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This paper introduces a Bayesian approach to market censigluation and hedging
of a participating life insurance contract. The contractakied in a general and realistic
framework allowing interest rate, volatility and jumps hetasset dynamics to be stochas-
tic. In our set-up we also incorporate stochastic mortalitg study its ffect on pricing
and hedging. All underlying models are estimated using tleekisly Chain Monte Carlo
method, and their simulation is based on their posteriodiptige distribution. In our
case the contract is an American-style path-dependeniatiee, and we value it using the
regression method. As a hedging strategy we employ minimaniance hedging which
relies on the underlying asset as a single hedging instruriéa compare its hedging ef-
fectiveness with a conventional delta-neutral hedge whiss a simpler model for asset
dynamics.
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1. INTRODUCTION

Participating life insurance policies are characterizgchbvast number of features including, for
example, interest rate guarantees, equity-linked paliaied bonus and surrender options. All these
features have values which need to be priced. Pricing thelgzgs in a market consistent framework
was first studied by Briys and de Varenne (1997a,b). Sinaedheumber of articles have appeared on
the topic; see, for example, Grosen and Jorgensen (200fykdaen and Lukkarinen (2003), Bernard
et al. (2005), Ballotta et al. (2006), Bauer et al. (2006) Zadlauer and Bauer (2008). However,
most valuation models assume a simplified set-up. Our abgeid to present a realistic valuation
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framework in which the guarantee and the bonus are pricedtochastic framework, and a surrender
option is included in the contract. More specifically, wepallthe interest rate, volatility and jumps
to be stochastic in the asset dynamics, and value the comisaan American-style path-dependent
derivative. Besides this, we also incorporate stochasbitatity into the model.

The price of an option depends on the assumption of the madekithing the behavior of the un-
derlying instrument. Most approaches specify a particatachastic process to represent the price
dynamics of the underlying asset and then derive an explitging formula. A traditional approach
involves solving a partial dierential equation. However, when the asset dynamics avenassto fol-
low a fairly complex model, a closed form solution of the prtlifferential equation may not exist
or its numerical solution may become intractable. When #ngofp of an option depends on the path
of the underlying asset, the price cannot be evaluated smtlainner. Instead, Monte Carlo simulation
methods may be used (Glasserman, 2003). For example, Baahal. (2008) apply the least squares
Monte Carlo (or regression) method in pricing a participgtife insurance with early exercise.

Most papers on pricing participating life insurance coctisdack paying attention to parameter and
model errors. Neither the true underlying model nor its paater values are known. Typically, a rel-
atively simple model is assumed and the point estimateseopdinameters are used. This might lead
to a crucial valuation error. In the Bayesian approach,patar and model uncertainty plays a major
role. While frequentist methods typically rely on large sdenapproximations, Bayesian inference is
exact in finite samples. In derivative pricing an exact cbindzation of finite sample uncertainty is
critical from the insurance company’s risk managementtpafiview. The Bayesian approach is par-
ticularly attractive, since it can link the uncertainty @rameters and latent variables to the predictive
uncertainty of the process. Another advantage of Bayesi@ndnce is its ability to incorporate prior
information into the model.

In estimating the equity index process with stochastictildiaand jumps we will follow the guide-
lines provided by Jones (1998), but make some generalimtio our modelling framework we also
allow the interest rate process to be stochastic, and we d@llto be correlated with the index and
volatility processes. In order to value an American-sty}ian we use the regression approach (see,
for example, Longstiand Schwartz, 2001).

Participating life insurance policies involve not onlykssarising from financial factors, but also a
risk related to mortality. Bacinello (2003) and Shen and (2005) introduce mortality risk, but only in
a simple set-up with deterministic or constant mortalitgsa Bifis (2005) and Bacinello et al. (2008)
incorporate stochastic mortality to the pricing framewdfkth a stochastic mortality model we do not
need to make an assumption of a large insurance portfolibwanavoid invoking to the law of large
numbers. This again is significant from the risk managemeintt jpf view.

Here we study dynamic hedging strategies to control forowaririsks by utilizing a replicating
portfolio. As a hedging strategy we employ minimum-variahedging which relies on the underlying
asset as a single hedging instrument. We follow the work biysBiaet al. (1997) when deriving a
minimum-variance hedge. This type of hedge is needed, singerfect delta-neutral hedge is not
feasible due to untraded risks. However, a single-instnitnedge can only be partial, since in our set-
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up there is more than one source of risk. We also construcheeational delta-neutral hedge which
uses a simpler model for asset dynamics and compare therfggaigiiformances.

The paper is organized as follows. Section 2 introducesrdmadwork and models for the asset
dynamics and mortality, Section 3 presents the estimatidresialuation procedures and Section 4 the
empirical results. The final Section 5 concludes. The futidibonal distributions of the option pricing
and mortality models as well as the estimation results areiged in the appendices.

2. THE FRAMEWORK
2.1. The participating life insurance contract
We define the participating life insurance contract as inrha@t al. (2008). The contract consists of
two parts, the first being a guaranteed interest and the dexbonus depending on the yield of some
total return equity index. We denote the amount of savindkérinsurance contract at tinheby A(t;).
Then its growth during a time interval of lengih= tj,1 — tj is given by

A(tis1)
A(ti)

X(tis1)
X(t)

log =g6 + bmax(o, log

. gé), 1)

whereX(t;) = Z?:O S(ti-;)/(q + 1) is a moving average of the total return equity ind®%). The
guarantee ratgis set to be less than the riskless interest rate, and it id foteone year at a time. Itis
set annually akr, wherer; is the riskless short-term interest rate at tinradk is a positive constant
less than 1. The bonus raigs the proportion of the excessive equity index yield thaietsirned to the
customer.

In this study we use the time intendk= 1/255, where 255 is approximately the number of the days
in a year on which the index is quoted. The model also incatesra surrender (early exercise) option.
A further condition is that there will be a 1 % penalty if thent@ct is reclaimed during the first 10
working days. The penalty is not applied if the contract idagned due to mortality.

In our framework the parameteksg andb are predefined by the insurance company. Luoma et al.
(2008) introduce a method to evaluate a fair bonus bage that the risk-neutral price of the contract
is equal to initial savings. This gives the contract a singttecture and makes its costs and returns
visible and predictable for the insurer and the customer.

2.2. Option pricing models

We assume that the dynamics of stock indgxvarianceV; and riskless short-term rateare de-
scribed by the following system of SDEs:

dlogS; = udt + VidBY + Uydg, (2a)
dV; = (a1 + B1Vo)dt + oy v/V;dBP (2b)
drt = (052 +ﬁ2rt)dt + Oy \/r—tdBF) (ZC)
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whereB®, B andB{® are standard Brownian motions, agds a jump process with jump size.
We further assume that these Brownian motions have thelabamstructure

1 p12 p13
2) nEG
Cor(BY.B?.BY) = [p12 1 pasl. 3)
p13 p23 1

andq, is a Poisson process with intensity that is, Pr(dy = 1) = Adt and Pr(d; = 0) = 1 — Adt.
Conditional on a jump occurring, we assume thiat~ N(a, b?). In addition, we assume that is
uncorrelated withJ; or with any other process. We abbreviate this model as SVJ-SI

In order to facilitate estimation, we reparameterize me@2) -(2c) as follows:

dlogS; = udt + o1 Y,dB® + Uyday (4a)
dY; = (@} +B1Y)dt + o5 /Y, dB® (4b)
dR; = (a5 + B2R)dt + 03 /RdB® (4c)

whereY; = Vt/crf is rescaled variance aij = 100r; is the interest rate given in percentages. The new
parameters are; = al/o-f, o2 = ov/o1, a; = 100r; andoz = 1007.

