2002) investigate the VaR figures of six American banks. They find
that the majority uses too high VaR levels. Thus, we evaluate our results not only
in terms of conditional coverage.

We test the performance of our scaling based GARCH-LM model by investi-
gating multi-day 99 percent VaR forecasts of four different stock market indices
for various horizons τ , τ = 5 (weekly), τ = 10 (biweekly), τ = 20 (monthly) and
τ = 60 (quarterly). Our estimates confirm the importance of long memory for
risk prediction. Due to our new approach good long-term forecasts are possible,
since the deficiencies of GARCH predictions can be cured. All in all, this new ap-
proach combines important risk management features, leading to better conditional
coverage in stress periods.

4The very best sample frequence is not five minutes, but one hour.
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The remainder of this paper is organized as follows. Section 2 gives an overview
of long memory and the properties of fractional Brownian motion. In addition, this
section provides a technique for measuring long range dependence. In Section 3 we
present the multi-day forecasting concept of ordinary GARCH(1,1) and introduce
our new scaling based long memory GARCH forecasting technique. Furthermore,
the underlying VaR framework is presented. Section 4 explains relevant backtesting
procedures. Section 5 contains a detailed empirical study. Besides investigating
the long memory features of four international stock market indices, we check the
forecasting power of our new model. Finally, Section 6 concludes.

2 Literature Review

2.1 Fractional Brownian Motion

A Brownian motion5 (BM) is a time-continuous stochastic process (Bt)t∈[0,∞]. The
increments of BM dBt are stochastically independent. Time-discrete increments are
definied by ∆Bt = Bt −Bs

d= N (0; |t− s|),∀0 ≤ s < t.
For 0 < H < 1 fractional Brownian motion (FBM) is a moving average of dBt, in

which past increments of Bt are weighted by the kernel (t−s)H−1/2. H denotes the
Hurst exponent, which is in fractal geometry known as "self-affinity parameter". In
contrast to ordinary Brownian motion, the spreads of the increments can be nearly
infinite. The Wiener Brownian motion is the unusual special case, corresponding
to the value H = 0.5. The increments ∆B(H)

t = B
(H)
t −B(H)

t−τ , τ > 0 are stationary,
but the process itself is not stationary. ∆B(H)

t are normal distributed with mean
zero and variance

E
[(
B

(H)
t −B(H)

t−τ
)2]= τ2Hσ2. (1)

In the meantime, there are a lot of methods for constructing FBMs available. Be-
sides the original approach of approximating a fractional stochastic integral (Man-
delbrot and Van Ness, 1968), the method of Levinson, the wavelet synthesis and
the Cholesky decomposition of the covariance matrix are mentionable alternatives.
The construction of the latter results from the following strategy: One can simu-
late sample-paths of FBM by creating a vector of independent standard Gaussian

5BM exhibits a constant Hurst exponent H = 0.5. Further, BM is sometimes called "Wiener
Brownian motion" as Norbert Wiener was the first, who provided the adequate mathematical
theory for BM.
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numbers G = (ni)T×1. In addition, one must compute a positive definite6 matrix

Γ(s, t) =
1
2

(t2H + s2H − |t− s|2H) (2)

and calculate a symmetric square matrix (Ai,j)T×T from Γ(s, t) = AAT . Finally,
the sample path of FBM results from a matrix product A×G (Prigarin et al., 2007).
The statistical properties and the appearance of FBM are decisively determined by
the value of H:

0 < H < 0.5 H = 0.5 0.5 < H < 1
Autocorrelation negative zero positive

(anti-persistent) (persistent)
Dependence yes no yes

between increments

Table 1: The impact of H on long memory properties

To understand how the three "standard situations" influence long memory prop-
erties, it is useful to analyze various sample paths of FBM. Figure 1 illustrates the
sample path of four fractional Brownian motions with different exponents H.

• 0 < H < 0.5: This plot shows no consistent behavior and no trend, at all.
Through permanent oscillations there is no trending possible, being typical
for ARMA7 and short memory processes, respectively. All in all, the anti-
persistent behavior results of the repeating sign change, because a negative
Xt is likely to be followed by a negative Xt.

• H = 0.5: The Wiener Brownian motion special case of FBM also exhibits
no trending, but its sample path is much smoother than the curve for H =
0.05. In contrast to H = 0.05 there are clearly fewer sign changes eliminating
anti-persistence. H = 0.5 indicates no persistence.

• 0.5 < H < 1: Both plots (H = 0.95 and H = 0.75) display high positive
autocorrelation leading to highly visible trends. Furthermore, the curves are
less fissured, which is characteristic for long memory processes.

6It is absolutely necessary, that the input of Γ(s, t) generates a positive definite matrix, as
without positive definiteness one cannot calculate a square root for Γ(s, t).

7ARMA processes have no long memory properties and belong therefore to the class of short
memory processes.
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(a) H = 0.50 (b) H = 0.95

(c) H = 0.05 (d) H = 0.75

Figure 1: Sample paths of simulated fractional Brownian motions for T = 1,000.

Besides graphical techniques, the autocovariance function sheds light on the im-
pact of the Hurst exponent on fractal Brownian motions and financial time series,
respectively. Beran (1994) models the autocovariance function (ACVF) of FBM as

γH(τ) =
σ2

2

[
|τ − 1|2H − 2|τ |2H + |τ + 1|2H

]
. (3)

Additionally, Dieker and Mandjes (2003) demonstrate that for |τ | → ∞

γH(τ) ∼ σ2H(2H − 1)|τ |2H−2 (4)
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is valid. Equation (3) and (4) indicate that the autocovariance function of FBM
depends on H extraordinary. For σ2 = 1 one obtains the autocorrelation function
(ACF) ρ(τ) of fractional Gaussian noise (FGN).8 Figure 2 demonstrates the impact
of H on the ACF of FGN. The plot illustrates amazing results. All ACFs lying

Figure 2: Autocorrelation functions of fractional Gaussian noise for four different
Hurst Exponents H

in the long memory area are positive and monotonically decreasing. The more H
moves to 0.5, the more ρH(τ) converges to zero. In the special case of H = 0.5 no
autocorrelation exists, therefore all autocorrelations are zero. If H lies in the anti-
persistent region, ρH(τ) converges extremely quick to the abscissa. For instance,
ρ0.4(20) = −0.0022 and ρ0.05(20) = −0.0002. Despite the quick convergence ρH(τ)
does not meet the value zero. In contrast to H ∈ [0.5, 1], all ACFs in the anti-
persistent area are lying closely together. These findings can be refined by analyzing
ρH(τ) depending onH. Figure 3 provides results forH ∈]0, 1[ and τ ∈ {1, 2, 4, 100}.

