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ABSTRACT 
 

In prior work by the author the method of pricing the liabilities of a financial institution 
by means of dynamic mean–variance hedging is applied to an incomplete market that is 
nevertheless in equilibrium with homogeneous expectations. In subsequent work a long-
term equilibrium model is developed and parameterised for the South African market. 
The aim of this paper is to apply the latter model to the pricing method with a view to 
quantifying the effects of non-additivity due to incompleteness, guarantees implicit in 
reasonable expectations of pension increases and the sensitivity of the price of illustrative 
liabilities to the sources of uncertainty and the parameters of the model. The application 
is to retirement-fund benefits in the South African market. 
 In an unpublished application of the pricing method it was found that, except for quite 
short-term liabilities, the computational demands of the pricing algorithm became 
excessive. The main reason for this was that the algorithm calls for simulations within 
simulations: for each year of the term of liabilities, a large number of simulations is 
required, and for each such simulation another large number of simulations is required. In 
this article consideration is given to the reduction of the computational demands of the 
algorithm. 
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1. INTRODUCTION 
 
In Thomson (2005) the method of pricing the liabilities of a financial institution by means 
of dynamic mean–variance hedging is applied to an incomplete market that is 
nevertheless in equilibrium with homogeneous expectations (the TP1 model). That paper 
gave no illustration of the application of the model, because the TP1 model requires a 
long-term equilibrium model of the major constituents of the market portfolio and no 
such model existed that could be used for that purpose. In order to operationalise the TP1 
model it was therefore necessary to develop an equilibrium model. 
 In Thomson & Gott (unpublished) a long-term equilibrium model (the TGESA1 
model) is developed and parameterised for the South African market and in Thomson & 
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Gott (forthcoming) a similar model (the TGEUK1 model), with some improvements, is 
developed and parameterised for the United Kingdom market. These models needed to 
incorporate a model of the market portfolio that was consistent with the requirements of 
equilibrium. (In particular, expected returns on the market and the volatility of those 
returns had to be expressed as ex-ante values. For example, expected one-year returns on 
the market conditional on information at the start of a year should not be less than the 
one-year risk-free rate.) Simple models of the market portfolio were considered sufficient 
for the purposes of publication of the TGESA1 and TGEUK1 models and those papers 
therefore incorporated tentative models of the market portfolio (the TGMSA1 and 
TGMUK1 models respectively). However, in order to operationalise the TP1 model, it 
was necessary to develop credible models of the market portfolio.  
 In Thomson (unpublished b), after consideration of alternative specifications of the 
process governing the return on the market portfolio, a refined model of the South 
African market portfolio (the TMSA2 model) is developed for predictive purposes. 
Similarly, in Thomson (unpublished a) a refined model of the UK market portfolio (the 
TMUK2 model) is developed. The aim of this paper is to apply the TP1 model to the 
TGESA1 and TMSA2 models with a view to quantifying the effects of: 

− non-additivity due to incompleteness; 
− guarantees implicit in reasonable expectations of pension increases; and 
− the sensitivity of the price of illustrative liabilities to the sources of uncertainty 

and the parameters of the model. 
 
For that purpose it was necessary to consider some further amendments both to the 
TGESA1 model and to the TMSA2 model; the amended equilibrium model is referred to 
as the TGSA2 model and the amended market-portfolio model as the TMSA3 model. The 
amendments are explained in section 3. For ease of reference, the models referred to 
above are listed in an appended glossary. The application is to retirement-fund benefits in 
the South African market. 
 The TP1 model assumes that a discrete, stochastic state-space model is available of 
the variables required to determine, by means of an asset–liability model, the liability 
cash flows and the return on all relevant categories of assets during a particular year for 
given values of the variables at the start of that year. While the TGESA1 and TGEUK1 
models include models of the relevant asset categories, they do not include models of the 
liabilities. This paper illustrates the development of such a model. Because the modelling 
of the liabilities of different financial institutions—and even those of different retirement 
funds—may be quite different, the development (or at least the parameterisation) of a 
model of the liabilities may differ from fund to fund. 
 In an earlier, unpublished application of the TP1 model1 it was found that, except for 
quite short-term liabilities, the computational demands of the pricing algorithm became 
excessive. The main reason for this was that the algorithm calls for simulations within 
simulations: for each year of the term of liabilities, a large number of simulations is 
required, and for each such simulation another large number of simulations is required. In 
this article consideration is given to the reduction of the computational demands of the 

                                                 
1 Kransdorff, S.H. (unpublished). The pricing of liabilities in an incomplete market: a practical application. 
Unpublished honours research paper, School of Statistics and Actuarial Science, University of the 
Witwatersrand, 2005 
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algorithm. This is achieved partly by amendments to the specification of the model and 
partly by changes in programming methods, software and hardware. The amended 
specification is referred to as the TP2 model. The specification is given in greater detail 
than in Thomson (2005). 
 In the debate between the economic valuation of retirement-fund liabilities using 
bond yields (Head et al., 2000: method 3) and the use of bond yields plus a risk premium 
(ibid.: method 4), it may be argued (e.g. Exley, Mehta & Smith, 1997) that, because such 
liabilities cannot be completely hedged by means of bonds, there is room for the inclusion 
of equities in an optimal portfolio. Because the expected yield on equities is greater than 
that on bonds, this would justify the use of a risk premium in the valuation of the 
liabilities. The size of that risk premium may be subjectively determined or it may be 
determined with reference to the actual proportion of the fund’s investments that is in 
equities so as to achieve stability in funding levels (Head et al, op. cit.: 106–8). On the 
latter basis, the effect of the risk premium may be a fairly substantial reduction in the 
liabilities (ibid.: 89). Under the approach adopted in this paper, it may be expected that 
the effect of allowing for equities (and of departure from a matched position in bonds) 
will be relatively small. This is due to a different criterion for the exposure to equity: 
instead of starting with a subjectively determined exposure, the method in this paper 
seeks to optimise that exposure. In essence the approach here is that, only to the extent 
that the trustees are unable to avoid risk should the valuation of the liabilities allow for a 
risk premium (Thomson, 2002). (In order to recognise the nature of their responsibilities, 
reference is made in this paper to ‘trustees’ rather than to the expression ‘board’ used in 
the Pension Funds Act2.) It may therefore be expected that the effect will be a 
considerably smaller departure from the value based on risk-free bond yields than that 
produced by the risk premiums typically used. 
 Other literature on the subject of this paper is reviewed in the abovementioned papers 
and is not revisited here. 
 In section 2 the liabilities are specified as well as the models of salaries and mortality, 
which are required for the projection of the liabilities. Section 3 discusses the modelling 
of assets and price inflation using the market-portfolio and equilibrium models. Section 4 
explains the TP2 pricing model. Section 5 presents and discusses the results of the 
pricing, including the sensitivity of the price to the parameters and the sources of 
uncertainty. It also comments on the control parameters and the speed of convergence. 
Section 6 concludes, with some suggestions for further research. 
 
2. LIABILITIES 
 
2.1  SPECIFICATION 
For a member aged x in service at time 0, we let 0xP  denote the pension accrued for 
service to time 0, conditional on information at that time. We define: 
 0 0x xP nSπ= ; (1) 
where: 
 π is the rate of pension accrual per year of service; 
 n is the length of service of that member in years from date of entry to time 0; and 

                                                 
2 Pension Funds Act 24 of 1956 as amended 
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 xtS  is the member’s annual salary during year t. 
 
