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Abstract

This paper proposes a general approach to stochastic ityomalidelling.
The logit transforms of death probabilities are modelledibgar combina-
tions of user-specified basis functions. The resulting rhadéexible yet
simple, and allows for natural interpretations of the uhdeg risk factors.
Deaths per year are assumed to be binomially distributegthalasults in a
strictly concave log-likelihood function when calibragithe model. This en-
ables the use of convex optimization tools, and guarant#esstness in cal-
ibration. We fit two versions of the model into Finnish addi8{100 years)
mortality data, and present simulations for the future tigwaent of Finnish
mortality.

Keywords: Mortality risk, longevity risk,stochastic modelling, convexity, ba-
sis functions

1 Introduction

General longevity has improved significantly over the 20th century, reguitito
some extent unexpectedly high increases in life spans. Mortality has iydiesn
falling unpredictably in general, but there have also been considerabtadtions

in the rate of improvement over time. In addition, the changes in mortality rates
across different age groups have also displayed different bairavibe pensions
industry as well as national social security systems are now incurringotts c
of unpredictably improved longevity, as they need to pay out benefits fahmu
longer than was anticipated. As the effects of factors such as medicah@ehy
environmental changes or lifestyle issues on mortality remain unpredictakle, lif
and pensions insurance industry as well as national pensions funeldbbaome
increasingly aware of the need for longevity risk management. As a coaisee,
mortality-linked securities have recently attracted rapidly increasing attersiden (



e.g. [3] and [2] for overviews of possible and existing instruments). Nigrta
linked instruments that have already been implemented include mortality swaps
[14], bonds [17] and forwards.

Stochastic mortality modelling has produced a variety of approaches fer cap
turing the randomness in the future development of mortality rates (seer[@] fo
recent review). The earliest and still widely popular discrete-time modelavieh
stochastic factor was introduced by Lee and Carter [15] in 1992. Ifallasved by
a number of modifications (see e.g. [5, 16, 4, 13, 12]), varying the aligimodel
and addressing its shortcomings. Models with multiple stochastic factors were
subsequently proposed by Renshaw and Haberman [20] and Ca&ing6dt with
extensions incorporating cohort effects by Renshaw and Haberrhparj@ Cairns
et al.[8]. Currie et al. [9] have applied penalized splines in mortality modellimg.
addition, although mortality data is generally published on discrete time intervals,
rendering the discrete-time framework a natural choice for practical impleme
tions, the development of mortality has also been considered in continuous time
(see e.g. [18, 10, 11)).

We propose a general discrete-time stochastic mortality modelling framework,
which is flexible but relatively simple, enabling population-specific chariatites
as well as user preferences to be taken into consideration. An impocdzat-a
tageous feature of the model is the robustness of its calibration. Morabeer
framework allows for a choice of risk factors with tangible interpretations.

The logit transforms of mortality rates are modelled by linear combinations of
user-specified basis functions on the cohorts, and the weights of tisdurasions
in the linear combinations are the stochastic factors of the model. As the number
of basis functions as well as their properties such as piecewise linearitjngity
and smoothness can be chosen by the user, population specific ctistiastas
well as user preferences and other expert opinions can be takeroirgmeration
when calibrating the model.

The weights of the basis functions are the stochastic factors capturingthe u
certainty in the future mortality rates. An appropriate choice of basis furetion
ensures that the factors of the model have an easy interpretation,tiordasas the
logit transforms of the mortality probabilities in certain cohorts, which facilitates
the assessment of the model, and enables the study of the relationshipsrbetwe
mortality rates and economic factors. This is a central issue in the hedging of
mortality-linked securities.

The chosen model is fitted into data by the maximum log-likelihood method.
Deviating from the usual assumption of Poisson distributed deaths, wenassu
deaths to be binomially distributed. This, combined with the chosen parameteriza-
tion, results in a strictly concave target function for maximization. This not only
means that the problem has a unique maximum point but also enables the use of
convex optimization tools, and guarantees robustness of the calibration.

