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This paper introduces a Bayesian approach to market consistent valuation and hedging

of a participating life insurance contract. The contract isvalued in a general and realistic

framework allowing interest rate, volatility and jumps in the asset dynamics to be stochas-

tic. In our set-up we also incorporate stochastic mortalityand study its effect on pricing

and hedging. All underlying models are estimated using the Markov Chain Monte Carlo

method, and their simulation is based on their posterior predictive distribution. In our

case the contract is an American-style path-dependent derivative, and we value it using the

regression method. As a hedging strategy we employ minimum variance hedging which

relies on the underlying asset as a single hedging instrument. We compare its hedging ef-

fectiveness with a conventional delta-neutral hedge whichuses a simpler model for asset

dynamics.
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1. INTRODUCTION

Participating life insurance policies are characterized by a vast number of features including, for

example, interest rate guarantees, equity-linked policies and bonus and surrender options. All these

features have values which need to be priced. Pricing these policies in a market consistent framework

was first studied by Briys and de Varenne (1997a,b). Since then a number of articles have appeared on

the topic; see, for example, Grosen and Jorgensen (2000), Tanskanen and Lukkarinen (2003), Bernard

et al. (2005), Ballotta et al. (2006), Bauer et al. (2006) andZaglauer and Bauer (2008). However,

most valuation models assume a simplified set-up. Our objective is to present a realistic valuation
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framework in which the guarantee and the bonus are priced in astochastic framework, and a surrender

option is included in the contract. More specifically, we allow the interest rate, volatility and jumps

to be stochastic in the asset dynamics, and value the contract as an American-style path-dependent

derivative. Besides this, we also incorporate stochastic mortality into the model.

The price of an option depends on the assumption of the model describing the behavior of the un-

derlying instrument. Most approaches specify a particularstochastic process to represent the price

dynamics of the underlying asset and then derive an explicitpricing formula. A traditional approach

involves solving a partial differential equation. However, when the asset dynamics are assumed to fol-

low a fairly complex model, a closed form solution of the partial differential equation may not exist

or its numerical solution may become intractable. When the payoff of an option depends on the path

of the underlying asset, the price cannot be evaluated in this manner. Instead, Monte Carlo simulation

methods may be used (Glasserman, 2003). For example, Bacinello et al. (2008) apply the least squares

Monte Carlo (or regression) method in pricing a participating life insurance with early exercise.

Most papers on pricing participating life insurance contracts lack paying attention to parameter and

model errors. Neither the true underlying model nor its parameter values are known. Typically, a rel-

atively simple model is assumed and the point estimates of the parameters are used. This might lead

to a crucial valuation error. In the Bayesian approach, parameter and model uncertainty plays a major

role. While frequentist methods typically rely on large sample approximations, Bayesian inference is

exact in finite samples. In derivative pricing an exact characterization of finite sample uncertainty is

critical from the insurance company’s risk management point of view. The Bayesian approach is par-

ticularly attractive, since it can link the uncertainty of parameters and latent variables to the predictive

uncertainty of the process. Another advantage of Bayesian inference is its ability to incorporate prior

information into the model.

In estimating the equity index process with stochastic volatility and jumps we will follow the guide-

lines provided by Jones (1998), but make some generalizations. In our modelling framework we also

allow the interest rate process to be stochastic, and we allow it to be correlated with the index and

volatility processes. In order to value an American-style option we use the regression approach (see,

for example, Longstaff and Schwartz, 2001).

Participating life insurance policies involve not only risks arising from financial factors, but also a

risk related to mortality. Bacinello (2003) and Shen and Chu(2005) introduce mortality risk, but only in

a simple set-up with deterministic or constant mortality rates. Biffis (2005) and Bacinello et al. (2008)

incorporate stochastic mortality to the pricing framework. With a stochastic mortality model we do not

need to make an assumption of a large insurance portfolio, and we avoid invoking to the law of large

numbers. This again is significant from the risk management point of view.

Here we study dynamic hedging strategies to control for various risks by utilizing a replicating

portfolio. As a hedging strategy we employ minimum-variance hedging which relies on the underlying

asset as a single hedging instrument. We follow the work by Bakshi et al. (1997) when deriving a

minimum-variance hedge. This type of hedge is needed, sincea perfect delta-neutral hedge is not

feasible due to untraded risks. However, a single-instrument hedge can only be partial, since in our set-
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up there is more than one source of risk. We also construct a conventional delta-neutral hedge which

uses a simpler model for asset dynamics and compare the hedging performances.

The paper is organized as follows. Section 2 introduces the framework and models for the asset

dynamics and mortality, Section 3 presents the estimation and evaluation procedures and Section 4 the

empirical results. The final Section 5 concludes. The full conditional distributions of the option pricing

and mortality models as well as the estimation results are provided in the appendices.

2. THE FRAMEWORK

2.1. The participating life insurance contract

We define the participating life insurance contract as in Luoma et al. (2008). The contract consists of

two parts, the first being a guaranteed interest and the second a bonus depending on the yield of some

total return equity index. We denote the amount of savings inthe insurance contract at timeti by A(ti).

Then its growth during a time interval of lengthδ = ti+1 − ti is given by

log
A(ti+1)
A(ti)

= g δ + b max

(

0, log
X(ti+1)
X(ti)

− g δ

)

, (1)

whereX(ti) =
∑q

j=0 S (ti− j)/(q + 1) is a moving average of the total return equity indexS (ti). The

guarantee rateg is set to be less than the riskless interest rate, and it is fixed for one year at a time. It is

set annually atkrt, wherert is the riskless short-term interest rate at timet andk is a positive constant

less than 1. The bonus rateb is the proportion of the excessive equity index yield that isreturned to the

customer.

In this study we use the time intervalδ = 1/255, where 255 is approximately the number of the days

in a year on which the index is quoted. The model also incorporates a surrender (early exercise) option.

A further condition is that there will be a 1 % penalty if the contract is reclaimed during the first 10

working days. The penalty is not applied if the contract is reclaimed due to mortality.

In our framework the parametersk, g andb are predefined by the insurance company. Luoma et al.

(2008) introduce a method to evaluate a fair bonus rateb so that the risk-neutral price of the contract

is equal to initial savings. This gives the contract a simplestructure and makes its costs and returns

visible and predictable for the insurer and the customer.

2.2. Option pricing models

We assume that the dynamics of stock indexS t, varianceVt and riskless short-term ratert are de-

scribed by the following system of SDEs:

d logS t = µdt +
√

VtdB(1)
t + Utdqt (2a)

dVt = (α1 + β1Vt)dt + σV

√

VtdB(2)
t (2b)

drt = (α2 + β2rt)dt + σr
√

rtdB(3)
t (2c)
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whereB(1)
t , B(2)

t andB(3)
t are standard Brownian motions, andqt is a jump process with jump sizeUt.

We further assume that these Brownian motions have the correlation structure

Cor
(

B(1)
t , B

(2)
t , B

(3)
t

)

=
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, (3)

andqt is a Poisson process with intensityλ, that is, Pr(dqt = 1) = λdt and Pr(dqt = 0) = 1 − λdt.