We introduce a risk-neutral probability meas@eainder which the discounted index proc&s=
Stexp- fot rsds) is a martingale. Specifically, we assume the risk neutraadyics to be

dlogS; = (rt - %Vt - /l/lj) dt + \/thzt(l) + Udge (58)
dVi = (@1 + B V)t + oy M dZ? o
dr¢ = (a2 + Bary)dt + o \/r—tdZt(s) 59

whereu; = exp@+3b?)-1, andz, Z? andz® are three standard Brownian motions with correlation
structure (3) unde@.

For the intensity of mortality, we will use a generalizatioithe Gompertz model. The Gompertz
model describes the age dynamics of human mortality faogtyeately in the middle span of ages, ap-
proximately between 30 and 80 years, which is enough for otpgses (see, for example, Promislow,
2006). We use a stochastic generalization of the form

109 (tku) = Boo + Bo1u + B1oK + S11KU + ey, (6)

whereuy, is the death rate for ageand for cohoru set by the year of birth. We assume the error term
e to follow an autoregressive process of order oag:= dex_1u + axu, Whereay, ~ i.i.d. N(0,o2).
Parametergoo, Bo1, B10, B11, ¢ anda?, are unobservable and must be estimated.

3. ESTIMATION AND EVALUATION PROCEDURES

3.1. Finance model estimation

We use Bayesian methods to estimate the unknown paramdttrs stock index, volatility and
interest rate models as well as to estimate the latent liplaind jump processes. By doing so it is
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possible to take parameter uncertainty into account wheifeih price of the contract is evaluated and
a hedging strategy is employed. The major challenge in asitim is its high dimensionality, which
results from the need to estimate latent processes.

We will use Euler discretization in the estimation of unkmgwarameters, since the transition density
of the multivariate process described by (4a), (4b) and d&s not have a closed form solution.
Accordingly, we will simulate the risk-neutral processngsthe Euler discretization of (5a), (5b) and
(5¢).

A discrete version of (4a), (4b) and (4c) is given by

l0gSks1 = l0gSk +ud + Yk 59&)1 + Uksalier
Yier = Y+ (a/’i +ﬁ1Yk)5 + 4/ Yk 6e|(<2+)1
Rer1 = Re+ (a3 + B2R)6 + VRcoel),

wheres denotes discretization interval leng#f?, & ande!® are three normal variables with zero
means, variances?, o5 ando, and correlation structure (3Jx ~ N(a, b?) is jump size andy ~
Ber(16) an indicator variable of a jump.

Our estimation procedure is a single-component (or cybiedropolis-Hastings algorithm (see, for
example, Gilks et al. (1996)). The Metropolis-Hastings iYalgorithm is a general term for Markov
Chain Monte Carlo (MCMC) methods that are used to simulagtgumr distributions. The algorithm
was introduced by Hastings (1970) as a generalization oMteopolis algorithm (Metropolis et al.,
1953). Also the Gibbs sampler (Geman and Geman, 1984) caielwed as its special case.

The single-component M-H algorithmftérs from the basic algorithm in that the simulated random
vector is divided into components which are updated one t®; ohhe purpose is to simulate the
conditional distribution of each block given the currentues of the other blocks. In the case of the
Gibbs sampler, random variates from these distributioasleawn directly. In the more general case,
a proposal is first generated and it is accepted with certaibability, or otherwise the old value is
retained.

In the case of our model, it is possible to divide the vectalbparameters to blocks which can be
updated using Gibbs sampling, that is, the full conditisradlthese blocks can be simulated directly.
This is possible, since we have introduced a superfluousmesio; and we use the general correla-
tion structure. Now posterior simulations of the dispemsiwatrix of the error vectore{l), el(f), ef‘)) can
be drawn from the Inverse-Wishart density. Further detgilsut the updating procedure are given in
Appendix A.

Note that the data do not contain enough information to ed@m; and the vector of scaled vari-
ancesy separately, but their joint posterior distribution deteres the posterior of the variance vector
V, which is of interest. Adding a new parameter is called patamexpansion, and it can be more
generally used to improve the convergence of Markov chanukition. This is discussed in Liu and
Wu (1999), van Dyk and Meng (2001) and Liu (2003), and a sireglemple is provided by Gelman et
al. (2004).

The volatility and jump processes cannot be updated usibypsssampling. Here we follow the
guidelines provided by Jacquier et al. (1994) and Jones8)19Bhe scaled variancé4 are updated
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one by one. Their full conditional distribution & Yk|Y_k, H, ¢) whereY_, comprises all ofY except
Yk, H comprises the index, interest rate and jump processes) &na vector of all parameters. Since
we are dealing with Markov processes,

P(Yil Yok, H, #) o< p(Yid Vi1, Hi-1. Hi, #) P(Yir 1, Hicr 1l Vi, Hi, ).
Now Yk may be updated by first generating a propo&gairom p(Yk|Yk-1, Hk-1, Hk, ¢) and accepting it
with probability

p(Yk+1$ Hk+l|Y|j$ Hk$ ¢)

min|1, .
P(Yis1, Hks1l Yk, Hi, @)

A detailed description of this update can be found in Apperdi

The jump process can be updated similarly. Let us denotethegrocess of jumps and jump sizes
aslyk = (I, Uy) and the other processeslas= (S, Yk, R«). Because the jumps are independent, their
full conditional is given byp(Ix/lx, L, ¢) = p(lk|Lk-1, Lk, ¢), which is proportional to

P(Ikld) p(LilLk-1, Ik, @)

Now Iy is updated by first generating from its marginal distributiom(Ixl¢) and accepting it with
probability

P(Lkllk-1, 1, #)

min|1, —— < "°||.
P(LklLi-1, Ik, @)

The jumpdy and their sizedJy could also be updated separately. A detailed descriptidhi®iipdate
can be found in Appendix A.

3.2. Mortality estimation and prediction

To estimate the mortality model (6) we use Gibbs samplingpkthat the correlation parameter
¢ is updated with a Metropolis step. The needed conditionatggmr distributions can be found in
Appendix B. The data is imbalanced, since later cohorts lessobservations. The unobserved future
death rates are considered as missing observations anath&stimated similarly to the unknown
parameters using Gibbs sampling. Each missing value isllgigiven the corresponding death rate
from the most recent cohort where it is available. In the Gibampler the missing values of each
cohort are updated by generating them from their multivarmarmal conditional distribution.

When the mortality model is used to study hedging perforrmam@ need to scale the estimated
AR(1) model, which is based on yearly data, to daily obséruat When the sampling frequency is
changed from 1 t6, the high frequency sampling parameters are givelas ¢° ando-ﬁlhf = 0%, 11’_22:
(see, for example, Gourieroux and Jasiak, 2001).

