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1 Introduction

The recent evolution on stock and bond markets has shown that neither stocks nor
bonds inherit an effective protection against the loss of purchasing power. Decli-
ning stock prices and a comparatively low interest rate level were and are not able
to offer an effective compensation for the existing inflation rate. One characteristic
of inflation is the lasting and overall rise in prices leading to a loss in the purchasing
power of the money. Inflation is usually measured by a consumer price index (CPI)
which is reflecting the actual price level of a basket of typical consumer goods. In
the eurozone this is a harmonized consumer price index (HCPI) determined by
EUROSTAT. EUROSTAT’s Monetary Union Index of Consumer Prices (MUICP)
is the weighted average of the specific nationals HCPIs of the eurozone where the
weights rely on the national proportion of the overwhole expenses on consumption.
Inflation itself is then defined as the percentage change of the inflation index, the
so-called inflation rate. No matter what causes inflation – a rise in prices in fo-
reign countries, rising costs, increasing government debt or a growing demand on
consumption goods – central banks play a major role in stabilization policy. Fur-
thermore investors ask for a compensation to cover inflation when investing into
bonds - hence there is an obvious connection between the interest rates on the
market and expectations on the future inflation rate. One theory reflecting this
relation dates back to Fisher (1930) who describes the relation between market
interest rates and inflation by the so-called Fisher Equation

rN (t, T ) = rR(t, T ) + E[i(t, T )] (1)

where rN (t, T ) is the today’s cumulative nominal interest rate from t up to T
on the market, rR(t, T ) is the real cumulative interest rate, the gain in wealth an
investor wants for an investment up to maturity T excluding the loss of purchasing
power since time t and E[i(t, T )] is the expected overall inflation rate from t up
to time T . We note that in the presence of continuous annual interest rates the
Fisher equation rewrites as follows

e(rN−rR)(T−t) = E
[
I(T )

I(t)

]
(2)

where rN is the constant continuous nominal interest rate, rR the constant conti-
nuous real interest rate and I(t) the inflation index at time t taking into account
that the relation between the inflation index I and the inflation rate i is given by

i(t, T ) =
I(T )− I(t)

I(t)
. (3)

On the background of the latest issues of inflation-linked government bonds
in the eurozone∗ and a growing number of inflation-linked life insurance products
the market for inflation-linked derivatives is expected to grow. These derivatives
are designed to protect investors against the changes in purchasing power of a

∗Germany has issued its first inflation-linked bond with maturity in 2016 in March 2006 and
a second one with maturity 2013 in October 2007.
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certain country or a certain economic region such as the eurozone. In addition
to inflation-linked bonds these derivatives cover up the risk of inflation – or even
deflation – and can be used to hedge future cash flows against inflation risk.

Inflation-linked derivatives are usually priced using a foreign currency analogy.
Nominal values can be transfered into real values in purchasing power by using
the value of the quotient of the two relevant inflation indices as an exchange rate.
In these frameworks the nominal interest rates refer to the ”domestic currency”
while the real can be concerned as the ”foreign currency” or vice versa. We note
that this analogy does not take into account, that today’s real rates on the market
differ from the actual later realized gain in purchasing power.

Hugston (1998) introduced a Heath-Jarrow Morton (HJM) framework model-
ling the nominal and real bond prices and achieves a closed-form solution for
vanilla options on the actual inflation. Jarrow and Yildirim (2003) also used a
HJM framework to derive the price of a plain vanilla call on the inflation index.
Jarrow and Yildirim assumed the nominal and real rates both to follow one-factor
Gaussian processes along with a lognormal CPI preserving the Fisher equation. A
simple model introducing a similar setting to Jarrow and Yildirim (2003) can be
found in Korn and Kruse (2004) also preserving the Fisher Equation. Alternative
approaches using lognormal forward CPI have been introduced by Kazziha (1999),
Belgrade et al. (2004) and Mercurio (2005). These authors assume that the for-
ward CPIs follow driftless Brownian motions under the relevant forward measures.
Mercurio and Moreni (2006) extend these lognormal forward CPI models to sto-
chastic volatility. The macroeconomic concept of Fisher is not reflected by those
lognormal forward CPI models.