Conditional on a jump occurring, we assume thatUt ∼ N(a, b2). In addition, we assume thatqt is

uncorrelated withUt or with any other process. We abbreviate this model as SVJ-SI.

In order to facilitate estimation, we reparameterize models (2a) -(2c) as follows:

d logS t = µdt + σ1

√

YtdB(1)
t + Utdqt (4a)

dYt = (α∗1 + β1Yt)dt + σ2

√

YtdB(2)
t (4b)

dRt = (α∗2 + β2Rt)dt + σ3

√

RtdB(3)
t (4c)

whereYt = Vt/σ
2
1 is rescaled variance andRt = 100rt is the interest rate given in percentages. The new

parameters areα∗1 = α1/σ
2
1, σ2 = σV/σ1, α∗2 = 100α2 andσ3 = 10σr.

We introduce a risk-neutral probability measureQ under which the discounted index processS̃ t =

S t exp(−
∫ t

0
rsds) is a martingale. Specifically, we assume the risk neutral dynamics to be

d logS t =

(

rt −
1
2

Vt − λµJ

)

dt +
√

VtdZ(1)
t + Utdqt (5a)

dVt = (α1 + β1Vt)dt + σV

√

VtdZ(2)
t (5b)

drt = (α2 + β2rt)dt + σr
√

rtdZ(3)
t (5c)

whereµJ = exp(a+ 1
2b2)−1, andZ(1)

t , Z(2)
t andZ(3)

t are three standard Brownian motions with correlation

structure (3) underQ.

For the intensity of mortality, we will use a generalizationof the Gompertz model. The Gompertz

model describes the age dynamics of human mortality fairly accurately in the middle span of ages, ap-

proximately between 30 and 80 years, which is enough for our purposes (see, for example, Promislow,

2006). We use a stochastic generalization of the form

log(µku) = β00 + β01u + β10k + β11ku + εku, (6)

whereµku is the death rate for agek and for cohortu set by the year of birth. We assume the error term

εku to follow an autoregressive process of order one:εku = φεk−1,u + aku, whereaku ∼ i.i.d. N(0, σ2
m).

Parametersβ00, β01, β10, β11, φ andσ2
m are unobservable and must be estimated.

3. ESTIMATION AND EVALUATION PROCEDURES

3.1. Finance model estimation

We use Bayesian methods to estimate the unknown parameters of the stock index, volatility and

interest rate models as well as to estimate the latent volatility and jump processes. By doing so it is
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possible to take parameter uncertainty into account when the fair price of the contract is evaluated and

a hedging strategy is employed. The major challenge in estimation is its high dimensionality, which

results from the need to estimate latent processes.

We will use Euler discretization in the estimation of unknown parameters, since the transition density

of the multivariate process described by (4a), (4b) and (4c)does not have a closed form solution.

Accordingly, we will simulate the risk-neutral process using the Euler discretization of (5a), (5b) and

(5c).

A discrete version of (4a), (4b) and (4c) is given by

logS k+1 = logS k + µδ +
√

Yk δe
(1)
k+1 + Uk+1lk+1

Yk+1 = Yk + (α∗1 + β1Yk)δ +
√

Yk δe
(2)
k+1

Rk+1 = Rk + (α∗2 + β2Rk)δ +
√

Rk δe
(3)
k+1

whereδ denotes discretization interval length,e(1)
k , e(2)

k ande(3)
k are three normal variables with zero

means, variancesσ2
1, σ2

2 andσ2
3, and correlation structure (3),Uk ∼ N(a, b2) is jump size andlk ∼

Ber(λδ) an indicator variable of a jump.

Our estimation procedure is a single-component (or cyclic)Metropolis-Hastings algorithm (see, for

example, Gilks et al. (1996)). The Metropolis-Hastings (M-H) algorithm is a general term for Markov

Chain Monte Carlo (MCMC) methods that are used to simulate posterior distributions. The algorithm

was introduced by Hastings (1970) as a generalization of theMetropolis algorithm (Metropolis et al.,

1953). Also the Gibbs sampler (Geman and Geman, 1984) can be viewed as its special case.

The single-component M-H algorithm differs from the basic algorithm in that the simulated random

vector is divided into components which are updated one by one. The purpose is to simulate the

conditional distribution of each block given the current values of the other blocks. In the case of the

Gibbs sampler, random variates from these distributions are drawn directly. In the more general case,

a proposal is first generated and it is accepted with certain probability, or otherwise the old value is

retained.

In the case of our model, it is possible to divide the vector ofall parameters to blocks which can be

updated using Gibbs sampling, that is, the full conditionals of these blocks can be simulated directly.

This is possible, since we have introduced a superfluous parameterσ1 and we use the general correla-

tion structure. Now posterior simulations of the dispersion matrix of the error vector (e(1)
k , e

(2)
k , e

(3)
k ) can

be drawn from the Inverse-Wishart density. Further detailsabout the updating procedure are given in

Appendix A.

Note that the data do not contain enough information to estimateσ1 and the vector of scaled vari-

ancesY separately, but their joint posterior distribution determines the posterior of the variance vector

V, which is of interest. Adding a new parameter is called parameter expansion, and it can be more

generally used to improve the convergence of Markov chain simulation. This is discussed in Liu and

Wu (1999), van Dyk and Meng (2001) and Liu (2003), and a simpleexample is provided by Gelman et

al. (2004).

The volatility and jump processes cannot be updated using Gibbs sampling. Here we follow the

guidelines provided by Jacquier et al. (1994) and Jones (1998). The scaled variancesYk are updated
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one by one. Their full conditional distribution isp(Yk|Y−k,H, φ) whereY−k comprises all ofY except

Yk, H comprises the index, interest rate and jump processes, andφ is a vector of all parameters. Since

we are dealing with Markov processes,

p(Yk|Y−k,H, φ) ∝ p(Yk|Yk−1,Hk−1,Hk, φ)p(Yk+1,Hk+1|Yk,Hk, φ).

Now Yk may be updated by first generating a proposalY∗k from p(Yk|Yk−1,Hk−1,Hk, φ) and accepting it

with probability

min

(

1,
p(Yk+1,Hk+1|Y∗k ,Hk, φ)

p(Yk+1,Hk+1|Yk,Hk, φ)

)

.

A detailed description of this update can be found in Appendix A.

The jump process can be updated similarly. Let us denote the joint process of jumps and jump sizes

asIk = (lk,Uk) and the other processes asLk = (S k, Yk,Rk). Because the jumps are independent, their

full conditional is given byp(Ik|I−k, L, φ) = p(Ik|Lk−1, Lk, φ), which is proportional to

p(Ik|φ)p(Lk|Lk−1, Ik, φ).

Now Ik is updated by first generatingI∗k from its marginal distributionp(Ik|φ) and accepting it with

probability

min

(

1,
p(Lk |Lk−1, I∗k , φ)

p(Lk |Lk−1, Ik, φ)

)

.

The jumpslk and their sizesUk could also be updated separately. A detailed description ofthis update

can be found in Appendix A.