When pricing and hedging the contract, we use the worsts@sgario of mortality from the insur-
ance company'’s viewpoint. In practice, we simulate 1008paf death rates and choose the minimum

rate for each time point. These minimum death rates are thed to generate the date of death for
each simulation path used in pricing and simulation of hegigierformance.
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3.3. Pricing American options with regression methods

Our participating life insurance contract is an Americ@ylesoption with a path-dependent moving
average feature. An American option gives the holder thiet tigg exercise the option at any time up
to the expiry date. In pricing we adopt the least squares addtitroduced by Longsthand Schwartz
(2001). It is a simple but powerful approximation method Aonerican-style options. The pricing is
based on an optimal exercising strategy in which the goalfimt a stopping time maximizing the ex-
pected discounted paffaf the option. The decision to continue is based on compdhiagliscounted
immediate exercise value with the corresponding discaliobatinuation value. In regression meth-
ods it is assumed that the continuation value may be expgiessénear regression using some basis
functions.

In our application, the continuation values of the optiopeled on the path of the underlying index
value in a complicated way. However, we consider that theectivalue of the index, its moving aver-
age, and the first index value appearing in the moving averegebe used to predict the continuation
value reasonably well. The use of the moving average may hiwated by observing that the growth
of savings in the insurance contract depends on the patteahtiving average (see Equation 1). The
current index value and the first value appearing in the ngpairerage help predict the future evolu-
tion of the moving average. We also use the current valuesterfdst rate and volatility to predict the
continuation value. The current amount of savings alsosheipdict the continuation value, but it is
not included in the regression variables. Instead, it igraigbed from the regressed value before fitting
the regression and subsequently added to the fitted value.

To avoid under- and overflows in the computations, the regvasvariables related to the equity
index are scaled by the first index value, and the currenewafithe interest rate is given in percentages.
Thus, the following state variables are us&@(t) = S(t;)/S(0), Xa(t;) = [ %], S(ti-j)/(a+ 1)] /S(0),
X3(t) = S(ti—q)/S(0), Xa(t) = R(t) andXs(ti) = V(). However, multicollinearity problems would
occur if the variables<;, X, and X3 were used at all time points. In factz would be equal for all
simulations paths for < g and the moving average$ would be very close to each other for small
values ofi. Therefore, we apply the following rule: The variabks X4 andXs are used for < q/2,
variablesXy, X,, X4 andXs are used fog/2 < i < 3g/2, and all variables are used for 3q/2. In this
study the lag length of the moving average is chosen tpbd 25 (that is, half a year).

We use Laguerre polynomials, suggested by Lorfjatad Schwartz (2001), as basis functions. More
specifically, we use the first two polynomials

Lo(X) = exp(-X/2)
Li(X) = exp(-X/2)(1- X)

for all variables. In addition, we use the cross-prodgis<i)Lo(Xs), Lo(X1)Lo(Xs), Lo(X1)Lo(X2),
Lo(xl) L]_(Xz), L]_(X]_) Lo(Xz), Lo(xl) Lo(Xg) and Lo(Xz) Lo(Xg). ThUS, we have altogether 17 explanatory
variables in the regression.
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3.4. Determining the fair bonus rate

We have presented a method to determine a fair bonus rateama&.et al. (2008). Using the re-
gression method we can determine the option price (thatésptice of the insurance contract) when
the bonus ratb and the guarantee ragghave been given. However, we are interested to determine the
bonus rate so that the price of the contract is equal to irsitigings. This gives the contract a transpar-
ent structure. Furthermore, it makes th&eatient hedging strategies comparable, since the bonus rate
affects the duration of the contract, which is the most sigmniti€actor to produce large hedging errors.
If the bonus rate is set at a high level, the contract is almeger reclaimed before the final expiration
date, and, on the other hand, if the bonus rate is too lowy sartender is highly probable.

The problem of determining is a kind of inverse prediction problem, and we need to esériae
option value for various values &f Since we also wish to estimate the variance of the MonteoCarl
error related to the regression method, we repeat the dgiimseveral times for fixed values bf
We end up estimating a regression model where option pritmates are regressed on bonus rates.
(This regression model should not be confused with the ssgpa method used in the estimation of
the option value for a fixetd). We found the third degree polynomial curve to be flexiblewgh for
this purpose. After fitting the curve, we solve the bonus bater which the option price is equal to
100, which we assume to be the initial amount of savings. dieoto facilitate the estimation of the
fair bonus rate we set the further condition that there is g&¥alty for reclaiming the contract during
the first ten days.

Prior to fitting the polynomial, it is, however, necessarndeiermine an initial interval for the so-
lution. For this purpose we have developed a modified biseatiethod. In this method, one first
specifies initial upper and lower limits for the bonus rate use the values= 0 andu = 1. Then
one estimates the option price a&(u)/2. If the price is greater than 100, the upper limit of the nu
rate is set atl — (u — 1)/4; if the price is smaller than 100, the lower limit of the bemate is set at
| + (u—1)/4. This procedure is continued unti- | = 0.25. Note that the new limit is not set in the
middle of the interval, as is done in the ordinary bisectiatmod, since this might lead to missing the
correct solution due to the randomness of the price estgnate

Figure 1 illustrates the estimation procedure. The optidceps estimated for 10 fferent bonus
rates, and the estimation is repeated 5 times for each batejsvhich produces 50 points to the scatter
plot. Each estimation is based on 1000 simulated paths.nitie limits of the bonus rate (0.14, 0.39)
were determined using the modified bisection method desgtr@dbove. When producing this figure,
the time to maturity was set at 3 years, the guarantee ratg3atle starting level of interest rate at
0.07 and mortality was not included. We can see that the @aiub rate is approximately 0.28.

As mentioned above, the bonus rate is solved from the equatiof (x), wherey is the price of the
contract and

f(X) = Bo + Bx + B2x% + B3 = XB,

whereB = (Bo. 1. B2, B3)’ is the ordinary least squares (OLS) estimate of the cubiessipn model
andx = (1, x, X%, x3)’ a regression vector. The purpose of the initial penaltyisate ensure that there
is exactly one solution in the relevant interval.
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FIG. 1. Option price estimates vs. bonus rates.

Using the delta method, one also obtains an approximataneeifor the estimate of

var(x) ~ LVar(f(x)) ~ — ! X Cov(p)%.

[P (1° (B1+ 2B2% + 355%2)

4. HEDGING
4.1. Minimum variance hedging

We construct a single instrument hedge, which employs drdyunderlying stock. This hedge is
only partial, since there are several sources of risks imoagiel. Uncontrolled risks are those which
move the target option value but are uncorrelated with thiketlging stock price. Such factors as model
misspecification and transaction costs may render this afjpedge more practical to adopt than the
conventional delta-neutral hedge. Besides a perfect-deltéral hedge would be infeasible, since some
of the risks are untraded.

