
Canonical Valuation of Mortality-linked Securities

Johnny S.H. Li∗

Abstract

A fundamental question in the study of mortality-linked securities is how to
place a value on them. This is still an open question, partly because there is a
lack of liquidly traded longevity indexes or securities from which we can infer
the market price of risk. This paper develops a framework for pricing mortality-
linked securities, on the basis of the theory of canonical valuation. This frame-
work is largely non-parametric, helping us avoid parameter and model risk,
which may be significant in other pricing methods. The framework is then ap-
plied to a mortality-linked security, and the results are compared against those
derived from the Wang transform and some model-based methods.
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1 Introduction

1.1 Background

Thanks to the combination of better health care and other factors, human mortality

in developed countries has been improving steadily for many decades. While im-

proved longevity is generally perceived as a social achievement, it can be a serious

problem for actuaries, particularly when it is unanticipated. Longevity risk, that is,

the risk that future mortality improvement deviates from today’s assumptions, has

significantly contributed to the pension crisis that has enveloped many public and

corporate pension plans on both sides of the Atlantic.

Actuaries did, of course, take the possibility that people would live longer into

account when valuing pensions and annuities. However, what was missed was the

pace of mortality reduction. For instance, mortality reduction factors that have been

widely used in Britain are found to understate the decline of UK male pensioners’

mortality considerably (see Continuous Mortality Investigation Bureau, 1999, 2002).

Such an error, which will lead to unforeseen pension and annuity liabilities in the

future, cannot be mitigated by selling a large number of contracts, simply because it

affects the entire portfolio. Although the risk may be hedged by selling life insurance

to the same lives that are buying life annuities, the hedge, as Cox and Lin (2007)

pointed out, is cost prohibitive and may not even be practical in many circumstances.

Securitization is seen as a solution to the problem. By securitization we mean

laying off mortality or longevity risk exposures with securities that have payoffs tied

to a certain mortality or longevity index. There are two main types of mortality-

linked security. The first type, for example, the Swiss Re deal in 2003, aims to hedge

against the catastrophic loss of insured lives that might result from natural or man-

made disasters. The second type, which is the focus of this paper, allows participants

to mitigate longevity risk. A well-known example of this type is the 25-year longevity

bond announced by BNP-Paribas and European Investment Bank in November 2004.

This bond is an annuity bond which pays coupons that are proportional to the survival

rates of English and Welsh males who were aged 65 in 2002. Another example is the

QxX index swap launched by Goldman Sachs in December 2007. In this swap, the

random cash flows are linked to the QxX index, a longevity index for a representative

sample of the US senior insured population. We refer readers to Blake and Burrows

(2001), Blake et al. (2006a) and Blake et al. (2006b) for deeper discussions on
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mortality-linked bonds and swaps.

A fundamental question in the study of mortality-linked securities is how to place

a value on them. This is still an open question, partly because, as in valuing over-

the-counter traded options, there is a lack of liquidly traded longevity indexes or

securities from which we can infer the market price of risk, a crucial element in the

pricing process. The difficulty can also be seen from another viewpoint by considering

the creation of a replicating hedge. If the index on which the mortality-linked security

is based is liquidly traded, then the security can be replicated by a portfolio of bonds

and the index. Given the principle of no arbitrage, the price of the security is just the

value of its replicating portfolio. However, in the absence of a liquidly traded index,

we are not able to price the security in this way as a replicating portfolio cannot

be formed. Financial engineers call such a situation market incompleteness. In an

incomplete market, pricing must rely on some other assumptions.

1.2 Previous work on pricing mortality-linked securities

Various methods have been proposed to approximate the prices of mortality-linked

securities in an incomplete market. These methods may be divided into the following

three categories:

• The Wang transform

Prices are based on a ‘distorted’ survival distribution, which is obtained by ap-

plying the Wang transform (Wang, 1996, 2000, 2002) to a survival distribution

in the real world probability measure. This method is proposed by Lin and Cox

(2005), and subsequently extended by other researchers including Dowd et al.

(2006), Denuit et al. (2007), and Lin and Cox (2008).

• Instantaneous Sharpe ratio

This method, proposed by Milevsky et al. (2005), assumes that a party who

takes non-diversifiable longevity risk should be rewarded a risk premium, which

is a multiple (the instantaneous Sharpe ratio) of the standard deviation of the

party’s portfolio, after all small sample risk has been diversified away. The

standard deviation is derived from an assumed process for the evolution of mor-

tality. This approach has also been considered by Young (2008) and Bayraktar

et al. (2009).
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• Risk-neutral dynamics of death/survival rates

This method is based on a stochastic mortality model, which is, at the very

beginning, defined in the real world measure and fitted to past data. For exam-

ple, Cairns et al. (2006) consider a two-factor model; Bauer et al. (2008) use a

model that is parallel to the HJM model for interest rates. The model is then

calibrated to market prices, for example, annuity quotes, yielding a risk-neutral

mortality process from which security prices are derived.

The Wang transform has some economic justifications. Specifically, it has been

shown that the market price of risk in the Wang transform coincides with that im-

plied by the classical capital asset pricing model (CAPM). Nevertheless, the Wang

transform has been criticized by a few researchers including Ruhm (2003) and Pelsser

(2008), who point out that the Wang transform may not lead to a price consistent

with the arbitrage-free price for general stochastic processes. Bauer et al. (2008)

have also expressed some concerns about the Wang transform in the context of pric-

ing longevity risk.

Other than the Wang transform, the methods above are heavily dependent on

a stochastic process for mortality dynamics. As a result, on top of the uncertainty

about the market price of risk, the prices resulting from these methods are subject

to two pieces of uncertainty. First, assuming that the stochastic process is correct,

parameters in the process may be wrong since they are merely estimates from a

finite data sample. This risk, which we call parameter risk, is unavoidable in any

model-based approach. The significance of parameter risk in pricing longevity bonds

has been demonstrated by Cairns et al. (2006) through Markov Chain Monte Carlo

(MCMC).

