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Abstract 

In this paper, we analyze traditional (i.e. not unit-linked) life insurance contracts with a 
guaranteed interest rate and surplus participation. We consider three different surplus 
distribution models and an asset allocation that consists of money market, bonds with 
different maturities and stocks. In this setting, we combine actuarial and financial approaches 
by selecting a risk minimizing asset allocation (under the real world measure P ) and 
distributing terminal surplus such that the contract value (under the pricing measure Q ) is 
fair. We prove that this strategy is always possible unless the insurance contracts introduce 
arbitrage opportunities in the market. We then analyze differences between the different 
surplus distribution models and investigate the impact of the selected risk measure on the 
risk minimizing portfolio. 
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1 Introduction 
Interest rate guarantees are a very common product feature within traditional participating life 
insurance contracts in many markets. There are two major types of interest rate guarantees: 

The simplest interest rate guarantee is a so-called point-to-point guarantee, i.e. a guarantee 
that is only relevant at maturity of the contract. Another type is called cliquet-style (or year-
by-year) guarantee. This means that the policy holders have an account to which every year 
a certain rate of return has to be credited. Usually, life insurance companies provide the 
guaranteed rate of interest plus some surplus on the policy holder's account every year. 

Cliquet-style guarantees of course may cause significant problems in years of low interest 
rates and plunging stock markets. They may force insurers to provide relatively high 
guaranteed rates of interest to accounts to which a big portion of past years' surplus has 
already been credited. Adverse capital market scenarios of recent years appeared to have 
caused significant problems for insurers offering this type of guarantee. Therefore, the 
analysis of traditional life insurance contracts with cliquet-style guarantees has become a 
subject of increasing concern for the academic world as well as for practitioners. 

There are financial and actuarial approaches to handling financial guarantees within life 
insurance contracts. The financial approach is concerned with risk-neutral valuation and fair 
pricing and has been researched by various authors such as Bryis and de Varenne (1997), 
Grosen and Jørgensen (2000), Grosen and Jørgensen (2002) or Bauer et al. (2006). Note 
that the concept of risk-neutral valuation is based on the assumption of a perfect (or super-) 
hedging strategy, which insurance companies normally do not or cannot follow (cf. e.g. Bauer 
et al. (2006)). If the insurer does or can not invest in a portfolio that replicates the liabilities, 
the company remains at risk and should therefore additionally perform some risk analyses. 
The actuarial approach focuses on quantifying this risk with suitable risk-measures under an 
objective ‘real-world’ probability-measure, cf. e.g. Kling, Richter and Russ (2007a) or Kling, 
Richter and Russ (2007b). Such approaches also play an important role e.g. in financial 
strength ratings or under the new Solvency II approach. Amongst others, Gatzert (2005) 
investigates parameter combinations that yield fair contracts and analyzes the risk imposed 
by fair contracts for various insurance contract models, starting with a simple point-to-point 
guarantee and afterwards analyzing more sophisticated Danish- and UK-style contracts. 
Kling (2007) focuses on traditional German insurance contracts where the interdependence 
of various parameters concerning the risk exposure of fair contracts is studied. Gatzert 
(2007) extends the work from Gatzert (2005) where an approach to 'risk pricing' is introduced 
using the 'fair value of default' to determine contracts with the same risk exposure. However, 
this 'risk measure' neglects real-world scenarios and is only concerned with the (risk-neutral) 
value of the introduced default put option. Whereas Gatzert (2007) analyzes some real-world 
risk generated by the determined contracts, the risk exposure is not incorporated in the 
pricing procedure. Barbarin and Devolder (2005) introduce a methodology that allows for 
combining the financial and actuarial approach. They consider a contract, similar to Bryis and 
de Varenne’s (1997), with a point-to-point guarantee and terminal surplus participation. 

To integrate both approaches, they use a two-step method of pricing life insurance contracts: 
First, they determine a guaranteed interest rate such that certain solvency requirements are 
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satisfied, using value at risk and expected shortfall risk measures. Second, to obtain fair 
contracts, they use risk-neutral valuation and adjust the participation rate accordingly. 

In the present work we extend Barbarin and Devolder’s (2005) methodology which then 
allows the pricing of life insurance contracts in a more general liability framework including in 
particular typical features of the German insurance market. We then propose a methodology 
that allows us to find parameter combinations that minimize the real world risk without 
changing the fair value of the contract. We show that the proposed methodology works in 
general as long as the insurance contract design does not introduce arbitrage-opportunities.  

The remainder of this paper is organized as follows. After an introduction of the considered 
financial market, the insurer’s asset allocation and different liability models in Section 2, 
Section 3 presents the methodology of combining the actuarial and financial approach and 
the theoretical result that the strategy we propose is always possible unless the insurance 
contracts introduce arbitrage opportunities in the market. In Section 4, we show various 
numerical results for the introduced liability models, emphasizing on both, the risk a specific 
contract design and asset allocation imposes on the insurance company and the valuation of 
the contract from the client’s perspective. We further investigate the difference resulting from 
different risk measures. Section 5 concludes.  

2 Model framework 

2.1 Insurance company 

Following Kling, Richter and Russ (2007a), we consider a simplified ‘balance sheet’ of the 
insurance company as follows:  

Assets Liabilities 

 )(tL  

)(tA  )(tB  

 )(tR  

)(tA  )(tA  

 

Here, )(tA  denotes the market value of the company's assets. )(tL  represents the insurer's 

liabilities measured by the actuarial reserve for the insurance contracts. Every year )(tL  has 

to earn at least a fixed guaranteed interest rate i , thus )1)(()1( itLtL +≥+ . The insured can 
participate in the insurer’s asset return exceeding the guaranteed rate in two ways: By 
regular surplus participation if in any year more than guaranteed interest rate i  is credited to 
the account L and by terminal surplus participation. )(tB  models a collective terminal surplus 
account, which is used to provide additional surplus participation at the maturity of a client's 
contract. This account may be reduced at any time in order to ensure the company's liquidity 
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which leaves )(tB  to be an optional bonus payment and 0)( ≥tB  for all t . The residual 

value ( ))()()()( tBtLtAtR +−=  denotes the (hidden) reserves of the life insurer.  

