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Abstract

This paper proposes a general approach to stochastic mortality modelling.
The logit transforms of death probabilities are modelled bylinear combina-
tions of user-specified basis functions. The resulting model is flexible yet
simple, and allows for natural interpretations of the underlying risk factors.
Deaths per year are assumed to be binomially distributed, which results in a
strictly concave log-likelihood function when calibrating the model. This en-
ables the use of convex optimization tools, and guarantees robustness in cal-
ibration. We fit two versions of the model into Finnish adult (18-100 years)
mortality data, and present simulations for the future development of Finnish
mortality.

Keywords: Mortality risk, longevity risk,stochastic modelling, convexity, ba-
sis functions

1 Introduction

General longevity has improved significantly over the 20th century, resulting in to
some extent unexpectedly high increases in life spans. Mortality has not only been
falling unpredictably in general, but there have also been considerable fluctuations
in the rate of improvement over time. In addition, the changes in mortality rates
across different age groups have also displayed different behaviour. The pensions
industry as well as national social security systems are now incurring the costs
of unpredictably improved longevity, as they need to pay out benefits for much
longer than was anticipated. As the effects of factors such as medical advances,
environmental changes or lifestyle issues on mortality remain unpredictable, life
and pensions insurance industry as well as national pensions funds have become
increasingly aware of the need for longevity risk management. As a consequence,
mortality-linked securities have recently attracted rapidly increasing attention (see
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e.g. [3] and [2] for overviews of possible and existing instruments). Mortality-
linked instruments that have already been implemented include mortality swaps
[14], bonds [17] and forwards.

Stochastic mortality modelling has produced a variety of approaches for cap-
turing the randomness in the future development of mortality rates (see [7] for a
recent review). The earliest and still widely popular discrete-time model withone
stochastic factor was introduced by Lee and Carter [15] in 1992. It wasfollowed by
a number of modifications (see e.g. [5, 16, 4, 13, 12]), varying the original model
and addressing its shortcomings. Models with multiple stochastic factors were
subsequently proposed by Renshaw and Haberman [20] and Cairns etal. [6], with
extensions incorporating cohort effects by Renshaw and Haberman [21] and Cairns
et al.[8]. Currie et al. [9] have applied penalized splines in mortality modelling.In
addition, although mortality data is generally published on discrete time intervals,
rendering the discrete-time framework a natural choice for practical implementa-
tions, the development of mortality has also been considered in continuous time
(see e.g. [18, 10, 11]).

We propose a general discrete-time stochastic mortality modelling framework,
which is flexible but relatively simple, enabling population-specific charasteristics
as well as user preferences to be taken into consideration. An important advan-
tageous feature of the model is the robustness of its calibration. Moreover, the
framework allows for a choice of risk factors with tangible interpretations.

The logit transforms of mortality rates are modelled by linear combinations of
user-specified basis functions on the cohorts, and the weights of the basis functions
in the linear combinations are the stochastic factors of the model. As the number
of basis functions as well as their properties such as piecewise linearity, continuity
and smoothness can be chosen by the user, population specific characteristics as
well as user preferences and other expert opinions can be taken into consideration
when calibrating the model.

The weights of the basis functions are the stochastic factors capturing the un-
certainty in the future mortality rates. An appropriate choice of basis functions
ensures that the factors of the model have an easy interpretation, for instance as the
logit transforms of the mortality probabilities in certain cohorts, which facilitates
the assessment of the model, and enables the study of the relationships between
mortality rates and economic factors. This is a central issue in the hedging of
mortality-linked securities.

The chosen model is fitted into data by the maximum log-likelihood method.
Deviating from the usual assumption of Poisson distributed deaths, we assume
deaths to be binomially distributed. This, combined with the chosen parameteriza-
tion, results in a strictly concave target function for maximization. This not only
means that the problem has a unique maximum point but also enables the use of
convex optimization tools, and guarantees robustness of the calibration.

As an example, we consider Finnish adult (from 18 to 100 years) mortality
for males and females in the past semicentury. Basis functions are chosen tobe
piecewise linear, and we consider two exemplary models with two and three basis
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functions. Using the resulting model, we present simulations for future develop-
ment of Finnish mortality rates.