Let NS be the number of shares of the stock to be purchased@tite residual cash position. Then
the timet value of the replicating portfolio i8l° + NSS;. Furthermore, the hedging errbk, s at time
t + 6 is given by

Hivs = NP Stis + N2 — Crys, (7

wheres is the updating interval of the replicating portfolio a@d; is the value of the contract at time
t + ¢. In the limit whens — 0, the mean squared hedging error is minimized by choosing

s _ Cov(dS,. dC))

U TVar@s) @
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Let us denote the jump sizes of the index procssy J; = €Yt — 1. The mean and variance &f
are given by byu; = exp@+ 3b?) — 1 ando3 = exp(2 + b?)(exp?) - 1), respectively. Under our

framework, the total return variance can be decomposedwada@omponents
l dSt J
—Var|—|=Vi+V;, 9
Fvr( S =i ©

where the instantaneous variance of the jump componentes gy

V{ = (1/dt)Var (Jday) = (1/d) (E(da)? - [E()E(daw)]?)
:(1/do[a§4—Qﬂ)1[1dt+(4d02]

Now let Ci(St, Vi, 1) denote the value of the contract at titneith index valueS;, variancev; and
interest rate;. The diferential ofCi(S;, Vi, rt) may be written as

Vi V V
dc&sbvbn):6Cd§gtbn)vvwzgt+3CK?QtJOdVr+3CK%&tﬂodn

+ [Ci(St + &St Vi, 1) — Ci(St, Vi, )] do.
Using this and equations (8) and (9) we obtain that

NS = AVt NY /)12fTthJ 4 AR \/W
(Vi+Vy) St(Vi + V) SVt + V)
+/l [Et (XCi(St + XSt Vi, 1)) — Ce(St. Vi, ro)us]
SV + V)

(10)

where we have denoted the deltas\i¥ = 5Bl AY) = JaGAN) gngA{) = LlSetuly),

Equation (10) shows that the position to be taken in the stogkt control not only for the direct
impact of stock price changes on the target option, but aséhie indirect impacts of those parts of
volatility and interest rate changes which are correlatél stock price fluctuations. We can see that
the additional number of shares needed besid®sis increasing both ip1, andpis. Furthermore,
since the jump risk is present as well, the position to bertakéhe underlying stock must also hedge
the impact of jump risk on the target option, which is reflddte the last term in (10). This term is
increasing i andu;, meaning that the larger the random-jump risk, the moresaatjent needs to be
made in the hedging position.

In theory the constructed partial hedge requires contisuebalancing to reflect the changing market
conditions. In practice, only discrete rebalancing is fies Suppose that portfolio rebalancing takes
place at intervals of length. At time t, the replicating portfolio hadl® shares of the stock and the
residual is invested in an instantaneously maturing régkfoond. The combined position is a self-
financed portfolio. At time + ¢ the hedging error is as in (7).

Our contract is an American-style derivative, which we @nising the regression method (see, for
example, Longstiand Schwartz, 2001). With the estimated regression modehayealso compute
the delta\®, AV andA®, and determine the optimal stopping times needed when atinglhedging
performance in several cases. For each simulation pathsexe stopping time is the first time when
the estimated continuation value is smaller than the imatedixercise value.
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Comparison of the hedging schemes is done so that ffex@lce of the replication portfolio and the
balance is computed for each simulation path at its estunap¢imal stopping time. Then the mean
difference and mean squared error is computed over all the siomufeths. Moreover, this procedure
is repeated 50 times usingidirent regression estimates and the results of the remestitice pooled.

4.2. Competing model and delta-neutral hedging

A similar approach is used when a delta-neutral hedge istiearted for a simpler model whose
real-world asset dynamics of this model are described as

dre =«(¢ — r)dt + or?dw® (11a)
t UV

dS; = uSidt + vSraw®. (11b)
t t

HereW™ andwW® are two standard Brownian motions, correlated throfh = pWb+ /1 p2W3),
whereW? andwW® are independent standard Brownian motions. The risk rledjtreamics are ob-
tained by replacing the drift in (11b) withr;. Details on estimation and pricing under this model may
be found in Luoma et al. (2008). We abbreviate this model ag-SE
In the delta-neutral hedge corresponding to this modelntieber of shares in the replication port-
folio is given by
_ 0C(St. )

NS = =A® > 0.
t 68'[ t =

Again we use the regression method to price the derivatideé@nompute\®)

5. EMPIRICAL RESULTS

5.1. Estimation of the parameters

In order to experiment with actual data and to estimate tHeowmn parameters of the models,
we chose the following data sets: As an equity index we usdoite Return of Dow Jones EURO
STOXX Total Market Index (TMI), which is a benchmark covegiapproximately 95 per cent of the
free float market capitalization of Europe. The objectivéhafindex is to provide a broad coverage of
companies in the Euro zone including Austria, Belgium, &mdl, France, Germany, Greece, Ireland,
Italy, Luxembourg, the Netherlands, Portugal and Spaine ifldex is constructed by aggregating
the stocks traded on the major exchanges of Euro zone. Ontynom stocks and those with similar
characteristics are included, and any stocks that have bagltihan 10 non-trading days during the past
three months are removed. In estimation, we use daily qdiaesMarch 4th, 2002 until December
6th, 2007.

As a proxy for riskless short-term interest rate, we use goirevhich is the benchmark rate of the
large Euro repo market. Eurepo is the rate at which one priamk laffers funds in euro to another
prime bank if in exchange the former receives from the |gf@repo GC as collateral. It is a good
benchmark for secured money market transactions in the Zame. In the estimation of the interest
rate model we use the 3 month Eurepo rate, since it behavesnegularly than the rates with shorter
maturities. Both the index and interest series are predemteigure 2.
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FIG. 2. The equity index and interest series.

In mortality modelling we use mortality data provided by theman Mortality Database (see hffp:
www.mortality.org). It was created to provide detailed tabty and population data to those interested
in the history of human longevity. The project began as agrawith of earlier projects in the Depart-
ment of Demography at the University of California, BerkeldSA, and at the Max Planck Institute
for Demographic Research in Rostock, Germany. The progattssto provide open, international ac-
cess to the database which contains detailed populatiomantdlity data for 37 countries or areas. In
our work we use Finnish mortality data for females betweers&9 and 80. More specifically, we use
cohort death rates for cohorts born between 1926 and 1961.

All computations were made and figures produced using then®pating environment (see http:
www.r-project.org). To speed up computations we coded thstitime consuming loops in4&-. We
had no remarkable convergence problems in the MCMC sinmmatsed in estimation. Estimation of
the finance model (2a)-(2c) was computationally most chglieg, and we simulated three chains of
length 200000 and picked every 10th simulation to obtairueate results. In the estimation of the
mortality model all chains converged rapidly to their siatiry distributions. The summary of the
estimation results, as well as Gelman and Rubin’s diageoésee Gelman et al., 2004), are given in
Appendix C. The values of the diagnostic are close to 1 anglitidicate good convergence.

5.2. Hedging results

There are several parameters which may be varied in thecipating life insurance contract de-
scribed by Equation (1). We set the lag length of the movingrage at 125 days, the number of
simulated paths in contract price estimation at 1000 andchtheber of estimation repetitions at 50.
Furthermore, we set the duration of the contract to be 3 oelds/and the starting level of interest rate
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0.04 or 0.07. We do not fix the guarantee rate at a constarg tataughout the entire contract period
but set it at 0, 3 or 2/3 of the short-term rate at intervals of one year.