2.2 Financial market 

We now introduce the model for the financial market and the financial instruments in the 
insurer's asset portfolio. We allow investment in money market, bonds and stocks. We use 
the Vasiçek (1977) model for stochastic interest rates and a Geometric Brownian Motion (cf. 
Black and Scholes (1973)) for a reference stock or stock index.  

We first specify our asset model under the real-world probability measure P  and then switch 
to the risk-neutral measure Q  which will be used for valuation purposes. We consider a 
probability space ( )PF,,,FΩ  with the natural filtration ( )( )tssWsWFt ≤== ,)(),( 21σF  

generated by independent −P Brownian Motions )(1 tW  and )(2 tW  and let )(tr  denote the 

short-rate and )(tS  the value of the stock at time t.  

The asset model is then given by the stochastic differential equations (SDEs) 

( )
( )( ))(1)()()(

)()()(

2
2

1

1

tdWtdWdttStdS

tdWdttrbatdr

S

r

ρρσμ

σ

−++=

+−=
 

with [ ]1,1−∈ρ  denoting the coefficient of correlation. To simplify notation, we let 

)(1)(:)( 2
2

13 tWtWtW ρρ −+= 2. Thus, for ts ≤ , a closed form solution of the above SDEs 

is given by3  

( )( ) ( )
( ) ( )
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A money market investment is then modelled by a continuous investment in the short rate 

which introduces the so-called bank account or risk free investment ( ) ∫=
t

dssr
et 0

)(
β .  

We further consider a bond portfolio consisting of different zero-bonds. Hence we need to 
determine ( )Ttp , , the price at time t of a zero-bond with maturity T . We assume that 

( ) ( )( )trtFTtp ,, =  holds for some smooth function ( ))(, trtF . Since the short rate is not 
observable on the market we may not be able to hedge derivatives on the short rate (e.g. 
zero-bonds) by investing in the underlying itself as it could be done e.g. in a Black-Scholes 
framework. Investing in the bank account instead would result in an incomplete market.  

By constructing a portfolio with no instantaneous risk (e.g. consisting of two zero-bonds with 
different maturities) and applying no arbitrage arguments, one arrives at the so-called market 

                                                 

2 From Lévy’s theorem it follows that )(3 tW  is a −P Brownian Motion as well. 
3 Compare Bjørk (2005) for further details. 
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price of risk ))(,( trtλ  and hence at a partial differential equation for zero-bond prices4, the 
so-called term structure equation.  

( ) ( ) ( )( ) ( ) ( ) ( ) 0)(,)()(,
2
1)(,)(,)()(, 2 =−+−−+ trtFtrtrtFtrtFtrttrbatrtF rrrrrt σσλ  

with terminal condition ( ) 1)(, =TrTF .  

The Feynman-Kaç5 formula then allows for a probabilistic interpretation of above partial 
differential equation by  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∫==
−

)())(,(),(
)(

~ tretrtFTtp
T

t
dssr

QΕ  

with a probability measure Q~  and a stochastic process )(tr  with −Q~ dynamics 

( ) ( )( ) 1
~)(,)()( Wddttrttrbatdr rr σσλ +−−= . Note that observed zero-bond prices induce 

the market price of risk ))(,( trtλ  and therefore no obvious form or parameterization of 

))(,( trtλ  exists ad hoc. However, if and only if we assume λλ =))(,( trt , the short rate 

process under Q~  remains of the Vasiçek-type. From standard interest rate theory (cf. e.g. 

Bjørk (2005)) it follows that ( ) ( ) ( ) )(,,, trTtBTtAeTtp −=  with 

( ) ( )( ) 2
2

2

2

),(
4

,
2

),( TtB
a

TtBtT
a

b
a

TtA rrr σλσσ
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⎠

⎞
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⎝

⎛
+−=  and ( ) ( )( )111, −−= −− tTae

a
TtB .  

Therefore, ( )Ttp ,  follows a log-normal distribution for Tt <  and by applying Itô’s Lemma the 
zero-bond’s real world dynamics are consequently derived as 

( ) ( ) ( )( ) ( ) ( )( )tdWTtBdtTtBtrTtpTtdp rr 1,,)(,, σλσ −−= . Defining a probability measure Q  

equivalent to P  by the Radon-Nikodym density   
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,0 being −Q martingales.  

Therefore, a complete setup for risk-analysis under the real-world measure P  and valuation 
using the risk-neutral measure Q  is provided.  

2.3 Insurer’s investment strategy 

Now, we introduce the insurer’s investment strategy consisting of above investment vehicles 
and let T denote the considered time horizon. We assume the insurer invests in the money 

                                                 

4 For a complete derivation cf. Graf (2008). 
5 Cf. e.g., Bjørk (2005). 
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market with a constant ( 0F -measurable) proportion βx , in the stock market with a constant 

proportion Sx  and in the bond market with a constant proportion Bx . These proportions are 

kept stable by continuous rebalancing and fulfil 1=++ BS xxxβ . 