3.2. Mortality estimation and prediction

To estimate the mortality model (6) we use Gibbs sampling except that the correlation parameter

φ is updated with a Metropolis step. The needed conditional posterior distributions can be found in

Appendix B. The data is imbalanced, since later cohorts haveless observations. The unobserved future

death rates are considered as missing observations and theyare estimated similarly to the unknown

parameters using Gibbs sampling. Each missing value is initially given the corresponding death rate

from the most recent cohort where it is available. In the Gibbs sampler the missing values of each

cohort are updated by generating them from their multivariate normal conditional distribution.

When the mortality model is used to study hedging performance, we need to scale the estimated

AR(1) model, which is based on yearly data, to daily observations. When the sampling frequency is

changed from 1 toδ, the high frequency sampling parameters are given asφh f = φ
δ andσ2

m.h f = σ
2
m

1−φ2δ

1−φ2

(see, for example, Gourieroux and Jasiak, 2001).

When pricing and hedging the contract, we use the worst-casescenario of mortality from the insur-

ance company’s viewpoint. In practice, we simulate 1000 paths of death rates and choose the minimum

rate for each time point. These minimum death rates are then used to generate the date of death for

each simulation path used in pricing and simulation of hedging performance.



HEDGING AGAINST VOLATILITY, JUMPS AND LONGEVITY RISK – A BAYESIAN ANALYSIS 7

3.3. Pricing American options with regression methods

Our participating life insurance contract is an American-style option with a path-dependent moving

average feature. An American option gives the holder the right to exercise the option at any time up

to the expiry date. In pricing we adopt the least squares method introduced by Longstaff and Schwartz

(2001). It is a simple but powerful approximation method forAmerican-style options. The pricing is

based on an optimal exercising strategy in which the goal is to find a stopping time maximizing the ex-

pected discounted payoff of the option. The decision to continue is based on comparingthe discounted

immediate exercise value with the corresponding discounted continuation value. In regression meth-

ods it is assumed that the continuation value may be expressed as linear regression using some basis

functions.

In our application, the continuation values of the option depend on the path of the underlying index

value in a complicated way. However, we consider that the current value of the index, its moving aver-

age, and the first index value appearing in the moving averagemay be used to predict the continuation

value reasonably well. The use of the moving average may be motivated by observing that the growth

of savings in the insurance contract depends on the path of the moving average (see Equation 1). The

current index value and the first value appearing in the moving average help predict the future evolu-

tion of the moving average. We also use the current values of interest rate and volatility to predict the

continuation value. The current amount of savings also helps predict the continuation value, but it is

not included in the regression variables. Instead, it is subtracted from the regressed value before fitting

the regression and subsequently added to the fitted value.

To avoid under- and overflows in the computations, the regression variables related to the equity

index are scaled by the first index value, and the current value of the interest rate is given in percentages.

Thus, the following state variables are used:X1(ti) = S (ti)/S (0), X2(ti) =
[

∑q
j=0 S (ti− j)/(q + 1)

]

/S (0),

X3(ti) = S (ti−q)/S (0), X4(ti) = R(ti) andX5(ti) = V(ti). However, multicollinearity problems would

occur if the variablesX1, X2 andX3 were used at all time points. In fact,X3 would be equal for all

simulations paths fori ≤ q and the moving averagesX2 would be very close to each other for small

values ofi. Therefore, we apply the following rule: The variablesX1, X4 andX5 are used fori < q/2,

variablesX1, X2, X4 andX5 are used forq/2 ≤ i < 3q/2, and all variables are used fori ≥ 3q/2. In this

study the lag length of the moving average is chosen to beq = 125 (that is, half a year).

We use Laguerre polynomials, suggested by Longstaff and Schwartz (2001), as basis functions. More

specifically, we use the first two polynomials

L0(X) = exp(−X/2)

L1(X) = exp(−X/2)(1− X)

for all variables. In addition, we use the cross-productsL0(X1)L0(X4), L0(X1)L0(X5), L0(X1)L0(X2),

L0(X1)L1(X2), L1(X1)L0(X2), L0(X1)L0(X3) andL0(X2)L0(X3). Thus, we have altogether 17 explanatory

variables in the regression.
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3.4. Determining the fair bonus rate

We have presented a method to determine a fair bonus rate in Luoma et al. (2008). Using the re-

gression method we can determine the option price (that is, the price of the insurance contract) when

the bonus rateb and the guarantee rateg have been given. However, we are interested to determine the

bonus rate so that the price of the contract is equal to initial savings. This gives the contract a transpar-

ent structure. Furthermore, it makes the different hedging strategies comparable, since the bonus rate

affects the duration of the contract, which is the most significant factor to produce large hedging errors.

If the bonus rate is set at a high level, the contract is almostnever reclaimed before the final expiration

date, and, on the other hand, if the bonus rate is too low, early surrender is highly probable.

The problem of determiningb is a kind of inverse prediction problem, and we need to estimate the

option value for various values ofb. Since we also wish to estimate the variance of the Monte Carlo

error related to the regression method, we repeat the estimation several times for fixed values ofb.

We end up estimating a regression model where option price estimates are regressed on bonus rates.

(This regression model should not be confused with the regression method used in the estimation of

the option value for a fixedb). We found the third degree polynomial curve to be flexible enough for

this purpose. After fitting the curve, we solve the bonus rateb for which the option price is equal to

100, which we assume to be the initial amount of savings. In order to facilitate the estimation of the

fair bonus rate we set the further condition that there is a 1%penalty for reclaiming the contract during

the first ten days.

Prior to fitting the polynomial, it is, however, necessary todetermine an initial interval for the so-

lution. For this purpose we have developed a modified bisection method. In this method, one first

specifies initial upper and lower limits for the bonus rate; we use the valuesl = 0 andu = 1. Then

one estimates the option price at (l + u)/2. If the price is greater than 100, the upper limit of the bonus

rate is set atu − (u − l)/4; if the price is smaller than 100, the lower limit of the bonus rate is set at

l + (u − l)/4. This procedure is continued untilu − l = 0.25. Note that the new limit is not set in the

middle of the interval, as is done in the ordinary bisection method, since this might lead to missing the

correct solution due to the randomness of the price estimates.

Figure 1 illustrates the estimation procedure. The option price is estimated for 10 different bonus

rates, and the estimation is repeated 5 times for each bonus rate, which produces 50 points to the scatter

plot. Each estimation is based on 1000 simulated paths. The initial limits of the bonus rate (0.14, 0.39)

were determined using the modified bisection method described above. When producing this figure,

the time to maturity was set at 3 years, the guarantee rate at 1/3, the starting level of interest rate at

0.07 and mortality was not included. We can see that the fair bonus rate is approximately 0.28.

As mentioned above, the bonus rate is solved from the equation y = f (x), wherey is the price of the

contract and

f (x) = β̂0 + β̂1x + β̂2x2 + β̂3x3 = x′β̂,

whereβ̂ = (β̂0, β̂1, β̂2, β̂3)′ is the ordinary least squares (OLS) estimate of the cubic regression model

andx = (1, x, x2, x3)′ a regression vector. The purpose of the initial penalty rateis to ensure that there

is exactly one solution in the relevant interval.
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FIG. 1. Option price estimates vs. bonus rates.