Second, all methods that involve a stochastic process are affected by model risk, as

the process itself may be inaccurate or even incorrect. This situation happens when,

for example, the true dynamics of mortality are driven by more factors than assumed

in the process. The impact of model risk on pricing is best illustrated by the problem

of a ‘volatility skew,’ the inverse relationship of implied volatility to exercise price,

in valuing equity options. Given a volatility skew, the Black-Scholes model, which

assumes a constant volatility for all exercise prices, may significantly underestimate

values of out-of-the-money puts and in-the-money calls. Although model risk may be

reduced by considering a less stringent mortality model, for example, the P-splines

regression proposed by Currie et al. (2004), the change of probability measure from
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real world to risk-neutral under such a model is often difficult, if not impossible.

1.3 Our idea

The problems above can be avoided by considering an alternative pricing method

known as ‘canonical valuation,’ developed by Stutzer (1996). This approach is largely

non-parametric, thus reducing parameter and model risk substantially. Another ad-

vantage of canonical valuation is that it does not strictly require the use of security

prices to predict other security prices.1 This advantage is especially important when

we have only a handful of mortality-linked securities available in the market. Nev-

ertheless, in the future when the market becomes more mature, the method can be

modified easily to incorporate more market prices in estimating the risk-neutral den-

sity.

Empirical findings indicate that canonical valuation performs well in pricing op-

tions on equity indexes. Stutzer (1996) reports that, in a simulated market governed

by the Black-Scholes assumptions, canonical valuation produces prices close to Black-

Scholes prices, even without using any of the simulated market prices in the valuation

process. Grey and Newman (2005) show that, in a stochastic volatility environment,

canonical valuation clearly outperforms the historical-volatility-based Black-Scholes

estimator for most combinations of moneyness and maturity. Canonical valuation has

also been applied to different derivative securities including soybean futures options

(Foster and Whiteman, 1999) and bond futures options (Stutzer and Chowdhury,

1999). Results suggest that canonical valuation has merits in both applications.

The primary objective of this paper is to develop a framework for pricing mortality-

linked securities, using the theory of canonical valuation. To achieve this objective,

we first develop a non-parametric method which allows us to generate a distribution

of future mortality rates in the real world probability measure. Then we transform

the real-world distribution into its risk-neutral counterpart, by using the maximum

entropy principle, which may be regarded as the core of canonical valuation. Finally,

we can price a mortality-linked security by discounting its expected payoff, derived

from the risk-neutral distribution of future mortality rates, at the risk-free interest

rate.

1Canonical valuation does not require option price data in pricing options on stocks or equity
indexes, and, as we will demonstrate in Section 3, it requires only one market price when valuing
longevity securities.
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The rest of this article is organized as follows: Section 2 presents the theory of

canonical valuation and its economic intuitions; Section 3 set up a non-parametric

method for forecasting mortality; Section 4 details how the maximum entropy princi-

ple is used to transform the distribution of future death rates from the real world to

a risk-neutral measure; Section 5 applies the theoretical results to a mortality-linked

security, and compares our framework with the Wang transform and a model-based

approach. Finally, Section 6 discusses the limitations of our framework and concludes

the paper.

2 The Theory of Canonical Valuation

2.1 A General Set-up

Let us consider a market in which there are m distinct primary securities, whose

values evolve according to the state of nature ω. We assume that the ith security,

where i = 1, 2, . . . ,m, has a time-zero price of Fi and, at the risk-free interest rate, a

random discounted payoff of fi(ω). Let P be the objective probability measure and

Q be the set of all measures equivalent to P and satisfying

EQ[fi(ω)] = Fi, i = 1, 2, . . . ,m (1)

for any Q in Q. That is, Q is the set of all equivalent martingale measures. Assume

further that there are a finite number N of states of nature. If m = N , then we say

the market is complete. In a complete market, the equivalent martingale measure

is unique. However, if m < N , which happens when there are only a few securities

trading in the market, then we say the market is incomplete. Market incompleteness

implies there are infinitely many equivalent martingale measures. To price a derivative

in an incomplete market, we need to choose an equivalent martingale measure that

is justifiable. This important step may be accomplished by using the principle of

canonical valuation.

The principle of canonical valuation is heavily based on the Kullbuck-Leibler in-

formation criterion (Kullback and Leibler, 1951). Denote by

D(Q,P ) = EP

[
dQ

dP
ln

dQ

dP

]
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the Kullback-Leibler information criterion of measure Q from measure P . Under the

principle of canonical valuation, we should choose the equivalent martingale measure

Q0 that minimizes the Kullbuck-Leibler information criterion, that is,

Q0 = arg min
Q∈Q

D(Q,P ),

subject to the constraints specified in equation (1). We call Q0 the canonical measure.

The set-up above is equivalent to the maximization of the Shannon entropy in

physics. Therefore, this principle is sometimes referred to as the principle of maxi-

mum entropy. Interested readers are referred to Jaynes (1957) and Kapur (1989) for

applications of this principle in physical science.

2.2 Intuitions behind the Theory

The principle of canonical valuation can be justified from different angles.

In statistics, the Kullbuck-Leibler information criterion D(Q,P ) represents the

information gained by moving from measure P to measure Q. From a Bayesian view-

point, we may regard the objective probability measure P as the prior distribution.

In the absence of any information about market prices, the objective probability mea-

sure P is the only measure we can use. Given the prices of the m primary securities,

we can update the prior assessment by incorporating the information contained in

equation (1). However, no information other than equation (1) should be incorpo-

rated in the update. As a result, we should choose a measure such that the resulting

gain in information is minimal. Equivalently, we choose the measure that minimizes

D(Q,P ), subject to the price constraints in equation (1).

Geometrically speaking, the Kullbuck-Leibler information criterion D(Q,P ) can

be considered as a measure of the distance between P and Q, since it is non-negative

and is zero if and only if Q = P . The geometric interpretation of the principle can

be seen from Figure 1. The sheet in Figure 1 is the set of all measures equivalent to

P . Of course, P must be a point on the sheet. The line in the sheet represents Q,

the set of all measures equivalent to P satisfying the constraints in equation (1). The

canonical measure Q0 is the point on the line and has a shortest distance to the point

P .

Furthermore, the principle of canonical valuation is closely related to the expected

utility hypothesis. Rittelli (2000) proved the equivalence between the maximization
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of expected exponential utility and the minimization of Kullbuck-Leibler information

criterion. The equivalence holds true in not only the single-period model but also the

multi-period model, provided that the optimal solution of the utility maximization

problem exists. The dual representation of the canonical measure provides a very

clear and explicit financial interpretation of it. Rittelli’s results also imply linkages

between the principle of canonical valuation and the Esscher transform (Gerber and

Shiu, 1994), which has been widely used in actuarial science.