8Fractional Gaussian noise refers to the increments ∆B
(H)
t of FBM.
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(a) τ = 1 and τ = 2 (b) τ = 4 and τ = 100

Figure 3: Autocorrelation functions of fractional Gaussian noise for four different
Lags τ .

The ACF of one lag has the largest spectrum, ranging from −0.5 to 1. Already
τ = 2 reduces the range of the spectrum dramatically. Within the anti-persistent
area all autocorrelations are negative, but they are very close to zero. This be-
havior does not change even for very large lags.9 In the persistent (long memory)
region there is a positive relation between H and ρH(τ) identifiable. It’s strongest
- approximately linear - development is found for τ = 1. Consequently, ρH(τ) con-
verges to zero, if the value of τ rises. To conclude, FBM can capture long memory
satisfactory for every time lag τ . So, risk managers can use the concept of FBM
to develop sophisticated asset price models. The ACFs of absolute returns indicate
informations that should be used in forecasting future volatility. Models which do
not use this kind of information are inferior to FBM and related concepts.

2.2 Long Memory

Long Memory or long range dependence, respectively, refers to the slow decay of
the autocorrelation function. More precisely, a process contains long memory, if
his ACF for τ →∞ can be reproduced by a power law

ρ(τ) ∼ c

τ δ
, (5)

9Between τ = 4 and τ = 100 there is no large difference visible.

7



with a constant c and a coefficient δ. τ ≥ 0 refers to the lag of a financial time series.
We focus on continuously compounded returns (Rt)1≤t≤T = log(Pt) − log(Pt−1),
based on the financial time series Pt, t = 0, 1, . . . , T . Long memory in finance data
is expressed by the slow decay of the ACF of absolute returns (π = 1) or squared
returns (π = 2): ρ(τ) = corr(|R(t+ τ,∆t)|π, |R(t,∆t)|π). Zumbach (2004) find for
absolute returns δ ∈ [0.2, 0.4]. (5) provides a connection to the Hurst exponent H,
as well. Beran (1994), for example, illustrates that equation (5) can be written as

ρ(τ) ∼ cτ2H−2. (6)

So, δ ∈ [0.2, 0.4] implicates H ∈ [0.8, 0.9]. Generally, 0 < H < 1 is an indicator
for long memory behavior influencing the sign of long range dependence.10 The
impact of H on statistical dependence of time series is displayed in Table 1.

It is well-known that the correlation of empirical asset returns is approximately
zero (see e.g. Cont, 2001; Taylor, 2007). Yet, absolute or squared returns behave
quite differently. Ding et al. (1993) and Ding and Granger (1996) analyze daily
log-returns of Standard & Poor’s 500 index from Jan 3, 1928 to Aug 30, 1991.
As a major result, they show the slow decay of the ACF in squared and absolute
returns.11 Even for extremely large lags like 3,000 the ACF is significantly different
from zero. Also, Engle (1995), Bollerslev and Mikkelsen (1996), and Cont (2001)
found highly significant positive autocorrelation in absolute and squared returns
of index data. This correlation tells us, that there is information lying in past
that can be used to predict future volatility. Yet, Zumbach (2004) remarked that
the correlation of asset returns is small, of order 2% to 15%, depending on the
time lag and the asset class. As a consequence, it is quite hard to predict future
volatility excatly. Thus, risk managers are enforced to use all available information
as efficiently as possible. Andersen and Bollerslev (1997) analyse long-run volatility
dynamics in high frequency returns. The authors find that long memory is a salient
feature of the return generating process, rather than an artifact of regime shifts.

2.3 Long Memory behavior of GARCH(1,1)

Particularly when modeling daily returns, in empirical research the GARCH(1,1)
process with conditional normal distributions (Bollerslev, 1986) is the most popular

10Additionally, Cont (2005) puts forward economic mechanisms, which may explain long range
dependence.

11The ACF of absolute returns refers to the autocorrelation of volatility. This slow decay of
ACF is sometimes called "hyperbolic". "Exponential" decay refers to short memory processes.
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ARCH specification:

Rt = µt + h
1/2
t Zt (7)

= µt + εt (8)

Zt ∼ i.i.d. N (0, 1) (9)

and
ht = ω + αε2t−1 + βht−1 (10)

with ω > 0, α ≥ 0, β ≥ 0, α+ β < 1. When τ →∞, the process σ2
t is finite if and

only if α + β < 1, otherwise the process is non-stationary as σ2
t → ∞. The best

way to check if a process contains long memory is to investigate its autocorrelation
structure. The ACF of the GARCH(1,1) process for τ > 0 is

ρ(τ) = ρ(1)(α+ β)τ−1 (11)

with
ρ(1) =

α(1− αβ − β)2

(α+ β)(1− 2αβ − β)2
, (12)

see e.g. Taylor (2007). Ding and Granger (1996) develop an approximation for the
theoretical autocorrelation function of GARCH(1,1) models being valid for τ →∞:

ρ(τ) ≈ (α+ 1
3β)(α+ β)τ−1, α+ β < 1. (13)

The autocorrelation function of short memory processes dies out quickly with ex-
ponential decay.12 Ding and Granger (1996) prove that the ACF of GARCH(1,1)
processes belongs to the class of short memory ACFs. This theoretical finding
is illustrated in Figure 5. One can clearly observe the fast decay of the ACF of
GARCH(1,1) in contrast to the hyperbolic decay of empirical ACFs.

2.4 Non-Scaling based LM-Models

The performance of non-scaling approaches for various horizons is recently inves-
tigated by Grané and Veiga (2008). The authors find that long memory models
(FIGARCH, HYGARCH) perform better than the short memory GARCH for both
error term distributions (Gaussian and Student-t). Yet, backtesting is performed
just for 1-day VaR figures. Also Härdle and Mungo (2008) examine long range

12Exponential memory is a synonym for short memory. For example, AR, MA and ARMA
processes exhibit short memory.
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models for short term horizons τ ∈ [1, 5].

