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Abstract

The most popular approach to synthetic CDO priaisgs factor models in the conditional
independence framework, which were first introdubgdvasicek to estimate the loan loss
distribution of a pool of loans. Efficient methoftsr evaluating the loss distributions of
synthetic CDO’s are important for both pricing aridk management purposes. In the
framework of the one-factor Gaussian copula modelpropose an approximate but quasi-
exact numerical recursive evaluation using psewtopound Poisson distributions. For the
sake of illustration and comparison we have congpatenumber of more or less complex
cases, whose approximations turn out to be higtdyiate in all considered examples.
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1. Introduction

Collateralized debt obligations (CDO) are amongséhstructured financial products, which
had an important impact during the ongoing sub-primortgage crisis. The Wikipedia entry
http://en.wikipedia.org/wiki/Subprime_mortgage_isclaims that Merrill Lynch's large
losses in 2008 were attributed in part to the dnogalue of its un-hedged portfolio of CDO’s
after AIG ceased offering credit default swaps (ED& Merrill's CDO’s. Knowledge of the
risk characteristics of synthetic CDO’s is impottdior understanding the nature and
magnitude of credit risk transfer. In particulaffiaient methods for evaluating the loss
distributions of synthetic CDO’s are important fboth pricing and risk management
purposes. Recall some known methods, which canvmied into several groups as follows:

Analytical and Semi-Analytical Methods

Through simplification of the pricing models an@gl or at least semi-analytical pricing
expressions can be obtained. Factor models, sutheaeduced-form model proposed by
Laurent and Gregory(2003) and the structural mguteposed by Vasicek(1987/91/2002)
(see also Li(2000), Bluhm et al.(2002), Section.B.550rdy(2003)) are widely used in
practice to obtain analytic or semi-analytic foramito price synthetic CDQO'’s efficiently. For
a comparative analysis of different factor models, refer to the paper by Burtschell et
al.(2005/08). Further interesting analytical modeisthis area include Kalemanova et
al.(2005) and Luscher(2005), which use normal iseeGaussian distributions, and
Bee(2007), which extends Vasicek’s asymptotic moadgjeneral non-normal systematic risk
factors.

Monte Carlo Method

From a computational point of view, Monte Carlo slation is the last resort because of its
inefficiency, despite its flexibility, and is notsgussed further.

Exact Evaluation Methods

The available numerical methods assume that the-do®n-defaults of all obligors are
integer multiples of a properly chosen monetaryt (odommon lattice assumption). Exact
methods have been given by Andersen et al.(20@8)rdnt and Gregory(2003), and by Hull
and White(2004). A discussion of these methodsubiistate extension, as well as a stable
and efficient reformulation of the Hull and Whiteethod are found in Jackson et al.(2007).

Quasi-Exact Evaluation Method

Approximate numerical evaluation of the pool’s lakstribution is possible. An example is
the compound Poisson approximation by De Prisc@l€R005). Following Jackson et
al.(2007) improved and almost exact accuracy cawoliained using the so-called pseudo
compound Poisson approximations by Hurlimann(199@he form proposed by Hipp(1986)
and Hipp and Michel(1990). The present mathemaspacification, written in the spirit of
Dunbar(2003), is devoted to the latter quasi-eraaterical method.

The exposé is organized as follows. Sectioreclls the pricing model for synthetic
CDO’s. Section 3 presents the approximate and euasit evaluation using pseudo
compound Poisson distributions and Section 4 faiss its use at some simple examples.
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2. Pricing model

2.1. Fair_spread

A synthetic collateralized debt obligationsgnthetic CDQis a transaction that transfers
the credit risk on a reference portfolio of asséte reference portfolio in a synthetic CDO is
made up of credit default swaps or CDS’s. Thusyrdhgtic CDO is classified as a credit
derivative. Much of the risk transfer that occurghe credit derivatives market is in the form
of synthetic CDO’s. Understanding the risk chamasties of synthetic CDQO’s is important
for understanding the nature and magnitude of tredk transfer. For an excellent
introduction to this subject we refer to Gibson (20