2.3 Implementing the Theory

To implement canonical valuation, we are required to generate a number of scenarios

with equal probability. In practice, this can be accomplished by the bootstrap, which

generates realizations of a random variable by drawing with replacement from the

associated data sample. The scenarios generated may be regarded as a collection of

all states of nature. As a result, if N scenarios are generated, then the probability

mass function for the state of nature ω under the real-world probability measure P

is given by

Pr(ω = ωj) = πj =
1

N
, j = 1, 2, . . . , N.

The above is often called the empirical probability distribution or the ungrouped

histogram of ω. Let π∗j , j = 1, 2, . . . , N , be the probability distribution of ω under an

equivalent martingale measure Q. We can rewrite the constraints in equation (1) as

N∑
j=1

fi(ωj)π
∗
j = Fi, i = 1, 2, . . . ,m, (2)

and the Kullbuck-Leibler information criterion as
∑N

j=1 π
∗
j ln

π∗j
πj

. As such, to find the

canonical measure Q0, we solve the following constrained minimization problem:

Q0 = arg min
π∗j

N∑
j=1

π∗j ln
π∗j
πj

such that
∑N

j=1 π
∗
j = 1 and (2) holds.

Given Q0, it is straightforward to place a value on a derivative security. Let us

consider a security that has a payoff, discounted to time-zero at the risk-free interest

rate, of g(ωj) in scenario j. The price of this security is simply
∑N

j=1 g(ωj)π̃
∗
j , where

π̃∗j , j = 1, 2, . . . , N , is the probability distribution of ω under Q0.
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2.4 Stutzer’s Example

In the original work of Stutzer (1996), canonical valuation is applied to a European

option expiring T years from now. The option is written on a single underlying asset,

which pays no dividends and has a price of St at time t.

Given a time-series of H past prices, S−1, S−2, . . . , S−H , one can generate N pos-

sible values of ST using the bootstrap, which is as follows:

(i) calculate all of the realized single-period gross returns, that is, S−i/S−i−1, i =

1, 2, . . . , H − 1;2

(ii) draw, with replacement, T values from the H−1 realized single-period returns;

(iii) compute a possible value of ST by multiplying the T returns drawn successively;

(iv) repeat steps (ii) and (iii) N times to generate N possible values of ST : ST (ωj),

j = 1, . . . , N .

These N possible values are equally probable, so under P measure, the proba-

bility πj associated with ST (ωj) is simply 1/N . The next procedure is to transform

the empirical probabilities, πj, j = 1, 2, . . . , N , into their corresponding risk-neutral

(martingale) probabilities, π∗j , j = 1, 2, . . . , N . To keep the illustration simple, Stutzer

considers only one primary asset, the underlying asset itself. Given this assumption,

we can rewrite the constraints in equation (2) as

S0 =
N∑
j=1

B(0, T )ST (ωj)π
∗
j , (3)

where B(0, T ) is the price at time 0 of a risk-free zero-coupon bond maturing for 1

at time T . We then derive the risk-neutral probabilities by minimizing the Kullbuck-

Leibler information criterion,
∑N

j=1 π
∗
j ln

π∗j
πj

, subject to
∑N

j=1 π
∗
j = 1 and equation

(3).

Using the Lagrange multiplier method, the solution to the minimization problem

is as follows:

π̃∗j =
exp(γ∗B(0, T )ST (ωj))∑N
j=1 exp(γ∗B(0, T )ST (ωj))

, j = 1, 2, ...N,

2Alternatively, we can generate possible values of ST by considering the realized T -period gross
returns.
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where the Lagrange multiplier γ∗ is given by

γ∗ = arg min
γ

N∑
j=1

exp(γ(B(0, T )ST (ωj)− 1)).

Given the canonical measure π̃∗j , j = 1, 2, . . . , N , the value C of a European call

option with exercise price X expiring T years from now can be expressed as

C =
N∑
j=1

B(0, T ) max[ST (ωj)−X, 0]π̃∗j .

3 Non-Parametric Mortality Forecasting

An important feature of canonical valuation is that it does not require an assumption

of a stochastic process for the asset or index to which the derivative security is linked.

All we need is to generate, by the bootstrap, an empirical distribution of the security’s

payoff from a time-series of past asset or index values. This section explores how we

may obtain such a distribution for valuing longevity securities like the BNP/EIB

bond. The idea is illustrated with the mortality data for the English and Welsh male

population from year 1950 to 2005.3 We focus on ages 65 to 90 only as most longevity

securities are unrelated to death rates at younger ages.

3.1 Age and Time Dependency in the Data

The bootstrap in this application is not as straightforward as that in Stutzer’s exam-

ple, since the data we use involve two dimensions, age and time, with potential depen-

dence over both dimensions. Age dependency, as Wills and Sherris (2008) point out,

is significant and is a critical factor in pricing mortality-linked securities, particularly

when the security has a tranche structure similar to that used in the collateralized

debt obligation (CDO) market. To retain age dependency in the bootstrap, we con-

sider mortality rates at different ages jointly by treating them as a vector. That is,

we view the data as a multivariate time-series of mt = (m65,t,m66,t, ...,m90,t)
′, where

mx,t is the central death rate at age x and in year t, and a′ denotes the transpose of

a.

3The data (historical central death rates) we use are obtained from the Human Mortality Database
(2009).
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Now we investigate the time (serial) dependency in the vector time-series. In

applying the bootstrap, we require the time-series to be weakly stationary.4 However,

the time-series of mt, as shown in Figure 2, has a clear downward trend, which

suggests that it is not weakly stationary. To solve this problem, we consider the

transformation of rx,t = mx,t+1

mx,t
, which may be interpreted as the one-year mortality

reduction factor at age x and in year t. Given 56 years of central death rates, we have

55 realized values of rx,t for each age. In Figure 3 we observe no systematic change

in rx,t over time, suggesting that it is reasonable to assume that the time-series of

rt = (r65,t, r66,t, ..., r90,t)
′ is weakly stationary.