Through out this paper we consider the problem of pricing vanilla options on
the actual inflation rate as well as the pricing of inflation caplets. Based on the
Black-Scholes type model of Korn and Kruse (2004) we derive the price of a caplet
on the future inflation and extend our market model to stochastic volatility as
in Heston (1993). Other well known models of stochastic volatility can be found
in Hull and White (1987) and Stein and Stein (1991), a good overview is given
in Fouque et al. (2000). Since we believe the Heston model to be of significant
importance to practioners we chose this framework to introduce our new model
for inflation. Critical discussion of Heston’s model as in Quesette (2002) seem to
have been overcome. Kruse and Nögel (2005) show that it can be satisfactorily
fitted to market data and very well reproduces implied Black-Scholes volatilities
and how one can avoid critical implementation problems. We note that a detailed
description of the implementation procedure can be found in Mikhailov and Nögel
(2003).

The main contributions of this paper are the following:

1. In the simple Black-Scholes framework as in Korn and Kruse (2004) we derive
the price of a caplet on the inflation over a future time interval.
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2. By extending the Black-Scholes framework for the inflation index to the
presence of stochastic volatility we introduce a new model for inflation pre-
serving the Fisher equation.

3. By using Heston’s work on stock options we state the price of a plain vanilla
call on the actual inflation rate.

4. We derive a closed-form solution to the pricing problem of options on the
future inflation rate by using the analogy to the pricing of forward starting
options in the presence of stochastic volatility.

The remainder of the paper is structured as follows: We recall the model
of Korn and Kruse (2004) and deduce a pricing formula for inflation caplets in
their setting in Section 2. To illustrate the usefulness of introducing stochastic
volatility we calibrate this model to a set of market data and show that the implied
volatilities in the Black-Scholes type pricing formula are anything but constant
over all strikes and maturities. Section 4 briefly recalls the Heston model and
some results on the pricing of forward starting options in this model. Additionally
we introduce to our inflation model stochastic volatility as in Heston (1993) to
derive in Section 5 closed-form solutions for both types of inflation options under
the assumption of stochastic volatility. Since inflation caps and floors are European
type options one can easily deduce the corresponding floor prices in both models.

2 Pricing inflation options in a Black-Scholes-
type framework

In this section we consider the simple model of Korn and Kruse (2004) where the
inflation index I(t) follows a geometric Brownian motion

dI(t) = (rN − rR) I(t)dt+ �II(t)dWI(t) (4)

and (Ω,ℱ, Q) is a probability space with the filtration (ℱt)t≥0 of market informa-
tion. It is quite obvious that this model preserves the Fisher equation:

EQ

[
I(T )

I(t)

∣∣∣∣∣ℱt
]

= e(rN−rR)(T−t)

In their paper Korn and Kruse (2004) derived a closed-form solution for a call on
the future inflation index:

Lemma 2.1. Under the assumption that the inflation index follows the dynamics
given in (4) the price of a plain vanilla call option on the inflation index itself with
strike price K, maturity T and with payoff

C(T, I(T )) = (I(T )−K)+ (5)

at maturity, is at time t = 0 given by
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C(0, I(0)) = I(0)e−rRTN(d)−Ke−rNTN(d− �I
√
T )

with

d =
ln
(
I(0)
K

)
+
(
rN − rR + 1

2�
2
I

)
T

�I
√
T

.