Using the delta method, one also obtains an approximate variance for the estimate ofx:

Var(x̂) ≈ 1
[ f ′(x)]2

Var( f (x)) ≈ 1
(

β̂1 + 2β̂2x̂ + 3β̂3x̂2
)2

x̂′Cov(β̂)x̂.

4. HEDGING

4.1. Minimum variance hedging

We construct a single instrument hedge, which employs only the underlying stock. This hedge is

only partial, since there are several sources of risks in ourmodel. Uncontrolled risks are those which

move the target option value but are uncorrelated with the underlying stock price. Such factors as model

misspecification and transaction costs may render this typeof hedge more practical to adopt than the

conventional delta-neutral hedge. Besides a perfect delta-neutral hedge would be infeasible, since some

of the risks are untraded.

Let NS
t be the number of shares of the stock to be purchased andN0

t the residual cash position. Then

the timet value of the replicating portfolio isN0
t + NS

t S t. Furthermore, the hedging errorHt+δ at time

t + δ is given by

Ht+δ = NS
t S t+δ + N0

t ertδ −Ct+δ, (7)

whereδ is the updating interval of the replicating portfolio andCt+δ is the value of the contract at time

t + δ. In the limit whenδ→ 0, the mean squared hedging error is minimized by choosing

NS
t =

Cov(dS t, dCt)
Var(dS t)

. (8)
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Let us denote the jump sizes of the index processS t by Jt � eUt − 1. The mean and variance ofJt

are given by byµJ = exp(a + 1
2b2) − 1 andσ2

J = exp(2a + b2)(exp(b2) − 1), respectively. Under our

framework, the total return variance can be decomposed intotwo components

1
dt

Var

(

dS t

S t

)

= Vt + V J
t , (9)

where the instantaneous variance of the jump component is given by

V J
t = (1/dt)Var(Jtdqt) = (1/dt)

(

E(Jtdqt)2 −
[

E(Jt)E(dqt)
]2
)

= (1/dt)
[

σ2
J +

(

µJ
)2
]

[

λdt + (λdt)2
]

.

Now let Ct(S t,Vt, rt) denote the value of the contract at timet with index valueS t, varianceVt and

interest ratert. The differential ofCt(S t,Vt, rt) may be written as

dCt(S t,Vt, rt) =
∂Ct(S t,Vt, rt)
∂S t

√

VtdZ(1)
t +

∂Ct(S t,Vt, rt)
∂Vt

dVt +
∂Ct(S t,Vt, rt)

∂rt
drt

+ [Ct(S t + JtS t,Vt, rt) −Ct(S t,Vt, rt)] dqt.

Using this and equations (8) and (9) we obtain that

NS
t = ∆

(S )
t

Vt

(Vt + V J
t )
+ ∆

(V)
t
ρ12σVVt

S t(Vt + V J
t )
+ ∆

(r)
t
ρ13σr

√
Vtrt

S t(Vt + V J
t )

+
λ
[

Et (JtCt(S t + JtS t,Vt, rt)) −Ct(S t,Vt, rt)µJ
]

S t(Vt + V J
t )

(10)

where we have denoted the deltas as∆(S )
t =

∂Ct(S t ,Vt,rt)
∂S t

, ∆(V)
t =

∂Ct(S t ,Vt ,rt)
∂Vt

and∆(r)
t =

∂Ct(S t ,Vt,rt)
∂rt

.

Equation (10) shows that the position to be taken in the stockmust control not only for the direct

impact of stock price changes on the target option, but also for the indirect impacts of those parts of

volatility and interest rate changes which are correlated with stock price fluctuations. We can see that

the additional number of shares needed besides∆(S ) is increasing both inρ12 andρ13. Furthermore,

since the jump risk is present as well, the position to be taken in the underlying stock must also hedge

the impact of jump risk on the target option, which is reflected in the last term in (10). This term is

increasing inλ andµJ , meaning that the larger the random-jump risk, the more adjustment needs to be

made in the hedging position.

In theory the constructed partial hedge requires continuous rebalancing to reflect the changing market

conditions. In practice, only discrete rebalancing is possible. Suppose that portfolio rebalancing takes

place at intervals of lengthδ. At time t, the replicating portfolio hasNS
t shares of the stock and the

residual is invested in an instantaneously maturing riskfree bond. The combined position is a self-

financed portfolio. At timet + δ the hedging error is as in (7).

Our contract is an American-style derivative, which we price using the regression method (see, for

example, Longstaff and Schwartz, 2001). With the estimated regression model wemay also compute

the deltas∆(S ),∆(V) and∆(r), and determine the optimal stopping times needed when simulating hedging

performance in several cases. For each simulation path the used stopping time is the first time when

the estimated continuation value is smaller than the immediate exercise value.
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Comparison of the hedging schemes is done so that the difference of the replication portfolio and the

balance is computed for each simulation path at its estimated optimal stopping time. Then the mean

difference and mean squared error is computed over all the simulation paths. Moreover, this procedure

is repeated 50 times using different regression estimates and the results of the repetitions are pooled.

4.2. Competing model and delta-neutral hedging

A similar approach is used when a delta-neutral hedge is constructed for a simpler model whose

real-world asset dynamics of this model are described as

drt =κ(ξ − rt)dt + σrγt dW (1)
t (11a)

dS t = µS tdt + νS 1−α
t dW (2)

t . (11b)

HereW (1)
t andW (2)

t are two standard Brownian motions, correlated throughW (2)
t = ρW

(1)
t +

√

1− ρ2W (3)
t ,

whereW (1)
t andW (3)

t are independent standard Brownian motions. The risk neutral dynamics are ob-

tained by replacing the driftµ in (11b) withrt. Details on estimation and pricing under this model may

be found in Luoma et al. (2008). We abbreviate this model as CEV-SI.

In the delta-neutral hedge corresponding to this model, thenumber of shares in the replication port-

folio is given by

NS
t =
∂Ct(S t, rt)
∂S t

= ∆
(S )
t ≥ 0.

Again we use the regression method to price the derivative and to compute∆(S ).

5. EMPIRICAL RESULTS

5.1. Estimation of the parameters

In order to experiment with actual data and to estimate the unknown parameters of the models,

we chose the following data sets: As an equity index we use theTotal Return of Dow Jones EURO

STOXX Total Market Index (TMI), which is a benchmark covering approximately 95 per cent of the

free float market capitalization of Europe. The objective ofthe index is to provide a broad coverage of

companies in the Euro zone including Austria, Belgium, Finland, France, Germany, Greece, Ireland,

Italy, Luxembourg, the Netherlands, Portugal and Spain. The index is constructed by aggregating

the stocks traded on the major exchanges of Euro zone. Only common stocks and those with similar

characteristics are included, and any stocks that have had more than 10 non-trading days during the past

three months are removed. In estimation, we use daily quotesfrom March 4th, 2002 until December

6th, 2007.

