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Abstract 
 
The most popular approach to synthetic CDO pricing uses factor models in the conditional 
independence framework, which were first introduced by Vasicek to estimate the loan loss 
distribution of a pool of loans. Efficient methods for evaluating the loss distributions of 
synthetic CDO’s are important for both pricing and risk management purposes. In the 
framework of the one-factor Gaussian copula model, we propose an approximate but quasi-
exact numerical recursive evaluation using pseudo compound Poisson distributions. For the 
sake of illustration and comparison we have computed a number of more or less complex 
cases, whose approximations turn out to be highly accurate in all considered examples. 
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1.   Introduction 
 
Collateralized debt obligations (CDO) are among those structured financial products, which 
had an important impact during the ongoing sub-prime mortgage crisis. The Wikipedia entry 
http://en.wikipedia.org/wiki/Subprime_mortgage_crisis claims that Merrill Lynch's large 
losses in 2008 were attributed in part to the drop in value of its un-hedged portfolio of CDO’s 
after AIG ceased offering credit default swaps (CDS) on Merrill's CDO’s. Knowledge of the 
risk characteristics of synthetic CDO’s is important for understanding the nature and 
magnitude of credit risk transfer. In particular, efficient methods for evaluating the loss 
distributions of synthetic CDO’s are important for both pricing and risk management 
purposes. Recall some known methods, which can be divided into several groups as follows: 
 
Analytical and Semi-Analytical Methods 
 
Through simplification of the pricing models analytical or at least semi-analytical pricing 
expressions can be obtained. Factor models, such as the reduced-form model proposed by 
Laurent and Gregory(2003) and the structural model proposed by Vasicek(1987/91/2002) 
(see also Li(2000), Bluhm et al.(2002), Section 2.5.1, Gordy(2003)) are widely used in 
practice to obtain analytic or semi-analytic formulas to price synthetic CDO’s efficiently. For 
a comparative analysis of different factor models, we refer to the paper by Burtschell et 
al.(2005/08). Further interesting analytical models in this area include Kalemanova et 
al.(2005) and Lüscher(2005), which use normal inverse Gaussian distributions, and 
Bee(2007), which extends Vasicek’s asymptotic model to general non-normal systematic risk 
factors. 
 
Monte Carlo Method 
 
From a computational point of view, Monte Carlo simulation is the last resort because of its 
inefficiency, despite its flexibility, and is not discussed further. 
 
Exact Evaluation Methods 
 
The available numerical methods assume that the loss-given-defaults of all obligors are 
integer multiples of a properly chosen monetary unit (common lattice assumption). Exact 
methods have been given by Andersen et al.(2003), Laurent and Gregory(2003), and by Hull 
and White(2004). A discussion of these methods, a multi-state extension, as well as a stable 
and efficient reformulation of the Hull and White method are found in Jackson et al.(2007).  
 
Quasi-Exact Evaluation Method 
 
Approximate numerical evaluation of the pool’s loss distribution is possible. An example is 
the compound Poisson approximation by De Prisco et al.(2005). Following Jackson et 
al.(2007) improved and almost exact accuracy can be obtained using the so-called pseudo 
compound Poisson approximations by Hürlimann(1990) in the form proposed by Hipp(1986) 
and Hipp and Michel(1990). The present mathematical specification, written in the spirit of 
Dunbar(2003), is devoted to the latter quasi-exact numerical method. 
 
      The exposé is organized as follows. Section 2 recalls the pricing model for synthetic 
CDO’s. Section 3 presents the approximate and quasi-exact evaluation using pseudo 
compound Poisson distributions and Section 4 illustrates its use at some simple examples.  
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2.   Pricing model 
 