From this result we can directly deduce the price of an option on the inflation rate
starting at some time before or at the valuation date of the very same option:

Corollary 2.2. Assuming that the dynamics of the inflation index is given by (4),
the price of a cap on the overall inflation rate over a fixed time horizon from time
t0 up to the maturity of the cap T with t0 ≤ 0 < T as in

CID(T ; I(T )) =

(
I(T )− I(t0)

I(t0)
− k
)+

is at time t = 0 given by

CID(0, I(0)) =
I(0)

I(t0)
e−rRTN(d)− (1 + k)e−rNTN(d− �I

√
T ) (6)

with

d =
ln
(

I(0)
I(t0)(1+k)

)
+
(
rN − rR + 1

2�
2
I

)
T

�I
√
T

.

Proof: The result is quite obvious since the inflation index I(t0) is a known
constant at time t = 0 and setting the strike equal to K = I(t0) ⋅ (1 + k) in
Equation (5) leads to the above. □

Analogously to the derivation of the price of a forward starting option in the
Black-Scholes framework for stock options as in Rubinstein(1991) we achieve a
closed-form formula for the price of a caplet on the inflation rate over a future
time interval [Ti−1, Ti]:

Proposition 2.3. Assuming that the dynamics of the inflation index is given by
(4), the price of a caplet on the inflation rate i(Ti−1, Ti) over a future time interval
from time Ti−1 up to the maturity of the caplet at time Ti with 0 < Ti−1 < Ti and
payoff at time Ti

CFIR(Ti; i(Ti−1;Ti)) = (i(Ti−1, Ti)− k)+ =

(
I(Ti)− I(Ti−1)

I(Ti−1)
− k
)+

5



is at time t = 0 given by

CFIR(0, I(0)) = e−rR(Ti−Ti−1)e−rNTi−1N(d) (7)

− (1 + k)e−rNTiN(d− �I
√
Ti − Ti−1)

with

d =
− ln (1 + k) +

(
rN − rR + 1

2�
2
I

)
⋅ (Ti − Ti−1)

�I
√
Ti − Ti−1

.

Proof: General arbitrage theory yields that today’s option price is given by

CFIR(0, I(0)) = EQ

⎡⎢⎣B(0)
(

I(Ti)
I(Ti−1) −K

)+

B(Ti)

∣∣∣∣∣ ℱ0

⎤⎥⎦
with K = 1 + k, Q the equivalent martingale measure and numeraire B(t) =
erN t for t ≥ 0. As the underlying inflation index process is adapted to the
filtration of market information and the numeraire is deterministic we can
rewrite the option price as

EQ

⎡⎢⎣ B(0)

B(Ti−1)
⋅ EQ

⎡⎢⎣B(Ti−1)
(

I(Ti)
I(Ti−1) −K

)+

B(Ti)

∣∣∣∣∣ ℱTi−1

⎤⎥⎦ ∣∣∣∣∣ ℱ0

⎤⎥⎦ .
Since the inflation index I(Ti−1) is a constant at time Ti−1 we can use Lemma
2.1 to derive that the inner expectation – the option price in Ti−1 – is equal to

EQ

⎡⎢⎣B(Ti−1)
(

I(Ti)
I(Ti−1) −K

)+

B(Ti)

∣∣∣∣∣ ℱTi−1

⎤⎥⎦
=

1

I(Ti−1)
C(Ti−1, I(Ti−1))

= e−rR(Ti−Ti−1)N (d(Ti−1))−K ⋅ e−rN (Ti−Ti−1)N
(
d(Ti−1)− �I

√
Ti − Ti−1

)
with

d(Ti−1) =
ln
(

1
K

)
+
(
rN − rR + 1

2�
2
I

)
(Ti − Ti−1)

�I
√
Ti − Ti−1

.