Consider a synthetic CDO tranchesizk s with anattachment point?, a threshold that
determines whether some of the pool losses shalbberbed by this tranche. If the realized
losses of the pool are less thé&nthen the tranche will not suffer any loss, othisenit will
absorb losses up to its sizes. The thresholds + ¢ is called thedetachment poinof the
tranche. Assume there are@ namesin the pool. For namex € {1, ...,m}, its notional value
and therecovery rateof the notional value of the reference asset areotéd byn, and Rr,,
respectively. Then thiss-given-defaulor the recovery-adjusted notional value of name
IS LGD, =N,-(1—R). Let 0=ty <t; <t,<--<t,=T be the set opremium dateswith T
denoting thematurity date of the CDO tranche. Assume that the interest rates
deterministic. Then the set of (risk-fred)scount factorsfor the given payment dates,
denoted byp,,D,, ..., D,, are deterministic. Let? be the pool's cumulative losses up to time
t;i € {1,..,n}. Then the losses absorbed by the specified tramghe time ¢;, denoted byL,,
is L; = min{(Lf — #),,S5}, where x, = max{x, 0}. The function p(if;Ss,#) = min{(L} — ©),,5}, is
called thepayoff functionof the specified tranche. In actuarial scienceinaila payoff
function is used to define the limited stop-losensarance, where ! represents the
cumulative claims up to the—th claim, with the difference that the number ofitia n up
to the maturity dater of the reinsurance contract is random and n@rdenistic.

Assume that thiair spreadfor the tranche is a constant per annum. The two important
guantities to be determined in synthetic CDO tranealuation are the present value of the
default leg(the expected losses of the tranche over thelifbe contract), calledontingent
and the present value of tipeemium leg(the expected premiums that the tranche investor
will receive over the life of the contract), callezk Mathematically, one has the following
definitions and relationships:

default leg: DL=%7 D;(L; —Li—4)

premium leg: PL=s-Y" . DA(S — L), A=t —ti_y
contingent: PV(DL) = ¥, D;E[L; — L;_;], E[L,] =0
fee: PV(PL) = s- Y™, D;A(S — E[L;])

Themarket-to-market valuef the tranche to the tranche investor today isétp
MTM = fee — contingent

Thefair spreadsolves the pricing equationT™ = 0, and is given by
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Yieq DiE[Li—Li_4] IE[LO] = 0. (21)

ST I DGR

With (2.1) the valuation problem is reduced to teenputation of the expected cumulative
lossesE[L], i =1,..,n. In order to compute these expectations, onedapdcify the default
processes for each of the names and the correkttiocture of the default events.

2.2. One-factor model

The most popular approach to synthetic CD@img uses factor models in the
conditional independence framework. They were firdtoduced by Vasicek(1987) to
estimate the loan loss distribution of a pool @irs. We will use a one-factor model.

Let 1, be the random default time of name {1, ..,m} and assume that thisk-neutral
default probabilities q(k,i) =P(T, <t), i=1,..,n,k=1,..,m, are available as input. The
latter quantities can be estimated from CDS simglee spreads (e.g. Duffie and
Singleton(1999), Hull and White(2000), Arvantis a@tegory(2001)). The dependence
structure of the default times is determined byciteelitworthiness indices, through a one-
factor copula and are defined by

Ye = X + /1= piZy, With (2.2)
X . systematic risk factor
Zy . idiosyncratic factors
pZ € (0,1) . correlation factors

One assumes that the,’'s are mutually independent and also independent.oThe risk-
neutral default probabilities and the creditwordss indices are related by the copula model

qlk, ) = P(Y, <H (), i=1,..,n,k=1,..,m, (2.3)

where H,(t;)) is thedefault thresholdf the k —th name at timet;. The copula model was
first introduced by Li(2000) and then used in palitf credit risk analyses, including
synthetic CDO valuation, by Gordy and Jones(206&))) and White(2004), De Prisco et
al.(2005), Laurent and Gregory(2005), and Schénei2b03) among others.

One notes that the correlations of the defewtnts are captured by the systematic risk
factor x and conditional on a given value of x, all default events are independent. If one
assumes furthermore that and z, follow standard normal distributions, then ondaits
the so-calledone-factor Gaussian copula moddh this standard model one has the
relationships

() He(t) =2 (qk, D)
(i) Cov[Yi, V] = /orp;
(i) qUeilx) = P(Y, < H(t)IX = x) = @ (%)

where &(z) is the standard normal distribution, and (iiipmesents conditional risk-neutral
default probabilities.
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Remarks2.1. The one-factor Gaussian copula model can bend&tkin various ways:

If x is a random vector, one obtains a multi-factgruta model

If x andz, follow Student-t distributions with different degs of freedom, one obtains
the double-t copula model in Hull and White(2P0

If x andz, follow normal inverse Gaussian distributions olains models of the type
considered in Kalemanova et al.(2005) and L&<g@005)

Further generalizations are found in Burtscaedl.(2005), Bee(2007) and Albrecher et
al.(2007).