 
2.1. Fair spread 
 
      A synthetic collateralized debt obligation, or synthetic CDO, is a transaction that transfers 
the credit risk on a reference portfolio of assets. The reference portfolio in a synthetic CDO is 
made up of credit default swaps or CDS’s. Thus, a synthetic CDO is classified as a credit 
derivative. Much of the risk transfer that occurs in the credit derivatives market is in the form 
of synthetic CDO’s. Understanding the risk characteristics of synthetic CDO’s is important 
for understanding the nature and magnitude of credit risk transfer. For an excellent 
introduction to this subject we refer to Gibson(2004). 
      Consider a synthetic CDO tranche of size   �   with an attachment point  , a threshold that 
determines whether some of the pool losses shall be absorbed by this tranche. If the realized 
losses of the pool are less than  , then the tranche will not suffer any loss, otherwise it will 
absorb losses up to its size   �. The threshold  � � ℓ  is called the detachment point of the 
tranche. Assume there are  �  names in the pool. For name  � � �1, … ,��, its notional value 
and the recovery rate of the notional value of the reference asset are denoted by  �
  and  �
, 
respectively. Then the loss-given-default or the recovery-adjusted notional value of name  �, 
is  ���
 � �
 · �1 � �
�. Let  0 � �� � �� � �� � � � �� � �  be the set of premium dates, with  �  
denoting the maturity date of the CDO tranche. Assume that the interest rates are 
deterministic. Then the set of (risk-free) discount factors for the given payment dates, 
denoted by  ��, ��, … , ��, are deterministic. Let  � !  be the pool’s cumulative losses up to time  
� , " � �1, … , #�. Then the losses absorbed by the specified tranche up to time  � , denoted by  � , 
is  � � �"#��� ! � ℓ�$, ��, where  %$ � �&%�%, 0�. The function  '�� !; �, ℓ� � �"#��� ! � ℓ�$, ��,   is 
called the payoff function of the specified tranche. In actuarial science a similar payoff 
function is used to define the limited stop-loss reinsurance, where  � !  represents the 
cumulative claims up to the  " � �)  claim, with the difference that the number of claims  #  up 
to the maturity date  �  of the reinsurance contract is random and not deterministic. 
      Assume that the fair spread for the tranche is a constant  *  per annum. The two important 
quantities to be determined in synthetic CDO tranche valuation are the present value of the 
default leg (the expected losses of the tranche over the life of the contract), called contingent, 
and the present value of the premium leg (the expected premiums that the tranche investor 
will receive over the life of the contract), called fee. Mathematically, one has the following 
definitions and relationships: 
 
default leg:  �� � ∑ � �� � � ,��� -�  
 
premium leg:  .� � * · ∑ � Δ0�� � � �� -� ,   Δ � � � � ,� 
 
contingent:  .2���� � ∑ � 34� � � ,�5� -� ,   34��5 � 0 
 
fee:   .2�.�� � * · ∑ � Δ0�� � 34� 5�� -�  
 
The market-to-market value of the tranche to the tranche investor today is equal to 
 
    6�6 � 788 � 9:#�"#;8#� 
 
The fair spread solves the pricing equation  6�6 � 0, and is given by 
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* � ∑ <=34>=,>=?@5A=B@∑ <=CD�E,34>=5�A=B@ ,   34��5 � 0.    (2.1) 

 
With (2.1) the valuation problem is reduced to the computation of the expected cumulative 
losses  34� 5, " � 1,… , #. In order to compute these expectations, one has to specify the default 
processes for each of the names and the correlation structure of the default events. 
 
 
2.2. One-factor model 
 
      The most popular approach to synthetic CDO pricing uses factor models in the 
conditional independence framework. They were first introduced by Vasicek(1987) to 
estimate the loan loss distribution of a pool of loans. We will use a one-factor model. 
      Let  �
  be the random default time of name  � � �1, … ,��  and assume that the risk-neutral 
default probabilities  F��, "� � G��
 � � �, " � 1, … , #, � � 1,… ,�, are available as input. The 
latter quantities can be estimated from CDS single-name spreads (e.g. Duffie and 
Singleton(1999), Hull and White(2000), Arvantis and Gregory(2001)). The dependence 
structure of the default times is determined by the creditworthiness indices  H
  through a one-
factor copula and are defined by 
 

H
 � IJ
K � I1 � J
L
, with     (2.2) 
 
K  :  systematic risk factor 
L
  :  idiosyncratic factors 
J
� � �0,1�         :  correlation factors 
 
One assumes that the  L
’s  are mutually independent and also independent of  K. The risk-
neutral default probabilities and the creditworthiness indices are related by the copula model 
 