The remaining paper is organized as follows. Section 2 outlines the modelling
procedure. Section 3 fits two versions of the model into Finnish mortality data,
discussing the appropriateness and fit of each model. Section 4 presentssome
simulation results for mortality probabilities as well as the future development of
certain reference cohorts. In Section 5 we give conclusions and a brief discussion
on possible future refinements and applications of the model.

2 Model specification

Let E(x, t) be the size of population agedx (cohort) at the beginning of yeart, and
definex andt to be integer-valued. Denoting the number of deaths occurring in
cohortx during yeart by D(x, t), we have

D(x, t) = E(x, t) − E(x + 1, t + 1), (1)

which is observable at timet + 1, i.e. at the beginning of yeart + 1. We assume
that the conditional distribution ofD(x, t) givenE(x, t) is binomial:

D(x, t) ∼ Bin(E(x, t), q(x, t)), (2)

whereq(x, t) is the probability that an individual agedx and alive at the beginning
of year t dies before the end of the year. The listq(·, t) of numbers may thus
be interpreted as themortality table for year t. A stochastic mortality model is
obtained by modellingthe probabilitiesq(x, t) as stochastic processes. The future
deathsD(x, t) and population sizesE(x + 1, t + 1) are then obtained by sampling
from Bin(E(x, t), q(x, t)).

The uncertainty in the future values ofq(x, t) may be interpreted as thesystem-
atic mortality risk. As the population grows, the fractionD(x, t)/[E(x, t)q(x, t)]
converges in distribution to constant1. For large populations, the population dy-
namics is thus well described byD(x, t) = E(x, t)q(x, t) and the main uncertainty
comes from unpredictable variations in the future values ofq(x, t).

In order to get a tractable model, we propose to model the logistic probabilities
by

logit q(x, t) = ln
( q(x, t)

1 − q(x, t)

)

=
n
∑

i=1

wi(t)φi(x),

whereφi(x) are user-definedbasis functions and wi(t) are stochastic risk fac-
tors that vary over time. In other words,q(x, t) = qw(t)(x), wherew(t) =
(w1(t), . . . , wn(t)) andqw is the parametric function defined for eachw ∈ R by

qw(x) =
exp (

∑n
i=1 wiφi(x))

1 + exp(
∑n

i=1 wiφi(x))
, (3)
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Modelling the logit transforms instead ofq(x, t) ensures thatq(x, t) ∈ (0, 1) so
that they are indeed probabilities. With appropriate choices of the basis functions
φi(·) one can guarantee certain desirable properties ofq(·, t) in the model. For
example, one may wish to construct a model where the probabilitiesq(x, t) be-
have continuously or smoothly across the cohorts. This can be achieved simply by
choosing continuous or smooth basis functions, respectively.

The choice of the basis functions also determines the interpretation of the risk
factors. If, for example, the basis functions are such thatφk(x) = 1 but φi(x) =
0 for i 6= k for a certain cohortx, then the isk factorwk(t) equals the logistic
death probability in cohortx in year t. Such concrete interpretations facilitate
the modelling of future values of the risk factors. For example, one may be able
to deduce dependencies between betweenw and certain economic factors such
as investment returns. Such dependencies play a crucial role in asset and liability
management of insurance companies as well as in pricing and hedging of mortality-
linked securities.

Another natural requirement is that the basis functions be sufficiently indepen-
dent so that they each contain features that cannot be represented bythe other basis
functions. The basis functionsφi arelinearly independent on a setA of cohorts if
the only vectorw ∈ R

n that satisfies

n
∑

i=1

wiφi(x) = 0 ∀x ∈ A

is the zero vectorz = 0. A violation of this condition would mean that the set of
basis functions is redundant in the sense that we could remove at least one basis
function without affecting the range of possible death probabilities onA in the
model.

