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Abstract

This paper proposes a new and integrated approach of measuring risk

and the associated cost. The model is developed from the simple practical

example of a bond spread and then generalized. It is shown that is also

encompasses the popular measures Value at Risk and Tail Value at Risk.

A su�cient condition is established under which the measure is coherent

and in an application section market data is used to parametrize the

measure and evaluate the capital cost of an example company.

1 Introduction

It is not only since Solvency II that a very active discussion in the actuarial
community takes place regarding appropriate risk measures and their practical
application. A very often used approach is to take a risk capital of some de�-
nition, set a rate of return and multiply both to derive the cost. If the actual
return of an undertaking exceeds this cost, it is deemed to be pro�table. The
answers given are obviously dependent on both the capital de�nition used and
the rate of return chosen.

Coincidentally the target rate of return in most companies seems to be 15% -
no matter the risk measure. Furthermore Milne and Onorato have shown in [5]
that use of return on capital with a constant hurdle rate can lead to substantial
loss of shareholder value. Goldfarb in [1] comes to the similar conclusion that
RAROC is not an unambiguous measure.

The motivation for the research underlying this paper has been that the popular
capital measures Value at Risk (VaR) and Tail Value at Risk (TVaR) are not ca-
pable of su�ciently distinguishing critical characteristics of risk. In the practical
experience of the author this has lead to counterintuitive steering indications
and intense discussions with decision makers. One example is the commercial
value of reinsurance purchased. For a VaR and TVaR with practically used
con�dence levels two excess of loss layers, one with an exhaustion probability
of 10% the other with 2%, will look fairly similar. But it is generally accepted
that the risk loads (i.e. the commercial value) of both should be signi�cantly
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di�erent. Another example are bonds with di�erent ratings. A �C� rated bond
will yield signi�cantly higher spreads than a �B� bond. But again for practical
VaR and TVaR measures both look the same.

Furthermore, for application in enterprise steering the risk capital is allocated
down to risk drivers and/or business lines. Again there are various approaches
available for such a task and hence another degree of uncertainty with regard
to which numbers ultimately to believe. Gründl and Schmeiser in [6] even go so
far as to question whether it is at all sensible to steer a �nancial service provider
by capital allocation.

Bottom line the business steering approaches as described are based on a triangle
of three more or less separate models which are tied together to produce some
�gures. The obvious ambiguity of the results of such a setup have been and still
are a source for intensive discussions - not only in the actuarial community, but
particularly with practitioners.

To mitigate at least part of the inherent ambiguity the present paper proposes
an integrated approach to measure risk without fully giving up the �exibility of
looking at di�erent aspects of it at certain times. Depending on the stakeholder
of the company he will have varying concerns. Whereas the policyholder or the
regulator will put their emphasis on the extreme events, i.e. small percentiles,
an investor will rather look to the more likely events, i.e. central percentiles.

In section 2 some general notational conventions have been put down for ease
of reference. For a bottom up idea of how an integrated approach to measure
risk could look like, section 3 looks at a simple model for bonds as in the
respective markets there is already an implicit consensus measurement of risk
via the return requirements. The conclusions are then generalized into the risk
cost model in section 4. Sections 5 and 6 then are dedicated to establish that
the risk cost model encompasses some of the most widespread risk measures and
that the measure is under certain conditions coherent. The de�nition of the risk
measure implicitly already contains a �natural� decomposition, which is taken
a look at in section 7. The theory is then used in section 8 for the valuation
of an example company. Finally in section 9 some issues that need particular
attention in the application are summarized.

2 De�nitions

The random variables X on which the results of this paper are intended to be
applied are valuation distributions of insurance companies. In particular when
talking about risk the concern with respect to X will be large negative deviations
from the mean � as opposed to the case where X denotes a claims distribution.
The time horizon T for the considerations may be arbitrary but shall be �xed
further on1. It is intentionally not broken down any further to claims, premium,
cost and investment result as the interest of any external stakeholder will not

1Typically it is one year as for instance in the Solvency II framework.
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di�erentiate between where the risk comes from but rather focus on the mere
existence of it.

For a probability space (Ω,F ,P) the set of all real valued random variables
shall be denoted by L and for each X ∈ L its distribution function FX shall be
de�ned as usual:

FX : R → [0,1], FX(x) = P(X ≤ x).

The function of upper quantiles is de�ned as

Qu
X :[0, 1] → R, Qu

X(α) = sup {x ∈ R:P(X ≤ x) ≤ α}.