F��, "� � GMH
 � N
�� �O, " � 1,… , #, � � 1,… , �,   (2.3) 
 
where  N
�� �  is the default threshold of the  � � �)  name at time  � . The copula model was 
first introduced by Li(2000) and then used in portfolio credit risk analyses, including 
synthetic CDO valuation, by Gordy and Jones(2003), Hull and White(2004), De Prisco et 
al.(2005), Laurent and Gregory(2005), and Schönbucher(2003) among others. 
      One notes that the correlations of the default events are captured by the systematic risk 
factor  K  and conditional on a given value  %  of  K, all default events are independent. If one 
assumes furthermore that  K  and  L
  follow standard normal distributions, then one obtains 
the so-called one-factor Gaussian copula model. In this standard model one has the 
relationships 
 

(i) N
�� � � Φ,�MF��, "�O 
(ii)  Q:RSH
 , HTU � IJ
JT 
(iii)  F��, "|%W� � G�H
 � N
�� �|K � %W� � ΦXY?@MZ�
, �O,I[\]^

I�,[\ _ 

 
where  Φ�`�  is the standard normal distribution, and (iii) represents conditional risk-neutral 
default probabilities.  
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Remarks 2.1.  The one-factor Gaussian copula model can be extended in various ways: 
 
·   If  K  is a random vector, one obtains a multi-factor copula model 
·   If  K  and  L
  follow Student-t distributions with different degrees of freedom, one obtains 
    the double-t copula model in Hull and White(2004) 
·   If  K  and  L
  follow normal inverse Gaussian distributions one obtains models of the type 
    considered in Kalemanova et al.(2005) and Lüscher(2005) 
·   Further generalizations are found in Burtschell et al.(2005), Bee(2007) and Albrecher et  
    al.(2007). 
 
In the above conditional independence framework, the expected cumulative tranche losses  
34� 5, " � 1,… , #  can be computed as 
 

34� 5 � a 34� |K � %W5bΦ�%�c
,c  ,    (2.4) 

 
where  34� |K � %W5 � 34�"#��� ! � ℓ�$, ��|K � %W5  is the expectation of the tranche loss  �  
conditional on  K � %. Clearly one has 
 

� ! � ∑ ���
 · deH
 � Φ,�MF��, "�Ofg
-� ,    (2.5) 
 
where the random indicators  deH
 � Φ,�MF��, "�Of  are mutually independent conditional on  K. 
With (2.5) the valuation problem is further reduced to the computation of the conditional 
expected cumulative losses  34� |K � %W5, " � 1,… , #. A quasi-exact recursive algorithm for this 
is developed in the next Section. 
 
Remarks 2.2.  An alternative way to evaluate  34� |K � %W5  consists to approximate the CDO 
tranche payoff function  '�� !; �, ℓ� � �"#��� ! � ℓ�$, ��  by a sum of exponentials over the 
interval  40, W∞�W  as proposed by Iscoe et al.(2007a/b). 
 
 
3.  Recursive evaluation via pseudo compound Poisson distributions 
 
      For convenience the systematic risk factor is fixed at some value  K � %. Random sums of 
the type (2.5) with mutually independent terms are well-known in actuarial science under the 
heading of “individual model of risk theory”. Methods to evaluate its distribution function 
have been designed by many authors including Kornya(1983), Hipp(1986), De Pril(1986/89),  
Dhaene and De Pril(1994), Hürlimann(1989/90/2004), Sundt and Vernic(2009). The main 
basic idea consists to consider approximations to the characteristic function of (2.5) and 
develop recursive algorithms for the evaluation of the corresponding distribution functions. 
By adequate choice of the approximation, the evaluation can be made as accurate as desired.  
      Conditional on  K � %  the characteristic function of the random sum (2.5) is given by 
 

j��� � ∏ j
���g
-� ,   j
��� � 8%'�l#41 � 9
 · �8 m·>n<o � 1�5�,  (3.1) 
 
where for simplicity of notation the shortcut  9
 � F��, "|%W�  is used. Hipp(1986) and Hipp and 
Michel(1990), Chapter 4, define the  p � �)  order approximation of (3.1) for small  9
  by 

truncating the logarithmic expansion  l#�1 � %� � ∑ �,��qr@
T %TcT-�   at the  p � �)  term to get the 

expression 

j�s���� � 8%' t∑ ∑ �,��qr@
T 49
 · �8 m·>n<o � 1�5TsT-�g
-� u ,   p � 1,2, …   (3.2) 
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For  p � 1  (3.2) can be rewritten as 
 

j������ � 8%'�w��x���� � 1��,   w� � ∑ 9
g
-� ,   x���� � �
y@ · ∑ 9
 · 8 m·>n<og
-� ,  (3.3) 

 
which is the characteristic function of a compound Poisson distributed random variable with 
Poisson parameter  w�  and probability function 
 