 As time passes, the member receives salary increases, and the accrued pension for 
service to time 0 increases proportionately. It is assumed that salary increases are granted 
annually in arrear. When the member retires the accrued pension 

 , 1 , 1x R x x R xP nSπ− − − −=  (2) 
 

becomes payable. This is based on the salary during the last year of service preceding her 
attainment of retirement age R. Thereafter, increases may be granted to pensions. For the 
purposes of this paper it is assumed that: 
 0,02π = ; and 
 R = 65. 
 
 Let xtP  denote the pension payable to a member (whether that member is an active 
member at time 0 or a pensioner) at time t in respect of service to time 0, and let xtc  
denote the cash flow in year t in respect of the member for such service, conditional on 
information at that time. We define: 
 ( )1

, 12xt x t xt xtc p p P−= +  (3) 
where: 
 xtp  is the probability that the pensioner will be alive at time t; and 
 xtP  is the pension payable during year t. 
 
 To approximate annual payment, we assume that half the pension is payable at the 
start of the year and half at the end, subject at each date to the member’s survival. No 
allowance is made for exit from the fund—either by death or otherwise—before the 
attainment of the retirement age; it is assumed that the price of the liabilities in respect of 
the member at the time of occurrence of such a contingency will be paid by the fund at 
that time and any extra benefits will be current-costed. The probabilities in equation (3) 
therefore allow for mortality only after the retirement age. In the pricing of the liabilities 
of the fund, no allowance is made for future service; it is assumed that the cost of benefits 
in respect of future service will be met by future contributions. Allowance is, however, 
made for future salary increases. Both the salary and the pension are expressed in real 
terms—i.e. deflated to time 0 using an index of consumer price inflation. Each member’s 
salary (and therefore her accrued pension for service to time 0) is a stochastic process. 
The rates of pension increase and mortality are also stochastic processes. These stochastic 
processes are discussed below. 
 It is assumed that mortality risks can be pooled, either by reassurance or otherwise, on 
the same basis as that used in this paper. In the absence of arbitrage, this means that, 
whether or not the fund actually undertakes such pooling, the price of the liabilities is 
determined as if it did. This means that, conditionally on mortality rates at the start of a 
year, mortality risks are diversifiable during that year. 
 While the above specification of benefit accrual contemplates a defined-benefit 
retirement fund using the projected unit method of funding, it could equally be applied to 
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a defined-contribution retirement fund using such a specification as its basis for the 
accrual of reasonable benefit expectations. 
 Besides pricing the liabilities accrued, we must price the current annual rate of benefit 
accrual. The rate of benefit accrual at time 0 in respect of current service is: 
 0 0x xP Sπ′ =  (4) 

 
and the cash flow in year t in respect of a member for service accruing at time 0, 
conditional on information at that time, is: 
 ( )1

, 12xt x t xt xtc p p P−′ ′= + . (5) 
 
 The pricing of the liabilities for service to time 0 gives the value of the assets required 
to reflect the price of the accrued liabilities and the pricing of the liabilities for service 
currently accruing gives the amount of contributions required for liabilities currently 
accruing. 
 As explained in Thomson (2005), in order to determine an accurate price of the 
liabilities of a financial institution in an incomplete market, the liabilities for each 
member should be modelled stochastically, allowing for its interdependence with the 
other liabilities and with the assets. This would necessitate an additional modelling 
dimension for every member. Even for a small fund, the computational demands would 
become excessive. Some simplification is therefore necessary. 
 Also, as explained in that paper, the prices of liabilities in an incomplete market are 
not generally additive. However, if a fund is divided into cohorts of members, then, as the 
number of members in each cohort increases, the error due to non-additivity may be 
expected to tend to a constant proportion of the price of the liability of that cohort. 
 In this paper an illustrative fund has been reduced to seven model-point age cohorts. 
The fund data are shown in Tables A.1 and A.2 of Appendix A. At time 0, at each age, 
half the members and pensioners at each age are assumed to be female and half male; the 
data are assumed to be identical. While the data have been derived from an actual fund, 
they have been stylised to avoid identification. 
 
Table 1. Model-point data 
 

Accrued pensions Accruing pensions 
age 

cohort 
no. of 

members 
pensions 
(R’000) 

age 
cohort 

no. of 
members 

pensions 
(R’000) 

x Nx Px x Nx P'x 
25 360 2 394 25 360 642
35 1680 28 844 35 1680 3 480
45 2040 51 896 45 2040 4 230
55 1804 54 706 55 1804 3 402
65 1442 64 932 62 762 1 288
75 1010 49 442
85 600 20 864
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 We assume that, at time 0, the fund comprises four age cohorts of active members and 
three age cohorts of pensioners. In determining the model-point data, the fund data have 
been grouped into the nearest cohort age so that, in each cohort, the total number of 
members, annual salaries and accrued pensions are equal to those of the fund members 
grouped into that cohort. The model-point data for the cohorts used are shown in Table 1. 
 
2.2  SALARY INCREASES 
We let the real salary during year t of active member m at time 0 be denoted by: 
 ( ), 1 expmt m t t mtS S ξ ζ−= + ; (6) 
where: 
 tξ is the annualised force of the general increase in year t, such that: 
 1 3 2 7t t t tb bξ ξ ξ ξ ξξ µ η η σ ε= + + + ; (7) 

 { }tEξµ ξ= ; (8) 
 3tη  is the inflation innovation in the equilibrium model and 1bξ  is the associated 

 volatility; 
 7tη  is the innovation arising from the notional risky assets comprising the market 

 portfolio, such that: 

  
6

7 7
1

t i it
i

aη ε
=

= ∑ ; (9) 

  
6

7
1

6i
i

a
=

=∑ ; (10) 

  and 2bξ  is the associated volatility; 
 ξσ  is the residual volatility of tξ ; 
 ~ (0,1)t Nξε ; 

 ( ) ( ) ( )cov , cov , cov , 0t t t it t itξ ξ ξ ξε ε ε ε ε ε′ ′= = =  for t t′ ≠  and 1, ,6i = K ; 

mtζ  is the additional force of increase to member m in year t, such that: 
 

m mmt x x mtς ς ςζ µ σ ε= + ; (11) 

 { }
mx mtEςµ ς= ; 

 { }2 var
mx mtςσ ς= ; 

 ~ (0,1)mt Nς ; 

 ( ) ( ) ( ) ( )cov , cov , cov , cov , 0mt mt mt m t mt it mt itς ς ς ς ς ςε ε ε ε ε ε ε ε′ ′ ′= = = =  for t t′ ≠  and 
1, ,6i = K ; and 

 ( ) ( ), ,cov cov 0mt t mt tς ξ ς ξε ε ε ε ′= =  for t t′ ≠ . 
 

In practice, the values of the constants and parameters in the above formulation will 
vary from fund to fund. For the purposes of this paper, the following values were 
assumed: 

0,01ξµ =  



 7

 1 0,005bξ = − ; 
 2 0,005bξ = ; 
 0,03ξσ = ; and 

 7
1
6ia = . 

 
 It was also assumed that: 
 ( )expx xς µς µς µςµ α β λ= + − ; and (12) 

 ( )expx xς σς σς σςσ α β λ= + − ; (13) 
where: 
 0,016µςα = ; 
 0,5µςβ = ; 
 0,1µςλ = ; 
 0,042σςα = ; 
 0,5σςβ = ; and 
 0,08σςλ = . 
 
These parameters are based on the experience of the illustrative fund referred to in 
section 2.1. The values of xςµ  and xςσ  are shown in Figure 1 as the ‘mean’ and ‘standard 
deviation’ respectively. 
 