As a proxy for riskless short-term interest rate, we use Eurepo, which is the benchmark rate of the

large Euro repo market. Eurepo is the rate at which one prime bank offers funds in euro to another

prime bank if in exchange the former receives from the latterEurepo GC as collateral. It is a good

benchmark for secured money market transactions in the Eurozone. In the estimation of the interest

rate model we use the 3 month Eurepo rate, since it behaves more regularly than the rates with shorter

maturities. Both the index and interest series are presented in Figure 2.
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FIG. 2. The equity index and interest series.

In mortality modelling we use mortality data provided by theHuman Mortality Database (see http://

www.mortality.org). It was created to provide detailed mortality and population data to those interested

in the history of human longevity. The project began as an outgrowth of earlier projects in the Depart-

ment of Demography at the University of California, Berkeley, USA, and at the Max Planck Institute

for Demographic Research in Rostock, Germany. The project seeks to provide open, international ac-

cess to the database which contains detailed population andmortality data for 37 countries or areas. In

our work we use Finnish mortality data for females between ages 30 and 80. More specifically, we use

cohort death rates for cohorts born between 1926 and 1961.

All computations were made and figures produced using the R computing environment (see http://

www.r-project.org). To speed up computations we coded the most time consuming loops in C++. We

had no remarkable convergence problems in the MCMC simulation used in estimation. Estimation of

the finance model (2a)-(2c) was computationally most challenging, and we simulated three chains of

length 200000 and picked every 10th simulation to obtain accurate results. In the estimation of the

mortality model all chains converged rapidly to their stationary distributions. The summary of the

estimation results, as well as Gelman and Rubin’s diagnostics (see Gelman et al., 2004), are given in

Appendix C. The values of the diagnostic are close to 1 and thus indicate good convergence.

5.2. Hedging results

There are several parameters which may be varied in the participating life insurance contract de-

scribed by Equation (1). We set the lag length of the moving average at 125 days, the number of

simulated paths in contract price estimation at 1000 and thenumber of estimation repetitions at 50.

Furthermore, we set the duration of the contract to be 3 or 10 years and the starting level of interest rate
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0.04 or 0.07. We do not fix the guarantee rate at a constant value throughout the entire contract period

but set it at 0, 1/3 or 2/3 of the short-term rate at intervals of one year.

We calculate the results with and without mortality. When mortality is incorporated into the frame-

work, we calculate the results for clients of ages 60 and 80. We assume that the contract period starts

at the beginning of year 2008, which means that we use cohortsborn in 1947 and 1927. There is only

slight difference in the results when models without mortality are compared with models including

mortality, and 60 years old clients are considered. Therefore, we present the results concerning 80

years old clients only. Moreover, although we set the updatefrequency of the replicating portfolio to

be one day, one week and one month, we only present results fordaily and monthly updates, since the

results concerning daily and weekly updates do not differ considerably. Table 1 shows the fair bonus

rates and hedging errors when minimum variance hedging withSVJ-SI model is used, while Table 2

shows the results when delta-neutral hedging with CEV-SI model is used. Table 3 shows the results

of delta-neutral hedging with CEV-SI model when the real-world predictive simulations are however

generated from the SVJ-SI model. The corresponding resultswith mortality and 80 year old clients

may be found in Tables 5, 6 and 7.

TABLE 1.

Fair bonus rates and hedging errors with SVJ model (no mortality).

contract interest rate guarantee fair bonus MD with MSE with MD with MSE with

length starting level rate rate daily update daily update monthly update monthly update

3 0.04 0 0.242 0.053 0.436 0.048 0.59

3 0.04 1/3 0.172 0.038 0.223 0.035 0.296

3 0.04 2/3 0.089 0.035 0.064 0.035 0.077

3 0.07 0 0.384 0.166 1.282 0.225 1.747

3 0.07 1/3 0.281 0.163 0.616 0.163 0.887

3 0.07 2/3 0.156 0.096 0.219 0.095 0.287

10 0.04 0 0.257 -0.043 9.081 0.081 8.423

10 0.04 1/3 0.188 -0.08 5.56 -0.023 5.206

10 0.04 2/3 0.092 0.024 0.9 0.031 0.887

10 0.07 0 0.389 0.076 28.569 0.107 33.261

10 0.07 1/3 0.291 -0.056 20.218 -0.091 22.916

10 0.07 2/3 0.158 -0.086 7.334 -0.065 7.624

From all the tables we may see that the estimated fair bonus rate increases as the guarantee rate

decreases. This is logical but it is less obvious why the fairbonus rate also increases as the starting

level of the interest rate increases. The probable explanation is as follows: When the interest rate is

larger the level of the index grows more rapidly, since the ’percentage drift’ equals the riskless interest

rate under risk-neutral probability. This makes negative returns in the moving average of the stock index

less probable, and the feature of the contract which protects the accumulated capital against negative
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TABLE 2.

Fair bonus rates and hedging errors with CEV model (pred. CEV)(no mortality).

contract interest rate guarantee fair bonus MD with MSE with MD with MSE with

length starting level rate rate daily update daily update monthly update monthly update

3 0.04 0 0.325 0.125 0.35 0.147 0.474

3 0.04 1/3 0.235 0.095 0.175 0.098 0.243

3 0.04 2/3 0.137 0.032 0.074 0.038 0.094

3 0.07 0 0.50 0.207 0.74 0.226 0.985

3 0.07 1/3 0.383 0.152 0.426 0.156 0.549

3 0.07 2/3 0.223 0.071 0.141 0.079 0.181

10 0.04 0 0.333 0.19 5.235 0.175 4.903

10 0.04 1/3 0.254 0.068 1.69 0.063 1.753

10 0.04 2/3 0.145 0.026 0.25 0.043 0.305

10 0.07 0 0.496 -0.035 21.917 -0.021 19.832

10 0.07 1/3 0.384 0.043 6.91 0.029 7.957

10 0.07 2/3 0.241 -0.002 1.924 0.01 1.554

TABLE 3.

Fair bonus rates and hedging errors with CEV model (pred. SVJ)(no mortality).

contract interest rate guarantee fair bonus MD with MSE with MD with MSE with

length starting level rate rate daily update daily update monthly update monthly update

3 0.04 0 0.325 -0.312 0.948 -0.287 1.118

3 0.04 1/3 0.235 -0.185 0.449 -0.211 0.521

3 0.04 2/3 0.137 -0.16 0.187 -0.15 0.2

3 0.07 0 0.50 -0.549 2.325 -0.509 2.436

3 0.07 1/3 0.383 -0.404 1.246 -0.362 1.246

3 0.07 2/3 0.223 -0.245 0.41 -0.205 0.407

10 0.04 0 0.333 -0.401 2.731 -0.36 2.664

10 0.04 1/3 0.254 -0.316 1.183 -0.342 1.293

10 0.04 2/3 0.145 -0.225 0.286 -0.194 0.291

10 0.07 0 0.496 -0.591 9.511 -0.672 12.614

10 0.07 1/3 0.384 -0.465 4.24 -0.491 5.42

10 0.07 2/3 0.241 -0.383 1.114 -0.408 1.37

returns becomes less important. This, in turn, decreases the contract price, which is compensated by

the increase in the bonus rate.