To simplify notation, we assume that a ‘restructuring’ of the bond portfolio occurs only at 
anniversary dates 1,0 −TK  and assume there exist zero-bonds with time to maturities 

*,,1 TK at each anniversary date, where T* denotes the maximum duration of a bond, the 

insurer invests in. For [ )1, +∈ iit  let the iF -measurable random variable ijx  denote the 

proportion of the bond with time to maturity j within the bond portfolio. This proportion is kept 
constant over the period [ )1, +ii  by continuous rebalancing. Naturally, we require 

1
*

1
=∑ =

T

j ijx for all i .   

We let the tF -measurable random variable )(tcβ  denote the number of shares the insurance 

company holds of the money market account )(tβ . Analogously, )(tcS is the number of 

shares of the stock market )(tS at time t and )(tcij  denotes the number of bonds maturing at 

time ji +  the company holds at time t. This yields  β
β β

x
tA

ttc
=

)(
)()(

, S
S x

tA
tStc

=
)(

)()(  and 

( )
( )

ijT

j ij

ij x
ijtptc

ijtptc
=

+

+

∑ =

*

1
,)(

,)(
 for [ )1, +∈ iit  .Finally, we get  

( )∑ =
+++=

*

1
,)()()()()()( T

j ijS jitptctStcttctA ββ . 

Self-financing portfolio 

We assume the reference portfolio to be self-financing. Hence, for [ )1, +∈ iit , we obtain 

( )∑ =
+++=

*

1
,)()()()()()( T

j ijS jitdptctdStctdtctdA ββ . Thus, the dynamics of the insurer’s 

asset portfolio can then be written as  

 
( )

( )( )( ))(,)(

)()()()(
)(
)(

!1

3

*

tdWdtjitBtrxx

tdWdttxdttrtx
tA
tdA

rr
T

j Bij

SS

σλσ

σμβ

−+−

+++=

∑ =

 

implying a lognormal distribution of )(tA  given iF  for [ )1, +∈ iit  (for a formal proof, see 

Appendix A). If we further assume the ijx  to be −0F measurable (i.e. deterministic) the 

insurer’s asset portfolio essentially follows a Geometric Brownian Motion. 

At this stage, one might wonder why we introduced different stochastic processes for interest 
rates and stocks if we finally arrive at an asset portfolio following a simple Geometric 
Brownian Motion (GBM) (under the above assumptions). First, we would like to stress that 
this justifies the assumption (made e.g. by Gatzert (2007), Kling, Richter and Russ (2007a) 
or Kling, Richter and Russ (2007b) and many other papers on the subject) that an insurer’s 
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asset portfolio develops according to a GBM. On the other hand, our model framework gives 
us more flexibility: If we price derivatives that depend on the assets contained in the portfolio 
we can work with the corresponding processes )(tr  and )(tS  to obtain appropriate results. 
Finally, by relaxing some of the assumptions above, our model allows for time- and path-
dependent modelling of the composition of the asset portfolio which then – of course – 
results in a more complicated stochastic process, and loses some of the analytical tractability 
that can be exploited in the GBM-setting. 

2.4 Liability model 

Point-to-point model 

We start by introducing a simple liability model similar to Bryis and de Varenne (1997) and 
Barbarin and Devolder (2005) by modelling a term-fix contract with single premium P , 
guaranteed interest rate i  and a terminal bonus participation rate η . Hence, every year the 
guaranteed interest is credited to the actuarial reserve and at contract’s maturity an 
additional surplus participation is provided. Therefore, we obtain for Tt ,,1K=  

( )

{ }⎩
⎨
⎧

=−
≠

=

+=

TtTLTA
Tt

tB

iPtL t

,0),()(max
,0

)(

1)(

η

 

We further assume the lump sum P  to be invested in the insurer’s reference portfolio as 
modelled in the section above which then gives PA =)0( . 

As mentioned, η  has no influence on the company's shortfall-risk during the term of the 
contract. Thus, the risk exposure depends only on the asset allocation parameters and the 
guaranteed rate. Then, η  can be chosen independently to achieve the desired contract 
value. 

Cliquet-style guarantee: The MUST-Case 

Now we expand the previous model by including annual surplus participation as legally 
required e.g. in Germany. Here, following Bauer et al. (2006), we distinguish between the so-
called MUST-case, explained in this section (i.e. the case of an insurer distributing just 
enough profit to satisfy legal requirements) and the so-called IS-case, explained in the next 
section that tries to model observed behaviour of German insurers, that is influenced also by 
competition. For more details, see Bauer et al. (2006). 

Due to prudent product pricing, insurance companies usually achieve returns on their assets 
that exceed guaranteed rates. In many countries, the insured are legally entitled to 
participate in the resulting surplus. E.g. in Germany, at least =δ 90% of the company's 
return exceeding the guaranteed interest rate has to be distributed to the insured.6 However, 

                                                 

6 Compare the Ordinance on Minimum Premium Refunds in Life Insurance 
('Mindestzuführungsverordnung -MindZV') for more details concerning the required annual surplus 
participation of the German life insurance market. 
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the achieved surplus is calculated on book values of assets denoted by )(tAb . Since 

accounting rules give insurers certain freedoms in managing book values, they can also 
manage at least parts of the surplus distribution.  