0,00
0,02
0,04
0,06
0,08
0,10
0,12
0,14
0,16

20 30 40 50 60

Age

mean standard deviation
  

Figure 1. Mean and standard deviation of the additional force of increase to a member 
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 Since we are modelling real salary increases, 1bξ  will be negative: the greater the rate 
of inflation, the less likely it will be that salary increases will match it. The value is 
arbitrary; in absolute value it is very small in relation to Mσ , the volatility of the market 
portfolio (cf. section 3.1 below). More importantly, it is small in relation to ξσ . The 
values of 7ia  are taken as equal so that the dependence of salaries on the assets is 
expressed through the market portfolio itself; the value chosen gives a standard deviation 
of 1, so that 2bξ  represents the assumed volatility. The latter is arbitrary; as for 1Sb  it is 
very small in relation to Mσ , and, again more importantly, it is small in relation to ξσ . 
 Let xtG  denote the set of members aged x at the start of year t and let xtM denote the 
number of members in that set. Then the mean and variance of: 

 
, 1

1

xt

xt mt
m Gx tM

ζ ζ
∈−

= ∑  (14) 

is normal with mean and variance: 
 xx ζζµ µ= ; and (15)  

 
2

2

, 1

x
x

x tM
ζ

ζ

σ
σ

−

= . (16) 

 Conditionally on , 1x tS −  and tξ , we may therefore simulate a value of 

 ( ), 1 expxt x t t xtS S ξ ζ−= +  (17) 

for the cohort by sampling xtζ  from a normal distribution with the above mean and 
variance. Because , 1x tS − , tξ  and xtζ  are independent, equation (17) gives an unbiased 
sample. 
 We assume that the data include salary increases just received and that, thereafter 
salary increases take place annually in arrear, so that, for a retiring member: 
 , 1

R
x R xS S − −= . (18) 

This means that there is no further salary increase in the year of age 64. 
 
2.3  PENSION INCREASES 
We let the real pension during year t be denoted by: 
 ( ){ }1 exp max 0,t t tP P γ−= − . (19) 
 
The requirement that the real force of salary increase be at least tγ−  avoids negative 
nominal increases when inflation is negative. 
 
2.4  MORTALITY 
There is no published table of pensioner mortality in South Africa. Dorrington & Tootla 
(2007) gives South African annuitant mortality rates based on data in respect of the 
period from 1996 to 2000, tabulated as SAIFL98 and SAIML98 for females and males 
respectively. 
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 The Faculty and Institute of Actuaries have published mortality tables based on lives 
experience during the period 1999–2002 both for immediate annuitants (IFL00 and 
IML00) and for pensioners (those for normal pensioners being PNFL00 and PNML00). 
 For the purposes of this paper, the commencing force of pensioner mortality for the 
year of age x—i.e. the age interval [x, x + 1)— was taken as: 

 
00

{ }98 98
{ } { }00

{ }

PNL
xSAP SAIL

x xIL
x

ν
ν ν

ν
= ; (20) 

 
where: 
 00

{ }
PNL
xν  is the corresponding value from the PNFL00 or PNML00 table; 

 00
{ }
IL
xν  is the corresponding value from the IFL00 or IML00 table; and 

 98
{ }
SAIL
xν  is the corresponding value from the SAIFL98 or SAIML98 table. 

 
In this formulation ν{x} denotes in each case the average (or equivalently the aggregate) 
force of mortality over the year of age x; i.e.: 
 ( ){ } ln 1x xqν = − − . (21) 
In the actuarial literature this is often (as in Dorrington & Tootla, op. cit.) shown as 1

2xµ + . 

Whereas the latter represents an approximation to a value at exact age 1
2x + , the usage in 

this paper represents an exact value of the aggregate force over the year. 
 The results are shown in Table A.3 of Appendix A. 
 Allowance was made for stochastic improvement in mortality by means of the 
process: 
 ( ){ } { } 1 expSAP SAP

x t x t tνν ν χ+ + −= ; (22) 
 

where: 
 { }

SAP
x tν +  represents the force of pensioner mortality during year 2008 + t for a pensioner 

of age x at the start of 2008; 
 ( )98

{ } { } exp 10SAP SAP
x x νν ν µ= ; (23) 

 , 1 7t t t tbν ν ν ν ν νχ χ µ η σ ε−= + + + ; (24) 
 νµ  is the expected rate of increase in mortality (which will be negative to allow for 

 improvement); 
 ~ (0,1)qt Nε ; and 

 ( ) ( ) ( ), , ,cov cov cov 0t t t it t itν ν ν νε ε ε ε ε ε′ ′= = =  for t t′ ≠  and 1, ,6i = K . 
 
 The purpose of the definition of { }

SAP
xν  as in equation (23) is to allow for improvement 

in mortality in the 10 years that elapsed from 1998 to 2008. Again, the values of the 
constants and parameters in the above formulation will vary from fund to fund. For the 
purposes of this paper, the following values were assumed: 
 0,004νµ = − ; 
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 0,001bν = − ; and 
 0,005νσ = . 
 Dorrington & Tootla (2007) suggest an average reduction in mortality equivalent to 
one year of age for every 20 years projected. This is approximately equivalent to the 
above value of νµ . The values of bν  and νσ  are arbitrary; the latter, representing the 
independent volatility of the annual improvement is small in relation to νµ  and the 
former, representing the additional volatility arising from the market portfolio, is even 
smaller. 
 
3. ASSETS AND PRICE INFLATION 
 
3.1 THE MARKET-PORTFOLIO MODEL 
In the TMSA2 model the return on the market portfolio is: 
 ; ;M t I t M tgδ δ σ ε= + ; (25) 
where: 
 1,39g = ; 
 0,159Mσ = ; 
and ~ (0,1)t Nε  is serially independent. 
 
 In the use of the model for predictive purposes, it is inevitable that, in a small 
minority of cases, ( )0 0Itδ < . As explained in Thomson & Gott (forthcoming), negative 
market prices of risk may be avoided in such cases by using the TGMUK1 model: 
 ; ;M t M t M tδ µ σ ε= + ; and (26) 

 ( ); ; 0M t I tgµ δ=  for ( ) 00, >tIδ  (27) 
( ); 0I tδ=  otherwise. 

 
 The TMSA3 model used in this paper comprises the TGMUK1 formulation with the 
TMSA2 parameterisation. 
 
3.2 THE EQUILIBRIUM MODEL 
In the TGESA1 model index-linked and conventional zero-coupon bonds are modelled by 
means of variables 0 ( )I tb s  and 0 ( )C tb s  respectively. As explained in ¶3.2.3 of Thomson 
& Gott (unpublished), 

0 ( )I tb s
s

 and 0 ( )C tb s
s

 

represent the expected yield curve at time t, conditional on information at time t – 1. It 
has been found simpler to use the variables ( )ItY s  and ( )CtY s , such that 

( )ItY s
s

 and ( )CtY s
s

 

represent the actual yield curve at time t. The parameterisation of the model is not 
affected by this amendment. 
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 As stated in Thomson & Gott (unpublished), the parameters required for the TGESA2 
model, incorporating the TMSA2, model are as follows: 
− for all required values of s : 
  { }0 0( ) ln ( )I IY s P s= −  and { }0 0( ) ln ( )C CY s P s= − , (28) 
   0 ( )IP s  and 0 ( )CP s  being the prices at time 0 of s-year index-linked and   

  conventional bonds respectively; and  
   ( )Ijb s  and ( )Cjb s , i.e. the sensitivity of the yield on s-year index-linked and  

  conventional bonds respectively to the jth factor for j = 1, 2; 
− Mσ , the volatility of the return on the market portfolio; 
− g, the sensitivity of ex-ante expected returns on the market portfolio to positive risk-

free returns; 
− bγ , the volatility of the force of inflation in excess of conditional ex-ante expected 

inflation; 
− ;1Eb , the covariance of the return on equities with the return on the market portfolio, 

expressed relative to the latter; and 
− for i = 1,…, N and j = 1,…, 6: ija , the sensitivity of the jth factor to the ith notional 

risky asset. 
 