In this de�nition it is always the case that Qu
X(1) = +∞ . For regularity reasons

we want to eliminate this behavior for random variables with bounded value set
by letting

QX :[0, 1] → R, QX(α) =

{
Qu

X(α), α < 1
lim
ω→1

Qu
X(ω), α = 1

Complementary to the function of the upper quantiles the lower quantiles are
denoted by

Ql
X :[0, 1] → R, Ql

X(α) = sup {x ∈ R:P(X ≤ x) < α}.

Note: With this terminology the expected solvency capital requirement measure
(SCR) under the Solvency II regime, which is de�ned as the value at risk with a
probability of default of 200 years, would be expressed as SCR = −QX(0, 5%) .

The distribution function and the upper quantiles function are non decreasing,
right continuous functions. The corresponding borel measures exist and shall
be denoted by dQX and dFX . Moreover QX , Ql

X and Qu
X are right inverse of

FX in the sense that

FX ◦QX(α) = FX ◦Ql
X(α) = FX ◦Qu

X(α) = α, α ∈ FX(R).

In then special case where X has a density f(x) the quantile functions co-

incide. If furthermore the density has continuous support, i.e. supp(f) def=
{x ∈ R:f(x) 6= 0} =]a;b[ for a, b ∈ [−∞,+∞], then the distribution function

FX(x) =
∫ x

−∞
f(t)dt is bijective and the quantile function QX = F−1

X is its

inverse.

In the formulae we will occasionally use indicator functions. They are de�ned
on an arbitrary set Ω′ , which typically is the set R of real numbers. For a
subset B ⊂ Ω′ the indicator function 1B is the mapping
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1B :Ω′ → R, 1B(ω) =
{

1, ω ∈ B
0, ω /∈ B

3 Motivation: A simple bond investment model

The following is an intentionally simpli�ed model for �xed income securities. It
shall serve the purpose of motivating the overall approach and not as a full model
for investments in bonds. For instance we shall only consider the possibilities
of no repayment or full repayment. The case of partial repayment or e�ects of
appraisal values are not taken into account.

Suppose a company issues a bond with a face value of n and a rating of �B�.
There is a possibility of default, i.e. that the bond will not be repaid upon
maturity. An investor will require a certain spread s over the return r of a
secure investment to compensate him for the possibility that the company may
default on repaying the bond. The required spread depends on the rating of
the bond. On the other hand the investment rating gives information about
how secure an investment in the bond is, i.e. how likely it is that the bond will
not be repaid. If we denote the probability of default with α then the spread
becomes a function α → s(α) thereof.

For the following the bond shall be a zero bond, i.e. the price for the bond is
paid upfront by way of a discount on the face value N . As noted above we only
consider the two possibilities no default and total default. Then the e�ective
result for the investor at the time of remuneration of the bond is either that he
has to write o� the full value N or he exchanges two assets, namely the bond
for cash. In the latter case the impact on the balance sheet is ±0. The impact
on the balance sheet from the investor's point of view is denoted by the random
variable X. It's distribution can be written as

FX(x) =

0, x < −n
α, −n ≤ x < 0
1, 0 ≤ x

.

The cost of this transaction for the company can be referred to as Cost of

Risk (in short CoR) as emitting the bond is a means of raising capital for the
operation. This CoR is easily calculated as

CoR = n · s(α) = −Q*
X(α) · s(α) = −QX(0) · s(α).

The model can be generalized to the situation where multiple bonds with di�er-
ent seniority (and ratings) are being issued: Suppose the total capital need N
of the company is being issues via k ∈ N tranches with nominal values n1, ..., nk

and N = n1 + ... + nk . Each tranche has its own rating with the associated
spreads denoted by s1, ..., sk . The default probabilities of the tranches α1, ..., αk

are assumed to be pairwise di�erent. The indices shall be such that the default
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probabilities are increasing αi < αj , i < j . For notational purposes we add
α0 = 0 and αk+1 = 1 . Note that from a risk-return-logic then the spreads will
also be increasing.

In this situation the amount lost to the investor with probability αi is equal to
li = −(ni + ...+nk) . With the convention that lk+1 = 0 the distribution of the
result X can be written as

FX(x) =
k∑

i=1

αi · 1[li,li+1[(x) + 1[0,∞](x).