In the above conditional independence framewor&, dkpected cumulative tranche losses
E[L;], i =1,..,n can be computed as

E[L] = [7 E[L]X = x]d®(x) (2.4)

where E[L;|X = x] = E[min{(L} - ¢),,S}|X =x] IS the expectation of the tranche losg
conditional onx = x. Clearly one has

IF =Y LGDy - I{Y, < & (q(k, D))}, (2.5)

where the random indicatorgy, < ®~*(q(k,i))} are mutually independent conditional an
With (2.5) the valuation problem is further redudedthe computation of the conditional
expected cumulative losses{L;|X = x], i = 1,..,n. A quasi-exact recursive algorithm for this
is developed in the next Section.

Remarks 2.2. An alternative way to evaluate[L;|X = x] consists to approximate the CDO

tranche payoff function p(Lf;s,¢) = min{(Lf — ¢),,5} by a sum of exponentials over the
interval [0,0) as proposed by Iscoe et al.(2007a/b).

3. Recursive evaluation via pseudo compound Poisson distributions

For convenience the systematic risk factdixesd at some value = x. Random sums of
the type (2.5) with mutually independent termswaed-known in actuarial science under the
heading of “individual model of risk theory”. Metlie to evaluate its distribution function
have been designed by many authors including K¢i®g8), Hipp(1986), De Pril(1986/89),
Dhaene and De Pril(1994), Hirlimann(1989/90/20@Yndt and Vernic(2009). The main
basic idea consists to consider approximationshé& dharacteristic function of (2.5) and
develop recursive algorithms for the evaluatiorthe corresponding distribution functions.
By adequate choice of the approximation, the evi@moaan be made as accurate as desired.

Conditional onx = x the characteristic function of the random surb)(& given by

¢ = TTiky P (), dr(t) = exp{in[1 + ¢, - (e™Px — 1)]}, (3.1)

where for simplicity of notation the shortcudt = q(k,i|x) is used. Hipp(1986) and Hipp and
Michel(1990), Chapter 4, define the—th order approximation of (3.1) for smal,, by

truncating the logarithmic expansiom(1 + x) = 2;‘;1(‘1]),”1 x/ atthej—th term to get the

expression

G O

9O = exp (Tt Xjoy, [ (P — D)), J=12,.. (3.2)
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For j =1 (3.2) can be rewritten as
¢ () = expA, (Y1 () =D}, A4 =Titic, (1) = %1 DN BYARLE (3.3)

which is the characteristic function ofcampound Poissodistributed random variable with
Poisson parameter, and probability function

hl(y) = i : ZLGDk=y Cr» Y= 1121 (34)

Similarly, for all j>2, (3.2) can also be rewritten in the forg¥’(t) = exp{4,(¥,(®) — 1)},
which corresponds in the terminology of Hurlimar8f{@) to the characteristic function of a
pseudo compound Poissafistributed random variable with Poisson paramegr and
pseudo probability functionk,(y). Through calculation one obtains the followingniodas
for the approximations of smaller ordee 2,3,4 (use Hipp and Michel(1990), p.79-80):

J=2
1
Ay = YR C e (1 + Eck)
1 1
h,(y) = T [ZLGDk:y - (1+cp) — 3" ZZ-LGDk:y C}%] , y=12,..

J=3
1 1
Az =Y cpe (1 +30k +§c£)

1 1 1
hs(y) = P [ZLGDk:y k- (L4 ¢+ ¢f) = Touropy=y Cit - (E + Ck) +3 Xa16pi=y C}%], y=12,..

J=4
1 1 1
L= Yoo (1430 +2ck +2cd)
1 1 3
hy(y) = 5 [ZLGDk:y (Lo +c+cd) - 22-LGDy=y cr- (; +Cp + 5513) +

3. (1 1 4 _
23-L6D=y Ck * (g + Ck) -7 Y4-LGDy=y Ck] , y=12,..

At this stage some mathematical comments are iarofiche functionsk,(y) do not define
true probability measures but only signed measurks. conditions under which a pseudo
compound Poisson distribution with Poisson parameteand pseudo probability function
h(y), y=12,.. defines a true probability distribution have bedentified in Lévy(1937).
According to Lukacs(1970), p.252, and Johnson.€1292), p.356, this is the case provided
a negative valuehn(y) <0 is preceded by a positive value and followed byeast two
positive values. This criterion is not always fildfil in Example 4.4. It is fulfilled forj = 1,3
but not for J = 2,4. However, the latter anomaly does not disturbotbtained results. Another
remarkable property of the pseudo compound Poisggmmoximations by Hipp has been
derived in Dhaene et al.(1996). The distributionction corresponding to the—th order
approximation of (3.1) has the same first moments as the original distribution
corresponding to (3.1). In particular, the- th order approximation fits the mean, variance,
skewness and kurtosis of the original distributilore importantly, the probability function
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f(2), z=0,12,.. of a pseudo compound Poisson distribution witls$tm parameten and
pseudo probability function h(y), y =1,2,.. can be evaluated using the simple Panjer
recursion formula (e.g. Hirlimann(1990), formulas{():

fO=e?* z-f(2)=2-%2,y-h(¥) - fz—y), z=12,.. (3.5)