 In this paper, as in its precursors, the ‘return’ on an asset during a particular year is 
defined as the average instantaneous real rate (or ‘force’) of return during that year. To 
avoid arbitrage, the TGESA2 model of the return on the market portfolio is made up of 
notional risky assets (six in number), each with equal ex-ante volatility and expected 
return. Realisations of the returns on these assets drive six factors, which in turn drive the 
returns on the assets. Index-linked and conventional term structures are each driven by 
two, and the force of inflation and the return on equities (in excess of their conditional ex-
ante expected values) each by another. 
 A summary of the amended model (denoted TGESA2) is given in Appendix C. 
 
4. PRICING 
 
4.1 PRICING METHOD 
The pricing method follows the TP1 model. In that model the price of the liabilities at 
time t depends on a state-space vector at that time; in Thomson (2005) the choice of a 
state-space vector is not addressed. The pricing method involves primary simulations of 
that vector to a time horizon at which the liabilities are extinguished, followed by 
secondary one-year simulations from each node of the primary simulations. Figure 2 
depicts primary simulations from time 0 to time T – 1 (where T is the time of the last 
possible payment to a surviving member in terms of the mortality table used) and 
secondary simulations from a primary simulation node at time t – 1. No primary 
simulations are necessary for the final year. Secondary simulations are made from each 
primary simulation node. 
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primary simulation secondary simulation

Time T -1 Time T

primary simulation node

Time 0 Time 1 Time t -1 Time t

 
Figure 2. Primary and secondary simulations 
 
 First let us consider the primary simulations. As shown in Figure 3, these comprise 
simulations of the state-space vector tix . In principle the state-space vector comprises 
sufficient information to define the state of the world in the ith simulation at time t. The 
definition of the state-space vector is considered further in section 4.2 below. 
 

time 0 time 1 time 1 time T  − 1

primary simulation 1 x 11 x 21 x T −1,1

primary simulation 2 x 12 x 22 x T −1,2

x 0

primary simulation I x 1I x 2I x T −1,I

 
Figure 3. Primary simulations of the state-space vector 
 
 Now let us consider the secondary simulations. These proceed backwards from the 
time horizon T, where the last payment is made, so we first consider the secondary 
simulations in year T. In Figure 4a we use an asterisk to distinguish variables derived 
from secondary simulations from those derived from primary simulations. Thus the state-
space vector 1,T i−x  arises from the ith simulation at time T – 1, whereas *

Tijx  arises from 
the jth subsequent secondary simulation at time T. At the latter simulation, since the state 
of the world is defined, we can determine the fund’s cash flows in respect of the final 
benefits then due, and there is no further liability. Once we have completed all J 
simulations from the primary simulation node, we have a sample multivariate distribution 
of the price of the liabilities at time T and the returns on assets during year T. Using 
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mean–variance hedging and the equilibrium assumptions of the capital-asset pricing 
model (CAPM) as in the TP1 model and as summarised in Appendix D, we may then 
determine the price of the liabilities at the start of year T after all payments then due. This 
is depicted in Figure 4b. To this price we add the payments due at the end of the previous 
year. 
 

time T  − 1 time T time T  − 1 time T

x* T 11,  p* T 11 x* T 11,  p* T 11

x T −1,1 x* T 12,  p* T 12 x T −1,1, p T −1,1 x* T 12,  p* T 12

x* T 1J,  p* T 1J x* T 1J,  p* T 1J

x* T 21,  p* T 21 x* T 21,  p* T 21

x T −1,2 x* T 22,  p* T 22 x T −1,2, p T −1,2 x* T 22,  p* T 22

x* T 2J ,  p* T 2J x* T 2J ,  p* T 2J

x* TI 1,  p* TI 1 x* TI 1,  p* TI 1

x T −1,I x* TI 2,  p* TI 2 x T −1,I , p T −1,I x* TI 2,  p* TI 2

x* TIJ ,  p* TIJ x* TIJ ,  p* TIJ

 
Figure 4. Secondary simulations:  
Figure 4a. Simulation of state space and Figure 4b. Calculation of price at start of  
prices at end of final year final year 
 
 Similarly, for each year from T – 1 to 2, we calculate the price of the liabilities at each 
node of the primary simulations. In these years, however, the price of the liabilities is 
known only for primary simulations, not for secondary simulations. As shown in Figure 
5a, what we have at time t are secondary simulations of the state-space vector. As shown 
in Figure 5b, we also have the price of the liabilities at each node of the primary 
simulations at that time. What we need to do for each secondary simulation is to estimate 
a price corresponding to the state space simulated. Since the price depends only on the 
state-space vector, we may do this by selecting a nearby group of state-space vectors 
from the primary simulations and calculate a weighted average price—weighted, that is, 
by the relative nearness of each of the selected state-space vectors to the secondary state-
space vector. The details of this process are described in Appendix B. Having estimated 
the year-end price corresponding to each secondary simulation of the state-space vector, 
we may then calculate the price at the start of the year as shown in Figure 5c. The details 
of the calculations are given in Appendix D. 
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time t  − 1 time t time t time t time t  − 1 time t

x* t 11 x* t 11,  p* t 11 x t 1,  p t 1 x* t 11,  p* t 11

x t −1,1 x* t 12 x* t 12,  p* t 12 x t 2,  p t 2 x t −1,1, p t −1,1 x* t 12,  p* t 12

x* t 1J x* t 1J,  p* t 1J x* t 1J,  p* t 1J

x* t 21 x* t 21,  p* t 21 x* t 21,  p* t 21

x t −1,2 x* t 22 x* t 22,  p* t 22 x t −1,2, p t −1,2 x* t 22,  p* t 22

x* t 2J x* t 2J ,  p* t 2J x* t 2J ,  p* t 2J

x* tI 1 x* tI 1,  p* tI 1 x* tI 1,  p* tI 1

x t −1,I x* tI 2 x* tI 2,  p* tI 2 x t −1,I , p t −1,I x* tI 2,  p* tI 2

x* tIJ x* tIJ ,  p* tIJ x tI ,  p tI x* tIJ ,  p* tIJ

 
Figure 5. Secondary simulations: 
Figure 5a. Figure 5b. Figure 5c. 
Simulation of state space Weighted average price Calculation of price at start of 
and prices at end of year t corresponding to x*tij year t 
 
 For year 1 we follow the same process, except that in this case the state-space at the 
start of the year is known, so that, instead of repeating the calculations for each of a set of 
primary simulations, we arrive at a unique price p0 as shown in Figure 6. 
 

time 0 time 1 time 1 time 1 time 0 time 1

x* 11 x* 11,  p* 11 x 11,  p 11 x* 11,  p* 11

x 0 x* 12 x* 12,  p* 12 x 12,  p t 12 x 0, p 0 x* 12,  p* 12

x* 1J x* 1J ,  p* 1J x 1I ,  p 1I x* 1J ,  p* 1J

 
Figure 6. Secondary simulations: 
Figure 6a. Figure 6b. Figure 6c. 
Simulation of state space Weighted average price Calculation of price at start of 
and prices at end of year t corresponding to x*tij year t 
 
 The pricing algorithm is set out in Appendix E. 
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4.2 DEFINITION OF THE STATE-SPACE VECTOR 
In practice it would assist in the interpolation process if the state-space vector were 
chosen so that the price of the liabilities is approximately linear in each component of that 
vector. For the purposes of this paper, the state-space vector was defined as: 
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; (29) 

where: 
 ( ) { }exp ( )It ItP s Y s= − ; (30) 

 ( ) { }exp ( )Ct CtP s Y s= − ; and (31) 

 ( )expt tνθ χ= . (32) 

Here ( )IP s  and ( )CP s  represent the prices of index-linked and conventional bonds 
respectively and 1, us sK  represent selected terms to redemption. In order to reduce the 
dimensionality of the state-space vector, and therefore the computational demands of the 
algorithm, a subset of each yield curve is selected. tθ  represents the cumulative change in 
mortality. 

nx tP  represents the total accrued pensions of members in cohort n at time t, 
being of age nx  at that time. 
 