We directly get that the option price at time t = 0 is given by

CFIR(0, I(0)) = EQ

[
B(0)

B(Ti−1)
⋅ 1

I(Ti−1)
C(Ti−1, I(Ti−1))

∣∣∣∣∣ ℱ0

]
= e−rR(Ti−Ti−1) ⋅ e−rNTi−1N (d(Ti−1))

−K ⋅ e−rNTiN
(
d(Ti−1)− �I

√
Ti − Ti−1

)
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taking into account that d(Ti−1) is deterministic and independent of I(Ti−1).
□

We note that this model is quite simple and easy to use for practioners but
inherits the same assumptions as the Black-Scholes model for stock options – such
as the assumption of a constant volatility over time and all strikes – that have
proved to be unrealistic. Intuitively the price of an option on the inflation rate
over a future time interval is depending on today’s market position on the future
behaviour of inflation. This is reflected by the implied forward volatilities in this
Black-Scholes-type framework. In Section 3 we extract forward volatilites from a
variety of different cap prices and thereby show that inflation volatility is anything
than constant over all maturities and strikes.

3 Calibration of the Black-Scholes Type Model to
Market Data

In this section we give an application of our Black-Scholes type model to market
data and show that forward implied volatilities in our Black-Scholes-type model are
anything but constant over all maturities and strikes. The model was calibrated
to inflation-indexed cap prices for different strikes and maturities as of November
3, 2004, in the USD market as shown in Table 1 (see also Mercurio and Moreni
(2006)).

Table 1: Cap prices (in bps) of November 3, 2004, USD market

Ti/Strike 1% 1,50% 2% 2,50% 3% 3,50%

1 178,10 134,40 95,10 62,40 37,80 21,20
2 360,40 277,40 202,90 140,30 92,00 58,00
3 539,90 419,90 312,10 221,10 150,20 99,30
4 714,50 558,90 418,90 300,40 207,40 140,00
5 886,40 696,10 524,30 378,30 263,10 179,00
6 1041,70 819,50 619,00 448,30 313,40 214,60
7 1196,80 944,70 717,10 523,00 368,80 255,10
8 1338,80 1059,50 807,50 592,30 420,90 293,80
9 1477,40 1172,60 897,60 662,40 474,60 334,60
10 1610,50 1281,90 985,40 731,60 528,30 376,00

The real discount factors needed for both models can be directly extracted
from the given rates of zero coupon inflation swaps and from the nominal dis-
count factors as in Table 2 and where we can defined the nominal discount factors
DrN (0, Ti) := e−rNTi , and the real discount factors DrR(0, Ti) := e−rRTi , as well
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Table 2: USD nominal and real discount factors, ZC swap rates, on November 3,
2004

Ti DrN (0, Ti) ZC Rates DrR(0, Ti)

1 0,97701 2,111% 0,99763
2 0,94982 2,188% 0,99184
3 0,91835 2,240% 0,98146
4 0,88433 2,278% 0,96771
5 0,84862 2,293% 0,95048
6 0,81179 2,300% 0,93046
7 0,77460 2,310% 0,90887
8 0,73785 2,320% 0,88645
9 0,70218 2,325% 0,86354
10 0,66773 2,335% 0,84109

as the implied nominal forward FrN (Ti−1, Ti) := e−rN (Ti−Ti−1) and the implied
real forward discount factors FrR(Ti−1, Ti) := e−rR(Ti−Ti−1).

With the pricing formulae (7) at hand, we are able to derive the implied volati-
lity surface as in Figure 1. At first glance one can see, that the implied volatilities
are far from being constant. The special shape, i.e. the skewness of the surface
gave us the confidence to continue with the derivation of an inflation caplet price
in a stochastic volatility model of inflation.

Figure 1: Implied volatility surface for inflation caplets in our Black-Scholes type
model
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4 The Heston Model

In this section we consider a Heston framework on stochastic volatility as first
introduced in Heston (1993). Let (Ω,ℱ, Q) be a probability space with filtration
(ℱt)t≥0 of market information with the risk neutral equivalent martingale measure
Q derived by calibrating to a set of given market data. We assume that the asset
price process A(t) follows the diffusion

dA(t) = rA(t)dt+
√
�(t)A(t)dWA(t) (8)

with constant risk free nominal interest rate r while the variance �(t) satisfies the
stochastic differential equation

d�(t) = �(� − �(t))dt+ �
√
�(t)d

(
�WA(t) +

√
1− �2W� (t)