As shown by Panjer and Wang(1993), this recursigersthm is numerically stable. Finally,
increasing the order of approximation to infinityuagantees arbitrary accuracy and
convergence to the probability distribution cor@sging to (3.1). LetFr(z), F¥(z) be the
distribution of (3.1) and its j—th  order approximation. According to Hipp and
Michel(1990), p.80, one has the error bound

J+1
|F(2) —FP(@)| <ef =1, e =3 6, g=— 22— ¢ <2 (3.6)

J+1 1-2¢ 2

In particular, letting; —» « this shows convergence of the chosen approximatiethod.

4. Numerical examples

So far we have developed a convergent ra@uraigorithm for the evaluation of the
probability function associated to the pool's cuative loss (2.5) conditional on a given
value of the systematic risk factor. For fixgd {1,2,3,4}, denote byf,"/(z|x) the j —th order
approximation of the conditional probability furami P(Lf = z|X = x) associated to (2.5),
which has been calculated using the recursive iggor(3.5) with Poisson parameter= 2,
and pseudo probability functionn(y) =h,(y) as specified in Section 3. To obtain the
cumulative tranche losses (2.4) we first calcutht unconditional probability function of
(2.5) via numerical integration as follows:

A

@ =[5 @odoe) ~ 35y f (z[8- D)o (a-3),  (4.1)
where ¢(t) = ®'(t) is the standard normal probability density. Im pumerical examples the
choice A = 5N =500, has been appropriate. Associated to (4.1) we atenghe probability
distribution function setting

Fl(2) =% 0), z=012,.. 4.2)
and the stop-loss transforsi?”’ (z) = E/[(Lf — z),] via the recursion

SLYT(0) = E[LE] = X, q(k, i)LGD,, SLY (z+1) =SL}(2) =1+ F[/(2). (4.3)

The j—th order approximation of the expected cumulatiancthe losses (2.4) is then
obtained by setting

E/[L;] = B/ [min{(L} — £),,S}] = SL}' (&) — SL{’ (£ + $). (4.4)

Inserting the obtained values into (2.1) one getsth order approximations of the fair
spreads of synthetic CDO'’s, which with increasipgraximation order will convergence to
the exact fair spread. For the sake of illustratinod comparison we have computed a number
of more or less complex cases.
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Example 4.1: completely homogeneous pool

Suppose that there ares =100 names in the pool, each with identical loss-gidefault
LGD, =N,-(1-Ry) =1. Let t;=1i, i=1,..,5 be the premium dateg;=5 the maturity date.
Each name in the pool has risk-neutral default @bdlties q(k,i) =q@) =1-e70, i=
1,..,5, and let p, = p =30% be the identical correlation factors of the oaetdr Gaussian
copula model. The discount factors are based askaree flat interest rate afi%. In this
completely homogeneous situation the conditionabability function of (2.5) is exact
binomially distributed such that

FE(zlx) = (’g) qG0*(1 - qi0))" %, z=0,..,m, (4.5)

with q(i|x) = q:(%) The approximation of order= 1 is exact conditional Poisson

distributed with parameten, = m - q(i|x). Moreover asm - « the large portfolio Vasicek
limiting distribution holds such that

Ji—p- o (&) -0 1(q()
p (m) q@) >‘ 2=0,...m.

) (4.6)

Ff(z) » @ <

The Table 4.1 below summarizes the results of pagasl calculation for three CDO tranches,
an equity tranche between and 3 defaults, a mezzanine tranche betweenand 10
defaults and a senior tranche betwesn and (maximally) 100 defaults. A comparison of
the results shows that the exact results up tdhingé decimal place are already attained for
the pseudo compound Poisson approximation of grder. The Poisson approximation of
order J=1 underestimates the spreads of the lower tranchiede the Vasicek
approximation is definitely not appropriate in teituation (overestimation of the equity and
mezzanine tranches and underestimation of the rseaiche).