)��z� � �
y@ · ∑ 9
>n<o-{ ,   z � 1,2, …        (3.4) 

 
Similarly, for all  p | 2,  (3.2)   can also be rewritten in the form  j�s���� � 8%'ewsMxs��� � 1Of, 
which corresponds in the terminology of Hürlimann(1990) to the characteristic function of a 
pseudo compound Poisson distributed random variable with Poisson parameter  ws  and 
pseudo probability function  )s�z�. Through calculation one obtains the following formulas 
for the approximations of smaller order  p � 2,3,4  (use Hipp and Michel(1990), p.79-80): 
 
J=2 
 
w� � ∑ 9
g
-� · �1 � �

� 9
�  
)��z� � �

y� · �∑ 9
 · �1 � 9
�>n<o-{ � �
� · ∑ 9
��·>n<o-{ � ,   z � 1,2, …  

 
 
J=3 
 
w� � ∑ 9
g
-� · �1 � �

� 9
 � �
� 9
��  

)��z� � �
y� · �∑ 9
 · �1 � 9
 � 9
��>n<o-{ � ∑ 9
� · ��

� � 9
��·>n<o-{ � �
� · ∑ 9
��·>n<o-{ � ,   z � 1,2, …  

 
 
J=4 
 
w� � ∑ 9
g
-� · �1 � �

� 9
 � �
� 9
� � �

� 9
��  
)��z� � �

y� · �∑ 9
 · �1 � 9
 � 9
� � 9
��>n<o-{ � ∑ 9
� · ��
� � 9
 � �

� 9
���·>n<o-{ �W
W∑ 9
� · ��

� � 9
��·>n<o-{ � �
� · ∑ 9
��·>n<o-{ � ,   z � 1,2,…    

 
 
At this stage some mathematical comments are in order. The functions  )s�z�  do not define 
true probability measures but only signed measures. The conditions under which a pseudo 
compound Poisson distribution with Poisson parameter  w  and pseudo probability function  
)�z�,   z � 1,2, …  defines a true probability distribution have been identified in Lévy(1937). 
According to Lukacs(1970), p.252, and Johnson et al.(1992), p.356, this is the case provided 
a negative value  )�z� � 0  is preceded by a positive value and followed by at least two 
positive values. This criterion is not always fulfilled in Example 4.4. It is fulfilled for  p � 1,3  
but not for  p � 2,4. However, the latter anomaly does not disturb the obtained results. Another 
remarkable property of the pseudo compound Poisson approximations by Hipp has been 
derived in Dhaene et al.(1996). The distribution function corresponding to the  p � �)  order 
approximation of (3.1) has the same first  p  moments as the original distribution 
corresponding to (3.1). In particular, the  4 � �)  order approximation fits the mean, variance, 
skewness and kurtosis of the original distribution. More importantly, the probability function  
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7�`�,   ` � 0,1,2, …  of a pseudo compound Poisson distribution with Poisson parameter  w  and 
pseudo probability function  )�z�,   z � 1,2, … can be evaluated using the simple Panjer 
recursion formula (e.g. Hürlimann(1990), formula (1.5)): 
 

7�0� � 8,y,     ` · 7�`� � w · ∑ z · )�z� · 7�` � z��{-� ,   ` � 1,2, …   (3.5) 
  
As shown by Panjer and Wang(1993), this recursive algorithm is numerically stable. Finally, 
increasing the order of approximation to infinity guarantees arbitrary accuracy and 
convergence to the probability distribution corresponding to (3.1). Let  ��`�,   ��s��`�  be the 
distribution of (3.1) and its  p � �)  order approximation. According to Hipp and 
Michel(1990), p.80, one has the error bound 
 

���`� � ��s��`�� � 8� � 1,   � � ∑ �
g
-� ,   �
 � �
s$� · ���o��r@

�,��o ,   9
 � �
�.   (3.6) 

 
In particular, letting  p � ∞   this shows convergence of the chosen approximation method. 
 