Example 1 In ([6]), Cairns et al. introduced a model

logit q(x, t) = κ1(t) + κ2(t)(x − x̄),

where κ1 and κ2 follow a two-dimensional random walk, and x̄ is the mean age
over the range of cohorts. It can also be written as

logit q(x, t) = w1(t)φ1(x) + w2(t)φ2(x),

where wi = κi for i = 1, 2, and the basis functions are φ1(x) = 1 and φ2(x) =
(x − x̄). w1 can be interpreted as the general level of mortality, while w2 cap-
tures how the relationship between mortalities in different age groups develops.
The basis functions are linearly independent on any set of cohorts A, and also
orthogonal:

∑

x∈A

φ1(x)φ2(x) = 0.
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Once the basis functionsφi have been chosen, we will model the vectorw(t) =
(w1(t), . . . , wn(t)) of risk factors as a multivariate stochastic process in discrete
time. The simplest (nontrivial) choice would be to modelw as a random walk
with drift but one could also use more sophisticated models developed in the vast
literaure on econometric modelling. The model specification could be based solely
on the user’s views about the future development of mortality or on historical data
or on both. The historical values of the risk factorsw(t) = (w1(t), . . . , wn(t)) can
be easily constructed by maximum likelihood estimation as follows.

Given the historical values ofE(x, t) andD(x, t), the log-likelihood function
for yearly values ofw(t) can be written using (2) and (3) as

lt(w) = ln
∏

x

(

E(x, t)

D(x, t)

)

qw(x)D(x,t) (1 − qw(x))E(x,t)−D(x,t) (4)

=
∑

x

[

ln

(

E(x, t)

D(x, t)

)

+ D(x, t) ln qw(x) + (E(x, t) − D(x, t)) ln(1 − qw(x))

]

=
∑

x

[

D(x, t)
∑

i

wiφi(x) − E(x, t) ln(1 + e
P

i
wiφi(x)) + ln

(

E(x, t)

D(x, t)

)

]

.

Maximizing lt(w) overw ∈ R
n gives an estimate of the parameter vectorw(t) for

yeart. In general, the maximization requires techniques of numerical optimization
but the following result greatly facilitates the task.

Proposition 2 The log-likelihood function lt : R
n → R is concave. If the basis

functions φi are linearly independent on the set of cohorts

A(t) = {x |E(x, t) > 0},

then lt is strictly concave.

Proof. Looking at the last expression forlt(w), we see that the first term in the
brackets is linear inw = (w1, . . . , wn) so it is concave. The last term is constant
so it is trivially concave. SinceE(x, t) is nonnegative, the first claim follows if we
can show that the functions

gx(w) = ln(1 + e
P

i
wiφi(x))

are convex inw. Sincegx is the composition of the linear functionw 7→
∑

i wiφi(x)
with the functionϕ(z) = ln(1 + ez) it suffices to show thatϕ : R → R is convex;
see [22, Theorem 5.7]. It is easily checked that the second derivative ofϕ is

ϕ′′(z) =
ez

(1 + ez)2
,

which is strictly positive onR. This implies thatϕ is strictly convex onR (see e.g.
[23, Theorem 2.13]) proving the first claim.
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As to the second claim, we first note that the log-likelihood functionlt can be
written as the difference of an affine function and

ft(w) =
∑

x∈A(t)

E(x, t)ϕ

(

n
∑

i=1

φi(x)wi

)

.

It suffices to show thatft is strictly convex. By [23, Theorem 2.14], this holds if
the Hessian matrix∇2ft(w) of ft is positive definite for allw ∈ R

n. Since

∂2ft(w)

∂wi∂wj
=
∑

x∈A(t)

E(x, t)ϕ′′

(

n
∑

i=1

φi(x)wi

)

φi(x)φj(x),

we get
∇2ft(w) = ΦT D(w)Φ,

whereD(w) is the diagonal matrix with entries
[

E(x, t)ϕ′′

(

n
∑

i=1

φi(x)wi

)]

x∈A(t)

and the matrixΦ has the vectors[φi(x)]x∈A(t) as its columnsi = 1, . . . , n. Since
the diagonal elements ofD(w) are strictly positive for everyw ∈ R

n and sinceΦ
has full rank by the independence assumption, the Hessian is positive definite. �

The above is a definite advantage of the assumption of binomially distributed
deaths over to the more common Poisson assumption. Convexity implies that local
maxima oflw are true maximum likelihood estimators. Strict convexity implies
that the estimator is unique; see e.g. [23, Theorem 2.6]. Besides guaranteeing well
defined estimators, convexity facilitates the numerical maximization oflt. There
exists a wide literature on numerical techniques for convex optimization; see e.g.
[1, 19].