To check if the vector rt is serially correlated, we examine the cross-correlation

matrix (CCM) constructed from the single-period mortality reduction factors at 5

representative ages: 70, 75, 80, 85, and 90.5 The resulting sample CCMs are shown

in Table 1. To better understand the significance of the cross-correlations, in Table 1

we also show the simplified sample CCMs, which consists of three symbols “+,” “−,”

and “·,” where

1. “+” means that the corresponding correlation coefficient is greater than or equal

to 2/
√

55,

2. “−” means that the corresponding correlation coefficient is less than or equal

to −2/
√

55,

3. “·” means that the corresponding correlation coefficient is in between −2/
√

55

and 2/
√

55.

Note that 2/
√

55 is the asymptotic 5% critical value of the sample correlation under

the assumption that the series of (r70,t, r75,t, r80,t, r85,t, r90,t)
′ is a white noise series. It

is easily seen that significant cross-correlations at the approximate 5% level appear

mainly at lag 1. The diagonal entries in the sample CCM at lag-1 indicate that the

components r70,t, r75,t, r80,t, r85,t, and r90,t demonstrate significant lag 1 autocorrela-

tion. The off-diagonal entries tell us how the components depend on one another. For

4Let yt = (y1,t, ..., yk,t)′. We say yt is weakly stationary if its mean vector, µ = E(yt), and
its covariance matrix E[(yt − µ)(yt − µ)′] are constant over time. From an intuitive viewpoint, a
time-series is said to be weakly stationary if there is no systematic change in mean (i.e., no trend),
no systematic change in variance, and no periodic variations.

5Given the data {yt|t = 1, ..., T}, the lag-l cross-correlation matrix ρl is estimated by ρ̂l =
D̂−1Γ̂lD̂−1, where Γ̂l = 1

T

∑T
t=l+1(yt − ȳ)(yy−l − ȳ)′, ȳ = 1

T

∑T
t=1 yt, and D̂ is the k × k diagonal

matrix of the sample standard deviations of the component series.
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instance, the (2,5)th element in the lag-1 CCM indicates that the reduction factor for

age 75 at time t is significantly dependent on that for age 90 at time t− 1.

3.2 The Bootstrap Procedure

For a sequence with sample CCMs like those in Figure 1, simply drawing with replace-

ment (i.e., the näıve bootstrap) is inappropriate, as it will lose the serial dependency

in the data. To retain serial dependency, we can create pseudo-samples by the block

bootstrap method, which was first introduced by Carlstein (1986) and further devel-

oped by Künsch (1989). The key idea behind the block bootstrap method is that,

for a stationary time-series, successive observations are correlated but observations

separated by a large time gap are (nearly) uncorrelated. This phenomenon can be

seen from the sample CCMs for the series of (r70,t, r75,t, r80,t, r85,t, r90,t)
′ – the cross-

correlations taper off as the lag l increases and they all become insignificant beyond

lag 3. As a result, individual blocks of observations that are separated far enough

in time will be approximately uncorrelated and can be treated as exchangeable. By

drawing blocks of data rather than individual values, we can create pseudo-samples

that preserve the serial dependence in the original data sequence.

The block bootstrap method can be implemented in different ways. The sim-

plest version divides the data into nonoverlapping blocks of equal size. Assuming a

block size of 5, this resampling scheme yields 11 blocks, (r1950, r1951, r1952, r1953, r1954),

(r1955, r1956, r1957, r1958, r1959), ..., (r2000, r2001, r2002, r2003, r2004). A variant of this re-

sampling plan is to permit the blocks to overlap. Assuming again a block size of 5,

allowing the blocks to overlap will give us 51 blocks, (r1950, r1951, r1952, r1953, r1954),

(r1951, r1952, r1953, r1954, r1955), ..., (r2000, r2001, r2002, r2003, r2004). In subsequent calcu-

lations, we use the latter resampling plan as it allows for more blocks.6 To obtain

a pseudo-sample, we simply draw blocks with replacement from the original sample

and paste the blocks drawn end-to-end to form a new series.

The optimal block size is not always evident. If the blocks are too short, serial

dependency in the original sample will be lost. However, using a longer length will

effectively reduce the sample size. Hall et al. (1995) show that the optimal block size

6This incurs ‘end effects,’ as the first and last 4 of the original observations appear in fewer
blocks then the rest. Such effects can be removed by wrapping the data around a circle, adding the
blocks (r2004, r1950, r1951, r1952, r1953), ..., (r2001, r2002, r2003, r2004, r1950). This adjustment ensures
that each of the original observations has an equal chance of appearing in the simulated series.
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depends significantly on the context. In estimating a two-sided distribution function,

a block size of n1/5, where n is the effective sample size, is optimal. Given this rule,

we use a block size of 2 (551/5 = 2.23 ≈ 2).

Researchers have proposed several ways to improve the block bootstrap proce-

dure, for example, post-blackening, blocks of blocks, and stationary bootstrap. These

methods, which are detailed in Davison and Hinkley (1997) and Lahiri (2003), can

be incorporated easily into the algorithm we described.

3.3 Making a Mortality Forecast

Let us suppose that the forecast horizon is 30 years. Using a block-size of 2 and the

resampling plan that allows the blocks to overlap, we generate 10,000 pseudo-samples

of 30 one-year mortality reduction factors. Given these 10,000 pseudo-samples, we

can make forecasts of various death and survival probabilities. As an example, we

consider the central death rate at age 90 in year 2035 (30 years from 2005). Let

M be a pseudo-sample and M(i, j), i = 1, 2, ..., 26, j = 1, 2, ..., 30, be the (i, j)th

element in M.7 On the basis of M, an estimate of m90,2035 is given by the product of

the base year central death rate, m90,2005, and the simulated 30-year reduction factor∏30
j=1 M(26, j) for age 90. With 10,000 pseudo-samples, we can construct an empirical

distribution from which we can obtain a central estimate and a confidence interval

for m90,2035.

With a forecast of cohort death rates, that is, mx,2006,mx+1,2007, ..., we can then

make a forecast of survival probabilities for different birth cohorts. In Figure 4 we

show the empirical distributions of the 10-year, 15-year, 20-year and 25-year survival

probabilities for the cohort aged 65 in year 2005.8 From the means and percentiles

of the simulated distributions, we obtain a central estimate and a confidence interval

for each of the survival probabilities (see Table 2).