)
(9)

with risk neutral long term mean �, risk neutral mean reverting speed � with � ≥ 0
and volatility � of the variance process itself. Furthermore we suppose that WA

and W� are independent Brownian motions with respect to the filtration (ℱt)t≥0

and that the above parameters are such that the stability condition

2��

�2
> 1 (10)

holds. This condition ensures that the variance process �(t) remains positive
starting from a positive variance �(0) (for further discussion see Brigo and Mercurio
(2006), pp. 56f).

Heston (1993) shows that for a plain vanilla call its option price at some time
t prior to maturity T can be calculated as in the following lemma. We note
that we work under the risk neutral measure and thereby neglect the market
price of risk. Due to the partial differential equation approach to option pricing,
one derives probabilities P1 and P2 which can be calculated by applying Fourier
transformation, in other words by finding solutions to the corresponding partial
differential equations for their characteristic functions. A detailed derivation of
the Heston formula can for example be found in Primm (2007). We note that
Heston’s result can be extended to the presence of a constant dividend yield of the
asset A such that (8) rewrites

dA(t) = (r − d)A(t)dt+
√
�(t)A(t)dWA(t). (11)

Lemma 3.1. Suppose that the asset price process A(t) satisfies Equation (11) and
(9) such that condition (10) holds. Note that i =

√
−1. The price of an option

with payoff
C(T,A(T )) = (A(T )−K)+

at time t = 0 is given by

C(0, A(0), �(0))

=A(0) e−dTP1

(
0, e−dTA(0), �(0),K

)
−Ke−rTP2

(
0, e−dTA(0), �(0),K

)
9



where P1 and P2 are probabilities given by

Pj(0, e
−dTA(0), �(0),K) =

1

2
+

1

�

∫ ∞
0

Re

(
e−i� ln(K)fj(d,A(0), �(0), T, �)

i�

)
d�

(12)
with fj being the corresponding characteristic functions defined by

fj(d,A(0), �(0), T, �) = e−di�T+i�ln(A(0))+Cj(�,T )+Dj(�,T )�(0)

for

Cj(�, T ) = ri�T +
��

�2

[
(bj − ��i�+ dj)T − 2 ln

(1− qjedjT

1− qj

)]
Dj(�, T ) =

bj − ��i�+ dj
�2

(
1− edjT

1− qjedjT

)
where

u1 = −u2 =
1

2
,

b1 = �− ��, b2 = �,

dj =
√

(��i�− bj)2 − �2(2uji�− �2),

and

qj =
bj − ��i�+ dj
bj − ��i�− dj

for j = 1, 2.

We now recall a useful result on the pricing of forward starting options in the
Heston model. Forward starting options are exotic options whose strike prices are
not fully determined until an intermediate date t∗ before maturity T , called the
determination time of the strike or starting date of the option. Kruse and Nögel
(2005) derive a closed-form solution to the pricing of forward starting options on
the return of an asset A with payoff

C(A(T )) =

(
A(T )

A(t∗)
− k
)+

(13)

in the Heston model:

Lemma 3.2. Let 0 < t∗ < T and suppose � ≥ ��. Assuming (11), (9), and (10)
the price of an option with payoff (13) can be calculated by

C(0, �(0), A(0)) =e−d(T−t∗)e−rt
∗
P̂1(e−d(T−t∗), 0, �(0))

− ke−rT P̂2(e−d(T−t∗), 0, �(0))
)
.
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where P1 and P2 are probabilities defined by

P̂j(x, 0, �(0)) :=

∫ ∞
0

Pj(t
∗, x, v, k)f(v∣�(0))dv

where the Pj, j = 1, 2, equal the Heston probabilities given in (12) and

f(v∣�(0)) =
B

2
⋅ e−(Bv+Λ)/2

(
Bv

Λ

)(R/2−1)/2

IR/2−1(
√

ΛBv)

for
Λ = Be−(�−��)t∗�(0),

with

B =
4(�− ��)

�2
(1− e−(�−��)t∗)−1

and

R =
4��

�2

while IR/2−1(⋅) is a modified Bessel function of the first kind.