We end this section by a brief summary of our modelling procedure.

1. Choose a set{φi}
n
i=1 of basis functions that is rich enough to allow for a

description of features of interest in the death probability curveq(x, t).

2. Construct historical values ofw(t) from data using maximum likelihood es-
timation.

3. Model the future development ofw(t) as a stochastic process, using their
historical values and/or expert information.

4. The future death probabilities are given by

q(x, t) =
[

1 + exp
(

∑

i

wi(t)φi(x)
)]

−1

5. The future deathsD(x, t) are obtained by sampling from Bin(E(x, t), q(x, t))
or simply byD(x, t) = E(x, t)q(x, t), if we are only interested in systematic
mortality risk.
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3 Fitting the model into Finnish mortality data

In this section we present two specifications of the stochastic mortality model de-
scribed in the previous section, and fit these two models into Finnish mortality data.
Both models employ piecewise linear basis functionsφi(x). The first model con-
sists of two stochastic factorsw = (w1, w2) and hence two basis functions, while
the second one is a three-factor model withw = (w1, w2, w3).

We use Finnish mortality data for Finnish males and females, covering ages 18-
100 and years 1900-2007. Younger ages were included in view of the fact that in
the Finnish pension system the accrual of earnings-related pension starts at the age
of 18. The data was obtained from the Human Mortality Database1, and contains
annual values for the numbers of deathsD(x, t) during the yeart of individuals
agedx at the beginning of that year, and corresponding population sizesE(x, t).

To produce estimates for historical values of the stochastic factorsw, the ex-
pression in Equation 4 is maximized using Matlab Optimization Toolbox.

3.1 Two-parameter model

We first consider a two-parameter application of the stochastic mortality model of
Section 2, which is of the form

logit q(x, t) = w1(t)φ1(x) + w2(t)φ2(x). (5)

The two linear basis functions are chosen as

φ1(x) = 1 −
x − 18

82
and φ2(100) =

x − 18

82
. (6)

Consequently, the linear combination
∑2

i=1 wiφi(x) is now also linear, which is
illustrated in Figure 1.

40 60 80 100
age

0.2

0.4

0.6

0.8

1.0

logit q

Φ2HxL

Φ1HxL

Figure 1: Linear basis functions and an exemplary linear combination

1University of California, Berkeley (USA) and Max Planck Institute for Demographic Research
(Germany). See www.mortality.org.
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Note that for a givent,

logit q(18, t) = w1(t)φ1(18) + w2(t)φ2(18) = w1(t), (7)

and, similarly,logit q(100, t) = w2(t). In other words, the two factor values
for eacht are two points on the line forlogit q(x, t), and hence have a natural
interpretation. This is particularly advantageous when assessing the modelin the
light of estimation results for historical values ofw, or pricing mortality-linked
financial instruments.

Estimated historical values ofw for males and females are presented in Figures
2 and 3. Figures 4 and 5 show the observed death ratesD(x,t)

E(x,t) in comparison with

the estimated mortality ratesq(x, t). D(x,t)
E(x,t) illustrates the effect of both systematic

and nonsystematic mortality, whileq(x, t) contains only systematic mortality.
The effect of Finnish war years (1918 and 1939-1944) can be clearly observed

in the estimated values for males. However, the gaps observed in values ofw2

during the war years imply that the mortality rateq(100, t) would have temporarily
decreased. As it is doubtful that this is true, we conclude that this model maybe
too simple to capture the population dynamics in Finland during the entire 20th
century. This conclusion is also supported by the fact that the observeddeath rates
do not show the kind of sharp, temporary decline in the war years that the estimated
q(x, t)s suggest.