 
4.   Numerical examples 
 
      So far we have developed a convergent recursive algorithm for the evaluation of the 
probability function associated to the pool’s cumulative loss (2.5) conditional on a given 
value of the systematic risk factor. For fixed  p � �1,2,3,4�, denote by  7 !,s�`|%W�  the  p � �)  order 
approximation of the conditional probability function G�� ! � `|K � %W�  associated to (2.5), 
which has been calculated using the recursive algorithm (3.5) with Poisson parameter  w � ws  
and pseudo probability function  )�z� � )s�z�  as specified in Section 3. To obtain the 
cumulative tranche losses (2.4) we first calculate the unconditional probability function of 
(2.5) via numerical integration as follows: 
 

7 !,s�`� � a 7 !,s�`|%W�bΦ�%�c
,c � C

� · ∑ 7 !,s �` �Δ · �
� W� � �Δ · �

����-,� ,      (4.1) 
 
where  ���� � Φ����  is the standard normal probability density. In our numerical examples the 
choice  Δ � 5,� � 500, has been appropriate. Associated to (4.1) we compute the probability 
distribution function setting 
 

� !,s�`� � ∑ 7 !,s�z��{-� ,   ` � 0,1,2, …     (4.2) 
 
and the stop-loss transform  �� !,s�`� � 3s4�� ! � `�$5  via the recursion 
 

�� !,s�0� � 34� !5 � ∑ F��, "����
g
-� ,   �� !,s�` � 1� � �� !,s�`� � 1 � � !,s�`�. (4.3) 
 
The  p � �)  order approximation of the expected cumulative tranche losses (2.4) is then 
obtained by setting 
 

3s4� 5 � 3s4�"#��� ! � ℓ�$, ��5 � �� !,s�ℓ� � �� !,s�ℓ � ��.   (4.4) 
 
Inserting the obtained values into (2.1) one gets  p � �)  order approximations of the fair 
spreads of synthetic CDO’s, which with increasing approximation order will convergence to 
the exact fair spread. For the sake of illustration and comparison we have computed a number 
of more or less complex cases. 
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Example 4.1:  completely homogeneous pool 
 
Suppose that there are  � � 100  names in the pool, each with identical loss-given-default 
���
 � �
 · �1 � �
� � 1. Let  � � ", " � 1,… ,5  be the premium dates,  � � 5  the maturity date. 
Each name in the pool has risk-neutral default probabilities  F��, "� � F�"� � 1 � 8,�.��· , " �
1,… ,5, and let  J
 � J � 30%  be the identical correlation factors of the one-factor Gaussian 
copula model. The discount factors are based on a risk-free flat interest rate of 5%. In this 
completely homogeneous situation the conditional probability function of (2.5) is exact 
binomially distributed such that 
 

7 !�`|%W� � ��̀� F�"|%W��M1 � F�"|%W�Og,� , ` � 0,… , �,   (4.5) 
 

with  F�"|%W� � Φ XY?@�Z� ��,I�·�
I�,� _.  The approximation of order  p � 1  is exact conditional Poisson 

distributed with parameter  w� � � · F�"|%W�. Moreover as  � � ∞  the large portfolio Vasicek 
limiting distribution holds such that 
 

� !�`�  � Φ�I�,�·Y?@� �
��,Y?@���0��
I� � , ` � 0, … ,�.   (4.6) 

 
The Table 4.1 below summarizes the results of par spread calculation for three CDO tranches, 
an equity tranche between  0  and  3  defaults, a mezzanine tranche between  3  and  10  
defaults and a senior tranche between  10  and (maximally)  100  defaults. A comparison of 
the results shows that the exact results up to the third decimal place are already attained for 
the pseudo compound Poisson approximation of order J � 2. The Poisson approximation of 
order  J � 1  underestimates the spreads of the lower tranches while the Vasicek 
approximation is definitely not appropriate in this situation (overestimation of the equity and 
mezzanine tranches and underestimation of the senior tranche). 
 