2.4.1 FIGARCH Model

Baillie et al. (1996) integrate long memory in GARCH volatility by using the filter
(1 − L)d, with 0 < d < 1. The combined null d = 0 and d = 1 indicates no long
memory. The so called fractionally integrated GARCH(p, d, q) nests a GARCH
(d = 0) with the IGARCH (d = 1) model:

ht = ω[1− β(1)]−1 +
{

1− [(1− β(L)]−1φ(L)(1− L)d
}
ε2t (14)

= ω + [1− β(1)]−1 + λ(L)ε2t , (15)

where λ(L) = λ1L + λ2L
2 + · · · and 0 ≤ d ≤ 1. 0 < d < 1 reflects long range

dependence, since the coefficients in (15) decay hyperbolically. The FIGARCH
specification is criticized by Taylor (2007). Taylor remarks, that the variance is
infinite for all positive values of d, which is incompatible with the stylized facts
for asset returns. Thus, Taylor prefers the FIEGARCH model (Bollerslev and
Mikkelsen, 1996, 1999) as it has not this drawback. In addition, Fisher and Calvet
(2002) remark that the FIGARCH model is not scale-consistent, because it implies
an equivalence between representations of the model at different time scales. The
idea of scale-consistency is related to the concept of self-affinity. A random process
{X(t)} is called self-affine if it satisfies

{X(vt)} d= {vHX(t)} (16)

for all v > 0 and H > 0. The FIGARCH model provides good one-day volatility
forecasts and in general better estimates than direct GARCH. However, if one
considers multi-day volatility for long horizons, a problem arises. Due to hyperbolic
decay of the coefficients the influence of the coefficients never riches zero, but for
long-term forecast horizons the conditional variance tends to converge, which by
trend leads to inaccurate volatility predictions.

2.4.2 HYGARCH Model

The hyperbolic GARCH (HYGARCH) is proposed by Davidson (2004). Davidson
combines an ordinary GARCH(p, q) with a FIGARCH(p, d, q) model:

ht = ω[1− β(1)]−1 +
{

1− [(1− β(L)]−1φ(L)[1 + α{(1− L)d}]
}
ε2t (17)
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Therefore, HYGARCH nests the GARCH (α = 0), IGARCH (α = d = 1) and
FIGARCH model (α = 1). Generally, the model is able to reproduce long memory
characteristics and volatility clustering, but it suffers from the same drawbacks as
the FIGARCH concept.

2.4.3 Other Approaches

Further, Zumbach (2004) accounts for long memory by using a set of historical
volatilities. A new family of volatility processes is introduced by measuring the
historical volatilities with a set of increasing time horizons. Finally, volatility is
forecasted by a simple combination of these historical volatilities. The idea of
this concept is to reflect the various horizons of different market participants from
intra-day speculators to portfolio managers and pension funds.

2.5 Scaling

In finance scaling is very important, since Basel rules require an underlying time
horizon of 10 days for risk predictions. A simply way to get a 10 day risk measure
or volatility is to use the square-root-of-time rule. The Basel Market Risk Amend-
ment allows explicitly banks to scale short-term VaR to get an 10-day estimate.
Therefore, τ -day VaR is achieved by

V aR(1)
√
τ = V aR(τ). (18)

The above scaling rule is similar to self-affinity (16) withH = 0.5. As we know from
FBM, H = 0.5 implies an independent time series. It is well known, that financial
time series are not independent, because absolute or squared returns are highly
correlated. Diebold et al. (1997) investigate the performance of the square-root-of-
time for horizons up to one year τ = 252. They truly claim, that the scaling rule
relies on 1-day returns being independent and identically distributed (iid) with
mean zero and variance σ2. As a major finding, volatility predictions based on
the square-root-of-time rule perform bad, especially for long horizons τ = 252.
This finding is not surprising, as advanced scaling methods account for self-affinity
properties.13 Moreover, the authors prefer the Drost and Nijman (1993) formula
for temporal GARCH aggregation. In the presence of long memory, this method is
not able to include long range dependence in volatility forecasts. As a result, this

13Self-affinity suggests not to scale by a fixed exponent τH=0.5. Instead a fixed exponent one
should use the long-memory dependent self-affinity index H.
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technique is not preferable. Additionally, Daníelsson and Zigrand (2006) detect
systematic underestimation of risk, if the underlying assumption of the square-
root-of-time rule is incorrect. The degree of underestimation worsens with the time
horizon and the confidence level. Embrechts et al. (2005) investigates medium-term
risk measures by scaling with

√
10 and provide a framework for one-year ahead risks.

The latter is a two step-approach, where in the first step volatility is forecasted by
a volatility model up to τ days and then scaled for the rest T − τ days. If the first
forecast is inaccurate, scaling for the rest T − τ days accumulates the forecasting
error increasingly. Caprin (2008) argues untruly that Belratti and Morana (1999)
have solved the

√
T problem. Belratti and Morana just concern short horizons

of 1, 5 and 10 days. As we mentioned above, the forecasting error worsens with
increasing time horizon. If the data is nearly iid and just a few days are predicted,
then the forecasting error is not as bad as in a long horizon environment. Ghysels
et al. (2009) compare the the scaling-up method with direct GARCH forecasting
(38) and conclude that at short and medium horizons (up to 10 days) they are
similar, yet at long horizons the square-root-of-time rule performs better than the
direct approach. This finding is quite reasonable, since the conditional variance of
GARCH direct forecast converges to its conditional variance when τ rises.14

2.6 Estimating Long Memory

In order to measure the sign and the magnitude of (long range) dependence of
financial time series we use the Hurst exponent H. In the meantime, the origi-
nal R/S approach has been extended abundantly to solve the problems associated
with this method. Especially, Campbell et al. (1997) point out that the most
important shortcoming of the R/S technique is its sensitivity to short-range de-
pendence. Now, there are a lot of alternative methods available. For our study
we prefer the concept of detrended fluctuation analysis (DFA), more precisely, the
method of Peng et al. (1994) or variance of residuals approach, respectively. This
approach is a result of the continuous improvement of original R/S technique,
yielding to quite good Monte Carlo outcomes. We demonstrate this progress by
estimating the average H of 10,000 independent replications for standard Gaus-
sian noise based on Beran’s (1994) estimation technique. So the expected mean
is H = 0.5, since standard Gaussian noise is independent and refers to the incre-
ments of Wiener Brownian motion. Ordinary R/S approach is positively biased,
since its mean equals 0.569 leading to a bias of 0.069. In contrast to original R/S