Table4.1: par spreads for the completely homogeneous pool

par spread for different distributions
CDO tranche J=1 J=z J=3 J=4 exact Vasicel
equity 21.794% | 21.875% | 21.876% | 21.876% | 21.876% | 26.095%
mezzanin 6.004% | 6.024% | 6.024% | 6.024% | 6.024% 6.488Y
senior 0.271% 0.269% | 0.269% | 0.269% | 0.269% 0.201%
Example 4.2: sub-pools with varying correlation factors and smsutral default
probabilities

Suppose that there are sub-pools witleo names in each sub-pool, each with identical loss-
given-default L¢p, = N,-(1-R,) =1. Let t;=1i, i=1,..,5 be the premium dateg; =5 be

the maturity date. Each name in the sub-poele({1,..,5} has risk-neutral default
probabilities q(k,i) = e~(0005+0:005k)-i j =1 5 and correlation factorsp, = 0.25 + 0.05 - k.
There is a risk-free flat interest rate 3%. In contrast to Example 1, the attachment and
detachment of the CDO tranches are expressed is ahloss amounts. We consider three
CDO tranches, an equity tranche betwezemand 10 loss units, a mezzanine tranche between
10 and 25 loss units, and a senior tranche betweenand 100 loss units. Table 4.2 shows
that the spreads of the pseudo compound Poissawxamation of orderj =3 are exact
within three decimal places while the approximagiohorder j = 2 differ only slightly.
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Table4.2: par spreads for the partially inhomogeneous po&xample 2

par spread for different distributions
CDO tranches J=1 J=2 J=3 J=4
equity 15.524% | 15.585% | 15.586% | 15.586%
mezzanin 4.184% 4.207% 4.211% | 4.211%
senior 0.408%  0.400%| 0.399% | 0.399%

Example 4.3: sub-pools with varying loss-given-defaults

Suppose that there arg sub-pools witteo names in each sub-pool, each name with loss-

given-default .GD, =N, -(1-R) =k, k=1,..5. Let t;,=i, i=1,..,5 be the premium dates,
T =5 be the maturity date. Names in the sub-pools hdeatical risk-neutral default
probabilities q(k,i) = q(i) =1-e7%°%, i =1,..,5, and correlation factors p, = p = 30%.

There is a risk-free flat interest ratesef. As in Example 2 there are three CDO tranches, an
equity tranche between and 10 loss units, a mezzanine tranche betweenand 25 loss
units, and a senior tranche betwezn and 100 loss units. Table 4.3 shows that the spreads
of the pseudo compound Poisson approximation aéroré= 3 are exact up to three decimal
places while the approximations of ordge= 2 differ only slightly.

Table 4.3: par spreads for the partially inhomogeneous po@xafmple 3

par spread for different distributions
CDO tranches J=1 J=2 J=3 J=4
equity 19.880% | 19.964% | 19.965% | 19.965%
mezzanine 6.616% 6.645% 6.645% | 6.645%
senior 1.1740/1/ 1.183% 1.187%| 1.188%

Example 4.4: inhomogeneous pool

Let us combine the features of Example 2 and 3p&sgthat there arg sub-pools witleo
names in each sub-pool, each name with loss-gieésutt LGD, =N,-(1-R,) =k, k=
1,..,5. Let t; =i, i=1,..,5 be the premium dateg;=5 be the maturity date. Each name in
the sub-poolk € {1, ...,5} has risk-neutral default probabilitiegk, i) = 1 — e=(0:005+0005-k)i " —
1,..,5, and correlation factorg, = 0.25 + 0.05 - k. There is a risk-free flat interest ratesof.

As in the Examples 2 and 3 there are three CDCles) an equity tranche betwe@nand

10 loss units, a mezzanine tranche betwe@n and 25 loss units, and a senior tranche
between 25 and 100 loss units. Table 4.4 shows that the spreadeeopseudo compound
Poisson approximation of ordey =3 are exact up to two decimal places while the
approximations of order = 2 differ only slightly from the exact values.

Table 4.4: par spreads for the inhomogeneous pool of Example 4

par spread for different distributions

CDO tranches J=1 J=2 J=3 J=4

equity 25.954% 26.087%| 26.091% | 26.091%
mezzanine 11.002% 11.078%, 11.080% | 11.080%
senior 3.002% 3.060% 3.076%)| 3.082%




NUMERICAL EVALUATION OF SYNTHETIC CDO PRICES 10

The analyzed numerical examples allow for the feitg conclusions. The approximations
of order j =3,4 vyield quasi-exact spreads for CDO tranches. Tggaximation of order

] =2 yields almost accurate spreads, which can be usprhctical applications. The spreads
from the compound Poisson approximatige: 1 differ already too much to be reliable in
general.
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