We calculate the results with and without mortality. Whenrtality is incorporated into the frame-
work, we calculate the results for clients of ages 60 and 88.a8éume that the contract period starts
at the beginning of year 2008, which means that we use cobortsin 1947 and 1927. There is only
slight difference in the results when models without mortality are amexqb with models including
mortality, and 60 years old clients are considered. Theeefae present the results concerning 80
years old clients only. Moreover, although we set the upttatpuency of the replicating portfolio to
be one day, one week and one month, we only present resuttaifgrand monthly updates, since the
results concerning daily and weekly updates do nfiediconsiderably. Table 1 shows the fair bonus
rates and hedging errors when minimum variance hedging 8%tbSI model is used, while Table 2
shows the results when delta-neutral hedging with CEV-Sdlehds used. Table 3 shows the results
of delta-neutral hedging with CEV-SI model when the reaHd@redictive simulations are however
generated from the SVJ-SI model. The corresponding resutismortality and 80 year old clients
may be found in Tables 5, 6 and 7.

TABLE 1.

Fair bonus rates and hedging errors with SVJ model (no nityjtal

contract interestrate  guarantee fair bonus MD with MSE with  MD with MSE with
length  starting level rate rate daily update  daily update ntimy update monthly update

3 0.04 0 0.242 0.053 0.436 0.048 0.59
3 0.04 13 0.172 0.038 0.223 0.035 0.296
3 0.04 73 0.089 0.035 0.064 0.035 0.077
3 0.07 0 0.384 0.166 1.282 0.225 1.747
3 0.07 13 0.281 0.163 0.616 0.163 0.887
3 0.07 23 0.156 0.096 0.219 0.095 0.287
10 0.04 0 0.257 -0.043 9.081 0.081 8.423
10 0.04 3 0.188 -0.08 5.56 -0.023 5.206
10 0.04 23 0.092 0.024 0.9 0.031 0.887
10 0.07 0 0.389 0.076 28.569 0.107 33.261
10 0.07 3 0.291 -0.056 20.218 -0.091 22.916
10 0.07 VA] 0.158 -0.086 7.334 -0.065 7.624

From all the tables we may see that the estimated fair bortasnereases as the guarantee rate
decreases. This is logical but it is less obvious why thelaitus rate also increases as the starting
level of the interest rate increases. The probable exptanat as follows: When the interest rate is
larger the level of the index grows more rapidly, since thergentage drift’ equals the riskless interest
rate under risk-neutral probability. This makes negattems in the moving average of the stock index
less probable, and the feature of the contract which proteet accumulated capital against negative
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TABLE 2.

Fair bonus rates and hedging errors with CEV model (pred. Jgt®\mortality).

contract interestrate  guarantee fair bonus MD with MSE with  MD with MSE with

length  starting level rate rate daily update  daily update ntimly update monthly update
3 0.04 0 0.325 0.125 0.35 0.147 0.474
3 0.04 13 0.235 0.095 0.175 0.098 0.243
3 0.04 73 0.137 0.032 0.074 0.038 0.094
3 0.07 0 0.50 0.207 0.74 0.226 0.985
3 0.07 13 0.383 0.152 0.426 0.156 0.549
3 0.07 73 0.223 0.071 0.141 0.079 0.181
10 0.04 0 0.333 0.19 5.235 0.175 4.903
10 0.04 13 0.254 0.068 1.69 0.063 1.753
10 0.04 23 0.145 0.026 0.25 0.043 0.305
10 0.07 0 0.496 -0.035 21.917 -0.021 19.832
10 0.07 3 0.384 0.043 6.91 0.029 7.957
10 0.07 23 0.241 -0.002 1.924 0.01 1.554

TABLE 3.
Fair bonus rates and hedging errors with CEV model (pred)@ddnortality).
contract interestrate  guarantee fair bonus MD with MSE with  MD with MSE with
length  starting level rate rate daily update  daily update ntimy update monthly update

3 0.04 0 0.325 -0.312 0.948 -0.287 1.118
3 0.04 13 0.235 -0.185 0.449 -0.211 0.521
3 0.04 73 0.137 -0.16 0.187 -0.15 0.2
3 0.07 0 0.50 -0.549 2.325 -0.509 2.436
3 0.07 13 0.383 -0.404 1.246 -0.362 1.246
3 0.07 73 0.223 -0.245 0.41 -0.205 0.407
10 0.04 0 0.333 -0.401 2.731 -0.36 2.664
10 0.04 13 0.254 -0.316 1.183 -0.342 1.293
10 0.04 23 0.145 -0.225 0.286 -0.194 0.291
10 0.07 0 0.496 -0.591 9.511 -0.672 12.614
10 0.07 13 0.384 -0.465 4.24 -0.491 5.42
10 0.07 23 0.241 -0.383 1.114 -0.408 1.37

returns becomes less important. This, in turn, decreagesdiitract price, which is compensated by

the increase in the bonus rate.
From Table 1 we may see that the meafietence of the replicating portfolio value and the bal-
ance (MD) is positive with the 3 years contract, which is gade from the insurance company’s risk
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management point of view. The probable reason for this réstihat the stopping rule based on the
estimated regression model is slightly suboptimal. We s¢sothat the MD decreases when the starting
level of the interest rate increases or when the guaranteeleareases. With the 10-year contracts the
sign of the MD may be positive or negative, which may be duertcertainty involved in long-term
simulation. However, one should note that the MD is closesto in all cases.

When comparing the mean square errors (MSES) one can sdbdfidtcrease as the initial interest
rate increases, the duration of the contract increasegg@uérantee rate decreases. The increase of the
initial interest rate from 4% to 7% makes the MSE about 3 titagger with the 3-year contract and 4
to 7 times larger with the 10-year contract. The increaséémduration of the contract has the largest
effect on the MSE. With 4% and 7% initial interest rates the MSEob®es about 15 and 30 times
larger, respectively, when the duration of the contrachgea from 3 to 10 years. The increase of the
guarantee from 0 to/3 reduces the erroffigciently. This is understandable, since a larger guarantee
reduces fluctuation in the value of the contract.

When the replicating portfolio is updated monthly insteddlaily, the MSE increases slightly in
the case of the 3-year contract. When the 10-year contractrisidered, no systematiffect of the
updating frequency is detected, probably because othestgperrors become so large in a long-run
simulation.

TABLE 4.
Hedging error of 2000 sample paths in a case of no guarantterest rate starting level.@7, 10 year
contract and no mortality.

hedge model  pred. model Min @ Median Mean Qs Max sd

SVJ SVJ -102.40 -0.186 0.075 -0.191 0.429 67.60 6.128
CEV SVJ -79.02 -0.764 -0.143 -0.660 0.039 6.31 2.945
CEV CEV -71.03  0.016 0.093 -0.049 0.297 24.45 3.241

As one can see from Table 2, the results are similar when theS&HEnodel and delta-neutral hedging
are used. In almost all cases the hedging MSE is slightly el with SVJ-SI model and minimum
variance hedging. This is natural, since there are lessceswf error in a simpler model. When
real-world predictions are simulated from the SVJ-SI mg@ek Table 3) and the hedging is based
on the CEV-SI model, the MDs are substantially negative civlig not a desirable situation from the
insurance company’s viewpoint. As the initial intereserigicreases the MD moves further away from
the zero. The sameffect takes place when the length of the contract increasesien the guarantee
rate decreases. On the other hand, the MSEs of delta hedgiradpaut double when compared with
the MSEs of minimum variance hedging in the 3-year contrdietsin the case of 10-year contracts the
MSEs of delta hedging are smaller as one can see from TableiSislsomewhat surprising but may be
understood by looking at the distribution of the hedgingesr Table 4 shows the basic statistics of the
hedging errors when the two hedging strategies are appliggticases of two predictive distributions.
The hedging error distribution of the delta-neutral schewmabined with predictions from the SVJ-SI
model is most skewed, since it does not have large positneeslike the other cases do. This makes
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the standard deviation smaller than in the other cases. ©uottter hand, the median of the distribution
is negative and the upper quartile is only slightly posititeereas both of them are positive in the other

cases.
TABLE 5.
Fair bonus rates and hedging errors with SVJ model (with afity}.
contract interestrate  guarantee fair bonus MD with MSE with  MD with MSE with
length  starting level rate rate daily update  daily update ntimly update monthly update