From Table 1 we may see that the mean difference of the replicating portfolio value and the bal-

ance (MD) is positive with the 3 years contract, which is desirable from the insurance company’s risk
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management point of view. The probable reason for this result is that the stopping rule based on the

estimated regression model is slightly suboptimal. We alsosee that the MD decreases when the starting

level of the interest rate increases or when the guarantee rate decreases. With the 10-year contracts the

sign of the MD may be positive or negative, which may be due to uncertainty involved in long-term

simulation. However, one should note that the MD is close to zero in all cases.

When comparing the mean square errors (MSEs) one can see thatthey increase as the initial interest

rate increases, the duration of the contract increases or the guarantee rate decreases. The increase of the

initial interest rate from 4% to 7% makes the MSE about 3 timeslarger with the 3-year contract and 4

to 7 times larger with the 10-year contract. The increase in the duration of the contract has the largest

effect on the MSE. With 4% and 7% initial interest rates the MSE becomes about 15 and 30 times

larger, respectively, when the duration of the contract changes from 3 to 10 years. The increase of the

guarantee from 0 to 2/3 reduces the error efficiently. This is understandable, since a larger guarantee

reduces fluctuation in the value of the contract.

When the replicating portfolio is updated monthly instead of daily, the MSE increases slightly in

the case of the 3-year contract. When the 10-year contract isconsidered, no systematic effect of the

updating frequency is detected, probably because other types of errors become so large in a long-run

simulation.

TABLE 4.

Hedging error of 2000 sample paths in a case of no guarantee, interest rate starting level 0.07, 10 year

contract and no mortality.

hedge model pred. model Min Q1 Median Mean Q3 Max sd

SVJ SVJ -102.40 -0.186 0.075 -0.191 0.429 67.60 6.128

CEV SVJ -79.02 -0.764 -0.143 -0.660 0.039 6.31 2.945

CEV CEV -71.03 0.016 0.093 -0.049 0.297 24.45 3.241

As one can see from Table 2, the results are similar when the CEV-SI model and delta-neutral hedging

are used. In almost all cases the hedging MSE is slightly lower than with SVJ-SI model and minimum

variance hedging. This is natural, since there are less sources of error in a simpler model. When

real-world predictions are simulated from the SVJ-SI model(see Table 3) and the hedging is based

on the CEV-SI model, the MDs are substantially negative, which is not a desirable situation from the

insurance company’s viewpoint. As the initial interest rate increases the MD moves further away from

the zero. The same effect takes place when the length of the contract increases or when the guarantee

rate decreases. On the other hand, the MSEs of delta hedging are about double when compared with

the MSEs of minimum variance hedging in the 3-year contracts, but in the case of 10-year contracts the

MSEs of delta hedging are smaller as one can see from Table 3. This is somewhat surprising but may be

understood by looking at the distribution of the hedging errors. Table 4 shows the basic statistics of the

hedging errors when the two hedging strategies are applied in the cases of two predictive distributions.

The hedging error distribution of the delta-neutral schemecombined with predictions from the SVJ-SI

model is most skewed, since it does not have large positive errors like the other cases do. This makes
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the standard deviation smaller than in the other cases. On the other hand, the median of the distribution

is negative and the upper quartile is only slightly positivewhereas both of them are positive in the other

cases.

TABLE 5.

Fair bonus rates and hedging errors with SVJ model (with mortality).

contract interest rate guarantee fair bonus MD with MSE with MD with MSE with

length starting level rate rate daily update daily update monthly update monthly update

3 0.04 0 0.248 0.001 0.55 -0.024 0.708

3 0.04 1/3 0.176 -0.01 0.272 0.016 0.318

3 0.04 2/3 0.087 0.02 0.071 0.036 0.067

3 0.07 0 0.389 0.095 1.487 0.162 1.74

3 0.07 1/3 0.287 0.094 0.761 0.12 0.94

3 0.07 2/3 0.155 0.094 0.191 0.058 0.304

10 0.04 0 0.257 -0.403 7.077 -0.17 3.944

10 0.04 1/3 0.182 -0.172 2.294 -0.179 2.206

10 0.04 2/3 0.09 -0.004 0.265 -0.039 0.457

10 0.07 0 0.401 -0.377 21.226 -0.408 22.392

10 0.07 1/3 0.296 -0.259 10.137 -0.269 10.458

10 0.07 2/3 0.161 -0.107 2.808 -0.149 3.291

From Tables 5, 6 and 7 one can see the effect of mortality. The most dramatic problem seems to be the

fact that the MD moves from the positive to negative side when10-year contracts are considered. The

most alarming situation is in the case when predictions comefrom the SVJ-SI model and the hedging

is done with the delta-neural scheme and CEV-SI model. In this situation the MDs are farthest away

from zero. With the 3-year contract the MDs are close to zero in all other cases except when SVJ-SI

predictions and delta-neutral hedging with the CEV-SI model are used. The MSEs slightly increase in

almost all cases. The only case where they become smaller is when the SVJ-SI model is used for the

10-year contracts. This may be explained by studying the error distributions summarized in Table 8.

The maximum of the distribution is much smaller than in the case when mortality is not included.

These results indicate that model error might be crucial when hedging is applied to participating life

insurance. In the worst scenarios the errors would mean large losses to the insurance company.

6. CONCLUSIONS

In this paper we present a full Bayesian analysis of valuation and hedging of a participating life in-

surance contract. The Bayesian approach enables us to exploit MCMC methods and to take parameter

uncertainty into account in valuation and hedging. We valuethe contract with the regression method,

since it embeds an American-style surrender option. In the valuation we take both financial and mor-
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TABLE 6.

Fair bonus rates and hedging errors with CEV model (pred. CEV)(with mortality).

contract interest rate guarantee fair bonus MD with MSE with MD with MSE with

length starting level rate rate daily update daily update monthly update monthly update

3 0.04 0 0.328 0.098 0.401 0.14 0.59

3 0.04 1/3 0.245 0.066 0.224 0.06 0.285

3 0.04 2/3 0.133 0.024 0.084 0.053 0.075

3 0.07 0 0.507 0.158 0.862 0.153 1.059

3 0.07 1/3 0.389 0.111 0.526 0.118 0.618

3 0.07 2/3 0.223 0.066 0.15 0.075 0.19

10 0.04 0 0.344 -0.038 3.712 -0.155 6.558

10 0.04 1/3 0.245 -0.039 2.486 -0.011 2.311

10 0.04 2/3 0.137 -0.011 0.675 -0.02 0.58

10 0.07 0 0.525 -0.376 29.431 -0.316 29.538

10 0.07 1/3 0.397 -0.19 12.943 -0.147 11.309

10 0.07 2/3 0.229 -0.033 2.011 -0.035 1.792

TABLE 7.