14For details, compare section 4.2.
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technique, Peng’s variance of residual approach provides an average estimate of
H = 0.490, which implies a significantly lower bias. In addition, the root mean

square error RSME =
√

E[(θ̂ − θ)2] indicates clear dominance of the variance of
residuals technique: 0.1034 (R/S approach), 0.0165 (variance of residual approach).
Furthermore, the variance of residual concept should be preferred, as its disperse
level is considerable lower, see Figure 4. Generally, the Peng technique converts a

(a) H = 0.569 (b) H = 0.490

Figure 4: Density of 10,000 estimated Hurst exponent’s for independent standard
Gaussian numbers. The dashed line refers to the expected mean H = 0.5.

bounded random sequence Xt, of length T into m non-overlapping boxes. First of
all, one has to compute the cumulative sum Xt:

Xt =
T∑
t=1

(
xt −

1
T

T∑
t=1

xt

)
. (19)

Next, Xt is divided into non-overlapping windows of length m, and a least-squares
line αt+ β is fitted to the cumulated sums. To measure the maximal fluctuations,
one considers the square root of an average of squared vertical distances of Xt from
the least-squares line:

σ2
t =

[
1
m

m∑
j=1

(
Xj − αt− β

)2]1/2
. (20)

Self-affine processes can be described by the relation σ2
t ∝ mH , and thus this

expression holds for long memory processes, too. Therefore, one can use this ratio
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to estimate H by regressioning σ2
t on m.

3 Forecasting Equity Market Risk

3.1 Value-at-Risk

Despite demanding no concrete risk management approach, one concept became
extremely popular, the value-at-risk (VaR). The VaR is defined as an upper thresh-
old on losses in the sense that these losses are likely to exceed the value-at-risk with
only a small probability α. Typically this confidence level is chosen between 1% and
5%. Given some confidence level α and information up to t, Ft, the value-at-risk
for the time-interval (t, t+ τ ] V aRαt,t+τ is defined as

V aRαt,t+τ = − inf {r : Ft,t+τ (r) ≥ α} , (21)

which yields

P(Rt,t+τ ≤ V aRt,t+τ |Ft) ≥ α.

Ft denotes the information set available up to date t, Ft,t+τ represents the condi-
tional distribution of Rt,t+τ . (Rt,t+τ )1≤t≤T−τ=

∑τ
i=1(Rt+i), τ ≥ 1, where Rt{Tt=1}

is the one-day log return Rt = log(Pt) − log(Pt−1). This definition implies that
the VaR is just calculated for one unit of a special investment.15 Since the VaR
denotes the α-quantile F−1

α of the error term distribution F , the VaR simplifies to

V̂ aR
α

t,t+τ = −(µ̂t+τ + ĥ
1/2
t+τF

−1
α ). (22)

Conditional models allow for time-varying conditional mean, which can be consid-
ered by additional AR and MA components, that is

µt = µ+
p∑
i=1

aiµt−i +
q∑
j=1

biεt−j . (23)

If the returns Rt are not autocorrelated, not even on the first lag, and if there is
no moving average component, one could neglect conditional mean specifications
completely. In this case an unconditional setting µt = µ is more appropriate.
Moreover, equation (22) implies that parametric VaR forecasts need an estimation

15As the VaR in (21) only represents one unit of an asset or portfolio, one has to multiply V aR
with the total value of the considered item to get its risk position or risk capital, respectively.
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of conditional variance ht and depend on the assumption of the underlying distri-
bution. In the next subsections, we discuss elaborately the GARCH forecasting
technique. The distribution of standardized residuals Zt is often assumed to be
standard normal Zt ∼ N (0, 1). Due to heavy tails, for index data this assump-
tion is often violated. In addition, changes in volatility are not symmetric (see
e.g. Aboura and Wagner (2009) for a detailed discussion). So, we use an extra
distribution, the skewed student-t distribution. For ν > 2 the probability density
function f(Zt, ξ, ν) of the standardized skewed t-distribution is

f(Zt, ξ, ν) =


2

ξ+ 1
ξ

g(ξZt|ν) if Zt < 0
2

ξ+ 1
ξ

g
(
Zt
ξ |ν

)
if Zt ≥ 0

,

where ξ refers to the asymmetry parameter, ν accounts for the tail thickness and
g(.|ν) is a symmetric student density with ν > 2 degrees of freedom

g(Zt|ν) =
Γ(ν+1

2 )

Γ(ν2 )
√
ν(ν − 2)

(
1− Z2

t

ν − 2

)− ν+1
2

.

Γ(ν) =
∫∞
0
e−xxν−1dx is the gamma function. The skewed t-distribution nests the

symmetric t-distribution for ξ = 1 and the Gaussian distribution for ν = ∞ and
ξ = 1.

3.2 Non-Scaling based GARCH(1,1) forecast

To explain the idea of a τ -day ahead variance estimation of non-scaling based
GARCH concepts - whether or not long memory capable - we use a traditional
GARCH(1,1) framework. The one-day ahead forecast of conditional variance with
respect to equation (9) is given by

E(ε2t+1|Ft) = ht+1 = ω + αε2t + βht. (24)

Ft denotes the information set being available up to time t or sub-sigma algebra,
respectively. Forecasts being bigger than τ > 1 are more complex and can be
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achieved by the law of iterative expectation:

E(ε2t+τ |Ft) = E
[
E(ω + αε2t+τ−1 + βht+τ−1|Ft)

]
(25)

= E
[
ω + E(α(h1/2

t+τ−1Zt+τ−1)2 + βht+τ−1|Ft+τ−2)|Ft
]

(26)

= E
[
ω + αht+τ−1 E(Z2

t+τ−1|Ft+τ−2)︸ ︷︷ ︸
1

+βht+τ−1|Ft
]

(27)

= E
[
ω + (α+ β)ht+τ−1|Ft

]
. (28)

In the next step, we refine this results by recursive substitution of ht+τ−1 in equa-
tion (28):

E(ε2t+τ |Ft) = E(ω + (α+ β)(ω + αε2t+τ−2 + βht+τ−2)|Ft) (29)

= E(ω + ω(α+ β) + αε2t+τ−2(α+ β) + βht+τ−2(α+ β)|Ft) (30)

= ω + ω(α+ β) + E(α(h1/2
t+τ−2Zt+τ−2)2(α+ β) (31)

+βht+τ−2(α+ β)|Ft) (32)

= ω + ω(α+ β) + αht+1(α+ β) + βht+1(α+ β) (33)

= ω + ω(α+ β) + (α+ β)2ht+1. (34)