5 Pricing inflation-linked caps in Heston’s model
on stochastic volatility

We now consider a Heston-type framework to model the inflation index I(t). Let
(Ω,ℱ, Q) be a probability space with filtration (ℱt)t≥0 of market information with
the risk neutral equivalent martingale measure Q derived by calibrating to a set of
given market data. We assume that the inflation index I(t) follows the diffusion

dI(t) = (rN − rR)I(t)dt+
√
�(t)I(t)dWI(t) (14)

with constant risk free nominal interest rate rN and real interest rate rR , while
the variance �(t) satisfies the stochastic differential equation

d�(t) = �I(�I − �(t))dt+ �I
√
�(t)d

(
�WI(t) +

√
1− �2W

�
(t)
)

(15)

with risk neutral long term mean �I , risk neutral mean reverting speed �I with
�I ≥ 0 and volatility �I of the variance process itself. Furthermore we suppose
that WI and W� are independent Brownian motions with respect to the filtration
(ℱt)t≥0 and that the above parameters are such that the stability condition

2�I�I
�2
I

> 1 (16)

holds. As before this condition ensures that the variance process �(t) remains
positive starting from a positive variance �(0).
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Lemma 4.1. Suppose that the inflation index I(t) satisfies Equation (14) and
(15) such that condition (16) holds. Again holds i =

√
−1. The price of an option

with payoff
C(T, I(T )) = (I(T )−K)+

at time t = 0 is given by

C(0, I(0), �(0))

=I(0)e−rRTP1

(
0, e−rRT I(0), �(0),K

)
−Ke−rNTP2

(
0, e−rRT I(0), �(0),K

)
where P1 and P2 are probabilities given by

Pj(0, e
−rRT I(0), �(0),K) =

1

2
+

1

�

∫ ∞
0

Re

(
e−i� ln(K)fj(rR, I(0), �(0), T, �)

i�

)
d�

(17)
with fj being the corresponding characteristic functions defined by

fj(rR, I(0), �(0), T, �) = e−rRi�T+i�ln(I(0))+Cj(�,T )+Dj(�,T )�(0)

for

Cj(�, T ) = rN i�T +
�I�I
�2
I

[
(bj − ��I i�+ dj)T − 2 ln

(1− qjedjT

1− qj

)]

Dj(�, T ) =
bj − ��I i�+ dj

�2
I

(
1− edjT

1− qjedjT

)
where

u1 = −u2 =
1

2
,

b1 = �I − �I�, b2 = �I ,

dj =
√

(��I i�− bj)2 − �2
I (2uji�− �2),

and

qj =
bj − ��I i�+ dj
bj − ��I i�− dj

for j = 1, 2.

Proof: This results directly from Lemma 3.1 if one regards the real interest
rate rR as a form of dividend yield on the inflation index.

□

From the former result we directly achieve the price of an option on the actual
inflation rate:

Corollary 4.2. Assuming that the dynamics of the inflation index is given by (14)
and (15) such that condition (16) holds, the price of a cap on the overall inflation

12



rate over a fixed time horizon from time t0 up to the maturity of the cap T with
t0 ≤ 0 < T as in

CID(T ; I(T )) =

(
I(T )− I(t0)

I(t0)
− k
)+

is at time t = 0 given by

CID(0, I(0), �(0)) =
I(0)

I(t0)
e−rRTP1

(
0, e−rRT I(0), �(0), I(t0)(1 + k)

)
(18)

− (1 + k)e−rNTP2

(
0, e−rRT I(0), �(0), I(t0)(1 + k)

)
where Pj, j = 1, 2 equal the Heston probabilities as in (17).