4.3 ADJUSTING THE MODEL-POINT RESULTS 
The pricing of the liabilities proceeds as follows. Let p denote the aggregate price of the 
liabilities for the model-point cohorts as described above. We find the deterministic value 
of the liabilities based on the fund data and the model-point data, which we denote by 

FDL  and MDL  respectively. For this purpose the value of the liability for member m aged 
x at time 0 is: 

{ } { }{ }1
{ } 0 { } { } 1 02 exp (1) exp (2)m m x I x x Il P Y Yν ν ν += + − − + − − − +K  for x R≥ ; 

 { } { }{ }1
{ } 0 { } { } 1 02 exp (1) exp (2)m x I x x IP Y Yν ν ν +− − + − − − +K  for x R= ; 
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1
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P R x
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Y R x
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+ −

+ −

+ − + − +
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 − − + − − − + 
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K

 for x R<  (34)  
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Then: 
 

1
F
x

FD m
x m G

L l
∈

= ∑ ∑ ; and (35) 

 
1

M
x

MD m
x m G

L l
∈

= ∑ ∑ ; (36) 

where 1
F
xG  and 1

M
xG  are the sets of members aged x at the start of year 1 in the fund and in 

the model-point cohorts respectively. 
 The deterministic valuation produces a price that is equal to the stochastic valuation 
with all the random normal distributions set to their expected values. (Because of non-
linearities, this does not mean that the resulting value is equal to the expected value of the 
stochastic price.) 
 Then the aggregate price of the liabilities is adjusted to allow for bias in the use of 
model points by multiplying the model-point price by the ratio of FDL  to MDL  to give the 
adjusted price: 

 FD

MD

Lp p
L

=% . (37) 

 
4.4 ACCRUING COSTS 
A similar exercise is undertaken for the liabilities currently accruing in respect of active 
members. The results represent the annual contributions currently required to fund the 
benefits on a basis consistent with the pricing of the accrued liabilities. 
 
4.5 PROGRAMMING 
The pricing algorithm was coded in R. The packages available in that language included a 
Sobol quasi-random multivariate normal number generator (Sobol, 1976). In order to 
expedite convergence, that generator was used instead of pseudo-random numbers. It was 
found better to generate a matrix of Sobol numbers for the primary simulations and a 
separate matrix for the secondary simulations, each of the dimensions required, and to 
access those matrices as and when required, than to generate the numbers as and when 
required. 
 The code is available from the author free of charge. 
 
5. RESULTS 
 
5.2 DETERMINISTIC VALUATION 
On the basis of equations (35) and (36) it was found that the results of the deterministic 
valuations of accrued liabilities based on the fund data and the model-point data were: 

2 911 803FDL = ; and 
2 930 084MDL = . 

(As above, figures are in R’000.) 
 The values of the liabilities accruing per annum were: 

149 749FDL′ = ; and 
150 120MDL′ = . 
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Based on the fund data, the deterministic cost of accruing liabilities was 22,96% of 
salaries. 
 
5.3 STOCHASTIC PRICE 
Using a single cohort (female members aged 55), convergence to three significant digits 
(i.e. about 0,1%) was achieved with the following values of the control parameters: 

− the number of primary simulations: I = 2000; 
− the number of secondary simulations: J = 250; 
− the selected terms to redemption (cf. section 4.2): 1, 5, 10, 15 and 20 years for 

index-linked bonds and 1, 5, 10 and 20 years for conventional bonds; 
− the number of primary simulations selected for weighted averaging (cf. Appendix 

B): E = 700; and 
− the power of the dispersion measure for averaging (cf. Appendix B): n = 2. 

 
 The program was run with an Intel C2 Quad CPU at 2,33GHz. Using the above 
control parameters for all cohorts combined, the determination of the accrued liabilities 
took 47 hours. Slightly better convergence was achieved using larger values of I and J but 
the accuracy required for this paper did not justify the extra run time. 
 On the basis proposed in this paper, the price of the accrued model-point liabilities is: 

3 094 000p = . 
Adjusted to correspond to the fund data, this gives: 

3 074 000p =% . 
Overall, the stochastic price exceeds the deterministic value by 5,6%. (As above, figures 
are in R’000.) 
 The price of the accruing model-point liabilities is: 

163 861p′ = . 
Adjusted to correspond to the fund data, this gives: 

163 546p′ =% ; 
that is 25,1% of  total salaries. Overall, the stochastic price exceeds the deterministic 
value by 9,2%. 
 As explained in Thomson (2005), the price of the liabilities is not additive. In the first 
place, there is intra-cohort non-additivity. This effect may be shown by determining the 
price of the liabilities per unit of accrued pension for each cohort separately. This may be 
done for all members in the cohort and for a single member in that cohort (i.e. by setting 

1xtM = ). Inter-cohort non-additivity may be shown by comparing the price of the 
liabilities for all cohorts combined with the sum of the prices of the liabilities for the 
cohorts. These effects are shown in Table 2, which analyses the price of the accrued 
liabilities in comparison with the deterministic valuation. In that table minor 
approximations were made for computational convenience; the results are intended, 
however, to be indicative to the levels of accuracy shown. In the row captioned 
‘Adjusted’ the values have been adjusted to correspond to the fund data. ‘Total’ means an 
arithmetic total of the relevant values shown. ‘% incr’ shows the percentage change 
between the preceding two columns. 
 At active ages the excess of the stochastic price as shown in column (2) over the 
deterministic value of the liabilities as shown in column (1) is essentially due to the cost 
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of the guarantee that, when inflation is negative, nominal pensions will not be reduced. 
(The increase is shown in column (3).) The effect of the guarantee decreases with attained 
age: for older members the funnel of doubt about future inflation rates does not widen as 
much as for younger members. For the latter members the reduction in price due to the 
risk premium included in the effective discount rate predominates. As anticipated in 
section 1, this effect is relatively small. 
 
Table 2. Analysis of price of accrued liabilities 
 

Sex Age Value per unit accrued pension Aggregate value 
 deterministic 

valuation 
stochastic 

price 
deterministic 

valuation 
stochastic price 

  1 member entire cohort   
   % 

incr 
 % 

incr 
R’million % 

incr 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Female         

 25 14,11 16,00 13,4 15,84 -1,0 17 19 12,2 
 35 11,94 13,46 12,8 13,36 -0,8 172 193 11,8 
 45 12,00 13,49 12,4 13,39 -0,7 311 347 11,6 
 55 12,67 13,70 8,1 13,62 -0,6 347 372 7,5 
 65 13,36 13,78 3,1 13,78 0,0 434 447 3,1 
 75 9,53 9,69 1,7 9,69 0,0 236 240 1,7 
 85 5,96 6,01 0,9 6,01 0,0 62 63 0,9 
 total      1 579 1 681 6,5 