To examine the robustness of the bootstrap relative to the historical data used,

we base the bootstrap on three different sample periods:

1. 1960–2005 (46 years; dot-dash line in Figure 4);

7Note that rt is a 26×1 vector which consists of reduction factors for 26 different ages. Therefore,
a pseudo-sample M of 30 one-year mortality reduction factors would be a 26× 30 matrix.

8We let tpx be the probability that a person who was aged x in the base year (year 2005) survives
to age x+ t.
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2. 1950–2005 (56 years; solid line in Figure 4);

3. 1940–2005 (66 years; dotted line in Figure 4).

An increase or decrease in the sample period by 10 years seems to have little influence

on the central tendency of the simulated distributions, indicating that the bootstrap

is reasonably robust relative to how much historical data is used. However, when

more years of data are used, the resulting empirical distributions are more dispersed.

This observation reflects the greater volatility in mortality rates that can be seen in

earlier years. A similar observation is also made in a model-based simulations study

conducted by Cairns et al. (2009).

Finally, we compare our non-parametric projection with the projections derived

from two parametric mortality models: (1) the Lee-Carter model (Lee and Carter,

1992) and (2) the two-factor model (Cairns et al., 2006). The comparison (see Table

3) indicates that the projections are fairly close to one another.

4 An Equivalent Martingale Measure

Recall that in Stutzer’s example, the canonical measure is derived by minimizing the

Kullbuck-Leibler information criterion, subject to a constraint (equation (3)) that is

based on the asset to which the derivative security is linked.

However, we are unable to derive the canonical measure for longevity securities

in this way, as they are linked to either death or survival rates that are not traded

in the market. Without a price for the underlying, a constraint similar to that in

Stutzer’s example cannot be formed. To solve this problem, we need to rely on one

or more security that is linked to the relevant death or survival rates and is traded in

the capital market at a price we know. We use the BNP/EIB longevity bond in 2004

to illustrate.

4.1 The BNP/EIB Longevity Bond

Before we proceed to the derivation of the canonical measure, let us briefly review

the BNP/EIB longevity bond. This bond is a 25-year amortising bond (i.e., a bond

without principal repayment) with coupon payments that are linked to a survivor

index, which is based on the realized mortality rates of English and Welsh males aged
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65 in 2002. The index I(t) on which the coupon payments are based is defined as

follows:

I(t) = I(t− 1)(1−m64+t,2002+t), t = 1, 2, . . . , 25,

where I(0) = 1, and mx,t is the crude central death rate at age x and in year t. In

each year t, t = 1, 2, ..., 25, the bond pays a coupon of £50× I(t) million.

The issue price was determined by discounting at LIBOR minus 35 basis points

the anticipated coupon payments, £50 × EP [I(t)|F0] million, t = 1, 2, . . . , 25, where

Ft is the filtration generated by the development of the mortality curve up to time

t. Assuming that the evolution of mortality rates over time is independent of the

dynamics of the interest rate term-structure over time, the issue price quoted in the

contract can be written as

£50×
25∑
t=1

B(0, t) exp(−δt)EP [I(t)|F0],

where δ is the longevity risk premium, and B(0, t) is the time-0 price of a risk-free

zero-coupon bond that pays 1 at time t (in years).9 As the EIB curve typically stands

about 15 basis points below the LIBOR curve, the risk premium δ is approximately

20 basis points.

Using the non-parametric bootstrap procedure we detailed in Section 3, we cal-

culate the value of EP [I(t)|F0] for t = 1, 2, . . . , 25. Assuming that the EIB interest

rate is 4% per annum, the estimated market price of the bond at t = 0 is £561

(£50 × 11.22) million, which is boardly in line with that derived by Cairns et al.

(2006) on the basis of their two-factor mortality model.10 With this market price, we

can formulate a constraint for use in the derivation of the canonical measure.

9We define here a risk-free bond by a bond that is free of longevity risk; that is, its payoff is
the same regardless of what mortality scenario it turns out to be. On this basis of our definition, a
risk-free bond may be subject to other types of risk, for example, counterparty default risk. So such
a bond could be one that is issued by EIB (or an institution with a similar credit rating) and is not
mortality-linked. In the rest of this article, the risk-free rate refers to the interest rate on such a
bond.

10Under the same assumption on the EIB interest rate, Cairns et al. (2006) find that the price at
issue of the BNP/EIB longevity bond is £572.1 (£50× 11.442).
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4.2 Deriving the Canonical Measure

Recall that the derivation of the canonical measure involves two steps. The first step

is to generate a number, say N , of equally probable mortality scenarios using the non-

parametric bootstrap we introduced in Section 3. In each scenario, we have an array

of future central death rates from which we can calculate the value of the longevity

index I(t) at t = 1, 2, . . . , 25. Let I(t, ωj) be the value of the longevity index at time

t in the jth scenario. In the jth scenario, the cash flows, discounted to time zero at

the risk-free interest rate, from the longevity bond is given by

v(ωj) = 50×
25∑
t=1

B(0, t)I(t, ωj).

Under the objective probability measure P , the probability of having a discounted

payoff of v(ωj) from the longevity bond is πj = 1/N , for j = 1, 2, . . . , N . The

distribution of v(ω) under P is shown graphically in the upper panel of Figure 5.

The next step is to perform a constrained minimization of the Kullbuck-Leibler

information criterion. We let π∗j be the probability associated with v(ωj) (i.e., the

jth scenario) under an equivalent martingale measure Q. Under Q, the expectation

of v(ω) must be the same as the market price of the longevity bond at time zero. In

other words, the following constraint must be satisfied:

N∑
j=1

v(ωj)π
∗
j = 561. (4)

The canonical measure is then chosen by minimizing the Kullbuck-Leibler informa-

tion criterion, subject to
∑N

j=1 π
∗
j = 1 and the constraint in equation (4). We solve

this problem with the method of Lagrange multipliers, which says the constrained

minimization is equivalent to minimizing

L =
N∑
j=1

π∗j lnπ∗j − λ0

(
N∑
j=1

π∗j − 1

)
− λ1

N∑
j=1

(
v(ωj)π

∗
j − 561

)
.