As an example, we consider Finnish adult (from 18 to 100 years) mortality
for males and females in the past semicentury. Basis functions are cholsen to
piecewise linear, and we consider two exemplary models with two and thrise bas
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functions. Using the resulting model, we present simulations for futurdajeve
ment of Finnish mortality rates.

The remaining paper is organized as follows. Section 2 outlines the modelling
procedure. Section 3 fits two versions of the model into Finnish mortality data,
discussing the appropriateness and fit of each model. Section 4 presemgs
simulation results for mortality probabilities as well as the future development of
certain reference cohorts. In Section 5 we give conclusions andfadis@eission
on possible future refinements and applications of the model.

2 Model specification

Let E(x,t) be the size of population agedcohort) at the beginning of yearand
definex andt to be integer-valued. Denoting the number of deaths occurring in
cohortx during yeart by D(z,t), we have

D(z,t) = E(z,t) — E(x + 1,t + 1), 1)

which is observable at time+ 1, i.e. at the beginning of yedr+ 1. We assume
that the conditional distribution dD(x, t) given E(x, t) is binomial:

D(z,t) ~ Bin(E(z,t),q(z,t)), 2

whereq(z, t) is the probability that an individual agedand alive at the beginning
of yeart dies before the end of the year. The ligt,¢) of numbers may thus
be interpreted as themortality table for yeart. A stochastic mortality model is
obtained by modellingthe probabilitiegx, t) as stochastic processes. The future
deathsD(z, t) and population sizeB(z + 1,¢ + 1) are then obtained by sampling
from Bin(E(z,t), ¢(z,1)).

The uncertainty in the future valuesqgfr, ¢t) may be interpreted as tisgstem-
atic mortality risk. As the population grows, the fractidd(x,t)/[E(z,t)q(z,t)]
converges in distribution to constant For large populations, the population dy-
namics is thus well described @Y(x, t) = E(x, t)q(x,t) and the main uncertainty
comes from unpredictable variations in the future valueg oft).

In order to get a tractable model, we propose to model the logistic probabilities

by

1—gqg(x,t

logita(e.t) = n (250 = Y- wi)6i(a),
=1

where ¢;(x) are user-definedbasis functions and w;(t) are stochastic risk fac-
tors that vary over time. In other wordg(z,t) = q,)(z), wherew(t) =
(w1(t), ..., wn(t)) andg, is the parametric function defined for eache R by

o exp (Do widi(x))
Gu() = 1+exp(Xi, wigi(x))’
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Modelling the logit transforms instead gfz, t) ensures thag(z,t) € (0,1) so
that they are indeed probabilities. With appropriate choices of the basisdns
¢;(-) one can guarantee certain desirable propertieg-0f) in the model. For
example, one may wish to construct a model where the probabilities) be-
have continuously or smoothly across the cohorts. This can be achievelg by
choosing continuous or smooth basis functions, respectively.

The choice of the basis functions also determines the interpretation of the risk
factors. If, for example, the basis functions are such ¢hét) = 1 but ¢;(z) =
0 for i # k for a certain cohortr, then the isk factowy(t) equals the logistic
death probability in cohort in yeart. Such concrete interpretations facilitate
the modelling of future values of the risk factors. For example, one may lee ab
to deduce dependencies between betweesnd certain economic factors such
as investment returns. Such dependencies play a crucial role in add@ilality
management of insurance companies as well as in pricing and hedging dlityrorta
linked securities.

Another natural requirement is that the basis functions be sufficientlypérde
dent so that they each contain features that cannot be represertbeddilyer basis
functions. The basis function arelinearly independent on a setA of cohorts if
the only vectorv € R”™ that satisfies

=1

is the zero vectoe = 0. A violation of this condition would mean that the set of
basis functions is redundant in the sense that we could remove at |eabasis
function without affecting the range of possible death probabilitiesion the
model.