Table 4.1:  par spreads for the completely homogeneous pool 
 
     par spread for different distributions 
CDO tranches J=1 J=2 J=3 J=4 exact Vasicek 
equity 21.794% 21.875% 21.876% 21.876% 21.876% 26.095% 
mezzanine 6.004% 6.024% 6.024% 6.024% 6.024% 6.488% 
senior 0.271% 0.269% 0.269% 0.269% 0.269% 0.201% 

 
Example 4.2:  sub-pools with varying correlation factors and risk-neutral default 
probabilities 
 
Suppose that there are    sub-pools with 20  names in each sub-pool, each with identical loss-
given-default  ���
 � �
 · �1 � �
� � 1. Let  � � ", " � 1,… ,5  be the premium dates,  � � 5  be 
the maturity date. Each name in the sub-pool  � � �1, … ,5�  has risk-neutral default 
probabilities  F��, "� � 8,��.��¡$�.��¡·
�· , " � 1,… ,5, and correlation factors  J
 � 0.25 � 0.05 · �. 
There is a risk-free flat interest rate of 5%. In contrast to Example 1, the attachment and 
detachment of the CDO tranches are expressed in units of loss amounts. We consider three 
CDO tranches, an equity tranche between    and  10  loss units, a mezzanine tranche between  
10  and  25  loss units, and a senior tranche between  25  and  100  loss units. Table 4.2 shows 
that the spreads of the pseudo compound Poisson approximation of order  p � 3  are exact 
within three decimal places while the approximations of order   p � 2  differ only slightly. 
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Table 4.2:  par spreads for the partially inhomogeneous pool of Example 2 
 
  par spread for different distributions 
CDO tranches J=1 J=2 J=3 J=4 
equity 15.524% 15.585% 15.586% 15.586% 
mezzanine 4.184% 4.207% 4.211% 4.211% 
senior 0.408% 0.400% 0.399% 0.399% 

 
 
Example 4.3:  sub-pools with varying loss-given-defaults 
 
Suppose that there are    sub-pools with 20  names in each sub-pool, each name with loss-
given-default  ���
 � �
 · �1 � �
� � �, � � 1,… ,5. Let  � � ", " � 1,… ,5  be the premium dates,  
� � 5  be the maturity date. Names in the sub-pools have identical risk-neutral default 
probabilities  F��, "� � F�"� � 1 � 8,�.��· , " � 1,… ,5, and correlation factors  J
 � J � 30%.  
There is a risk-free flat interest rate of 5%. As in Example 2 there are three CDO tranches, an 
equity tranche between    and  10  loss units, a mezzanine tranche between  10  and  25  loss 
units, and a senior tranche between  25  and  100  loss units. Table 4.3 shows that the spreads 
of the pseudo compound Poisson approximation of order  p � 3  are exact up to three decimal 
places while the approximations of order   p � 2  differ only slightly. 
 
Table 4.3:  par spreads for the partially inhomogeneous pool of Example 3 
 
  par spread for different distributions 
CDO tranches J=1 J=2 J=3 J=4 
equity 19.880% 19.964% 19.965% 19.965% 
mezzanine 6.616% 6.645% 6.645% 6.645% 
senior 1.174% 1.183% 1.187% 1.188% 

 
 
Example 4.4:  inhomogeneous pool 
 
Let us combine the features of Example 2 and 3. Suppose that there are    sub-pools with 20  
names in each sub-pool, each name with loss-given-default  ���
 � �
 · �1 � �
� � �, � �
1,… ,5. Let  � � ", " � 1,… ,5  be the premium dates,  � � 5  be the maturity date. Each name in 
the sub-pool  � � �1, … ,5�  has risk-neutral default probabilities  F��, "� � 1 � 8,��.��¡$�.��¡·
�· , " �
1,… ,5, and correlation factors  J
 � 0.25 � 0.05 · �. There is a risk-free flat interest rate of 5%. 
As in the Examples 2 and 3 there are three CDO tranches, an equity tranche between    and  
10  loss units, a mezzanine tranche between  10  and  25  loss units, and a senior tranche 
between  25  and  100  loss units. Table 4.4 shows that the spreads of the pseudo compound 
Poisson approximation of order  p � 3  are exact up to two decimal places while the 
approximations of order   p � 2  differ only slightly from the exact values. 
 
Table 4.4:  par spreads for the inhomogeneous pool of Example 4 
 
  par spread for different distributions 
CDO tranches J=1 J=2 J=3 J=4 
equity 25.954% 26.087% 26.091% 26.091% 
mezzanine 11.002% 11.078% 11.080% 11.080% 
senior 3.002% 3.060% 3.076% 3.082% 
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The analyzed numerical examples allow for the following conclusions. The approximations 
of order  p � 3,4  yield quasi-exact spreads for CDO tranches. The approximation of order   
p � 2  yields almost accurate spreads, which can be used in practical applications. The spreads 
from the compound Poisson approximation  p � 1  differ already too much to be reliable in 
general. 
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