Book values under German accounting rules are modelled as follows: We assume stocks to 
follow the so-called ‘lower-value principle’7 meaning that a stock’s book value can not exceed 
the initial value. Further, if the market value falls below the book value, under certain 
circumstances the insurer can avoid write-offs.8 For the sake of simplicity, we therefore 
assume the stock’s book value to always coincide with the initial value. Market price 
fluctuations are only shown in the difference between market and book value of assets, the 
so-called hidden reserves (that can also be negative). Concerning the bond portfolio, we 
distinguish between bearer and registered bonds, and denote with By 9 the fraction of 
registered bonds in our bond portfolio. According to German legislation, we also use the 
lower-value principle for bearer bonds and let the book value coincide with the market value 
for money market and registered bond investments. This yields 

( ) ( ) ( ) ( )( ) ( )01 AxyxtAxytAxtA BBSBBb −+++= β .10  

Summarizing, we get the following development of the liabilities including surplus 
for Tt ,,1K= : 

( ) ( ){ }

{ }⎩
⎨
⎧

=−
≠

=

−−−−++−=

TtTLTA
Tt

tB

tiLtAtAitLtL bb

,0),()(max
,0

)(

0),1()1()(max1)1()(

η

δ
 

starting with PL =)0( . Note that granting surplus to the actuarial reserve L implies that past 
surplus is also entitled to earning the guaranteed rate in the future. 

Cliquet-style guarantee: The IS-Case 

We now describe how German insurance companies typically allow for surplus participation. 
In order to signal financial stability to the market, they try to keep the surplus participation 
rather stable over time. Thus, following Kling, Richter and Russ (2007b), we assume that the 
insurer uses the following management rule: 

As long as the company has 'sufficient' reserves, some target surplus is distributed (resulting 
in some target total interest z , which is the sum of guaranteed interest and surplus). In case 
the company's reserves fall below a certain lower boundary, the surplus is reduced and in 
case the reserves increase above a certain upper boundary, the surplus is increased. We let 
                                                 

7 Following §253 German commercial code. 
8 Following §341(b) German commercial code. 
9 Within the Results section, we use yB = 75% estimated from GDV (2007). 
10 Since, in Section 4, we only consider the shortfall probability and the expected shortfall at the end of 
the time horizon, funding gaps on the insurer’s balance sheet during the contract’s term do not 
influence the results. Therefore, we do not need to model necessary changes in book values if 
L(t)>Ab(t). 
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)(
)(:)(

tL
tRtq =  denote the so-called reserve quota. Additionally, we denote with lq  and uq  the 

lower respectively upper boundary for the reserve quota.  

The surplus distribution policy is then given by the following −tF measurable management 

rule: 

- If ( ) ( )( ))1(11)( −++≤ tLzqtA u  and ( ) ( )( ))1(11)( −++≥ tLzqtA l , we credit the target 

interest rate z  to the actuarial reserve (implying [ ]ul qqtq ,)( ∈ afterwards). 

- If ( ) ( )( ))1(11)( −++> tLzqtA u  a higher rate *z  is used that ensures uqtq =)( after 

surplus distribution. This is achieved by setting 
)1()1(

)1()1()(
*

−+
−+−

=
tLq

tLqtA
z

u

u . 

- If ( ) ( )( ))1(11)( −++< tLzqtA l  we analogously use the value *z  that makes 

lqtq =)(  after surplus distribution: 
)1()1(

)1()1()(
*

−+
−+−

=
tLq

tLqtA
z

l

l . 

- If the compulsory surplus as explained above exceeds the surplus calculated here, 
the compulsory surplus is distributed. 

3 Methodology 
We will now explain the analyses we will perform within our model. Obviously, we are able to 
analyze the (‘real-world’) risk the insurer is exposed to. In more detail, for some suitable risk-
measure under P , we can then analyze the impact of varying asset allocations for given 
parameters (e.g. the guaranteed interest rate or the target interest rate) or investigate the 
effect of different guaranteed interest rates or target interest rates for a given asset 
allocation. We can analyze if and how the choice of risk-measure affects the corresponding 
results. Further, a risk-neutral valuation under Q  of the insurance contract can be 
performed. And finally, both techniques can be combined. 

In our analysis, we use the following risk measures: the probability of shortfall 
( ))()( TLTA <P  and the expected shortfall ( ) { }( ))()()()( TLTAP TATL ≤− 1E .  

Combining the actuarial and financial approach 

The concrete choice of the terminal bonus participation rate η does obviously not affect the 
insurer’s risk as defined above. Therefore, one strategy could be to choose a value of η  that 

makes the contract fair, i.e. ( )( ) PTBTLe
T dssr =+∫ − )()(0 )(

QE  at time 0. However, for practical 

purposes only values of [ ]1,0∈η  are suitable. The following theoretical result shows under 
what circumstances an appropriate value of η  yields a fair contract.  

Proposition 
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For all asset allocations and an arbitrary liability structure independent of the terminal bonus 
payment, we obtain a fair contract with ( ]1,∞−∈η  if the condition 

{ }( ) 00),()(max0 )( ≠−∫ − TLTAe
T dssr

QE  holds.  

Proof: 

The ‘fair’ terminal participation rate is a root of the continuous function 

{ }( )( ) PTLTATLeF
T dssr −−+= ∫ − 0),()(max)()( 0 )( ηη QE . From the above condition, we obtain 

{ }( ) 00),()(max0 )( >−∫ − TLTAe
T dssr

QE  and thus ( ) −∞=
−∞→

η
η

Flim . In addition, we get 

{ }( )( )
( )( ) 0)()()(

0),()(max)()1(
0

0

)(

)(

=−−+≥

−−+=
∫ −

∫ −

PTLTATLe

PTLTATLeF
T

T

dssr

dssr

Q

Q

E

E
 

since ( ) 0
)( )(0

>
∫ −

t
dssr tAe

t

 is a −Q martingale. Using the intermediate value theorem completes 

the proof.  

Remarks 

- 0<η  implies that the value of the insurance contract exceeds the initial premium 

payment P . Therefore, if the insurance contract doe not introduce arbitrage 
opportunities in the market a fair terminal bonus participation rate in [ ]1,0  can be 
found under the above condition. 