Fair bonus rates and hedging errors with CEV model (pred. SVJ)(with mortality).

contract interest rate guarantee fair bonus MD with MSE with MD with MSE with

length starting level rate rate daily update daily update monthly update monthly update

3 0.04 0 0.328 -0.318 0.963 -0.273 1.257

3 0.04 1/3 0.245 -0.245 0.58 -0.257 0.669

3 0.04 2/3 0.133 -0.161 0.21 -0.081 0.138

3 0.07 0 0.507 -0.577 2.818 -0.518 2.703

3 0.07 1/3 0.389 -0.436 1.447 -0.378 1.504

3 0.07 2/3 0.223 -0.223 0.411 -0.204 0.443

10 0.04 0 0.344 -0.387 2.246 -0.501 3.146

10 0.04 1/3 0.245 -0.283 1.189 -0.265 1.121

10 0.04 2/3 0.137 -0.17 0.395 -0.163 0.349

10 0.07 0 0.525 -0.783 10.474 -0.744 12.139

10 0.07 1/3 0.397 -0.548 5.496 -0.498 4.179

10 0.07 2/3 0.229 -0.261 1.051 -0.257 0.968

tality risks into account. The financial model allows the interest rate, volatility and jumps in the index

process to be stochastic. As a stochastic mortality model weuse a generalization of the Gompertz

model.
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TABLE 8.

Hedging error of 2000 sample paths in a case of no guarantee, interest rate starting level 0.07, 10 year contract and mortality.

hedge model pred. model Min Q1 Median Mean Q3 Max sd

SVJ SVJ -140.80 -0.138 0.156 -0.441 0.309 5.430 4.218

CEV SVJ -99.76 -0.772 -0.064 -0.799 0.091 8.248 3.626

CEV CEV -188.80 0.040 0.132 -1.118 0.233 18.650 10.017

The main steps in this paper are the estimation of the financial and mortality models, generation of

the posterior predictive distributions, pricing the American-style contract, evaluation of the fair bonus

rate, and hedging the contract with a single-instrument minimum variance hedge. We repeat all these

steps using the CEV model with stochastic interest rate. With this simpler model we construct the

conventional delta-neutral hedge, and compare its performance with minimum variance hedging and

the more complicated model.

We find that the duration of the contract is the most significant factor to produce large hedging errors.

Therefore, in order to make the different hedging strategies comparable, is important to determine a fair

bonus rate for each case studied. If the bonus rate is set at a high level, the contract is almost never

reclaimed before the final expiration date, and, on the otherhand, if the bonus rate is too low, early

surrender is highly probable.

One of the major findings of our simulation experiments is that the mean difference (MD) of the

replicating portfolio value and the balance is positive in the 3-year contracts, which is desirable from

the insurance company’s risk management point of view. In the 10-year contracts the sign of the MD is

sometimes positive and sometimes negative, which may be dueto the uncertainty involved in long-term

simulation. Moreover, the updating frequency of the replicating portfolio has no systematic effect on

the hedging error, probably because other types of errors become so large in these longer contracts.

The hedging MSEs are considerably larger in the 10-year contracts than in the 3-year contracts. The

reason is that the error distributions are extremely heavy-tailed in the longer contracts.

We also find that there is only slight difference in the results between the case when mortality is not

taken into account and the case when it is and the contract is started at the age of 60. When comparing

the models without mortality with those with mortality and 80 years old clients, we note that for some

reason the MD is clearly negative in the 10-year contracts.

Furthermore, we find that in almost all cases the hedging MSE with CEV-SI model and delta-neutral

hedging is slightly lower than that with SVJ-SI model and minimum variance hedging. This is natural,

since there are less sources of error in the simpler model. When the real-world predictions are simulated

from the SVJ-SI model and the hedging is based on the CEV-SI model, the MDs are substantially

negative, which is not a desirable situation from the insurance company’s viewpoint.

The findings of this article indicate that in some cases the distribution of the hedging error has a

negative mean. However, this is not a serious problem, sincethe location of the error distribution can

be easily shifted by reducing the bonus rate slightly. The real problem are some rare paths of the

financial series which cause a heavy left tail in the hedging error distribution in long-term contracts.
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Although these paths are extremely rare, they might lead to crucial hedging errors and large losses to

the insurance company, unless one finds a way to hedge againstthem.
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APPENDICES

A. Full conditional distributions of the option pricing model

Let us denoteγ1 = (α∗1, β1), γ2 = (α∗2, β2), φ = (µ, γ1, γ2, σ1, σ2, σ3, ρ12, ρ13, ρ23), Ik = (lk,Uk),

Y = (Y1, . . .YK−1) and

e(1)
k =

logS k − logS k−1 − µδ − lkUk√
Yk−1δ

,

e(2)
k =

Yk − Yk−1 −
(

α∗1 + β1Yk−1

)

δ
√

Ykδ
,

e(3)
k =

Rk − Rk−1 −
(

α∗2 + β2Rk−1

)

δ
√

Rk−1δ
,
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,

and

Σ = Cov
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.

Update for µ with Gibbs sampler

Prior: p(µ) ∝ 1
Conditional posterior:

{µ|z(1), Y, σ1.23} ∼ N
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where

z(1) =
(

z(1)
1 , z

(1)
2 , . . . , z

(1)
K

)

,

z(1)
k+1 =

log(S k+1) − log(S k) − lk+1Uk+1
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and
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Update for γ1 with Gibbs sampler

Prior: p(γ1) ∝ 1
Conditional posterior:

{γ1|z(2), Y, σ2.13} ∼ N
(

(

X′∆−1X
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and
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Update for γ2 with Gibbs sampler

Prior: p(γ2) ∝ 1
Conditional posterior:

{γ2|z(3), X∗, σ3.12} ∼ N
(

(

X′∗∆
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)−1
X′∗∆

−1
∗ z(3),
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Update for Σ with Gibbs sampler

Prior: p(Σ) ∼ Inv-Wishart(Ψ,m)
Posterior:p(Σ|...) ∼ Inv-Wishart(Ψ + A,m + K − 1), where

A =
K

∑

k=2

eke′k.



HEDGING AGAINST VOLATILITY, JUMPS AND LONGEVITY RISK – A BAYESIAN ANALYSIS 23

Update for volatility with Metropolis-Hastings step

Let us denoteHk = (logS k, Ik,Rk). The conditional posterior ofYk:

p (Yk |, Yk−1, Yk+1,Hk−1,Hk,Hk+1, φ)

∝ p (Yk |Yk−1,Hk−1,Hk, φ) p (Yk+1,Hk+1|Yk,Hk, φ)

ProposalY∗k is generated fromp (Yk |Yk−1,Hk−1,Hk, φ):

Y∗k = Yk−1 + (α∗1 + β1Yk−1)δ +
√

Yk−1δe
(2)∗
k ,

wheree(2)∗
k ∼ N

(

µ
(2.13)
k , σ2.13

)

. For k = 1 the proposal is generated from unconditional distribution

Pr(Y1|φ). SinceY is a CIR process, its stationary distribution is Gamma
(

− 2α∗1
σ2

2
,− σ

2
2

2β1

)

.

Acceptance probability:

min

(

1,
p(Yk+1,Hk+1|Y∗k ,Hk, φ)
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)
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− log(Y∗k ) + log(Yk) −
1
2

(

e∗
′
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−1e∗k+1 − e′k+1Σ

−1ek+1

)

]}

,

wheree∗k+1 is computed usingY∗k . For k = K the acceptance probability cannot be computed. The
proposal is accepted with probability 1.