Example 1 In([6]), Cairnset al. introduced a model
logit q(x,t) = k1 (t) + ka(t)(x — T),

where k1 and xo follow a two-dimensional random walk, and z is the mean age
over the range of cohorts. It can also be written as

logit q(,t) = w1 (t)d1(z) + wa(t)p2(x),

where w; = k; for i = 1,2, and the basis functions are ¢ () = 1 and ¢2(z) =
(r — Z). w; can be interpreted as the general level of mortality, while wo cap-
tures how the relationship between mortalities in different age groups devel ops.
The basis functions are linearly independent on any set of cohorts A, and also
orthogonal:

> di(x)da(x) =0.
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Once the basis functiong have been chosen, we will model the veatdt) =
(wi(t),...,wy(t)) of risk factors as a multivariate stochastic process in discrete
time. The simplest (nontrivial) choice would be to modelas a random walk
with drift but one could also use more sophisticated models developed inghe va
literaure on econometric modelling. The model specification could be baksyg so
on the user’s views about the future development of mortality or on histalata
or on both. The historical values of the risk factar&) = (wy (t), ..., w,(t)) can
be easily constructed by maximum likelihood estimation as follows.

Given the historical values df (z,t) andD(z, t), the log-likelihood function
for yearly values ofu(t) can be written using (2) and (3) as

lt(w) = lnH (ggz:g) qw(x)D(:”’t) (1 _ qw(x))E(x,t)fD(;p,t) (4)

(
= %: [D(x,t) zi:wz@(l") - E(:r,t) ln(l T ez o )) o (D($,t)>] |

= Z {ln (lE)(i’ 2) + D(z,t) Ingyw(z) + (E(z,t) — D(z,t)) In(1 — qw(:r))]

Maximizingl;(w) overw € R™ gives an estimate of the parameter veet¢t) for
yeart. In general, the maximization requires techniques of numerical optimization
but the following result greatly facilitates the task.

Proposition 2 The log-likelihood function I; : R™ — R is concave. If the basis
functions ¢; are linearly independent on the set of cohorts

A(t) ={z | E(x,t) > 0},
then [; is strictly concave.

Proof. Looking at the last expression fof{w), we see that the first term in the
brackets is linear inv = (wy,...,w,) SO itis concave. The last term is constant
so it is trivially concave. Sincé&(z,t) is nonnegative, the first claim follows if we
can show that the functions

gx(w) = 111(1 + ezi wz¢z(m))

are convex inw. Sincey,, is the composition of the linear functien— » °, w;¢;(x)
with the functionp(z) = In(1 + ¢?) it suffices to show thap : R — R is convex;
see [22, Theorem 5.7]. It is easily checked that the second deewatjv is

”(Z) _ ez
T U r ey

which is strictly positive ofR. This implies thaty is strictly convex omR (see e.g.
[23, Theorem 2.13]) proving the first claim.
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As to the second claim, we first note that the log-likelihood functjczan be
written as the difference of an affine function and

fr(w) = Z E(z,t)p (Z ¢i($)wi> :
zEA(L) =1

It suffices to show thaf; is strictly convex. By [23, Theorem 2.14], this holds if
the Hessian matriX’2 f;(w) of f; is positive definite for altv € R™. Since

2 (w =
0" fe(w) _ Z E(x,t)¢" <Z¢i($)wi) ¢i(2); (@),
i=1

6w¢8wj 0

we get
V2 fi(w) = T D(w)®,

whereD(w) is the diagonal matrix with entries

E(z,t)¢" (Z gbl(:v)u)z) ]
=1

and the matrix® has the vector§;(z)],c () as its columng = 1,...,n. Since
the diagonal elements @) (w) are strictly positive for everyy € R™ and sinced
has full rank by the independence assumption, the Hessian is positindedefi]

T€A()

The above is a definite advantage of the assumption of binomially distributed

deaths over to the more common Poisson assumption. Convexity implies that local

maxima ofl,, are true maximum likelihood estimators. Strict convexity implies
that the estimator is unique; see e.g. [23, Theorem 2.6]. Besides gusangniel|
defined estimators, convexity facilitates the numerical maximizatidp. ofhere
exists a wide literature on numerical techniques for convex optimization;.gee e
[1, 19].