- The condition above would only be violated if a.s.)()( −> QTATL , which in our 

framework is equivalent to )(TA  having zero volatility and the guaranteed rate 
exceeding the risk free rate. 

In the next sections, we analyze the effects on the insurer’s risk situation of a pricing strategy 
that makes use of this result: First, determine affected parameters – e, g, asset allocation or 
target interest rate – consistent with a pre-specified (real-world) tolerable risk or such that the 
respective risk is minimized. Then, compute the associated terminal bonus participation rate 
that makes the contract fair. If the resulting rate is below zero, the contract should not be 
offered because it would introduce arbitrage opportunities to the market. Of course, the 
results will depend on the selected risk measure. 
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4 Results 
Within this section, we used following parameters:  

Interest rate model Stock market model Correlation 

a  b  )0(r  rσ  λ  μ
Sσ  ρ  

30% 4,50% 1,15% 2,00% -23% 9% 20% 15% 

 

Additionally, the bond portfolio consists of equally balanced zero bonds with time to 

maturities of 10,,1K  years, meaning 10,,1,,,1,
10
1: KK === jTixij . In the following, we 

investigate a contract with lump sum P=1,000 and a time horizon of 10=T  years. 

4.1 Point-to-point guarantee 
First, we consider the point-to-point model, consisting of a guaranteed interest rate i  and 
terminal bonus participation rate η  in more detail. 

Risk analysis 

In the point-to-point model, there are closed form solutions for both, the shortfall probability 
and the expected shortfall.11 
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Since )(TAμ  and )(TAσ  depend on the asset allocation, we first analyze how the risk depends 

on the asset allocation. Figure 1 shows the shortfall probability as a function of the insurer’s 
asset allocation for a guaranteed interest rate of %25.2=i , the current guaranteed rate in 
Germany. 

                                                 

11  )(ln),(ln 2
)()( TATA PTAPTA VarE == σμ , compare Appendix A for a more detailed calculation. 

Further,  (.)Φ denotes the cumulative distribution function of a standard normal random variable. 
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Figure 1: Shortfall probability as a function of the insurer’s asset allocation  

As described above, the asset allocation is given by a stock portion, a bond portion, and a 
money market portion that add up to 1. Thus, the asset allocation in the very front corner 
where stock portion and bond portion are 0 is the one where 100% of the assets are invested 
into the money market. The corresponding shortfall probability is 21% and thus almost as 
high as the riskiest which is reached if 100% stocks are held (22%). It is quite intuitive that a 
high stock portion corresponding with high volatility leads to high risk and thus a high shortfall 
probability but for a complete money market investment, this needs further explanation: The 
initial short rate is given by 1.15% and is thus significantly below the guaranteed rate of 
interest. Although the long term expectation of the short rate is 4.5%, the rather short time 
horizon of 10 years still leads to a significant probability of the money investment not 
achieving the guaranteed return.  

For any fixed money market portion, the shortfall probability is first decreasing with 
increasing stock portions, reaches a local minimum between 2% and 20% stocks (depending 
on the bond portion) and is then increasing in the stock portion. Thus, our results show a 
clear diversification effect between stocks and other assets. In other words, the risk 
minimizing portfolio is not one with 0% stocks if the shortfall probability is the considered risk 
measure. The smallest shortfall probability is achieved for a 2% investment in stocks and 
98% in bonds. 

Now, we use the expected shortfall as our risk measure. Figure 2 displays the relative 
expected shortfall, i.e. the expected shortfall as a percentage of the initial premium P . 
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Figure 2: Relative expected shortfall as a function of the insurer’s asset allocation 

Using the expected shortfall as a risk measure also considers the extent of the shortfall. 
Thus, under this risk measure, rather high stock portions and thus rather high volatilities lead 
to higher risk. The highest risk is therefore achieved for a pure stock market investment. This 
significantly exceeds the expected shortfall related to a pure money market investment 
although the shortfall probabilities for the two asset allocations were very similar. The 
expected shortfall for a pure money market investment is equal to that of a 40% stock and 
60% bond portion.   

The risk minimizing strategy is very similar under both risk measures. Risk is still minimal for 
a 2% stock and 98% bond investment. Also, the diversification effect described above can 
also be observed: For any fixed money market portion, 0% stocks is not the risk minimizing 
strategy, 

Fair contracts 

In this section, the focus of our analysis is on the value of a contract from a client’s point of 
view. As described in Section 3, we call a contract fair if the value of the payoff equals the 
premium paid. Figure 3 shows the terminal participation rates that make the contract fair. 
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Figure 3: Fair terminal participation rate as a function of the insurer’s asset allocation 

All participation rates obtained are between 55% and 95% meaning that all possible asset 
allocations can be combined with an admissible terminal participation rate that makes the 
contract fair. Thus, for the considered point-to-point guarantee, the insurance company may 
first determine its asset allocation according to any given risk constraints and can then 
determine the terminal participation rate to make the contract fair in value.  

If the insurance company mainly invests in money market instruments (which yields a fairly 
high shortfall probability and a medium expected shortfall) it needs to provide a very high 
terminal participation rate. In the extreme case of a pure money market investment, the fair 
terminal participation rate equals 94% which means that such an asset allocation would at 
the same time produce fairly high risk for the insurance company and (before terminal bonus 
participation) low expected returns for the client. 

For different asset allocations the company can face significantly lower risk and at the same 
time needs less terminal bonus participation to make the contract fair.  

Optimal asset allocations 

Now, we will study risk-minimizing asset allocations for a given guaranteed interest rate i . 
For solving the corresponding optimization problem, we used a heuristic search algorithm 
based on Evolution Strategies12. 