Male         
 25 12,27 13,74 11,9 13,60 -1,0 15 16 10,8 
 35 10,35 11,53 11,4 11,43 -0,8 149 165 10,5 
 45 10,37 11,51 11,0 11,42 -0,7 269 296 10,1 
 55 10,89 11,65 7,0 11,58 -0,6 298 317 6,3 
 65 11,38 11,67 2,5 11,67 0,0 369 379 2,5 
 75 7,95 8,06 1,5 8,06 0,0 196 199 1,5 
 85 5,25 5,29 0,8 5,29 0,0 55 55 0,8 

 total      1 351 1 427 5,6 
   Total      2 930 3 109 6,1 
   Aggregate      2 930 3 094 5,6 
Adjusted to fund data     2 912 3 074 5,6 

 
 The effects of intra-cohort non-additivity are relatively small. As shown in column 
(5), they apply only at active ages. This is because, as explained in section 2.1, individual 
pensioner mortality risks are diversifiable. Risks relating to improvement in mortality and 
pension increases are proportionate to the liabilities, and liabilities for pensioners are 
therefore additive. 
 The total increase per cent in the price of the liabilities (column (7)) over the 
deterministic valuation (column (6)) is shown in column (8). Because of their greater 
longevity, female members show a greater increase. Again, this is essentially due to the 
cost of the guarantee for longer time horizons. As shown in column (7), the aggregate 
stochastic price of the model-point liabilities is R3 094 million, 0,5% less than the total of 
those liabilities. This reduction is due to inter-cohort non-additivity. 
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Without the guarantee on the pension increase, the stochastic price of the liabilities 
reduces from R3 094 million to R2 902 million, i.e. by 6,2%. The latter price, in turn, is 
1,0% less than the deterministic valuation of R2 930 million. This may be analysed as 
follows: 
 Deterministic valuation of model-point data 2 930 
 difference due to risk-free stochastic pricing      11 
 Risk-free stochastic price 2 941 
 hedge-portfolio risks      –19 
 Stochastic price with hedge-portfolio risks 2 922 
 residual risks    –20 
 Stochastic price with hedge-portfolio and residual risks 2 902 
 cost of guarantee    192 
 Stochastic price based on model-point data 3 094 
 adjustment to fund data     –20 
 Stochastic price based on fund data 3 074 
  
5.4 SENSITIVITY TESTS 
The results of sensitivity tests of the aggregate stochastic price are reported in Table 3. 
For the purposes of these tests, only those parameters that do not enter into the 
deterministic valuation are considered; in general, the sensitivity to parameters of the 
deterministic valuation will be similar to the sensitivity of the deterministic valuation to 
those parameters. Because of their complexity, the parameter sets ,1( )Ib s  and ,2 ( )Ib s , 
representing the sensitivity of the return on an s-year index-linked bond to the factor 
driving the return on a 1-year and 20-year bond respectively, and the corresponding sets 

,1( )Cb s  and ,2 ( )Cb s  for conventional bonds, have not been considered. For the same 
reason, the parameter set aij, representing the composition of the ith factor in terms of 
notional risky asset j has not been considered. It is not expected that the effects of feasible 
changes in these parameters would be substantial. In some cases, groups of parameters 
are considered together. The results are reported in terms of the model-point data; no 
adjustment has been made for the fund data. 
 While the test values have been subjectively chosen, the intention is to reflect the 
feasible range from a minimum possible absolute value to the value adopted. In the cases 
of certain volatilities zero values were not used as they would have resulted in anomalies 
in the calculations. 
 An opposite range in terms of increase in absolute value would be equally feasible, 
and for the purposes of discussion it is assumed that, in absolute value, the effect on the 
price of the liabilities would be similar. 
 The most substantial effect is for bγ , the volatility of the force of inflation in excess 
of conditional ex-ante expected inflation (parameter set 8). A reduction in this volatility 
reduces the price of the guarantee that, when inflation is negative, nominal pensions will 
not be reduced. Clearly the volatility will not reduce to zero, so that the uncertainty is 
considerably less than 1%. 
 The effects of g and Mσ  (parameter sets 6 and 7) are also substantial. The former is 
the sensitivity of ex-ante expected returns on the market portfolio to positive risk-free 
returns and the latter is the residual volatility of the return on the market portfolio. In the 
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estimation of these parameters in Thomson (unpublished b), the minimum ‘required’ 
value of g was 1,2. In the calibration of the descriptive model of the market portfolio, the 
confidence limits embraced lower values. However, it is argued in that paper that such 
values would not be consistent with risk-aversion. Nevertheless, as discussed in Thomson 
(ibid.) there is considerable scope for subjectivity in the setting of g for the purposes of 
predictive modelling, so, ex ante, the upside range may be greater than the downside 
range. The confidence limits of Mσ  were (0,11; 0,20), so that the range contemplated is 
reasonable. The explanation of these effects requires further analysis. 
 1bξ , the sensitivity to inflation of the general salary increase, slightly affects the price, as it 
affects the cost of the pension guarantee. 
 
Table 3. Sensitivity of the aggregate stochastic price to the parameters 
 

Parameter Test result 
set name description standard 

value 
test 

value 
price 

(R’million) 
change 
in price 

(%) 
0  standard values 3 094 N/A 

1 1bξ  general salary increase: 
sensitivity to inflation –0,005 0 3 098 0,14

2 2bξ  
general salary increase: 
sensitivity to return on market 
portfolio 

0,005 0 3 093 -0,01

3 ξσ  general salary increase: residual 
volatility 0,03 0,01 3 094 0,01

σςα  volatility of additional increase: 
level parameter 0,042 0

σςβ  volatility of additional increase: 
slope parameter 0,5 04 

σςλ  volatility of additional increase: 
age parameter 0,08 0

3 094 0,01

bν  pensioner mortality: sensitivity 
to return on market portfolio –0,001 0

5 
νσ  pensioner mortality: residual 

volatility 0,005 0,001
3 094 0,01

6 g return on market portfolio: 
sensitivity to risk-free rate 1,39 1,2 3 082 -0,37

7 Mσ  return on market portfolio: 
residual volatility 0,159 0,1 3 108 0,45

8 bγ  force of inflation: residual 
volatility –0,01379 0 3 061 –1,07

9 φ inflation risk premium 0,003 0 3 094 0,00

10 1Eb  return on equities: residual 
volatility 0,13923 0,1 3 094 0,00

 
 The effects of the remaining parameters are insubstantial. For the sake of simplicity 
they could be omitted from the formulation. It should be noted, though, that this is a large 
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fund. For a smaller fund the relative effects of the additional salary increases (parameter 
set 4) may be more substantial than for this fund. 
 Overall it appears from the above analysis that the uncertainty of the price is less than 
1%. 
 
6. CONCLUSION 
For the purposes of this paper, the TGESA2 equilibrium model was used. That model is 
similar to the TGESA1 model. As shown in Thomson & Gott (unpublished), the 
TGESA1 model tends to include quite substantial negative inflation rates, and negative 
yields on index-linked bonds in the long-term future. While this problem is mitigated in 
the TGEUK1 model, the use of a similar South African model for the purposes of this 
paper gave rise to some anomalies. The further development of a South African 
equilibrium model is a matter for further research. 
 Despite the fact that the deterministic value of the liabilities was determined at risk-
free index-linked bond yields, the stochastic price of the liabilities was found to be 5,6% 
higher. This was essentially due to the cost of the guarantee that, when inflation is 
negative, nominal pensions will not be reduced. In view of the problems mentioned in the 
preceding paragraph, the cost of this guarantee is arguably overstated in this paper. 
 Without that guarantee, the price of the liabilities was 1,0% less than the deterministic 
value. While this difference is relatively minor, it is analysed above in terms of the 
sources of risk. 
 While the effects of non-additivity are noticeable even with only three significant 
digits of accuracy, they are also relatively minor. Intra-cohort non-additivity reduces the 
price of the liabilities by 0 to 1,0%, while inter-cohort non-additivity reduces it by a 
further 0,5%. 