Update for the parameters of the jump process with Gibbs sampler

Prior: λ0 ∼ Beta(p1, p2)
Posterior: Pr(λ0|l) ∝ Beta(p1 +

∑

li, p2 + K −
∑

li)
Priors:b2 ∼ Inv-χ2(d f0, σ2

0), a|b2 ∼ N(a0, b2/b0)
Posteriors:

b2|l,U ∼ Inv-χ2

(

d f0 + n,
1

d f0 + n

(

d f0σ
2
0 + (n − 1)s2 +

b0n
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))

a|b2, l,U ∼ N
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,
b2

b0 + n

)

wheren =
∑

li, Ū = 1
n

∑

liUi, s2 = 1
n−1

∑

li(Ui − Ū)2.

Update for the jump process with Metropolis-Hastings step

Let us denote andLk = (logS k, Yk,Rk). Then the full conditional distribution ofIk is

p (Ik |Ik−1, Ik+1, Lk, Lk−1, Lk+1, φ) = p (Ik |Lk−1, Lk, φ) ∝

p (Ik |Lk−1, φ) p (Lk |Ik, Lk−1, φ) = p (Ik |φ) p (Lk |Ik, Lk−1, φ)

Proposal from distributionp (Ik|φ): l∗k ∼ Ber(λ0), U∗k ∼ N(a, b2).
Acceptance probability:

min

(

1,
p(Lk|Lk−1, I∗k , φ)
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)
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]}

,
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wheree∗k is computed usingI∗k .

B. Full conditional posterior distributions of the mortality model

Let us denoteyku = log(µku) for k = 1, ...,K andu = 1, ...,U. Furthermore,yu = (y1u, ..., yKu),
y = (y1, ..., yU) andX = (X′1, . . . , X

′
U)′, where
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andβ = (β00, β01, β10, β11).
The inverse ofCor(y|β, φ) is
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Update for σ2
m with Gibbs sampler

Prior: p(σ2
m) ∝ 1

σ2
m

Conditional posterior:σ2|y, β, φ ∼ Inv-χ2(KU,SS/KU), where SS= (y − Xβ)′R−1
∗ (y − Xβ).

Update for β with Gibbs sampler

Prior: p(β) ∝ 1
Conditional posterior:β|y, φ, σ2

m ∼ N(µβ, σ2
mVβ), whereµβ = (X′R−1

∗ X)−1X′R−1
∗ y andVβ = (X′R−1

∗ X)−1.

Update for φ with Metropolis step

Prior: p(φ) = I(−1,1)(φ)
Conditional posterior:p(φ|y, β, σ2

m) ∝ (1− φ2)−
1
2 U(K−1) exp

(

− 1
2σ2

m
S S

)

I(−1,1)(φ)
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C. Estimation results of finance and mortality models

The posterior simulations were performed using the R computing environment. The following out-
puts were obtained using the summary function of the add-on package MCMCpack:

TABLE 9.

Estimation results of finance model.

Number of chains = 3

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

mu 0.1157251 0.0365450 2.110e-04 7.554e-04

alpha1 0.1968175 0.0386987 2.234e-04 1.658e-03

beta1 -6.2996549 1.3530007 7.812e-03 5.483e-02

alpha2 0.2154899 0.1286814 7.429e-04 7.452e-04

beta2 -0.0495622 0.0429811 2.482e-04 2.270e-04

sigma22V 0.2218156 0.0444790 2.568e-04 2.137e-03

sigma33 0.0140068 0.0005198 3.001e-06 3.108e-06

rho12 -0.7681546 0.0523322 3.021e-04 2.070e-03

rho13 0.0792596 0.0264295 1.526e-04 2.204e-04

rho23 -0.1322315 0.0517667 2.989e-04 1.381e-03

a -0.0060781 0.0068594 3.960e-05 1.366e-04

b2 0.0003484 0.0002063 1.191e-06 2.366e-06

lambda0 0.0090029 0.0027855 1.608e-05 6.318e-05
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2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

mu 0.0426332 0.0911853 0.1162357 0.1406814 0.1859535

alpha1 0.1271985 0.1697973 0.1944505 0.2216304 0.2790440

beta1 -9.1239610 -7.1682486 -6.2259077 -5.3563520 -3.8502831

alpha2 0.0281787 0.1218338 0.1949668 0.2853363 0.5272006

beta2 -0.1612529 -0.0704730 -0.0382768 -0.0170129 -0.0015817

sigma22V 0.1457985 0.1902363 0.2177842 0.2496907 0.3184338

sigma33 0.0130214 0.0136508 0.0139906 0.0143487 0.0150585

rho12 -0.8556995 -0.8054466 -0.7729459 -0.7370593 -0.6501383

rho13 0.0266995 0.0615367 0.0792856 0.0971150 0.1311709

rho23 -0.2335275 -0.1670558 -0.1321860 -0.0979035 -0.0299741

a -0.0193522 -0.0104156 -0.0062760 -0.0019092 0.0080387

b2 0.0001421 0.0002256 0.0002996 0.0004109 0.0008392

lambda0 0.0051479 0.0065661 0.0085743 0.0111619 0.0145301

Gelman and Rubin’s diagnostics

(Potential scale reduction factors):

Point est. 97.5% quantile

mu 1.00 1.00

alpha1 1.00 1.00

beta1 1.00 1.01

alpha2 1.00 1.00

beta2 1.00 1.00

sigma22V 1.00 1.00

sigma33 1.00 1.00

rho12 1.01 1.02

rho13 1.00 1.00

rho23 1.00 1.00

a 1.00 1.01

b2 1.01 1.01

lambda0 1.01 1.02
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TABLE 10.

Estimation results of mortality model.

Number of chains = 3

Sample size per chain = 2500

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

beta00 -7.218e+00 0.0230773 2.665e-04 3.524e-04

beta01 -1.391e-02 0.0011916 1.376e-05 6.582e-05

beta10 7.248e-02 0.0008204 9.473e-06 3.685e-05

beta11 -2.229e-05 0.0001162 1.341e-06 7.854e-06

sigma2m 2.941e-02 0.0015699 1.813e-05 4.937e-05

phi 2.486e-01 0.0366845 4.236e-04 1.603e-03

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

beta00 -7.2635215 -7.2333503 -7.218e+00 -7.203e+00 -7.1731612

beta01 -0.0162149 -0.0146982 -1.392e-02 -1.315e-02 -0.0115150

beta10 0.0708985 0.0719250 7.247e-02 7.302e-02 0.0740813

beta11 -0.0002524 -0.0001005 -1.917e-05 5.772e-05 0.0002014

sigma2m 0.0266480 0.0283436 2.928e-02 3.038e-02 0.0327533

phi 0.1769527 0.2246326 2.472e-01 2.714e-01 0.3236979

Gelman and Rubin’s diagnostics

(Potential scale reduction factors):

Point est. 97.5% quantile

beta00 1.00 1.00

beta01 1.01 1.04

beta10 1.01 1.02

beta11 1.02 1.06

sigma2m 1.00 1.00

phi 1.00 1.01