3 0.04 0 0.248 0.001 0.55 -0.024 0.708
3 0.04 13 0.176 -0.01 0.272 0.016 0.318
3 0.04 23 0.087 0.02 0.071 0.036 0.067
3 0.07 0 0.389 0.095 1.487 0.162 1.74
3 0.07 13 0.287 0.094 0.761 0.12 0.94
3 0.07 73 0.155 0.094 0.191 0.058 0.304
10 0.04 0 0.257 -0.403 7.077 -0.17 3.944
10 0.04 13 0.182 -0.172 2.294 -0.179 2.206
10 0.04 VA] 0.09 -0.004 0.265 -0.039 0.457
10 0.07 0 0.401 -0.377 21.226 -0.408 22.392
10 0.07 13 0.296 -0.259 10.137 -0.269 10.458
10 0.07 23 0.161 -0.107 2.808 -0.149 3.291

From Tables 5, 6 and 7 one can see tfiea of mortality. The most dramatic problem seems to be the
fact that the MD moves from the positive to negative side wh@iyear contracts are considered. The
most alarming situation is in the case when predictions cfvoma the SVJ-SI model and the hedging
is done with the delta-neural scheme and CEV-SI model. mghuation the MDs are farthest away
from zero. With the 3-year contract the MDs are close to zeralliother cases except when SVJ-SI
predictions and delta-neutral hedging with the CEV-SI made used. The MSEs slightly increase in
almost all cases. The only case where they become smalldran the SVJ-SI model is used for the
10-year contracts. This may be explained by studying ther elistributions summarized in Table 8.
The maximum of the distribution is much smaller than in theecahen mortality is not included.

These results indicate that model error might be crucialniteziging is applied to participating life
insurance. In the worst scenarios the errors would meas lagges to the insurance company.

6. CONCLUSIONS

In this paper we present a full Bayesian analysis of valnatiod hedging of a participating life in-
surance contract. The Bayesian approach enables us tateMaliIC methods and to take parameter
uncertainty into account in valuation and hedging. We véhgecontract with the regression method,
since it embeds an American-style surrender option. In #heation we take both financial and mor-
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TABLE 6.

Fair bonus rates and hedging errors with CEV model (pred. JgEth mortality).

contract interestrate  guarantee fair bonus MD with MSE with  MD with MSE with
length  starting level rate rate daily update daily update ntimly update monthly update
3 0.04 0 0.328 0.098 0.401 0.14 0.59
3 0.04 13 0.245 0.066 0.224 0.06 0.285
3 0.04 73 0.133 0.024 0.084 0.053 0.075
3 0.07 0 0.507 0.158 0.862 0.153 1.059
3 0.07 13 0.389 0.111 0.526 0.118 0.618
3 0.07 73 0.223 0.066 0.15 0.075 0.19
10 0.04 0 0.344 -0.038 3.712 -0.155 6.558
10 0.04 13 0.245 -0.039 2.486 -0.011 2311
10 0.04 23 0.137 -0.011 0.675 -0.02 0.58
10 0.07 0 0.525 -0.376 29.431 -0.316 29.538
10 0.07 13 0.397 -0.19 12.943 -0.147 11.309
10 0.07 VA] 0.229 -0.033 2.011 -0.035 1.792
TABLE 7.
Fair bonus rates and hedging errors with CEV model (pred)@¥Nth mortality).
contract interestrate  guarantee fair bonus MD with MSE with  MD with MSE with
length  starting level rate rate daily update  daily update ntimy update  monthly update

3 0.04 0 0.328 -0.318 0.963 -0.273 1.257
3 0.04 13 0.245 -0.245 0.58 -0.257 0.669
3 0.04 73 0.133 -0.161 0.21 -0.081 0.138
3 0.07 0 0.507 -0.577 2.818 -0.518 2.703
3 0.07 13 0.389 -0.436 1.447 -0.378 1.504
3 0.07 23 0.223 -0.223 0.411 -0.204 0.443
10 0.04 0 0.344 -0.387 2.246 -0.501 3.146
10 0.04 13 0.245 -0.283 1.189 -0.265 1.121
10 0.04 23 0.137 -0.17 0.395 -0.163 0.349
10 0.07 0 0.525 -0.783 10.474 -0.744 12.139
10 0.07 3 0.397 -0.548 5.496 -0.498 4.179
10 0.07 V] 0.229 -0.261 1.051 -0.257 0.968

tality risks into account. The financial model allows thesiaist rate, volatility and jumps in the index
process to be stochastic. As a stochastic mortality modeliseea generalization of the Gompertz

model.
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TABLE 8.

Hedging error of 2000 sample paths in a case of no guaranteegst rate starting level@, 10 year contract and mortality.

hedge model  pred. model Min @ Median Mean Qs Max sd

SVJ SVJ -140.80 -0.138 0.156  -0.441 0.309 5430 4.218
CEV SVJ -99.76 -0.772 -0.064 -0.799 0.091 8.248 3.626
CEV CEV -188.80 0.040 0.132 -1.118 0.233 18.650 10.017

The main steps in this paper are the estimation of the finhasémortality models, generation of
the posterior predictive distributions, pricing the Anoam-style contract, evaluation of the fair bonus
rate, and hedging the contract with a single-instrumentmum variance hedge. We repeat all these
steps using the CEV model with stochastic interest rate.h \its simpler model we construct the
conventional delta-neutral hedge, and compare its pedoo@ with minimum variance hedging and
the more complicated model.

We find that the duration of the contract is the most signifi€actor to produce large hedging errors.
Therefore, in order to make theffiirent hedging strategies comparable, is important to nhatera fair
bonus rate for each case studied. If the bonus rate is setighdédvel, the contract is almost never
reclaimed before the final expiration date, and, on the dthed, if the bonus rate is too low, early
surrender is highly probable.

One of the major findings of our simulation experiments ig tha mean dierence (MD) of the
replicating portfolio value and the balance is positivelia B-year contracts, which is desirable from
the insurance company’s risk management point of view. aérilthryear contracts the sign of the MD is
sometimes positive and sometimes negative, which may bedbe uncertainty involved in long-term
simulation. Moreover, the updating frequency of the regilitg portfolio has no systemati¢fect on
the hedging error, probably because other types of errarsrbe so large in these longer contracts.
The hedging MSEs are considerably larger in the 10-yearactstthan in the 3-year contracts. The
reason is that the error distributions are extremely heaailgd in the longer contracts.

We also find that there is only slightférence in the results between the case when mortality is not
taken into account and the case when it is and the contraetried at the age of 60. When comparing
the models without mortality with those with mortality an@ $ears old clients, we note that for some
reason the MD is clearly negative in the 10-year contracts.