The following figure shows the asset allocation that minimizes the shortfall probability for any 
guaranteed rate of interest i  as well as the corresponding shortfall probability.  

                                                 

12 Compare e.g. Rechenberg (1994). 
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Optimal Asset Allocation - Risk measure: Shortfall probability
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Figure 4: Risk minimizing asset allocation as a function of the guaranteed rate of interest;  

Risk measure: Shortfall probability 

We observe that for any guaranteed rate of interest within the considered range, the risk 
minimizing portfolio contains stocks and bonds only.  

As long as the guaranteed rate of interest is below 4% p.a., the insurance company is 
basically able to avoid shortfall risk. Even for a guarantee of 4%, the shortfall probability is 
below 2%. Of course, shortfall probabilities significantly increase for higher guarantees. 

While for guaranteed rates of interest up to 4%, the risk minimizing asset allocation is fairly 
stable at a very low level of stocks (1% - 3%) and a very high portion of bonds, stock portions 
significantly increase for guaranteed rates of interest at or above the long term expectation of 
interest rates (4.5%). In the extreme case of a guaranteed rate of interest of 7.5% or greater, 
100% stocks would result in the lowest shortfall probability.  

At first glance, it seems to be somehow counterintuitive, that the most volatile investment 
strategy leads to the lowest risk. The reason for this, however, is quite obvious. If guaranteed 
rates are rather high (in particular higher than the long term expectation of interest rates), the 
probability of bond or money market investment reaching the guaranteed liability is much 
smaller than for a stock investment. Therefore, the corresponding shortfall probability is lower 
for the stock investment.  

This brings up the question whether the shortfall probability is an adequate risk measure 
since it neglects the amount of shortfall that can be significantly higher for volatile stock 
investments.  

Figure 5 therefore provides the same analysis where the relative expected shortfall is used 
as a risk measure.  
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Optimal Asset Allocation - Risk measure: Expected Shortfall
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Figure 5: Risk minimizing asset allocation as a function of the guaranteed rate of interest;  

Risk measure: Expected shortfall 

For guaranteed rates below 4%, the results do not differ significantly from those above. 
Since, however, the expected shortfall risk measure takes into account possible high shortfall 
amounts, the increase of the stock portion with increasing guaranteed rates of interest is 
significantly smaller. Risk minimizing stock portions stay below 35% for all considered values 
of i. 

This shows how a risk management strategy based on shortfall probabilities only (such as for 
example a pure value at risk measure) can provide wrong incentives.  

4.2 Must-Case 

In the more complex setting of cliquet-style guarantees, no closed form solutions exist for the 
relevant distributions. Therefore, we need to rely on numerical methods to derive our results. 
Appendix A shows that the distribution of ( ) ( )iAiA ln1ln −+  depends on the realization of 

)(ir  and therefore realizations of the multivariate normal distributed random variable 

( ) ( )( ) 1,,0)1(,ln1ln −=+−+ TiiriAiA K  are required for the numerical analyses. We generate a 

normally distributed random sample using a Box-Muller transformation, cf. e.g. Fishman 
(1996). For each combination of parameters, 10,000 simulations were performed to calculate 
the Monte Carlo estimate for the shortfall probability and expected shortfall. 

Risk analysis 

Figure 6 shows the shortfall probability as a function of the insurer’s asset allocation for a 
guaranteed interest rate of %25.2=i  in the MUST-Case, i.e. the case where only the 
legally required surplus is paid on top of the guaranteed rate of interest. 
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Figure 6: Shortfall probability as a function of the insurer’s asset allocation 

First, it is worth noting that compared to the point-to-point guarantee, shortfall probabilities 
are c.p. significantly higher if surplus is provided on an ongoing basis, even if the insurer only 
provides the surplus that is legally required. Since the annual surplus highly depends on 
book values and thus accounting rules, the influence of the asset allocation is different than 
in the point to point case. 

The asset class with the highest degree of ‘freedom in accounting’ are stocks. An insurer 
investing 100% in stocks can postpone surplus participation even if stocks perform well. 
Therefore, capital market fluctuations can be somewhat “smoothed”. In our model, for a pure 
buy-and-hold strategy in stocks, book value earnings are always 0. This leads to the special 
case where the must-case coincides with the point-to-point guarantee above and thus results 
in a shortfall probability of 22%. 

On the other hand, if the insurer invests 100% in the money market where no freedom of 
accounting is available, the shortfall probability reaches its maximum at 44%, twice the value 
for a pure stock investment and also twice the value in the point-to-point case. 

The risk minimizing asset allocation contains slightly more stocks than in the point-to-point 
case and is given by 90% bonds and 10% stocks.  

Figure 7 shows the same results if the relative expected shortfall is used as a risk measure. 
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Figure 7: Relative expected shortfall as a function of the insurer’s asset allocation 

The results under the expected shortfall as a risk measure look rather similar to those from 
the point-to-point case. For the reason explained above, for a stock ratio of 100% the MUST-
case and the point-to-point case coincide. Furthermore, 100% stocks turns out to be the 
riskiest asset allocation under this risk measure.  

For a 100% money market investment, the expected shortfall increases by 60% as compared 
to the point-to-point case but is still not as risky as the pure stock investment. The risk-
minimizing strategy is very similar to that achieved under the shortfall probability risk 
measure, roughly 10% stocks and 90% bonds. 

Fair contracts 

Similar to the point-to-point case, Figure 8 shows the terminal participation rates that make 
the contract fair. 
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Figure 8: Fair terminal participation rate as a function of the insurer’s asset allocation 

All participation rates are between 20% and 63% and basically all are lower than in the point-
to-point case. This on the one hand means that all possible asset allocations can be 
combined with an admissible terminal participation rate that makes the contract fair and on 
the other hand confirms that ongoing surplus in the MUST-case leads to some customer 
value which should be compensated by a lower terminal participation rate to provide the 
same value to customers.  