The cost of raising the capital this way is

CoR =
k∑

i=1

ni · s(αi) =
k∑

i=1

(QX(αi)−QX(αi−1)) · s(αi). (1)

This model still can be applied if the bonds don't have varying seniority but the
trigger for loosing the investment is de�ned sequentially for each trance. This
for instance could be the case for a series of natural catastrophe bonds that are
being issued.

4 The risk cost model

The fundamental idea of generalizing the above model beyond an investor's
view is that the information on where a stakeholder is most concerned should
be somehow coded in the required spread. As a central theorem we will show
that the most common risk capital models are special cases thereof.

De�nition 4.1. Let s:[0, 1] → R+ be a non-decreasing, left continuous, bounded

function. Let further

Ds =
{

X ∈ L:QX(1) < ∞∧
∫ 1

0

s(α)dQX < ∞
}

.

Then the cost of risk associated with this function s is de�ned as the functional

CoRs :Ds → R, CoRs(X) =
∫ 1

0

s(α)dQX − s(1)QX(1). (2)

Note 4.2. The investor's model discussed above is a special case of the general

de�nition if we set

sinv
def=

k∑
i=1

si · 1]αi−1,αi] + sk · 1]αk,1].
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Proof. As per the de�nition of the random variable X in the prior chapter we
have QX(ω) = 0 for all ω ∈ ]αk, 1] . Hence the second term in the de�nition of
sinv does not contribute to the CoRs:

CoRs(X) =
∫ 1

0

sinv (ω)dQX =
k∑

i=1

si

∫
]αi−1,αi]

dQX + sk

∫
]αk,1]

dQX

=
k∑

i=1

si (QX(αi)−QX(αi−1)) . (3)

Which is equal to (1).

In practical applications s will typically have a more simple structure than QX

let alone that it is �xed for one application, whereas the random variable X
will be changing. It would be preferable to express CoRs by way of a measure
induced by s. To this end we consider the right continuous variation of s denoted
by

s*(ω) = lim
ε→0

s(ω + ε).

Then we have the following

Proposition 4.3. If the number of discontinuities {s− s* 6= 0} = {ω1,...ωn} is

�nite then for every X ∈ Ds

CoRs(X) = −
∫ 1

0

QX(ω)ds*+
n∑

i=1

(s−s*)(ωi)·(Qu
X−Ql

X)(ωi)− lim
ε→0

s*(ε)QX(ε).

(4)

Proof. For notational purposes we add ω0 = 0 and ωn+1 = 1 . With this the
integral over the interval [0, 1] naturally falls apart into into n+1 local integrals
over [ωi, ωi+1], i = 0, ...n

∫ 1

0

s(ω)dQX =
n∑

i=0

∫ ωi+1

ωi

s(ω)dQX =
n∑

i=0

∫ ωi+1

ωi

(s− s*)(ω) + s*(ω)dQX (5)

In the interior of each integral s = s*. Then the integration of the �rst term for
i = 0, ..., n− 1 yields

∫ ωi+1

ωi

(s− s*)(ω)dQX = (s− s*)(ωi) · lim
ε→0

(QX(ωi)−QX(ωi − ε))

= (s− s*)(ωi) ·
(
Qu

X −Ql
X

)
(ωi).
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The respective integral for i = n is zero as dQX by de�nition does not have
any weight at 1. On the second term of the equation (5 we can apply partial
integration which yields

∫ ωi+1

ωi

s*(ω)dQX = s*(ωi+1)QX(ωi+1)− s*(ωi)QX(ωi)−
∫ ωi+1

ωi

QX(ω)ds*.

Note that for i = 0 in fact this needs to be expressed by the limit, which has
been omitted here for purpose of readability. Adding all local integrals back up
we get

∫ 1

0

s(ω)dQX = −
∫ 1

0

QX(ω)ds* +
n∑

i=1

(s− s*)(ωi) · (Qu
X −Ql

X)(ωi)

+s*(1)QX(1)− lim
ε→0

s*(ε)QX(ε).

Keeping in mind that per de�nition s*(1) = s(1) the proposition is proved.