1900 1920 1940 1960 1980 2000 2020
−9

−8

−7

−6

−5

−4

−3

w
1
 male

1900 1920 1940 1960 1980 2000 2020
−3

−2.5

−2

−1.5

−1

−0.5

0

w
2
 male

Figure 2: Estimated parameter values, males
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w 1(t)

1900 1920 1940 1960 1980 2000 2020
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

w
2
 female

w 2(t)

Figure 3: Estimated parameter values, females
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Figure 4: D(x,t)
E(x,t) vs. estimated values ofq(x, t), males
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Figure 5: D(x,t)
E(x,t) vs. estimated values ofq(x, t), females

3.2 Three-parameter model

The second model to consider is a three-parameter one with representation

logit q(x, t) = w1(t)φ1(x) + w2(t)φ2(x) + w3(t)φ3(x). (8)
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Basis functionsφi(x) are piecewise linear, and can be written as

φ1(x) = 1 −
x − 18

32
, φ2(x) =

{

1
32 x ≤ 50
2 − x

50 x > 50
and (9)

φ3(x) =
x

50
+ 1 (10)

As opposed to the first model, the linear combination
∑3

i=1 wiφi(x) is now
piecewise linear, as depicted in Figure 6. Similarly as in the first case, the val-
ues of the factors are points in the curve forlogit q: logit q(18, t) = w1(t),
logit q(50, t) = w2(t) andlogit q(100, t) = w3(t).

Estimation results for factor values are plotted in Figures 7 and 8. Although
there are comparatively large fluctuations in the values ofw3 which now represent
logit q(100, t) in the first half of the observation period, this appears more plausible
than the gaps observed in the values forw2 in the 2-parameter model. In both plots,
a small bulge appears in the values forw1 towards the end of the period.

The surface plots for estimatedq(x, t) in Figure 9 now resemble more those
for the observed death ratesD(x,t)

E(x,t) . The gap in Figure 4 does not appear here. In
other words, the fit seems to have improved especially for the estimation resultsfor
males.

20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

logit q

Φ3HxL

Φ2HxL

Φ1HxL

Figure 6: Three piecewise linear basis functions and their linear combination
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Figure 7: Estimated values ofw for three-parameter model, males
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Figure 8: Estimated values ofw for three-parameter model, females
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Figure 9: Estimated values ofq(x, t) vs. D(x,t)
E(x,t) , males
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Figure 10: Estimated values ofq(x, t) vs. D(x,t)
E(x,t) , females

3.3 Modelling the processw

The estimated values forw(t) for both models show componentwise a downward
trend from about year 1960 onwards. The trends reflect a generalimprovement in

11



mortality over time. The time series also displayed varying degrees of fluctuations,
the largest being observable at componentw3 of the three-parameter model for
both males and females. This signals larger variance in the systematic mortality for
older age groups. For simulation and forecasting purposes, we combine the male
and female parameter estimates and representw(t) = (wf (t), wm(t))T for both
models as 4- and 6-dimensional random walks with a drift. Generaln-dimensional
form is written as

w(t) − w(t − 1) = µ + CZ(t), (11)

whereµ ∈ R
n×1 is a constant drift vector,C ∈ R

n×n is a constant lower
diagonal matrix, andZ(t) is a n × 1 vector of independent standard Gaussian
random variables:Zi(t) ∼ N(0, 1). µ is the mean vector of∆w(t), and the
matrix C is obtained from the Cholesky decomposition of the covariance matrix
V = Diag(σ)R Diag(σ) = CC ′ for estimated historical values of∆w(t). The
vectorσ ∈ R

n×1 is the standard deviation vector, andR ∈ R
n×n is the correlation

matrix. Using data for years 1960-2007 we find the results to be

µ =

0

B

B

@

−0.0311

−0.0153

−0.0207

−0.0128

1

C

C

A

σ =

0

B

B

@

0.0799

0.0637

0.0535

0.0626

1

C

C

A

(12)

R =

0

B

B

@

1.0000 −0.6890 0.4051 −0.3565

−0.6890 1.0000 −0.3279 0.6655

0.4051 −0.3279 1.0000 −0.6605

−0.3565 0.6655 −0.6605 1.0000

1

C

C

A

(13)