We end this section by a brief summary of our modelling procedure.

1. Choose a sef¢;}i* , of basis functions that is rich enough to allow for a
description of features of interest in the death probability cyfwet).

2. Construct historical values of(¢) from data using maximum likelihood es-
timation.

3. Model the future development af(t) as a stochastic process, using their
historical values and/or expert information.

4. The future death probabilities are given by
ala,t) = [1+exp (D wilt)gi(w))] ™

5. The future deathB(x, t) are obtained by sampling from Bi#(x, t), q(x, t))
or simply byD(z,t) = E(z,t)q(x,t), if we are only interested in systematic
mortality risk.



3 Fitting the model into Finnish mortality data

In this section we present two specifications of the stochastic mortality model de
scribed in the previous section, and fit these two models into Finnish mortality data
Both models employ piecewise linear basis functigns:). The first model con-
sists of two stochastic factors = (wy, w2) and hence two basis functions, while
the second one is a three-factor model with= (w;, wa, ws).

We use Finnish mortality data for Finnish males and females, covering ages 18-
100 and years 1900-2007. Younger ages were included in view oath¢hat in
the Finnish pension system the accrual of earnings-related pensitsastidre age
of 18. The data was obtained from the Human Mortality Databaaad contains
annual values for the numbers of deafbér, t) during the year of individuals
agedz at the beginning of that year, and corresponding population &izest).

To produce estimates for historical values of the stochastic faatpthe ex-
pression in Equation 4 is maximized using Matlab Optimization Toolbox.

3.1 Two-parameter model

We first consider a two-parameter application of the stochastic mortality mbdel o
Section 2, which is of the form

logit q(z,t) = wi(t)¢1(x) + wa(t)P2(7). ©))
The two linear basis functions are chosen as
-1 -1
br(@) =1-""18 and gy(100) = £=18 (6)

82 82

Consequently, the linear combinatierf:1 w;¢;(x) is now also linear, which is
illustrated in Figure 1.
1.0
0.8F
0.6F
0.4

0.2+

40 60 80 100

Figure 1: Linear basis functions and an exemplary linearlination

tUniversity of California, Berkeley (USA) and Max Planck Institute forrbegraphic Research
(Germany). See www.mortality.org.



Note that for a given,
logit ¢(18,t) = w1 (¢)¢1(18) + w2(t)P2(18) = w1 (?), (7)

and, similarly,logit ¢(100,t) = wx(t). In other words, the two factor values
for eacht are two points on the line fdogit ¢(z,t), and hence have a natural
interpretation. This is particularly advantageous when assessing the madel
light of estimation results for historical values @f or pricing mortality-linked
financial instruments.

Estimated historical values af for males and females are presented in Figures
2 and 3. Figures 4 and 5 show the observed death %ﬁ% in comparison with

the estimated mortality rategz, t). (=4 illustrates the effect of both systematic
and nonsystematic mortality, whitgz, t) contains only systematic mortality.

The effect of Finnish war years (1918 and 1939-1944) can belglelaserved
in the estimated values for males. However, the gaps observed in valugs of
during the war years imply that the mortality ratg 00, ¢) would have temporarily
decreased. As it is doubtful that this is true, we conclude that this modebmay
too simple to capture the population dynamics in Finland during the entire 20th
century. This conclusion is also supported by the fact that the obsdezt rates
do not show the kind of sharp, temporary decline in the war years thastinested

q(x,t)s suggest.

w, male w, male

—9 -3
1900 1920 1940 1960 1980 2000 2020 1900 1920 1940 1960 1980 2000 2020

Figure 2: Estimated parameter values, males

w, female w, female

Figure 3: Estimated parameter values, females
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Figure 4: gg;’g vs. estimated values gfz, t), males
D/E, female q, female
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Figure 5: vs. estimated values ofz, t), females

3.2 Three-parameter model

The second model to consider is a three-parameter one with representation

logit q(z,t) = wi(t)d1(x) + wa(t)p2(x) + w3(t)¢s(z). (8)



Basis functionsp;(z) are piecewise linear, and can be written as

x—18 L x < 50
sy =1- "1 ¢2<x>:{32 PSR INC
da(w) = o5 +1 (10)

As opposed to the first model, the linear combinat@j:1 w;¢;(x) is now
piecewise linear, as depicted in Figure 6. Similarly as in the first case, the val-
ues of the factors are points in the curve fogit ¢: logit ¢(18,t) = wi(¢),
logit ¢(50,t) = wsy(t) andlogit ¢(100,t) = ws(t).