Furthermore, we find that in almost all cases the hedging MBE@EV-SI model and delta-neutral
hedging is slightly lower than that with SVJ-SI model and iminm variance hedging. This is natural,
since there are less sources of error in the simpler modegritie real-world predictions are simulated
from the SVJ-SI model and the hedging is based on the CEV-Slemthe MDs are substantially
negative, which is not a desirable situation from the insogecompany’s viewpoint.

The findings of this article indicate that in some cases tk#&ildution of the hedging error has a
negative mean. However, this is not a serious problem, shreeécation of the error distribution can
be easily shifted by reducing the bonus rate slightly. Tre pgoblem are some rare paths of the
financial series which cause a heavy left tail in the hedgmgrelistribution in long-term contracts.
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Although these paths are extremely rare, they might leaduocia hedging errors and large losses to
the insurance company, unless one finds a way to hedge atienst

REFERENCES

Ballotta, L., Haberman, S., Wang, N., 2006. Guarantees th-priofit and unitized with-profit life insurance contracfair
valuation problem in presence of the default opti®ime Journal of Risk and Insurance, 73, 97-121.

Bacinello, A., 2003. Fair valuation of a guaranteed lifeuir@sice participating contract embedding a surrender oplibe
Journal of Risk and Insurance, 70, 461-487.

Bacinello, A.R., Bifis, E., Millossovich, P., 2008. Pricing life insurance cants with early exercise featurelaurnal of Com-
putational and Applied Mathematics, in press.

Bakshi, G., Cao, C., Chen, Z., 1997. Empirical performarfa@ternative option pricing modeldournal of Finance, 52, 2003—
2049.

Bauer, D., Kiesel, R., Kling, A., Rul, J., 2006. Risk-nelwaduation of participating life insurance contradssurance: Math-
ematics and Economics, 39, 171-183.

Bernard, C., Le Courtois, O., Quittard-Pinon, F., 2005. kéawvalue of life insurance contracts under stochastiaésterates
and default risklnsurance: Mathematics and Economics, 36, 499-516.

Biffis, E., 2005. Afine processes for dynamic mortality and actuarial valuatibrsurance: Mathematics and Economics, 37,
443-468.

Briys, E. and de Varenne, F., 1997. On the risk of previousliéa insurancenext term liabilities: debunking some coonm
pitfalls. Journal of Risk Insurance, 64, 673-694.

Briys, E. and de Varenne, F., 1997. Valuing risky fixed ratitdan extensionjournal of Financial and Quantitative Analysis,
32, 239-248.

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 20Bdyesian Data Analysis. Chapman & HallCRC.

Geman, S. and Geman, D., 1984. Stochastic relaxation, @ibtyibutions, and the Bayesian restoration of imatfeEE Trans-
actions on Pattern Analysis and Machine Intelligence, 6, 721-741.

Gilks, W. R., Richardson, S., and Spiegelhalter, D., e®961Markov Chain Monte Carlo in Practice. Chapman & Hall.
Glasserman, P., 200Blonte Carlo Methods in Financial Engineering. Springer.
Gourieroux, C. and Jasiak, J., 20FInancial Econometrics. Princeton Series in Finance.

Grosen, A., Jorgensen, P., 2000. Fair valuation of life iasce liabilities: The impact of interest rate guaranteesrender
options, and bonus policiemsurance: Mathematics and Economics, 26, 37-57

Hastings, W.K., 1970. Monte Carlo sampling methods usingklachains and their applicationBiometrica, 57, 97—109.

Jacquier, E., Polson, N.G., Rossi, P.E., 1994. Bayesidgsisaf stochastic volatility modelSournal of Business and Economic
Satistics, 12, 371-389.

Jones, C., 1998. Bayesian estimation of continuous-tinenée models. Working paper, Simon School of Business, Bitye
of Rochester, New York.

Liu, C., 2003. Alternating Subspace-Spanning Resamptinctelerate Markov Chain Monte Carlo simulatidournal of the
American Statistical Association, 98, 110-117.

Liu, J., and Wu, Y. N., 1999. Parameter expansion in for datareentationJournal of the American Statistical Association, 94,
1264-1274.

Longstdf, F.A., Schwartz, E.S., 2001. Valuing American options byudation: A simple least-squares approaBview of
Financial Studies, 14, 113-148.

Luoma, A., Puustelli, A., Koskinen, L., 2008. Bayesian gsi of participating life insurance contracts with Amariestyle
options. In Proc. of AFIR Colloguium, Rome, Italy, 31 Septemn— 3 October, 2008.



20 LUOMA & PUUSTELLI

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Tell&.H., and Teller, E., 1953. Equations of State Calcutaiby Fast
Computing Machineslournal of Chemical Physics, 21, 1087—-1092.

Promislow, S.D., 2006-undamentals of Actuarial Mathematics. John Wiley & Sons, Ltd.

Shen, W. and Xu, H., 2005. The valuation of unit-linked pielcwith or without surrender optiongisurance: Mathematics and
Economics, 36, 79-92.

Tanskanen, A. J., Lukkarinen, J., 2003. Fair valuation dfiygteependent participating life insurance contraletsurance: Math-
ematics and Economics, 33, 595-609.

van Dyk, D. A., and Meng, X. L., 2001. The art of data augmenitiawith discussion)Journal of Computational and Graphical
Satistics, 10, 1-111.

Zaglauer, K., Bauer, D., 2008. Risk-neutral valuation aftipgating life insurance contracts in a stochastic ies¢rate envi-
ronment.nsurance: Mathematics and Economics, in press.

APPENDICES
A. Full conditional distributions of the option pricing model

Let us denotey; = (Qi,ﬁl): Y2 = (a'z,,BZ)' ¢ = (u,y1,v2,01,02,03,012,013,£23), Ik = (Ik, Uk),
Y = (Ya.... Yk-1) and
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where
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and

5 -1
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Update for vy, with Gibbs sampler

Prior: p(y2) < 1
Conditional posterior:

(l2%, X, a0 ~ N((x0A71X) ™ (A2, T2 (xiaztx ) ),

where
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Update for ¥ with Gibbs sampler

Prior: p(Z) ~ Inv-Wishart®, m)
Posterior:p(Z|...) ~ Inv-Wishart® + A, m+ K — 1), where

A:éa(e{(.
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Update for volatility with Metropolis-Hastings step
Let us denotddy = (log Sy, Ik, R¢). The conditional posterior ofy:

p (Ykl’ Yk—l9 Yk+19 Hk—19 Hk’ Hk+l’ ¢)
oc P (Yl k-1, Hi-1, His ¢) P (Yies, Hiceal Yie, Hic, 8)

Proposaly; is generated fronp (Yk|Yk-1, Hk-1, Hk, ¢):

Yy = Yeer + (@7 +B1Yk-1)6 + \/Yk—15e(k2)*,

(213) 0-2,13). Fork = 1 the proposal is generated from unconditional distribbutio

whereg? ~ N (u
Pr(Y1|¢). SinceY is a CIR process, its stationary distribution is Gan(m%;‘ﬁ, —‘T—%).

2
Acceptance probability:

. ( p(Yk+l’ Hk+l|Y*’ Hk9 ¢))
min{1

" P(Yir1, Hiral Yk, Hi, @)

. 1,
=min {1, exp[— log(Yy) + log(Yi) — > (e,’;+12‘1e,t+1 - e{(+12‘1a<+1)]},

whereg;, , is computed using. Fork = K the acceptance probability cannot be computed. The
proposal is accepted with probability 1.