5 Comprehensiveness of the family

A classical approach to measure risk cost is to come up with a model for the risk
capital and applying a required rate of return to it. However, as is noted in [1]
the methods by which the capital and it's cost are derived are not necessarily
consistent. Nonetheless risk capital is a popular metric in the insurance industry
as it is for instance necessary from a solvency point of view. Two risk (capital)
measures that have found their way into the Solvency II discussion are the Value
at Risk and the Tail Value at risk. They have for instance been discussed in [2]:

De�nition 5.1. For X ∈ L the following risk measures for a con�dence level

α ∈ [0, 1] are de�ned in case they exist �nitely:

1. Value at Risk: VaR(α)(X) = −QX(α)− E[X]

2. Tail Value at Risk: TVaR(α)(X) =

− 1
α

(
E[X · 1{X≤QX(α)}] + QX(α) · (α−P[X ≤ QX(α)])

)
− E[X].

Theorem 5.2. For a �xed α ∈ [0, 1] set

1. s1(ω) = ω

2. s2(ω) = 1]α,1](ω) + ω

3. s3(ω) =
ω

α
· 1[0,α] + 1]α,1] + ω
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Then the following identities hold

1. CoRs1(X) = −E[X] for all X ∈ Ds1 with lim
ε→0

εQX(ε) = 0 .

2. CoRs2(X) = −VaRα(X) for all X ∈ Ds2 = L .

3. CoRs3(X) = −TVaRα(X) for all X ∈ Ds3 with lim
ε→0

εQX(ε) = 0 .

Proof. 1. As s is continuous the equation (4) simpli�es to

CoRs1(X) = −
∫ 1

0

QX(ω)dω.

If we �rst assume that FX has a density f . Then by substituting ω = FX(x)
we get

CoRs1(X) = −
∫

R
QX ◦ FX(x) · f(x)dx.

For x ∈ supp(f) we have the identity QX ◦ FX(x) = x . On the other hand
f(x) = 0 for x /∈ supp(f) . Hence the value of the integral is not changed if we
replace the integrand with x · f(x) , which shows the proposition.

Now we assume that FX is discrete and concentrated on x1,x2,... with αi =
P(X = xi) , then the upper quantile function can be written as

QX(ω) = xi,
∑

{j:xj<xi}

αj ≤ ω <
∑

{j:xj<xi}

αj + αi.

From this it is clear that

−
∫ 1

0

QX(ω)dω = −
∞∑

i=1

xi · αi = −E[X].

The proof for a mixed distribution then is clear.

2. This is a straight forward calculation of the de�nition integral.

3. Again we are using the equation (4) and consider that the measure ds3 is
zero on the interval ]α, 1]

CoRs2(X) = −
∫ 1

0

QX(ω)ds3 = − 1
α

∫ α

0

QX(ω)dω − E[X].

With the same logic as under 1. the result follows.
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6 Coherence of CoRs

Coherence is a property, or rather a set of properties, introduced by Artzner et
al. in [3] that is in the literature deemed to be desirable or even required for
application in risk management of an insurance company. For easy reference we
shall here quote the de�nition from [2]:

De�nition 6.1. A risk measure ρ being a mapping ρ : L → R is called coherent

if it satis�es the following properties:

1. Translational invariance: ρ(X +α) = ρ(X)−α for all X ∈ L and α ∈ R .

2. Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X, Y ∈ L .

3. Positive homogeneity: ρ(λX) = λρ(X) for all X ∈ L and all λ ≥ 0 .

4. Monotonicity: ρ(X) ≤ ρ(Y ) for all X, Y ∈ L with2 X ≥ Y P -a.s.

Further on we will restrict us to the set of centered random variables L0 = {X ∈
L:E[X] = 0} , which renders the condition 1 of the coherence obsolete.

It is a well known fact that TVaR is coherent, but VaR is not. Hence from the
theorem in the prior chapter it is clear that the family of CoRs -risk-measures
is not in general coherent. In this chapter a su�cient criteria in respect of s for
the coherence of the induced CoRs-risk-measures will be established.

Lemma 6.2. 1. Let s1,s2 be spreads for which CoRs1 ,CoRs2 are coherent

on L0 ∩ Ds1 and on L0 ∩ Ds2 respectively. Then CoRs1+s2 is coherent on

L0 ∩ Ds1 ∩ Ds2 .

2. Let s1,s2,... be a sequence of spreads for which all CoRsi
are coherent on

L0 ∩ Dsi
and with si(x) ≤ sj(x) for all x ∈ [0, 1]. If the series converges

point wise to a spread s, the CoRs is coherent on L0 ∩
⋂
i∈N

Dsi .