As regards sensitivity, the most substantial effect is for bγ , the volatility of the force 
of inflation in excess of conditional ex-ante expected inflation. The effects of g and Mσ  
are also substantial. The former is the sensitivity of ex-ante expected returns on the 
market portfolio to positive risk-free returns and the latter is the residual volatility of the 
return on the market portfolio. The reasons for these effects require further analysis. 1bξ , 
the sensitivity to inflation of the general salary increase, slightly affects the price, as it affects the 
cost of the pension guarantee. The effects of the remaining parameters are insubstantial. For 
the sake of simplicity, but subject to certain caveats, they could be omitted from the 
formulation. 

Overall, the sensitivity of the price of the liabilities to the parameters of the model is 
considerably less than the error involved in a deterministic valuation. In broad terms, an 
error of the order of 5,6% (for accrued liabilities) to 9,2% (for accruing liabilities) is 
reduced to uncertainty of the order of 1%. As explained in section 5.4, this excludes 
uncertainty common to both approaches. In comparison with the use of bond yields plus a 
risk premium, the error—and hence the improvement—is substantially greater. 

In this paper, no consideration has been given to constraints on the fund’s investment 
portfolio. In practice, such investments are subject to a minimum of zero for each asset 
category and, in the case of bonds, for each term to redemption. In addition, the fund’s 
investment portfolio is subject to the requirements of regulation 28 under the South 
African Pension Funds Act. In terms of that regulation, the maximum that may be 
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invested in equities is 75% of the fund’s assets. The application of these constraints 
requires further work on the pricing algorithm. 
 The methods of this paper may be applied to the funding of the benefits of individual 
members in a defined-contribution fund, with prospective benefits expressed in terms of 
pensions based on final salary and length of service. Similar methods could be used for 
lump sums if and to the extent that they are considered preferable. For these purposes, 
additional information may be available regarding the prospects of an individual member 
with regard to future salary increases and post-retirement mortality, with possible 
reduction in uncertainty and therefore in risk premium. If necessary, any balance of the 
cost of benefits may be met by additional contributions by employees (or, equivalently, 
by the employer on behalf of individual employees). The trustees may arrange for advice 
to be given to members regarding reasonable benefit expectations, additional contribution 
rates required, investment channel selection and the risks to be borne by the member, the 
fund, the employer and any underwriter. For these purposes it would be necessary to fund 
the full price of the liabilities for each member, without any reduction for non-additivity. 
This would provide a flexible framework for the funding of benefits for members that 
would facilitate a compromise between defined contributions and defined benefits so as 
to retain the advantages of both systems as perceived by employees and employers. 
 Essentially, though, subject to the caveats mentioned above, this paper serves to 
operationalise the pricing of defined-benefit liabilities in an incomplete market. The 
attainment of certainty in the pricing of such liabilities belongs to another world: that of 
the Holy Grail or the rainbow’s end. In a world veiled by uncertainty the best we can do 
is to roll back that veil so far as we are able. 
 
 

ACKNOWLEDGEMENTS 
 
The author acknowledges with thanks the work of Mr Steven Kransdorff, a former 
honours student who devoted his research to the topic of this paper and of Mrs Sameera 
Haneef, a current honours student who has worked on the program used in this paper. In 
the final stages of this research it was necessary to use 50 computers, running 
concurrently, to test convergence and produce the results required; thanks go to Mr 
Shunmuga Pillay for arranging this. Thanks also go to Mr Arthur Els, who supplied the 
fund data on which the illustrative calculations were based. The financial assistance of 
the Actuarial Society of South Africa is acknowledged. Opinions expressed and 
conclusions drawn are those of the author and are not to be attributed to the Society. 
 
 

REFERENCES 
 
Benjamin, B. & Pollard, J.H. (1980). The Analysis of Mortality and Other Actuarial 

Statistics. 2nd ed. Heinemann, London, for the Institute of Actuaries and the Faculty 
of Actuaries 

Dorrington, R.E. & Tootla, S. (2007). South African annuitant standard mortality tables 
1996–2000 (SAIML98 and SAIFL98), South African Actuarial Journal 7, 161–84 



 23

CMI (2006). The Graduation of the CMI 1999-2002 Mortality Experience: Final "00" Series 
Mortality Tables, working paper 22, Continuous Mortality Investigation Mortality 
Committee, Faculty and Institute of Actuaries, www.actuaries.org.uk/data/assets/ 

 pdf_file/0014/20174/wp22.pdf 
Exley, C.J., Mehta, S.J.B. & Smith, A.D. (1997). The financial theory of defined benefit 

pension schemes. British Actuarial Journal 3(4), 835–966 
Head, S.J., Adkins, D.R., Cairns, A.J.G, Corvesor, A.J., Cule, D.O., Exley, C.J., Johnson, 

I.S., Spain, J.G. & Wise, A.J. (2000). Pension fund valuations and market values. 
British Actuarial Journal 6(1), 143–213 

Sobol, I.M. (1976). Uniformly distributed sequences with additional uniformity properties. 
USSR Computational Mathematics and Mathematical Physics 16(5), 236–42 

Thomson, R.J. (2002). Editorial. South African Actuarial Journal 2, 147–50 
Thomson, R.J. (2005). The pricing of liabilities in an incomplete market using dynamic 

mean–variance hedging. Insurance: Mathematics and Economics 36, 441–55 
Thomson, R.J. (unpublished a). Modelling the market in a risk-averse world, 18th 

International AFIR Colloquium, 2008, www.actuaries.org/AFIR/Colloquia/Rome2/ 
 papers.cfm 
Thomson, R.J. (unpublished b). Modelling the market in a risk-averse world: the case of 

South Africa, convention of the Actuarial Society of South Africa, 23 October 
2008, www.africanagenda.com/convention2008registration/papers.php 

Thomson, R.J. & Gott, D.V. (unpublished). Stochastic models for actuarial use: the 
equilibrium modelling of local markets, convention of the Actuarial Society of 
South Africa, 12 October 2006, www.actuarialsociety.org.za/Resource-Centre/ 

 Papers-Conventions-and-Sessional-Meetings/Convention-Papers-2006-169.aspx 
Thomson, R.J. & Gott, D.V. (forthcoming). Stochastic models for actuarial use: the 

equilibrium modelling of local markets, forthcoming in ASTIN Bulletin 



 24

GLOSSARY OF RELATED MODELS 
 

Model Reference Description Comment 
General 
TP1 Thomson (2005)  
TP2 this paper 

pricing model for an 
incomplete market 
using the CAPM with 
mean–variance hedging 

includes a weighted 
averaging algorithm 
for price estimation 
and a stochastic DB 
liabilities model; 
illustrative 
application to SA 

South African models 
TGMSA1 tentative model of the 

market portfolio 
incorporated in 
TGESA1 

TGESA1 

Thomson & Gott 
(unpublished) 

equilibrium model  
TMSA2 Thomson (unpublished b) predictive model of the 

market portfolio 
 

TMSA3 amended model of the 
market portfolio 

incorporated in 
TGESA2 

TGESA2 

this paper 

amended version of 
TGESA1 

 

UK models 
TGMUK1 tentative model of the 

market portfolio 
incorporated in 
TGEUK1 

TGEUK1 

Thomson & Gott 
(forthcoming) 

equilibrium model  
TMUK2 Thomson (unpublished a) predictive model of the 

market portfolio 
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APPENDIX A 
TABULATION OF DATA AND MORTALITY ASSUMPTIONS 

 
Tables A.1 and A.2 show the fund data for active members and pensioners respectively. 
Table A.3 shows the rate of pensioner mortality 98

{ }
SAP
xµ  for the year of age x in 1998. 