The mean of equation (28) is ω + (α + β)ht+1, so (34) is the same just one pe-
riod later. Thus, the estimated variance of a t + τ forecast can be written more
compactly:

E(ε2t+τ |Ft) = ω

τ−2∑
i=0

(α+ β)i + ht+1(α+ β)τ−1, τ ≥ 2. (35)

The first summand of (35) is of special interest, as it can be eased to

ω

τ−2∑
i=0

(α+ β)i =
ω

1− α− β︸ ︷︷ ︸
σ2

(1− (α+ β)τ−1). (36)

σ2 denotes the unconditional variance of εt. Inserting (36) in (35) leads to

E(ε2t+τ |Ft) = σ2(1− (α+ β)τ−1) + ht+1(α+ β)τ−1 (37)

= σ2 + (ht+1 − σ2)(α+ β)τ−1. (38)
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σ2 denotes the unconditional variance which is equal to σ2 = ω/(1 − α − β). If
the forecasting horizon τ rises, the conditional variance ht converges under the
restriction α + β < 1 at an exponential rate fixed by α + β to its unconditional
variance. As a consequence, all relative weights on past squared returns decline
at the same exponential rate whether forecasting volatility for the next day or the
distant future Ederington and Guan (2009). These interesting theoretic findings
indicates that the GARCH forecasting method is not appropriate, especially for
long horizons. Also, Ghysels et al. (2009) criticize direct GARCH forecasting for
not being very accurate, if τ is bigger than 10.

3.3 Scaling based GARCH(1,1)-LM: A new Approach

Our approach estimates the τ -day VaR by integrating long memory features. We
use the one-day ahead GARCH(1,1) volatility (24) and improve it by the scaled
Hurst exponent over τ days and its empirical autocorrelation structure. The reason
for this improvement is the strong persistence in index data. Both, the Hurst expo-
nent (Table 3) and the ACF of volatility (Figure 9) indicate long range dependence
of daily index data. So, VaR in our setting is given by

V aRαt,t+τ = µt+τ + φ(t+ τ)F−1
α . (39)

In contrast to GARCH-based VaR forecasts, we substitute
√
ht+τ by a scaling

based variable φ(t+ τ):

φ(t+ τ) = τHρ|Rt|(τ)H−ρ|Rt|(τ)
√
ht+1. (40)

The factor τH corresponds to the idea of self-affinity (see equation 16). Further,
the square-root-of-time rule implicates τ1/2. The exponent 0.5 can be interpreted
as H, indicating Wiener Brownian motion. Our study in section 5 clearly approves
that H of absolute index data is significantly different from 0.5. As a result, we
integrate this empirical feature by an additional scaling factor τH . As a second
improvement, we use the slow decay of the empirical autocorrelation structure.
ρ|Rt|(τ) is the autocorrelation coefficient of the time-lag τ . Since ρ|Rt|(τ) is positive
− even for very large lags − this useful information about the variations of volatility
can be used for forecasting. There is also a special scaling exponent necessary to
ensure that proportion of ρ|Rt|(τ) is included in the right way. These modifications
are enough to get better long horizon volatility predictions.16 There are no further

16Our approach is developed to improve VaR forecasts for horizons being bigger than one day.
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improvements of the additionally conditional mean term (23) necessary, since the
return process contains no long memory memory, at all.17

Due to these modifications, our concept is able to predict VaR figures for con-
siderably long horizons, which can be backtested by comparison with τ -day log
returns Rt,t+τ . All in all, our model combines traditional volatility concepts with
a modified scaling approach. Therefore, we can evaluate risk prospects for various
long-term horizons with a consistent framework. In contrast to Christoffersen and
Diebold (2000), we find that our new model is able to calculate quite good VaR and
volatility figures, respectively, for horizons being considerably bigger than τ = 20.

4 Backtesting VaR

Risk models are only meaningful insofar as they predict risk reasonable well. There-
fore, one should test the validity of VaR models through comparison of predicted
and actual loss levels. Is the model designed perfectly, the number of observations
falling outside the VaR I = 1{Rt,t+τ<−V̂ aR(t,t+τ)} should be in line with the confi-
dence level. All in all, there are two different types of errors: I > αT (type 1 error)
and I < αT (type 2 error).18 The type 1 error describes the situation of rejecting a
correct model, while to the type 2 error stands for accepting a misspecified model.
To evaluate the out-of-sample performance of the proposed models we follow partly
the concept of Kupiec (1995) and Christoffersen (1998). Yet, we do not focus only
on likelihood ratio statistics, since in our framework the distance between the ac-
tual return and the estimated VaR is meaningful. To check the latter, we use an
additional backtesting method.

4.1 Unconditional Coverage

We test for the number of correct exceptions by H0 : ”E(I) = α” versus H1 :
”E(I) 6= α”. The test statistic is calculated by

LRuc = −2 ln[(1− α)T−IαI ] + 2 ln{[1− (I/T )]T−I(I/T )I}. (41)

Under the null hypothesis that α is the correct probability of VaR exceptions, LRuc
is asymptotically chi-square distributed with one degree of freedom.

17The AR, MA and ARMA processes belong to the class of short memory process, because their
ACF dies out quickly. Thus, no further improvements are necessary. In our empirical section this
result can be seen, as well. The returns process Rt Hurst exponent is almost 0.5, indicating no
long memory (compare Table 3).

18α denotes the significance level the VaR is calculated for.
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4.2 Test of Independence

In the case of 95 percent VaR, we assume about 13 exceptions each year. These oc-
currences are expected to be uniformly distributed. If there are 8 violations within
two weeks, these increased volatility is not captured by VaR. As a consequence, it
is necessary to check, if the VaR exeedances I are statistically independent. The
former approach does not take temporal volatility into account, thus an improve-
ment is necessary. Such a test has been developed by Christoffersen (1998). Iij

denotes the number of observations in which the state j occurred in one day, while
it was at i on the previous observation. If the VaR is exceeded, we set i and j,
respectively, to one otherwise to zero. α refers to the unconditional probability of
VaR violations, αi reflects the probability of VaR exeedances conditional on the
situation the day before. The corresponding test statistic is

LRind = −2 ln[(1− α)I00+I10αI01I11 ] + 2 ln[(1− α0)I00αI010 (1− α1)I10αI111 ]. (42)

Under the null hypothesis VaR violations are independent and chi-square dis-
tributed with one degree of freedom. This means α = α0 = α1 = (I01 + I10)/T ,
which corresponds to the first term in (42). The second term maximizes the likeli-
hood by estimating the conditional probabilities α0 and α1.