Whereas a complete investment in the money market required the highest terminal 
participation rate in the point-to-point model, a portfolio consisting of 30% bonds, 8% stocks 
and 62% money market now – ceteris paribus – generates the lowest contract value before 
terminal surplus and therefore needs the highest participation rate to make the contract fair. 
In contrast, the risk-minimizing asset allocation, i.e. 90% bonds and 10% stocks, yields a 
rather high terminal surplus rate.  

Optimal asset allocations 

Figure 9 shows the risk minimizing asset allocation as a function of the guaranteed rate of 
interest if the shortfall probability is used as a risk measure.  
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Optimal Asset Allocation - Risk measure: Shortfall probability
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Figure 9: Risk minimizing asset allocation as a function of the guaranteed rate of interest;  
Risk measure: Shortfall probability 

First of all, we observe that the results look less smooth when compared to similar results in 
the point-to-point model (cf. Figure 4). This is due to volatility of the Monte-Carlo estimate as 
well as the heuristic search algorithm. By increasing computational time any desired 
accuracy could be achieved. 

For rather low guaranteed interest rates, the optimal asset allocation consists – similar to the 
point-to-point model – mainly of bonds and a fairly little stock exposure. However, whereas 
the insurer was basically able to eliminate the probability of shortfall following the risk-
minimizing strategy in the previous section, here, even for low guaranteed interest rates 
some shortfall probability remains. This shows the additional risk cliquet-style guarantees 
induce. 

As soon as the guaranteed interest rate exceeds 4% p.a. the stock portion of the risk 
minimizing portfolio increases heavily. Similar with the point-to-point model, bond and money 
market can not provide sufficient returns to cope with the rather high guaranteed rate and 
therefore a more risky portfolio is necessary to minimize the shortfall probability. Finally, for 
extremely high guaranteed interest rates, the risk minimizing portfolio consists entirely of 
stocks which then results in no regular surplus participation at all (since for 100% stocks the 
point-to-point model and the MUST-Case coincide). 

However, note again that the shortfall probability neglects the amount of shortfall. Therefore 
similar analyses using the expected shortfall as target risk measure are shown in Figure 10. 
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Optimal Asset Allocation - Risk measure: Expected Shortfall
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Figure 10: Risk minimizing asset allocation as a function of the guaranteed rate of interest; 

Risk measure: Expected shortfall 

For guaranteed rates below 4% p.a., the risk minimizing asset allocation is very similar under 
both risk measures. However, for guaranteed interest rates above the long-term average 
interest rate, the stock portion of the risk minimizing asset allocation increases significantly 
slower if the expected shortfall is used as a risk measure, for the same reasons that have 
been explained in the point-to-point model. 

4.3 Is-case 

Finally, we show the results for the Is-Case as described in Section 2.4. For the following 
calculations we assumed a target interest rate of %5,4=z  and a lower respectively upper 

boundary for the reserve quota of %5=lq  and %30=uq . These parameters mean that the 

insurance company will keep surplus stable at 4.5% as long as its reserves stay within 5% 
and 30%. 

Risk analysis 

As above, we start with an investigation of the insurance company’s risk exposure given 
different asset allocations using the shortfall probability as the relevant risk measure.  
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Figure 11: Shortfall probability as a function of the insurer’s asset allocation  

It is worth noting that, compared to the Must-Case, shortfall probabilities do not significantly 
increase for asset allocations with low stock ratios. This is once more due to accounting rules 
that already in the Must-case force the insurer to provide significant surplus participations. 
Consequently, the risk-minimizing strategy only changes slightly to 91% bonds and 9% 
stocks.  

In contrast, for asset allocations with high stock ratios that potentially create rather high 
hidden reserves the insurer’s risk tremendously increases under the Is-case. Giving away a 
larger portion of the reserves (e.g. during well-performing stock markets) than legally 
required, may afterwards jeopardize the insurance company’s solvency since the guaranteed 
rate has to be credited on previous years’ surplus, as well. In consequence, the higher the 
stock ratio, the less generous should the insurer be in giving away more regular surplus than 
legally required. This confirms findings of Kling, Richter and Russ (2007b) who state that 
high stock portions are not sustainable under cliquet-style guarantees.  

Again, we further study the company’s risk using the expected shortfall (cf. Figure 12). 
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Figure 12: Relative expected shortfall as a function of the insurer’s asset allocation 

The risk for a complete investment in stocks increases similarly when compared to the Must-
Case under for both risk measures. Interestingly, even in the IS-case, risk practically 
vanishes if the insurance company holds high bond portions and low equity portions. The risk 
minimizing strategy once more is given by roughly 90% bonds and 10% stocks. 

While under the shortfall probability, 100% money market and 100% stock is equally risky, 
using the expected shortfall as a risk measure, clearly identifies a complete investment in 
stocks as the riskiest asset allocation . These findings are rather similar to those observed for 
the point-to-point guarantee or the MUST-case. 

Fair contract 

Similar to the previous models, Figure 13 shows terminal participation rates that make the 
considered contracts fair. 
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Figure 13: Fair terminal participation rate as a function of the insurer’s asset allocation 

Since ongoing surplus participation in the IS-case is already very valuable, terminal 
participation rates for all asset allocations stay below 60%. Further, in the Is-Case, there are 
asset allocations for which only a negative terminal participation rate would make the 
contract fair. This means that the value of the contract without terminal bonus already 
exceeds the single premium paid. These parameter settings therefore would create arbitrage 
opportunities in the market and should hence not be offered. The respective asset allocations 
are coloured in red in Figure 13 and are characterized by rather high stock ratios. Since the 
risk measure expected shortfall identified those to be particularly risky, both approaches, the 
actuarial and the financial one, lead to similar management decisions in this case. 