Let π̃∗j , j = 1, 2, . . . , N , be the solution, that is, the canonical measure Q0. We require

it to satisfy the first-order conditions:

ln π̃∗j + 1− λ0 − λ1v(ωj) = 0, j = 1, 2, . . . , N,

or equivalently,

π̃∗j = exp(λ0 + λ1v(ωj)− 1), j = 1, 2, . . . , N,
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which means π∗j is proportional to exp(λ1v(ωj)). It follows from
∑N

j=1 π
∗
j = 1 that

π̃∗j =
exp(λ1v(ωj))∑N
j=1 exp(λ1v(ωj))

, j = 1, 2, . . . , N. (5)

What remains is the Lagrange multiplier λ1, which can be determined by substituting

(5) into (4) or by the following expression:

λ1 = arg min
π∗j

N∑
j=1

exp(γ(v(ωj)− 561).

Using the procedure above, we obtain an estimate of the canonical measure Q0,

which is depicted graphically in the lower panel of Figure 5.

4.3 Additional Primary Securities

In deriving the canonical measure shown in Figure 5, only one primary security, the

BNP/EIB longevity bond, is considered. What if there is in the market more than

one security that is linked to the mortality of the same reference population? How can

we ensure that all these securities are correctly priced under the canonical measure?

We can easily extend the method to incorporate additional primary securities.

Suppose that there are m > 1 such securities and that the ith, i = 1, 2, . . . ,m,

security has a price of Vi at time zero and a discounted payoff of vi(ωj) in the jth

mortality scenario, j = 1, 2, . . . , N . To ensure correct pricing of these m securities,

the following conditions must be satisfied:

N∑
j=1

vi(ωj)π
∗
j = Vi, i = 1, 2, . . . ,m. (6)

Therefore, with m > 1 primary securities, we obtain the canonical measure by min-

imizing the Kullbuck-Leibler information criterion, subject to
∑N

j=1 π
∗
j = 1 and the

constraints in equation (6). It can be shown that the resulting canonical measure π̃∗j ,

j = 1, 2, . . . , N is given by

π̃∗j =
exp(

∑m
i=1 λiv(ωj))∑N

j=1 exp(
∑m

i=1 λiv(ωj))
, j = 1, 2, . . . , N,

where the Lagrangian multipliers ~λ = (λ1, λ2, . . . , λm)′ can be expressed as

~λ = arg min
γ1,...,γm

N∑
j=1

exp

(
m∑
i=1

γi(vi(ωj)− Vi)

)
.
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The intuition of the extension above can be demonstrated diagrammatically. The

top panel in Figure 6 represents the case when there is only one primary security. As

in Figure 1, the sheet is the set of all measures equivalent to P , while the line on the

sheet is Q, the set of all measures equivalent to P satisfying the constraint. On Q,

we can find the canonical measure Q0, which is the point that is closest to P . The

middle panel in Figure 6 represents the case when there are two primary securities.

By requiring measures in Q to price both primary securities correctly, the locus for

Q is effectively shortened. It is noteworthy that the introduction of an additional

primary security may result in a different Q0, since the previous Q0 may no longer be

encompassed by the locus for Q. The bottom panel represents the extreme case when

there are infinitely many primary securities, or equivalently speaking, a complete

market. In this case, the locus for Q reduces to a single point, the only position

that Q0 can take, implying that Q0 coincides with the unique equivalent martingale

measure.

5 An illustration

5.1 Pricing Vanilla Survivor Swaps

We illustrate our pricing framework with vanilla survivor swaps, in which the parties

involved agree to swap a series of payments, one of which depends on a longevity

index, periodically until the swap matures.

Vanilla survivor swaps can be constructed in different ways. Following Dowd et

al. (2006), we consider vanilla survivor swaps with a fixed proportional premium θ

and a fixed time-to-maturity T . At t = 1, 2, . . . , T , there is an exchange of, per $1

notional principal, a preset amount (1 + θ)K(t) and a random amount S(t) that is

linked to the number of survivors in a certain reference population.

To keep mutual credit risks down, it makes sense for the agreement to specify that

the two parties exchange only the net difference between the two payment amounts.

Therefore, per $1 notional principal, the fixed-payer pays the the fixed-receiver an

amount of (1 + θ)K(t) − S(t) if (1 + θ)K(t) > S(t) and the fixed-receiver pays the

fixed-payer an amount of S(t) − (1 + θ)K(t) otherwise. It is easy to see that the

fixed-payer has a long exposure to longevity risk (i.e., the risk that S(t) turns out to

be low relative to K(t)), while the fixed-receiver has a short exposure.
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In our illustration, the floating leg S(t) is linked to the mortality of the same

reference population as that for the BNP/EIB longevity bond. Specifically, we set

S(t) to the realized survival function for the reference population, that is,

S(t) = S(t− 1)(1− q64+t,2002+t), t = 1, 2, . . . , T,

where S(0) = 1, and qx,t is the realized probability that an English/Welsh male aged

x at the beginning of year t dies during year t.

A key difference between this and a vanilla interest-rate swap is that, rather

than being constant, the fixed leg K(t) for this swap declines over time in line with

the values of S(t), t = 1, 2, ..., T , anticipated at time zero. Here we set K(t) to the

projected survival function for the reference population, on the basis of the 2003-based

principal mortality projection made by the UK Government Actuary’s Department.11

Values of K(t) for t = 1, 2, . . . , 25 are shown in Table 4.

In line with vanilla interest rate swaps, the premium θ is chosen so that the initial

value of the swap is zero to each party. As such, we can calculate θ by using the

following equation:

T∑
t=1

B(0, t)
(
EQ[S(t)|F0]− (1 + θ)K(t)

)
= 0, (7)

where B(0, t) is the time-0 price of a fixed-principle zero-coupon bond that pays 1 at

time t. Note that θ might be positive, zero, or negative.

All that then remains is to obtain EQ[S(t)|F0] for t = 1, 2, . . . , T . When we use

canonical valuation, these expectations can be calculated as follows:

N∑
j=1

S(t, ωj)π
∗
j ,

where S(t, ωj) is the value of S(t) in the jth mortality scenario, and π∗j is the prob-

ability associated with the jth scenario under the canonical measure Q0, which we

identified in Section 4.