4.3 Conditional Coverage

The LRind statistic (42) tests for independence, but it does not take coverage into
account. In order to test for correct coverage, Christoffersen (1998) combines both
concepts. The combined test statistic

LRcc = LRuc + LRind (43)

is the sum of both individual statistics and therefore chi-square distributed with
two degrees of freedom.

4.4 Loss Function Based Backtest

The above backtests are suitable for testing, whether the amount of exceedances is
in line with the desired coverage rate α and if threshold exceedances occur acciden-
tal. In the case of one-day VaR measures these techniques seem to be enough, but
for τ -day VaR forecasts one should bare in mind that returns over longer horizons
could cause larger losses. As a result, a good VaR forecasting method must cap-
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ture these fluctuations appropriately. The former likelihood ratio statistics could
indicate a good model, as the coverage rate and independence assumption are not
violated. At the same time, huge differences between Rt,t+τ and V aRt,t+τ can
be observed.19 For this reason, we carry out an additional backtesting approach
to ensure that the proposed VaR measures do not differ from Rt,t+τ , excessively.
This approach has to weight variations from Rt,t+τ in a specific way. A similar
loss function based approach is introduced by Lopez (1999). Lopez just evaluates
negative threshold exceedances. In our framework, it is important that the esti-
mated VaR is likewise not too weak and too conservative. Berkowitz and O’Brien
(2002) investigate risk metrics of six US banks. The authors find that the bank’s
VaR figures are too conservative, leading to unnecessary bound capital. Due to
this, we consider VaR variations in relation to their unconditional expectation α.
Yet, we regard VaR exceedances more harmful, therefore the loss function takes
the following form:

LF (V aRt,t+τ , Rt,t+τ ) ={
(Rt,t+τ − V aRt,t+τ )2 if Rt,t+τ ≤ −V aRt,t+τ
|F−1
α (R1,1+τ , ..., Rt,t+τ )− V aRt,t+τ | if Rt,t+τ > −V aRt,t+τ

A superior model combines good conditional coverage with a low sample average
of LF ,

LF =
1

T − τ

T−τ∑
t=1

LF (V aRt,t+τ , Rt,t+τ ). (44)

So, one can easily compare different models. On the other hand, the best model
never riches LF = 0, which would imply no variations. The reason for this is, that
at best one detects a coverage rate of exactly α percent. As a consequence, in the
best case there is a minimum number of variation. The dimension of this variations
is a priori unknown.

5 Empirical Analysis

5.1 Data

We analyze the long range dependence and the performance of both VaR esti-
mation techniques (direct GARCH and scaling based LM) for four international
stock market indices. The data is obtained from Thomson ONE Banker. It com-

19These differences could be either positive or negative, leading to too low and too conservative
VaR measures, respectively.
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prises 8,609 daily closing levels Pt from January 1, 1975 to December 31, 2007. In
our study, we use non-overlapping continuously compounded percentage returns
Rt,t+τ = [log(Pt+τ )− log(Pt)] · 100 for different sampling frequencies τ ≥ 1. Table
2 presents some relevant summary statistics.

All indices exhibit negative skewness. The kurtosis indicates that the returns
distribution is fat-tailed, which is typically for index data. We account for these
empirical features by using an extra error distribution, namely the skewed student-t
distribution.
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Index Frequency Mean Std. Dev. Skewness Kurtosis
DAX 1 0.0348 1.2129 -0.48 10.78

5 0.1724 2.6728 -0.62 7.44
10 0.3414 3.7221 -0.84 7.65
20 0.6806 5.3957 -1.09 8.24
60 1.9986 9.7487 -1.06 6.34

DOW JONES 1 0.0357 1.0001 -2.06 57.99
5 0.1775 2.2092 -1.10 18.09
10 0.3535 3.0461 -1.16 15.11
20 0.7048 4.2611 -0.89 8.95
60 2.0657 7.0707 -0.69 5.82

NASDAQ 1 0.0441 1.1975 -0.31 13.90
5 0.2199 2.8386 -1.03 10.92
10 0.4376 4.0783 -1.04 10.20
20 0.8703 6.0305 -0.93 7.27
60 2.5652 11.0606 -0.60 4.79

S & P 500 1 0.0356 0.9809 -0.48 41.67
5 0.1772 2.1720 -0.93 14.64
10 0.3530 2.9801 -1.03 13.23
20 0.7050 4.1688 -0.80 8.15
60 2.0692 6.9038 -0.67 5.74

Table 2: Summary statistics of stock market returns for various sampling frequen-
cies.

5.2 Long Range Dependence

In order to investigate the dependence structure of empirical returns, we calculate
estimates of H for various time series and test the null "H0: Ĥ = 0.5" (no depen-
dence) against the alternative "H1: Ĥ 6= 0.5" (dependence). Table 3 provides the
estimated Hurst exponents and t-values for the mentioned hypothesis. Addition-
ally, we calculate H of simulated Brownian motion consisting 8,608 increments and
perform 10,000 replications. The mean of these 10,000 independent replications
and the remainder of the results are also provided in Table 3. The null cannot be
rejected for any index, hence, our results provide some evidence for the random
walk hypothesis of asset returns. However, the random walk hypothesis implies
that all non-linear functions of Rt are independent (Andersen and Bollerslev, 1997;
Cont, 2001). The latter indicates that all estimated H’s for various powers are ex-
pected extremely close to 0.5 and the null should not be rejected. Our findings in
Table 3 don not satisfy this condition, as the estimated Hurst exponents of absolute
and squared returns are significantly different from H = 0.5.
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Index Rt t-value R2
t t-value |Rt| t-value

DAX 0.520 -1.91* 0.769 26.12 0.823 *24.01
DOW JONES 0.476 -1.94* 0.614 *8.32 0.769 *19.99
NASDAQ 0.535 2.83 0.811 17.54 0.846 *16.34
S&P 500 0.478 -1.95* 0.632 *9.87 0.780 *18.72
BM(8608) 0.490 -0.76* 0.487 *-0.44* 0.495 **-0.23*

Table 3: Empirical estimates of the Hurst exponent H for daily index data from
January 1, 1975 to December 31, 2007. A theoretical estimate for simulated ordi-
nary Brownian motion with 8,608 increments is provided for 10,000 replications. *
denotes accepting the null at the 95% confidence level.