Estimation results for factor values are plotted in Figures 7 and 8. Although
there are comparatively large fluctuations in the valuessoivhich now represent
logit ¢(100, t) in the first half of the observation period, this appears more plausible
than the gaps observed in the valuesifgiin the 2-parameter model. In both plots,

a small bulge appears in the values fgrtowards the end of the period.

The surface plots for estimatedz, ¢) in Figure 9 now resemble more those
for the observed death rat%i:—g. The gap in Figure 4 does not appear here. In
other words, the fit seems to have improved especially for the estimation fesults
males.

1]
$2(X)

$3(X)

logit q

Figure 6: Three piecewise linear basis functions and tiveal combination

w, male w, male w, male
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-4 -4
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-5 —4.4 -0.2
-55 -4.6 -0.3
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7 -5.2
-0.6

1900 1950 2000 1900 1950 2000 1900 1950 2000

Figure 7: Estimated values af for three-parameter model, males
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w, female w, female w, female
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Figure 8: Estimated values af for three-parameter model, females

D/E, male q, male
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Figure 9: Estimated values gfz, t) vs.

D/E, female q, female
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Figure 10: Estimated values g@fz, t) vs. % females

3.3 Modelling the processw

The estimated values fas(t) for both models show componentwise a downward
trend from about year 1960 onwards. The trends reflect a genggedvement in
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mortality over time. The time series also displayed varying degrees of fluctaation
the largest being observable at componeptof the three-parameter model for
both males and females. This signals larger variance in the systematic mortality for
older age groups. For simulation and forecasting purposes, we comkineaike

and female parameter estimates and represéht = (wy(t), w.,(t))T for both
models as 4- and 6-dimensional random walks with a drift. Gemediinensional

form is written as

w(t) —w(t — 1) = p+ CZ(t), (11)

wherep € R™! is a constant drift vector;’ € R™ " is a constant lower
diagonal matrix, andZ(¢) is an x 1 vector of independent standard Gaussian
random variables:Z;(t) ~ N(0,1). p is the mean vector oAw(t), and the
matrix C is obtained from the Cholesky decomposition of the covariance matrix
V = Diag(c)R Diag(c) = CC’ for estimated historical values d&w(¢). The
vectoro € R™*! js the standard deviation vector, aRde R™*" is the correlation
matrix. Using data for years 1960-2007 we find the results to be

~0.0311 0.0799
~0.0153 0.0637

F=1 —0.0207 |77 | 00535 (12)
~0.0128 0.0626

1.0000 —0.6890 0.4051 —0.3565
R— —0.6890  1.0000 —0.3279  0.6655 (13)
a 0.4051  —0.3279  1.0000 —0.6605

—0.3565 0.6655 —0.6605 1.0000

~0.0097 0.1149
—0.0252 0.0352
—0.0171 0.0662

K=1 —0.0075 |7~ | 0.0765 (14)
~0.0196 0.0372
~0.0116 0.0728

1.0000 0.1246 0.1277 0.1341 0.1690  —0.0573
0.1246 1.0000 —0.3064 —0.2564 0.4259 —0.1741

R— 0.1277  —0.3064  1.0000 0.1067 0.0528 0.6282 (15)
o 0.1341 —0.2564 0.1067 1.0000 —0.4031 0.1625 ’

0.1690 0.4259 0.0528 —0.4031 1.0000 —0.3214
—0.0573 —0.1741  0.6282 0.1625 —0.3214  1.0000

The observation period was chosen on the grounds that the factos\difise
played fairly evenly drifting behavior during that time.