Proof. From the integral de�nition it is clear that CoRs1+s2 = CoRs1 +CoRs2 .
The proof of 1. is a straight forward calculation. Similarly it is clear that
CoRs = lim

i→∞
CoRsi

. Then again the proof of 2. becomes a straight forward

calculation.

Theorem 6.3. Let s be a continuous spread and concave in the sense that for

every 0 ≤ α1 < α2 ≤ 1 it holds that s(ω) ≥ s(α1) + (ω−α1) ·
s(α2)− s(α1)

α2 − α1
for

every α1 ≤ ω ≤ α2 . Then CoRs is coherent.

Proof. We want to approximate s from below with a sequence of spreads that
are �nite sums of TVaR-type spreads. To this end let αi,j = j/2i for i ∈ N

2The applicable condition is X ≥ Y in the case of result distribution and X ≤ Y on loss

distributions.
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and j = 0, ..., 2i. If we denominate the growth of s from αi,j−1 to αi,j with

δi,j =
1
2i

(s(αi,j)− s(αi,j−1)) it follows that the series

si(ω) :=
2i∑

j=1

((ω − αi,j−1) · δi,j + s(αi,j−1)) · 1[αi,j−1,αi,j [(ω) + s(1) · 1{1}.

converges to s(ω) from below and it is su�cient to show that the induced CoRsi

are coherent. If we can show that si can be decomposed into the recursively
de�ned

si,j(ω) := ω · (δi,j − δi,j+1)1[0,αi,j [(ω) + αi,j · (δi,j − δi,j+1)1[αi,j ,1](ω))

with the convention of δi,2i+1 the issue reduces to showing that the CoRsi,j
are

coherent. The si,j again have the form of a TVaR-type spread (on L0) multiplied
by a factor. As this factor according to the concavity criteria is positive, they
are indeed coherent. On the other hand

d

dω

2i∑
j=1

si,j(ω0) = δi,j =
d

dω
si(ω0), ∀ω0 ∈ ]αi,j−1, αi,j [

and
∑

si,j(0) = 0. As the si,j as well as the si have been constructed continuous

this yields the proposition.

7 Cost allocation

In analogy to [4] the CoRs can be seen as a cost per percentile layer. Likewise
it can be allocated to individual risk drivers. Say the total result of a �rm
(denoted by the random variable X) is composed of the result of two divisions
denoted by Y and Z, i.e. X = Y + Z.

For applications X can be assumed to be bounded and concentrated on a �nite
probability space: In practical situations a numerical approximation method like
a Monte Carlo simulation will be used thus e�ectively reducing the problem to a
discrete probability space. Likewise the condition of bounded random variables
will not be an issue. The potential loss will certainly be lower than the world's
GDP.

Hence we let Ω = {ω1, ω2, ..., ωn} with xi = X(ωi), pi = P(ωi),
n∑

i=1

pi = 1.

Thereby the index shall be selected thus that the series of possible results is not

descending, i.e. xi ≤ xj ,∀1 ≤ i ≤ j ≤ n. With the partial sums αi :=
∑
j≤i

pj it
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follows that QX(ω) = xi, ∀αi−1 ≤ ω < αi and hence

CoRs(X) = −
n∑

i=1

s(αi)(xi+1 − xi) = −
n∑

i=1

[s(αi−1)− s(αi)]xi. (6)

Letting yi := Y (ωi) and zi := Z(ωi) this yields a natural decomposition of CoRs

into

CoRs(X) = −
n∑

i=1

[s(αj−1)− s(αj)] yi −
n∑

i=1

[s(αj−1)− s(αj)] zi. (7)

It has to be noted that the series yi and zi are not necessarily any more non-
decreasing. Of course the two sums on the right of 7 could be resorted accord-
ingly. But the spread function will generally be di�erent. In fact the dependency
structure of Y and Z will have to be factored into the spreads applied to the
two random variables.

8 A practical example

For this example we will consider a mono line company, only writing motor
third party liability, for which we will estimate its cost for �nancing its capital
on markets and allocate the cost between the risk drivers.

The annual premium volume is taken as 20mEUR and the best estimate re-
serve is set at 60mEUR. Volatility and distribution assumptions for premium
and reserve risk are taken as per the QIS3 parametrization (see [9]) to be 10%
and 12,5% respectively and a lognorml distribution. The mean expected in-
surance result in both cases has been set to 0. Investments are assumed to
be entirely made in �AAA´´ rated government bonds with matched term and
currency structure.