Assuming a risk-free rate of 4%, we calculate the swap premia for maturities rang-

ing from 1 to 25 years. The solid line in Figure 7 shows the resulting values of θ based

on the sample period of 1950–2002. To evaluate the robustness of canonical valuation

11The 2003-based principal mortality projection of age/sex specific mortality rates is available at
http://www.gad.gov.uk/Demography Data/Population/.
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relative to the historical data used, we consider two additional sample periods: 1960–

2002, and 1940–2002. The results, also shown in Figure 7, indicate that a change of

the sample period by 10 years does not affect the swap premia significantly.

5.2 Comparing with Other Pricing Methods

We now compare our pricing framework with the Wang transform and the method

that is based on the two-factor stochastic mortality model proposed by Cairns et al.

(2006).

• The Wang transform

Let F P (x) be the distribution function for a future lifetime random variable in

the real-world probability measure (P measure). The Wang transform defines

the ‘distorted’ distribution function FQ(x) for the random variable by

FQ(x) = Φ(Φ−1(F P (x)) + λ),

where Φ is the distribution function for the standard normal random variable,

and λ is the market price of risk, which reflects the level of longevity risk. Using

the Wang transform, we can calculate the price of a mortality-linked security by

discounting its expected payoff implied by FQ(x) at the risk-free interest rate.

In pricing the vanilla survivor swaps we defined earlier, F P (x) represents the

real-world survival distribution for the cohort of English and Welsh males who

were aged 65 in year 2002. We calculate FP (x) from the 2003-based principal

mortality projection made by the UK Government Actuaries Department.

To obtain the market price of risk λ, we make use of the market price of the

BNP/EIB longevity bond. Specifically, we find λ such that the price of the bond

implied by the resulting FQ(x) is the same as the market price of the bond.

• The two-factor model

The two-factor model is a discrete-time model which assumes that qx,t, the

single-year death probability at age x and time t, can be formulated as follows:

qx,t =
eA1(t)+A2(t)x

1 + eA1(t)+A2(t)x
,

where {A1(t)} is a stochastic factor that affects all the ages in an equal manner,

and {A2(t)} is another stochastic factor that has a different effect for different

ages.
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In the real world probability measure (P measure), {A1(t)} and {A2(t)} follow

a bivariate random walk with drift, that is,

A(t+ 1) = A(t) + µ+ CZ(t+ 1),

where A(t) = (A1(t), A2(t))
′, µ is a constant 2 × 1 vector, C is a constant

2× 2 upper triangular matrix, and Z(t) is a bivariate standard normal random

variable. We estimate µ and C from the historical death probabilities for the

English and Welsh male population from 1950 to 2002.

In a risk-adjusted pricing measure (Q measure), the stochastic process for A(t)

has the following form:

A(t+ 1) = A(t) + µ̃+ CZ̃(t+ 1),

where µ̃ = µ − Cλ, Z̃(t + 1) is a bivariate standard normal random variable

under the Q-measure, and λ = (λ1, λ2)
′ is a vector of market prices of risk.

Although λ might vary with time, it is assumed here that it is constant over

time since it is difficult to assume anything more complicated in a lack of market

price data.12

As before, we make use of the market price of the BNP/EIB longevity bond

to find λ1 and λ2. In particular, we choose λ1 and λ2 that would result in an

equality between the price implied by the model and the issue price quoted in

the contract. Since there are two unknowns but only one equation, there are

infinitely many pairs of λ1 and λ2 under which the price produced by the model

would match market price. We consider the special case that λ1 = λ2.
13

Given the market prices of risk, we calculate the price of a security that is linked

to the mortality of the same reference population by discounting its expected

payoff under Q at the risk-free interest rate.

In Figure 8 we show the swap premia θ on the basis of the three pricing methods.

By requiring all three methods to price the 25-year BNP/EIB longevity bond cor-

rectly, they yield the same premium for the vanilla survivor swap with a maturity of

25 years. This is because, as Blake et al. (2006a) point out, the BNP/EIB longevity

12Cairns et al. (2006) also make this assumption.
13Cairns et al. (2006) consider three special cases: λ1 = 0, λ2 = 0, and λ1 = λ2. We find that

these three cases yield similar premia for the vanilla survivor swap we defined earlier.
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bond may be regarded as a combination of a survivor swap and some fixed cash

flows.14 In an incomplete market, the rest of the swap curve is a mere extrapolation.

From Figure 8 we observe that the extrapolated swap curves take different shapes,

depending on the pricing method used. The Wang transform renders a fairly lin-

ear extrapolation, while canonical valuation and the two-factor model give non-linear

swap curves with different curvatures.

6 Discussion and Conclusion

This study develops an alternative framework for pricing mortality-linked securities,

on the basis of the theory of canonical valuation. The framework is comprised of

two components. The first component is a non-parametric method that allows us to

generate scenarios of future mortality rates, while the second is a transformation of

the real-world probability distribution for the mortality scenarios into its risk-neutral

counterpart for pricing purposes. The empirical results indicate that this alternative

pricing framework is reasonably robust relative to the amount of historical mortality

data used.

Most other pricing methods are heavily based on an assumed stochastic process

for the evolution of mortality. They are subject to model risk, because any stochastic

process is only a simplified version of reality, and with any simplification there is the

risk that something will fail to be accounted for. For example, a pricing method that

is based on the Lee-Carter model might produce inaccurate prices if the temporal

signal in the model has a non-constant volatility or significant structural changes.15

Even if the pricing error is small, the problem might be made larger by several orders

of magnitude if the same model is also used for designing the hedge portfolio. On the

contrary, the framework we propose is largely non-parametric, effectively helping us

avoid model risk, which might be significant in other pricing methods.

Although the longevity market is still very immature, there has been a raft of new

entrants, such as Goldman Sachs and JP Morgan, competing for new business. It is

therefore legitimate to expect more products coming to the market in the near future.

14There might be a small discrepancy, since the BNP/EIB longevity bond is based on central
death rates (mx,t) while our vanilla survivor swap is based on death probabilities (qx,t).