Proof: This follows directly from the above by rewriting the payoff as

CID(T ; I(T )) =
1

I(t0)
(I(T )− I(t0) ⋅ (1 + k))

+
=

1

I(t0)
(I(T )−K)

+

with K = I(t0) ⋅ (1 + k).
□

We can now apply Lemma 3.2 to achieve the price of a caplet on the future
inflation over a time interval [Ti−1;Ti]:

Propostion 4.3. Under the same assumptions as above the price of a caplet on
the inflation rate i(Ti−1, Ti) over a future time interval from time Ti−1 up to the
maturity of the caplet at time Ti with 0 < Ti−1 < Ti as in

CFIR(T ; I(T )) = (i(Ti−1, Ti)− k)+ =

(
I(Ti)− I(Ti−1)

I(Ti−1)
− k
)+

is at time t = 0 given by

CFIR(0, I(0), �(0)) = e−rR(Ti−Ti−1)e−rNTi−1 P̂1

(
0, e−rR(Ti−Ti−1), �(0), 1 + k

)
− (1 + k)e−rNTi P̂2

(
0, e−rR(Ti−Ti−1), �(0), 1 + k

)
(19)

where the P̂j, j = 1, 2 are given by

P̂j(0,e
−rR(Ti−Ti−1), �(0), 1 + k)

:=

∫ ∞
0

Pj(Ti−1, e
−rR(Ti−Ti−1), v, 1 + k)f(v∣�(0))dv

where the Pj, j = 1, 2, equal the Heston probabilities given in (17) and

f(v∣�(0)) =
B

2
⋅ e−(Bv+Λ)/2

(
Bv

Λ

)(R/2−1)/2

IR/2−1(
√

ΛBv)

for
Λ = Be−(�I−��I)Ti−1�(0),
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with

B =
4(�I − ��I)

�2
I

(
1− e−(�I−��I)Ti−1

)−1

and

R =
4�I�I
�2
I

while IR/2−1(⋅) is a modified Bessel function of the first kind.

Proof: This follows by applying the results of Kruse and Nögel (2005) as in
Lemma 3.2 on forward starting options on the return of an underlying as in

CFIR(Ti; I(Ti)) =

(
I(Ti)− I(Ti−1)

I(Ti−1)
− k
)+

=

(
I(Ti)

I(Ti−1)
− (k + 1)

)+

with determination time Ti−1 and maturity Ti.
□

6 Conclusions

In this paper we constructed closed-form solutions to the pricing problem of in-
flation options in both a Black-Scholes-type framework as well as in a stochastic
volatility model analogously to Heston (1993). Besides the pricing of options on
the inflation development since today we give a closed-form solution for caplets
on the future inflation rate in both models. The models introduced are reflecting
the macroeconmic concept of the Fisher equation giving functional connection
between the nominal and the real interest rate. The derivation of our pricing for-
mulae hinges on the similarity between options on the future inflation rate and
forward starting options on the return of an underlying. We note that our solu-
tions in the stochastic volatility model do not depend on any assumption on the
correlation between the inflation index and its variance as for instance assumed
in Mercurio and Moreni (2006). Therefore it is less cumbersome to calibrate our
stochastic volatility model to market prices. The main advantages of both models
once implemented are the speed of evaluation and their simplicity. By extracting
the implied volatilities from our Black-Scholes-type prices one can see that the
implied volatilities are anything but constant over all maturities and strikes which
gives us the justification for our stochastic volatility model of inflation.

Hence it is useful to introduce a stochastic variance process in order to capture
the changes in volatility and its influence on option prices on the future inflation.
The inflation market matures and becomes more liquid, inflation products are
getting more complex and there will be more exotic inflation options coming up.
A natural extension of our stochastic volatility model for inflation caps and floors
is to add dynamics for the nominal as well as the real interest rate structure.

14



Additionally one could also consider a jump diffusion process for the inflation
index.
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