Further, risk managers are more interested in volatility than in sample returns,
so one should focus on the results of squared and absolute values. Stock indices
display high autocorrelations in absolute returns (see Figure 9). Approximately
for the first 25 lags, there is positive autocorrelation ranging from approximately
0.18 (DOW JONES) to 0.33 (NASDAQ) visible. All indices are located within the
strong persistent region H|Rt| ∈ [0.75, 1[ and are highly significant. In contrast
to empirical returns, the increments of simulated Wiener Brownian motion (H =
0.5) are independent, because in all tested cases the null cannot be rejected.20

This result is not surprising as rejecting the null would mean that our estimation
technique (variance of residuals approach) is failing.

Our previous results in Table 3 indicate high volatility persistence in index
data. These findings suggest that the autocorrelation function of |Rt| rather can
be described by an ACF with hyperbolic decay as by an approach with exponential
decay. In order to investigate how various ACFs fit for different data, we compute
two different types of ACFs for selected indices. Firstly, we estimate the long
memory ACF (hyperbolic decay) by the following regression model, which is derived
from equation (5)

ln(|ρ(τ)|) = ln(c)− δ ln(τ) (45)

and apply the estimated coefficients ĉ and δ̂ to equation (5). Secondly, we compute
the ACF of a short memory process (11), e.g. GARCH(1,1), for fitted values of α
and β. Finally, we compare both ACFs (hyperbolic and exponential decay) with
the empirical ACF of volatility ρ|Rt|. In order to demonstrate the difference of
both concepts, we choose the DAX and NASDAQ index, since they exhibit the

20Independence assumes that H for various powers of Rt is 0.5. We document that the null for
absolute and squared Gaussian noise cannot be rejected. This stands in sharp contrast to index
data (the null is always rejected).
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highest autocorrelation in volatility21 (compare Figure 9). The estimated coeffi-
cients are provided in Table 4. The plotted ACFs in Figure 5 confirm our previous

Index α β c δ

DAX 0.097 0.892 1.344 0.296
NASDAQ 0.099 0.893 1.146 0.137

Table 4: Empirical estimates of the coefficients for ACFs with hyperbolic and
exponential decay, respectively.

assumptions. One can observe fast decay of the first 50 lags, followed by persis-
tence22 up to 300 lags and beyond it. This hyperbolic decay refers to a power
law given in equation (5). The ACF with exponential decay does not fit empirical
data satisfactory. From τ(100), the ACF with exponential decay declines to fast,
leading to an improper correlation structure.23 The ACF with hyperbolic decay
draws a completely different picture. Thus, both plots approve the previous results
in Table 3: there is long memory in daily index data and it can be detected by the
Hurst exponent and the slow hyperbolic decay of ρ|Rt|. To conclude, both aspects
H and ρ|Rt| indicate long range dependence and can be used in the next section to
compute scaling based long memory VaR figures for multi-day horizons.

(a) DAX (b) NASDAQ

Figure 5: Sample ACF of absolute returns for the DAX and NASDAQ Composite
index.

21The autocorrelation of volatility refers to autocorrelation of absolute returns.
22Persistence = slow day from τ(50) till τ(300).
23This explains why the direct GARCH forecast is not suitable for long-term forecasts: the esti-

mated conditional volatility converges with exponential decay time to its unconditional volatility.
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5.3 VaR Forecasting Performance Results

In order to examine the out-of-sample performance, we calculate the 1% VaR from
January 1, 1991 to December 31, 2007 for different horizons τ , τ = 5 (weekly),
τ = 10 (biweekly), τ = 20 (monthly) and τ = 60 (quarterly). All volatility
calculations base on a non-overlapping moving window of size one year starting at
January 1, 1990 which is updated every τ days. The former data from January
1, 1975 is needed to compute the long range correlation structure as efficiently as
possible. In addition, we account for one-lag correlation of Rt by using an AR(1)
term in the conditional mean equation. To save space, the AR(1)-GARCH(1,1)
and scaling based AR(1)-GARCH(1,1)-LM model just refered as "GARCH" and
"GARCH-LM", respectively. The results for both error distributions are provided
in Table 5 and 6.

We begin with the results in Table 5. Our estimations confirm the previous
assumption that the skewed student-t distribution is clearly the superior distribu-
tion when modeling index data. Even for weekly VaR estimates the GARCH-LM
method performs somewhat better. With increasing forecasting horizon, the di-
rect GARCH is not able to reach sufficient conditional coverage.24 By contrast,
the GARCH-LM approach shows quite good violation rates for long-term holding
periods, as well. Especially for the very important Basel horizon of 10 days, the
likelihood ratio statistics indicate good model quality.25 These findings are exem-
plarly displayed in Table 6, which shows 10-day ahead VaR results for the DAX
und DOW JONES. The remaining plots are available in the appendix.
It is also worth mentioning, that the likelihood ratio statistics of the GARCH-LM
approach are not significant at the 1 % confidence level. Just for weekly DOW
JONES, biweekly and monthly NASDAQ estimates, the likelihood ratio statistics
cannot reject the null at the 5 % confidence level.

The specifications with symmetric normal innovations (Table 6) draw a com-
pletely different picture. For almost all horizons, the models with normal innova-
tions underestimate the downside risk considerably.26 The reason for different VaR
ratios between models with normal and skewed t-distribution lies in the differences
of the skew parameter ξ. With increasing frequency the skewness behaves not uni-
formly (see Table 2). For example, the skewness of DOW JONES for sampling

24This effect becomes bigger, when τ rises. The reason for this is the fact, that the direct
conditional variance GARCH converges to fast to its unconditional variance.

25The violation rates rage from 1.13 - 2.25 %.
26Almost all LRuc and LRcc statistics indicate that the violation target of 1% is not achieved.