15In the Lee-Carter model, it is assumed that the temporal signal of mortality (often denoted by
kt or κt) follows a simple linear time-series process with innovations that have a constant variance.
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The prices of the new products, as we have demonstrated in Section 4, can be incor-

porated into the canonical measure easily by introducing additional constraints when

we minimize the Kullbuck-Leibler information criterion. In the extreme case when

there are infinitely many market prices available, the canonical measure converges

to the unique equivalent martingale measure in a complete market. Nevertheless, in

using the Wang transform, the incorporation of additional market prices is not that

straightforward. Ideally, prices of securities linked to the mortality of the same cohort

should yield the same market price of risk λ in the distortion operator, but in reality

this may not be the case, since market prices are not necessarily consistent with the

Wang transform. Should there exist multiple values of λ, a subjective decision on

which to use will be needed. A similar problem may also occur when we base pricing

on the risk-adjusted two-factor model in which there are only two market prices of

risk.

Besides products like the BNP/EIB longevity bond, some insurance companies

have entered into, on an over-the-counter (OTC) basis, financial contracts that are

linked to their own mortality experience. For instance, in JP Morgan’s ‘q-forward,’

the counterparty has the discretion to choose between a standardized index, which

is linked to a larger population, and a customized index, which reflects the actual

experience of individuals associated with a particular exposure, such as the policy-

holders of a life insurance portfolio or the members of a defined benefit pension plan.

While customized deals involve less population basis risk, they are often difficult to

price due to the paucity of data. In particular, maximum likelihood estimation might

not work well when the data series is too short or when the number of exposures is

too small. Our pricing framework, which is largely non-parametric, seems to be an

attractive alternative way to value OTC deals that involve a smaller population with

a thin volume of mortality data.

The pricing problem is sometimes complicated by cohort effects, which refer to

situations when the mortality improvement for a group of birth years is systematically

higher or lower than that of the neighboring cohorts. When a model-based method

is used, we may factor cohort effects into security prices by considering a model that

relates death rates to years of birth. The generalization of the two-factor model16 is

one example. However, it does not seem trivial to incorporate such effects into our

pricing framework. An obvious avenue for future research is to investigate how we

16This model is labeled as Model M6 in Cairns et al. (2009).
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may adapt the block bootstrap procedure so that cohort effects can be taken into

account.
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Figure 1: A geometric interpretation of the canonical valuation principle.
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−0.09 −0.28 −0.22 −0.46 −0.62




· · · · ·
· − · · −
· · − · −
· · · − −
· − · − −



Lag 2


0.12 −0.01 0.01 0.05 0.20

0.02 0.07 0.00 0.14 0.29

0.15 0.11 0.00 0.06 0.26

−0.03 −0.03 −0.15 −0.01 0.27

−0.11 0.15 0.02 0.18 0.33




· · · · ·
· · · · +

· · · · ·
· · · · ·
· · · · +



Lag 3


0.20 0.14 0.04 −0.01 −0.12

0.33 0.13 0.15 0.09 −0.08

0.18 0.03 0.14 0.12 −0.02

0.21 0.02 0.15 0.03 −0.09

0.26 −0.04 0.18 −0.01 −0.21




· · · · ·
+ · · · ·
· · · · ·
· · · · ·
· · · · ·



Lag 4


−0.01 0.03 0.09 −0.03 −0.07

−0.20 0.05 −0.06 −0.05 0.02

−0.07 −0.18 −0.09 −0.04 −0.18

0.00 0.17 −0.22 0.17 0.02

−0.02 0.13 −0.18 0.11 0.05




· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·


Table 1: Sample CCM and simplified sample CCM constructed from the single-period

mortality reduction factors at 5 representative ages: 70, 75, 80, 85, and 90.
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Figure 2: Central death rates at representative ages.
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Figure 3: Mortality reduction factors at representative ages.
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Figure 4: Empirical distributions of the survival probabilities for the cohort aged 65

in year 2005, on the basis of 46 years of data (dot-dash line), 56 years of data (solid

line) and 66 years of data (dotted line).
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Sample period

1960–2005 1950–2005 1940–2005

10p65 0.7790 (0.7541, 0.7987) 0.7753 (0.7475, 0.7971) 0.7749 (0.7449, 0.8029)

15p65 0.6048 (0.5607, 0.6422) 0.5981 (0.5467, 0.6408) 0.5998 (0.5389, 0.6560)

20p65 0.3999 (0.3385, 0.4584) 0.3928 (0.3226, 0.4579) 0.3954 (0.3084, 0.4798)

25p65 0.2080 (0.1465, 0.2748) 0.2030 (0.1330, 0.2776) 0.2057 (0.1157, 0.3028)

Table 2: Estimates of the survival probabilities for the cohort aged 65 in year 2005.

(The corresponding 95% confidence intervals are shown in parentheses.)

Non-parametric Lee-Carter Two-factor

10p65 0.7790 0.7755 0.7814

15p65 0.6048 0.6011 0.6135

20p65 0.3999 0.3995 0.4132

25p65 0.2080 0.2039 0.2146

Table 3: Central estimates of the survival probabilities for the cohort aged 65 in year

2005, on the basis of the non-parametric bootstrap, the Lee-Carter model and the

two-factor model.

t K(t) t K(t) t K(t) t K(t) t K(t)

1 0.9800 6 0.8954 11 0.7813 16 0.6324 21 0.4512

2 0.9648 7 0.8754 12 0.7542 17 0.5991 22 0.4119

3 0.9488 8 0.8540 13 0.7257 18 0.5645 23 0.3727

4 0.9320 9 0.8312 14 0.6958 19 0.5280 24 0.3335

5 0.9143 10 0.8070 15 0.6646 20 0.4900 25 0.2951

Table 4: Values of the fixed leg, K(t), for t = 1, 2, . . . , 25.
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Figure 5: Probability distribution of v(ω) under the real-world measure P and the

canonical measure Q0.
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Figure 6: The canonical measure Q0 derived from different numbers of primary secu-

rity.

34



-0.0140

-0.0120

-0.0100

-0.0080

-0.0060

-0.0040

-0.0020

0.0000

1 4 7 10 13 16 19 22 25

Maturity

Sw
ap

 p
re

m
iu

m

1940 - 2002
1950 - 2002
1960 - 2002

Figure 7: The swap premium θ calculated from the method of canonical valuation.

-0.0140

-0.0120

-0.0100

-0.0080

-0.0060

-0.0040

-0.0020

0.0000

1 4 7 10 13 16 19 22 25

Maturity

Sw
ap

 p
re

m
iu

m

Wang transform
Canoncial valuation
Two factor model

Figure 8: The swap premium θ calculated from different pricing methods.
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