4 Simulations

In the simulation experiment, we applied the the two models presented in Chapter 3
to consider mortality probabilities and cohort sizes 30 years into the fututmth
cases, the process(t) was simulated according to Equation 11, using estimates
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for . andV from the fitting of both models, based on data from years 1960-2007.
The simulations were performed with the Monte Carlo method, with sample size
N = 10000. Probabilitiesg(z,t) were then calculated from the simulated values
of w(t). The number of death®(z,t) in each cohort was approximated by its
expected valu&(x, t)q(x, t), and cohort sizes at the end of the year were obtained
by subtracting that value froi(z, ¢), the cohort size at the beginning of the year

t.

Cohorts aged 30 and 65 in the final observation year 2007 were cheseft
erence cohorts. Figures 11 and 12 show the simulated mear®%ndonfidence
intervals forg(.,¢) and cohort size& (., ¢) in the two-parameter case. Figures 13
and 14 give the respective results for the three-parameter model. WeaB®Id
cohort displays a more notable difference between the two models thanjlea65
old one. For the younger cohort, the cohort size estimates for the tveorpasr
model in the final simulation year are slightly below that of the three-parameter
model. For the older reference cohort the difference, albeit hardbbie is the
other way round.

a(.y) for x,=30, males E(.t) for x,=30, males

x107°

= 325}
o

q(.)

Bo » N © & o0 o N ®o o

3.2

3.15

3.1

3.05
00 2010 2020 2030 2040 2000 2010 2020 2030 2040
Year (t) Year (t)

Figure 11: Medians and 90% confidence intervals for moytaitesq(.,¢) and cohort
sizesE(.,t). Cohort aged 30 in 2007, male

a(..t) for x,=65, males
0.25 2.5

E(.,1) for x,=65, males
x 10% .0 5

0.2 1 2

0.15 1 1.5

o.1p 1 1

0.05 1 0.5

o o
2000 2010 2020 2030 2040 2000 2010 2020 2030 2040
Year (t) Year (t)

Figure 12: Medians and 90% confidence intervals for moytalitesq(.,¢) and cohort
sizesE(.,t). Cohort aged 65 in 2007, male
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_ -, for x,=30, males E(..1) for x,=30, males
«10°° ac.n Xg « 10% Q) X
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o B N © » @ 0 N

3.2

3.15

3.1
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Figure 13: Medians and 90% confidence intervals for moytatitesq(.,¢) and cohort
sizesE(.,t). Cohort aged 30 in 2007, male

q(..v) for x,=65, males
0.35 2.5

« 10" E(..0) for x,=65, males

2|

1.5
= o

1k

0.5
0.05 |

o e}
2000 2010 2020 2030 2040 2000 2010 2020 2030 2040
Year (t) Year (t)

Figure 14: Medians and 90% confidence intervals for moytaitesq(., ) and cohort
sizesE(.,t). Cohort aged 65 in 2007, male

5 Conclusions

This paper proposed a flexible but relatively simple framework for s&iehenor-

tality modelling. The model allows for risk factors with tangible interpretations,
and features robustness in parameter estimations. Two- and threeviasions of

the model were fitted into Finnish adult mortality data, and the factors were mod-
elled as a simple random walk process with a drift. Using the resulting models,
future values of death probabilities and cohort sizes were simulated witkilpliau
results.

In real-life applications, modelling of the risk factors should receive mare-c
ful attention. A straightforward extension would be to use more flexible @oet-
ric models. For example, by allowing heavy tailed distributions one might be able
to better capture the effects of epidemics or natural disasters on mortality.

When describing the uncertain future development of mortality tables, tie spe
ification need not be based completely on historical data, because thatmaight
produce the most valid description of the future development of mortality.ddste
expert views could be incorporated into the model. Another interesting istdre in
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play between mortality and the financial instruments that are used to hedge mor-
tality linked securities. The dependence structure is an important factosét as
and liability management of insurance companies, and in pricing and hedging o
mortality-linked financial products.
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