However, 10 day ahead LM-VaR of NASDAQ is not significant at the 1% level, but it is significant
at the 5% level.
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Figure 6: 10-day ahead VaR forecasts for the AR(1)-GARCH(1,1) (blue, dashed
line) and AR(1)-GARCH(1,1)-LM (red, solid line) model with skewed student-t
innovations from January 1, 1991 to December 31, 2007.

frequency of 10 and 20 days has nearly the same level. However, our findings illus-
trate that without skewness and fat-tailes there is still an influence of long memory
visible, which leads to better multi-period risk predictions than ordinary direct
GARCH forecasting. Figure 7 illustrates 10-day ahead forecasts for the DAX and
DOW JONES.
Though the LF statistic prefers the GARCH-LM with normal innovation, there is
no tough dominance of GARCH in the skewed student-t case. Furthermore, in most
cases the levels of LF differ just slightly against the GARCH-LM specification. So,
if one compares the LF figures with all aspects, the excellent conditional coverage
and graphical fitting, it is not easy to conclude that the GARCH-LM model with
skewed student-t innovations is the best of all tested variations (both distribution
and forecasting horizon). In addition, the graphical fitting for difficult long horizon
VaR predictions seems quite good in comparison to banks internal VaR models.27

On the other hand, the estimates depend just slightly on the index. The fitting
of the NASDAQ is somewhat worse than for the rest of the investigated indices,
which can be explained by the higher standard deviation and the higher variations
in the correlation structure of the NASDAQ.

All in all, our estimates confirm the importance of long memory for risk pre-
diction. Due to our modified approach, the total number of VaR exeedances in
multi-day VaR forecasts can be reduced considerably. This concept provides a rea-

27For example, compare Figure 2 in Berkowitz and O’Brien (2002).
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Figure 7: 10-day ahead VaR forecasts for the AR(1)-GARCH(1,1) (blue, dashed
line) and AR(1)-GARCH(1,1)-LM (red, solid line) model with normal innovations
from January 1, 1991 to December 31, 2007.

sonable solution for the very difficult problem of calculating adequate long-term
VaR figures.

5.4 The GARCH(1,1)-LM Approach

In scientific studies non-overlapping τ -day returns are used to ensure that the
estimates are independent. Independent returns are necessary to get unbiased
backtesting results. This basic issue arises in τ -day risk predictions for τ > 1.
Alternatively, one could compute Rt,t+τ every day, which leads to overlapping
returns. Overlapping returns cause dependency, which requires special backtesting
precautions. Primarily, one has to account for autocorrelation of order τ − 1, if τ -
day overlapping returns are used. On the other hand, daily updating reduces huge
jumps in overlapping returns, since τ -day non-overlapping returns are more distant
when τ rises. Another advantage of daily updating is that backtesting criteria like
the Basel traffic light could be achieved easier, because of daily crossovers it is easier
to match the VaR with the tails of a daily updated τ -day return distribution.

As a result, practitioners can use this approach by computing VaR figures daily,
as well. However, it is important that there is enough data available to get suitable
estimates for the long range autocorrelation structure. Moreover, we point out
that the estimation technique for H is of vital importance, since it determines the
accuracy of the results. Firstly, it is absolutely necessary that the estimated values
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of H do not scatter much. The variance of residuals method satisfies this condition
excellently (see Figure 4. Secondly, the level of H must be reasonable, too, since
too low values of H near by 0.5 neutralize the long memory effect.28

6 Conclusion

In this paper we address the problematic of multi-day value-at-risk and volatility
forecasts, respectively. One way to solve this difficult issue is to use long memory
for computing long term risk figures. Our novel scaling based GARCH-LM concept
clearly dominates direct GARCH forecasting.29 As a consequence, our estimates
confirm the importance of long range dependence for VaR prediction. The specifi-
cation with skewed student-t innovations satisfies the desired Basel confidence level
of 99 % extraordinary well, even for quarterly returns.

All in all, the new equity market risk management model provides a consistent
framework to evaluate financial risks much longer than τ = 10 days. Therefore,
banks using this approach can gain more accurate risk metrics in comparison to
those using direct GARCH forecasting or traditional square-root-of-time rule. The
latter is not appropriate to forecast volatility, as our estimates clearly indicate that
equity market returns are not independent. The square-root-of-time rule explicitly
assumes the returns process as independent and identically distributed. Last but
not least, the current crises has shown how important long term risk management
is. Certainly more future work in this field is needed.

28By contrast, too high levels overstate the actual downside risk.
29The gap between the original direct GARCH forecast and the GARCH-LM approach becomes

bigger, if the forecast horizon rises.
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7 Appendix

(a) Increments Xt (b) ACF of increments Xt

(c) ACF of squared increments X2
t (d) ACF of absolute increments |Xt|

Figure 8: Increments and ACFs of simulated ordinary Brownian motion for various
powers.



Figure 9: ACFs of absolute index returns. Sample period: January 1, 1975 to
December 31, 2007.



Figure 10: ACFs of squared index returns. Sample period: January 1, 1975 to
December 31, 2007.
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Figure 11: 10-day ahead VaR forecasts for the AR(1)-GARCH(1,1) (blue, dashed
line) and AR(1)-GARCH(1,1)-LM (red, solid line) model with skewed student-t
innovations from January 1, 1991 to December 31, 2007.

Figure 12: 10-day ahead VaR forecasts for the AR(1)-GARCH(1,1) (blue, dashed
line) and AR(1)-GARCH(1,1)-LM (red, solid line) model with normal innovations
from January 1, 1991 to December 31, 2007.



Figure 13: 5-day ahead VaR forecasts for the AR(1)-GARCH(1,1) (blue, dashed
line) and AR(1)-GARCH(1,1)-LM (red, solid line) model with skewed student-t
distribution from January 1, 1991 to December 31, 2007.



Figure 14: 20-day ahead VaR forecasts for the AR(1)-GARCH(1,1) (blue, dashed
line) and AR(1)-GARCH(1,1)-LM (red, solid line) model with skewed student-t
innovations from January 1, 1991 to December 31, 2007.



Figure 15: 60-day ahead VaR forecasts for the AR(1)-GARCH(1,1) (blue, dashed
line) and AR(1)-GARCH(1,1)-LM (red, solid line) model with skewed student-t
innovations from January 1, 1991 to December 31, 2007.



Figure 16: 5-day ahead VaR forecasts for the AR(1)-GARCH(1,1) (blue, dashed
line) and AR(1)-GARCH(1,1)-LM (red, solid line) model with normal innovations
from January 1, 1991 to December 31, 2007.



Figure 17: 20-day ahead VaR forecasts for the AR(1)-GARCH(1,1) (blue, dashed
line) and AR(1)-GARCH(1,1)-LM (red, solid line) model with normal innovations
from January 1, 1991 to December 31, 2007.



Figure 18: 60-day ahead VaR forecasts for the AR(1)-GARCH(1,1) (blue, dashed
line) and AR(1)-GARCH(1,1)-LM (red, solid line) model with normal innovations
from January 1, 1991 to December 31, 2007.