µ =

0

B

B

B

B

B

B

@

−0.0097

−0.0252

−0.0171

−0.0075

−0.0196

−0.0116

1

C

C

C

C

C

C

A

σ =

0

B

B

B

B

B

B

@

0.1149

0.0352

0.0662

0.0765

0.0372

0.0728

1

C

C

C

C

C

C

A

(14)

R =

0

B

B

B

B

B

B

@

1.0000 0.1246 0.1277 0.1341 0.1690 −0.0573

0.1246 1.0000 −0.3064 −0.2564 0.4259 −0.1741

0.1277 −0.3064 1.0000 0.1067 0.0528 0.6282

0.1341 −0.2564 0.1067 1.0000 −0.4031 0.1625

0.1690 0.4259 0.0528 −0.4031 1.0000 −0.3214

−0.0573 −0.1741 0.6282 0.1625 −0.3214 1.0000

1

C

C

C

C

C

C

A

. (15)

The observation period was chosen on the grounds that the factor values dis-
played fairly evenly drifting behavior during that time.

4 Simulations

In the simulation experiment, we applied the the two models presented in Chapter 3
to consider mortality probabilities and cohort sizes 30 years into the future. In both
cases, the processw(t) was simulated according to Equation 11, using estimates
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for µ andV from the fitting of both models, based on data from years 1960-2007.
The simulations were performed with the Monte Carlo method, with sample size
N = 10000. Probabilitiesq(x, t) were then calculated from the simulated values
of w(t). The number of deathsD(x, t) in each cohort was approximated by its
expected valueE(x, t)q(x, t), and cohort sizes at the end of the year were obtained
by subtracting that value fromE(x, t), the cohort size at the beginning of the year
t.

Cohorts aged 30 and 65 in the final observation year 2007 were chosenas ref-
erence cohorts. Figures 11 and 12 show the simulated means and90% confidence
intervals forq(., t) and cohort sizesE(., t) in the two-parameter case. Figures 13
and 14 give the respective results for the three-parameter model. The 30-year-old
cohort displays a more notable difference between the two models than the 65-year-
old one. For the younger cohort, the cohort size estimates for the two-parameter
model in the final simulation year are slightly below that of the three-parameter
model. For the older reference cohort the difference, albeit hardly notable, is the
other way round.
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Figure 11: Medians and 90% confidence intervals for mortality ratesq(., t) and cohort
sizesE(., t). Cohort aged 30 in 2007, male
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Figure 12: Medians and 90% confidence intervals for mortality ratesq(., t) and cohort
sizesE(., t). Cohort aged 65 in 2007, male
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Figure 13: Medians and 90% confidence intervals for mortality ratesq(., t) and cohort
sizesE(., t). Cohort aged 30 in 2007, male
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Figure 14: Medians and 90% confidence intervals for mortality ratesq(., t) and cohort
sizesE(., t). Cohort aged 65 in 2007, male

5 Conclusions

This paper proposed a flexible but relatively simple framework for stochastic mor-
tality modelling. The model allows for risk factors with tangible interpretations,
and features robustness in parameter estimations. Two- and three-factorversions of
the model were fitted into Finnish adult mortality data, and the factors were mod-
elled as a simple random walk process with a drift. Using the resulting models,
future values of death probabilities and cohort sizes were simulated with plausible
results.

In real-life applications, modelling of the risk factors should receive more care-
ful attention. A straightforward extension would be to use more flexible economet-
ric models. For example, by allowing heavy tailed distributions one might be able
to better capture the effects of epidemics or natural disasters on mortality.

When describing the uncertain future development of mortality tables, the spec-
ification need not be based completely on historical data, because that mightnot
produce the most valid description of the future development of mortality. Instead,
expert views could be incorporated into the model. Another interesting is the inter-
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play between mortality and the financial instruments that are used to hedge mor-
tality linked securities. The dependence structure is an important factor in asset
and liability management of insurance companies, and in pricing and hedging of
mortality-linked financial products.
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