Update for the parameters of the jump process with Gibbs sampler

Prior: 19 ~ Beta(, p2)

Posterior: Prfo|l) « Beta(y + > li, p2 + K= X 1)
Priors:b? ~ Inv-x*(dfo,03), alb? ~ N(ao, b?/by)
Posteriors:

1 bon  —
2 - 2 - 2 _ 0 _ 2
b|l,U ~ Inv-y (dfo+ n, dfg 1 (df00'0+(n 1)SZ+ b n(U ao) ))

N 2
A2 1.U ~ N(boa0+nU b )

bp+n “by+n

wheren=Y1;, U=131U;, &=L 31U~ U)>2

Update for the jump process with Metropolis-Hastings step
Let us denote anty = (log Sy, Yk, R«). Then the full conditional distribution df is

P (lllk=1, Tks1, Lis L1, L1, @) = P (Ilbk-1, Lk, @) o
P (IklLk-1, #) P (Lillk, Lk-1, ) = p (Ixl®) p (Lillk, Lk-1, &)

Proposal from distributiom (I|¢): |, ~ Ber(1o), U; ~ N(a, b?).
Acceptance probability:

min (1 P(Lillk-1, 1, ¢))
" p(Lilli-1, Ik, @)

=min {1, exp[—% (e,’;/Z‘le;; - e’kZ‘la<)}} ,
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whereg; is computed using.

B. Full conditional posterior distributions of the mortality model

Let us denotey, = log(uw) fork = 1,...,K andu = 1,...,U. Furthermorey, = (Y, ..., Yku),
y=(Y1,...,yu) andX = (Xi,..., X[;)’, where

lulu-1
1u2 u-2
Xu=|. . . . b
l1uKu-K
andg = (Boo. Bo1, B10, B11)-
The inverse oCor(y|3, ¢) is
R 0
R!= i =lyeR?
0 R1
wherely is U x U identity matrix and
¢ ¢2 . ¢K—l

R=

¢K.-1 ¢"? ¢ 1

Update for o2, with Gibbs sampler
Prior: p(o2) o (T—l%
Conditional posterioro?ly, 8, ¢ ~ Inv-y?(KU, S§KU), where SS= (y — XB)'R:1(y — XB).

Update for B with Gibbs sampler
Prior: p(8) o« 1
Conditional posteriorgly, ¢, o2, ~ N(ug, 72V;3), whereus = (X'RIX)IX'Rly andV = (X'R;IX) L.

Update for ¢ with Metropolis step

Prior: p(¢) = l(-1.1)(¢) .
Conditional posteriorp(gly, 8, o) o (1 — ¢%)~2YK-1) EXp(_%SS) l-10)(¢)
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C. Estimation results of finance and mortality models

The posterior simulations were performed using the R comgu@nvironment. The following out-
puts were obtained using the summary function of the addackage MCMCpack:

TABLE 9

Estimation results of finance model.

Number of chains = 3

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE
mu 0.1157251 0.0365450 2.110e-04 7.554e-04
alphal 0.1968175 0.0386987 2.234e-04 1.658e-03
betal -6.2996549 1.3530007 7.812e-03 5.483e-02
alpha2 0.2154899 0.1286814 7.429e-04 7.452e-04
beta2 -0.0495622 0.0429811 2.482e-04 2.270e-04
sigma22V 0.2218156 0.0444790 2.568e-04 2.137e-03
sigma33 0.0140068 0.0005198 3.001e-06 3.108e-06
rhol2 -0.7681546 0.0523322 3.021e-04 2.070e-03
rhol3 0.0792596 0.0264295 1.526e-04 2.204e-04
rho23 -0.1322315 0.0517667 2.989%e-04 1.381e-03
a -0.0060781 0.0068594 3.960e-05 1.366e-04
b2 0.0003484 0.0002063 1.191e-06 2.366e-06
lambda® 0.0090029 0.0027855 1.608e-05 6.318e-05
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2. Quantiles for each variable:

mu 0.
alphal 0.
betal -9.
alpha2 0.
beta2 -0.
sigma22V 0.
sigma33 0.
rhol2 -0.
rhol3 0.
rho23 -0.
a -0.
b2 0.
lambda® 0.

2.

5%

0426332
1271985
1239610
0281787
1612529
1457985
0130214
8556995
0266995
2335275
0193522
0001421
0051479

25%

.0911853
.1697973
.1682486
.1218338
.0704730
.1902363
.0136508
.8054466
.0615367
.1670558
.0104156
.0002256
.0065661

Gelman and Rubin’s diagnostics

50%

.1162357
.1944505
.2259077
.1949668
.0382768
.2177842
.0139906
.7729459
.0792856
.1321860
.0062760
.0002996
.0085743

(Potential scale reduction factors):

Point est. 97.5% quantile

mu
alphal
betal
alpha2
beta2
sigma22V
sigma33
rhol2
rhol3
rho23

a

b2
lambda®

1.
.00
.00
.00
.00
.00
.00
.01
.00
.00
.00
.01
.01

T T T T T S TG S Y

00

1.

T T T T T T S S Y

00
.00
.01
.00
.00
.00
.00
.02
.00
.00
.01
.01
.02

75%

.1406814
.2216304
.3563520
.2853363
.0170129
.2496907
.0143487
.7370593
.0971150
.0979035
.0019092
.0004109
.0111619

97.5%

.1859535
.2790440
.8502831
.5272006
.0015817
.3184338
.0150585
.6501383
.1311709
.0299741
.0080387
.0008392
.0145301
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TABLE 10.

Estimation results of mortality model.

Number of chains = 3

Sample size per chain = 2500

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

beta®® -7.
beta®1 -1.
betal® 7.
betall -2.
sigma2m 2.

phi 2

Mean
218e+00
391e-02
248e-02
229e-05
941e-02

.486e-01

@ @ @ @ e @

SD Naive SE Time-series SE

.0230773
.0011916
.0008204
.0001162
.0015699
.0366845

2.665e-04
1.376e-05
9.
1
1
4

473e-06

.341e-06
.813e-05
.236e-04

2. Quantiles for each variable:

beta®® -7.
beta®l -0.
betal® 0.
betall -0.
sigma2m 0.

phi 0.

Gelman and Rubin’s diagnostics

2.5%

25%

50%

2635215 -7.2333503 -7.218e+00
0162149 -0.0146982 -1.392e-02

0708985

0.0719250

7.247e-02

0002524 -0.0001005 -1.917e-05
0266480 0.0283436 2.928e-02
0.2246326 2.472e-01

1769527

(Potential scale reduction factors):

Point est. 97.5% quantile

betad0
betall1
betal®
betall
sigma2m

phi

1.00
1.01
1.01
1.02
1.00
1.00

1.
.04
.02
.06
.00
.01

T T Ty

00

3.524e-04
6.582e-05
3.685e-05
7.854e-06
4.937e-05
1.603e-03

75%
-7.203e+00 -
-1.315e-02 -

7.302e-02
5.772e-05
3.038e-02
2.714e-01

97.5%

.1731612
.0115150
.0740813
.0002014
.0327533
.3236979
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