 

Optimal asset allocations 

Finally, we investigate optimal asset allocations within the IS-Case. However, at this stage 
we focus on the effects of changing the target (as opposed to the guaranteed) interest rate. 
Figure 14 and Figure 15 show the risk-minimizing asset allocation as a function of the target 
interest rate with for a guaranteed interest rate %25.2=i , lower reserve boundary %5=lq  

and upper reserve boundary %30=uq  using the shortfall probability and the expected 

shortfall, respectively.  
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Optimal Asset Allocation - Risk measure: Shortfall probability
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Figure 14: Risk minimizing asset allocation as a function of the targeted rate of interest;  

Risk measure: Shortfall probability 

 

Optimal Asset Allocation - Risk measure: Expected Shortfall
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Figure 15: Risk minimizing asset allocation as a function of the targeted rate of interest;  

Risk measure: Expected shortfall 

First, we note that – compared to the previous results – the different risk measures now yield 
very similar optimal asset allocations. The shortfall probability increases only slightly for 
increasing target interest rate. Therefore, comparing with the results above, the guaranteed 
rate (and not the target interest rate) is identified as being the main risk driver within our 
considered liability models.  
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For the chosen guaranteed rate of interest of 2.25% risk can basically be avoided 
independent of the target rate of interest. Relative expected shortfall remains almost constant 
around 0.2%. This shows that – if suitable asset allocations are chosen – the target rate of 
interest does not really have a practical impact on risk. However, the risk-minimizing asset 
allocation changes with a changing target rate. With increasing target rate, while the stock 
portion remains constant around 10%, the bond portion slightly decreases and the money 
market portion increases to 10%. 

5 Conclusions and outlook 
In this paper, we have analyzed three different types of participating life insurance contracts. 
The theoretical result from Section 3 shows, that – unless contract design introduces 
arbitrage to the market, it is always possible to combine actuarial and financial approaches 
such that a management of the insurer’s asset-liability mismatch risk and a desired contract 
pricing can be achieved simultaneously. In our numerical analyses, we found that optimal, 
i.e. risk-minimizing, asset allocations as well as the amount of risk depend heavily on the 
selected liability modes (i.e. surplus distribution mechanism). Also, the results depend very 
strongly on the chosen risk measure. Our results indicate that under many circumstances, 
using the shortfall-probability as the sole risk measure can lead to wrong incentives. This 
should be of interest to practitioners as well as regulators when implementing value at risk-
based regulation.  

Of course, our model and analyses can and should be refined in future research. It would be 
particularly worthwhile including management rules that would allow for path dependent 
asset allocation strategies. Also, the question what an optimal bond portfolio under a given 
liability model would look like would be of great interest. Finally, the model could be made 
more realistic by including surrender and mortality and considering more that just one 
insurance contract on the insurer’s balance sheet. 
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A Appendix 
We will now proof that under the assumptions of Section 2.3 the insurer’s asset portfolio 
follows a Geometric Brownian Motion. We will further briefly sketch computations of 

)(ln)( tAPtA E=μ  and )(ln2
)(

tAPtA
Var=σ  for { }.,,1 Tt K∈   

Due to the self-financing property, the insurer’s asset portfolio’s dynamics can be written as 

( )∑ =
+++=

*

1
,)()()()()()( T

j ijS jitdptctdStctdtctdA ββ  at time [ )1, +∈ iit . Thus, 

 

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( ) ( )( )tdWTtBdtTtBtrTtptc

tdWdttStctdrttc

jitdptctdWdttStctdrttctdA

rr
T

j ij

SS

T

j ijSS

11

3

13

,,)(,)(

)()()()()(

,)()()()()()()(

*

*

σλσ

σμβ

σμβ

β

β

−−

+++=

++++=

∑

∑

=

=

  

which yields 

( )

( )( ) ( )( ).)(,,)(

)()()()(
)(
)(

!1

3

*

tdWjitBdtjitBtrxx

tdWdttxdttrtx
tA
tdA

rr
T

j Bij

SS

+−+−

+++=

∑ =
σλσ

σμβ
 

Applying Itô-Formula for multiple processes13 then gives 
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which implies  

                                                 

13 For Itô processes )(),( 21 tXtX and a sufficiently smooth function ( )21,, xxtf  one obtains 
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121 2
1,, , cf. e.g., Shreve (2004).  
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)( iI  is a normal distributed integral, since )(tr  is normal distributed and the integral evolves 

as a limit of Riemann sums. ( )iII  and ( )iIII  are standard stochastic integrals with respect to 
a Brownian Motion and with deterministic coefficients and therefore normal distributed as 
well. Since ( )iIV  is deterministic, ( ) ( )iAiA ln1ln −+  follows a normal distribution. Hence, 

(since we assumed 0Fxij ∈ ), it follows that ( ) ( ) ( ) ( )∑ =
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normal distributed as well which completes the proof. 

We now briefly sketch the computation of the expectation )(tAμ  and the variance 2
)( tA

σ  of 

)(ln tA  for { }.,,1 Tt K∈  For the expectation and variance of ( )iI  defined above, we get 
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The covariance of ( )ii IIII ,  is given by  
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After some tedious calculations of the expectations and the covariance matrix of 
( ) ( ) ( ) ( )( )iiii IVIIIIII ,,,  which follow essentially the same pattern, one can similarly achieve 

closed form solutions for )0(ln
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