The spread function is calibrated to market observations. Given the market
turmoil during 2008 data used will be as at the beginning of 2008. For ease of
reference bond returns have been taken from a German investment magazine
that also includes Standard & Poor's ratings. Hence in an additional step these
ratings need to be linked to default probabilities. The rating classes have been
mapped to an index according to S&P1 := AAA, S&P2 := AA+, S&P3 := AA,
etc.

As a �rst step the observed one year defaults as published in [7] have been used
as a basis. A logarithmic model has been �t to the measured data by minimizing
the squared relative error using the solver of Microsoft EXCEL:

P(Default in class S&Pi) = 2, 6 · 10−5 · ei·0,52. (8)

The graphical �t in logarithmic scaling is shown in �gure 1.

The second step of mapping spreads to rating classes has been based on the bond
lists published in [8]. This data only contains the annualized return denoted by
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Figure 1: Fit of default to rating class

r and not the spread over the risk free rate. Again the raw data has been
smoothed using a logarithmic model �t minimizing the mean squared error:

r(S&Pi) = 3, 84% + 0, 27% · ei·0,2. (9)

In this model the 3, 84% are the risk free return. The graphical �t is shown in
�gure 2.

It is easy to solve equation (8) for the index i and substitute it in equation (9),
which yields the fairly simple expression

s(ω) = 15, 5% · x0,384. (10)

Through using the �tting approach the risk measure has been extended from a
discrete measure on the rating classes to a continuous spread function. From
theorem 6.3 it follows that it induces a coherent risk measure CoRs.

For an estimate of the cost of the risk of the company described above, a sim-
ple Monte Carlo simulation approach with 1.000 iterations has been taken and
formula 6 was used. To re�ect the correlation as per [9] of 50% between the
premium and reserve risk, for each iteration three independent uniform random
numbers R1, R2, R3 between 0 and 1 have been generated in Microsoft EXCEL.
The partially dependent numbers 0, 5 · (R1 + R3) and 0, 5 · (R2 + R3) then have
been transformed back with the built in lognormal percentile function, centered
to re�ect the zero expectation on the insurance result and summed in the iter-
ation xi of the corporate result.

The result of the calculation is a cost of risk of 1,2mEUR. The 200 year value
at risk, i.e. the expected Solvency II level of con�dence, in this simulation run
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Figure 2: Fit of return to rating class

has been 26mEUR. So the cost of risk over solvency capital would yield 4,5%,
which has to be added on top of the risk free rate of 3,8% to arrive at a total
expected return of 8,4% on solvency capital. This seems to be i a reasonable
range.

As a byproduct the total cost of risk has been decomposed according to section
7 to 12% premium risk and 88% reserve risk. At a �rst glance this might seem
odd given the experience in German motor business. However, it needs to be
kept in mind, that in the model we have taken the reserves to be set at best
estimate without any prudence margin. The decomposition is fairly close to the
allocation that would have been seen in a covariance allocation (14% and 86%).

9 Caveats and Calibration

The CoRs theory described in this paper has the advantage of being an inte-
grated approach to measure the cost of risk including a �natural� decomposition.
There are no three potentially disjoint approaches for measuring the amount of
capital, the cost of the capital and the allocation to lines of business. Nonethe-
less there is a certain degree of freedom in selecting the appropriate spread
function s for an application.

When thinking about the return to shareholders perspective, the spread function
can be estimated from the capital markets as shown in section 8. The �ip side
of this approach is the dependency of any valuation on psychological aspects
during times of market turmoil as witnessed during 2008. Also the approach
taken to use ratings of bonds to classify their risk is probably not the ultimate
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solution. And �nally in the presented model there is no consideration of partial
defaults or downgrades of a bond.

Another question that needs awareness when using the presented model in valu-
ing a company or individual business segments is the asymmetry of information.
If the valuation is done from inside the company there is a maximum knowledge
about the most appropriate distribution of the results X. An external investor
will typically not have the full picture and use di�erent sources of information to
form his opinion. This is particularly important when thinking about a compar-
ison of the CoRs model with a CAPM valuation. The CAPM re�ects a market
consensus and hence does not bene�t from the internal view.

For an undertaking that has a CAPM valuation this could be used to regularly
recalibrate the �raw�, purely internal model CoRraw

s with an adjustment factor

λ :=
CAPM

CoRraw
s

.

Thus the model can serve as an approximate predictor of how changes in the
risk pro�le of the undertaking can impact its value.
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