 
Table A.1. Fund data 
 

Age No. of 
members 

Pensions 
accruing 

p.a. 
(R’000) 

Accrued 
pension 
(R’000) 

Age No. of 
members

Pensions 
accruing 

p.a. 
(R’000) 

Accrued 
pension 
(R’000) 

21 2 4 2 43 206 434 5062
22 9 14 12 44 208 434 5234
23 16 24 36 45 210 438 5460
24 23 36 72 46 207 426 5500
25 30 50 124 47 204 416 5534
26 46 80 246 48 201 406 5562
27 62 110 408 49 198 396 5584
28 78 144 618 50 195 386 5598
29 94 180 876 51 192 376 5608
30 110 214 1174 52 189 368 5610
31 126 250 1522 53 186 358 5606
32 142 288 1922 54 183 348 5598
33 158 322 2352 55 180 336 5524
34 174 358 2832 56 176 324 5440
35 190 396 3360 57 172 314 5352
36 192 404 3588 58 168 302 5262
37 194 412 3824 59 164 290 5108
38 196 416 4030 60 160 278 5012
39 198 420 4240 61 156 268 4910
40 200 424 4452 62 152 256 4750
41 202 428 4668 63 148 246 4644
42 204 428 4840 64 146 240 4598
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Table A.2. Fund data: pensioners 
 
Age No. of 

pensioners 
Pension 
(R’000) 

Age No. of 
pensioners

Pension 
(R’000) 

Age No. of 
pensioners 

Pension 
(R’000) 

65 143 4490 78 83 1788 91 20 286
66 140 4368 79 77 1619 92 16 231
67 136 4123 80 72 1459 93 13 185
68 132 3882 81 66 1307 94 11 145
69 128 3645 82 61 1165 95 9 112
70 124 3413 83 55 1031 96 7 85
71 119 3186 84 50 907 97 5 63
72 114 2965 85 45 791 98 4 45
73 109 2751 86 40 684 99 3 32
74 104 2543 87 36 587 100 2 22
75 99 2343 88 31 498 101 1 15
76 93 2150 89 27 419 102 1 10
77 88 1965 90 23 348 103 1 6
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Table A.3. Pensioner mortality 
 

Age 
98

{ }
SAP
xµ  Age 

98
{ }
SAP
xµ  

x female male x female male 
60 0,00917 0,01493 86 0,10538 0,14148 
61 0,01070 0,01773 87 0,11545 0,15041 
62 0,01239 0,02087 88 0,12655 0,15960 
63 0,01422 0,02429 89 0,13884 0,16970 
64 0,01614 0,02799 90 0,15240 0,18211 
65 0,01822 0,03115 91 0,16713 0,19511 
66 0,02052 0,03374 92 0,18344 0,20852 
67 0,02292 0,03655 93 0,20159 0,22232 
68 0,02541 0,03958 94 0,22184 0,23646 
69 0,02786 0,04282 95 0,24447 0,25090 
70 0,03027 0,04624 96 0,26980 0,26559 
71 0,03276 0,04981 97 0,29847 0,28235 
72 0,03533 0,05360 98 0,32920 0,30105 
73 0,03802 0,05771 99 0,36123 0,31986 
74 0,04085 0,06212 100 0,38826 0,34440 
75 0,04384 0,06684 101 0,41120 0,37627 
76 0,04705 0,07186 102 0,43665 0,41084 
77 0,05052 0,07718 103 0,46258 0,44831 
78 0,05432 0,08281 104 0,48965 0,48888 
79 0,05849 0,08878 105 0,51902 0,53281 
80 0,06312 0,09509 106 0,55063 0,58032 
81 0,06828 0,10177 107 0,58445 0,63170 
82 0,07407 0,10883 108 0,62046 0,68725 
83 0,08057 0,11633 109 0,65866 0,74734 
84 0,08793 0,12432 110 0,69910 0,81231 
85 0,09625 0,13278 111 ∞ ∞ 
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APPENDIX B 
SECONDARY SIMULATION: 

ESTIMATION OF PRICE AT END OF YEAR 
 

In the primary simulations of the state space, we have simulated at time t the state-space 
matrix: 
 ( )* * *

1 I=X Kx x ; (B1) 
where: 

 

*
1

*

*

i

i

Di

x

x

 
 

=  
 
 

Mx ; (B2) 

and dix %  is the dth component of the ith simulation, for 1, ,d D= K  and 1, ,i I= K . (For 
simplicity, the subscript t is suppressed.) 
 In the secondary simulations, prices at time t have been determined from the primary 
simulations and from secondary simulations of the state space at later times. (As 
indicated in section 4.1, the secondary simulations proceed in reverse for 

, 1, ,1t T T= − K .) We denote these prices: 

 

*
1

*
I

p

p

 
 

=  
 
 

M*p ; (B3) 

where *
ip  is determined from the ith primary simulation. 

 In the secondary simulation we simulate the state space at time t, viz.: 

 
1 j

j

Dj

x

x

 
 

=  
 
 

Mx ; (B4) 

where djx  is the dth component of the jth secondary simulation. 
 From this information we need to estimate pj, the price at time t corresponding to the 
jth secondary simulation. First we select a set of columns of X* as follows. We determine 
a weighting vector: 

1 j

j

Ij

w

w

 
 

=  
 
 

w M ; 

where: 

 
*

( )
1

1
ij D nd

dj din
d d

w
r x x

s=

=
−∑

 for 1, ,i I= K ; (B5) 

 ( ) * *

1

1
1

I nn
d di d

i
s x x

I =

= −
− ∑ ; (B6) 
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1

1

D

r

r

−

 
  = 
 
 

R 1M ; (B7) 
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21 2

1 2

ˆ ˆ1,001
ˆ ˆ1,001

ˆ ˆ 1,001

D
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D D
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ρ ρ

ρ ρ
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L

M M O M

L

; (B8) 

 1 is the unit vector of length D; 

 1 2

1 2

1 2

(2)

(2) (2)
ˆ d d

d d

d d

s

s s
ρ =  (B9) 

 ( )( )1 2 1 1 2 2

(2) * * * *

1

1
1

I

d d d i d d i d
i

s x x x x
I =

= − −
− ∑ ; and (B10) 

 * *

1

1 I

d di
i

x x
I =

= ∑ . (B11) 

  
 In (B5) the power n is an integer chosen so as to optimise convergence: too small a 
value will tend to place excessive emphasis on more distant points in the state space and 
result in bias, while too large a value will ignore the available details of the price 
hypersurface. ( )n

ds  is a dispersion factor for the dth dimension with the same power, 

which, in (B5), offsets the scale of { }1,dix i I= K . 

 dr  is an adjustment to compensate for correlation between *
dix  and other components 

of *
ix . In R the diagonal of the estimated correlation matrix has been increased by a small 

margin to avoid singular matrices. For example, suppose that, for a particular year of the 
primary simulations: 

1,001 1 0
1 1,001 0
0 0 1,001

 
 =  
 
 

R . 

This might, for example, occur for components 1 and 2 being those of index-linked bonds 
close to maturity and for component 3 being an accrued pension. Then: 

1

2

3

500,25 499,75 0 1
499,74 500,25 0 1

0 0 0,999 1

0,500
0,500 .
0,999

r
r
r

−    
    = −    
    
    

 
 =  
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 But for the increase in the diagonal, the adjustment to components 1 and 2 would 
have been indeterminate. With the increase they are each halved, which, by symmetry, is 
appropriate. The weighting of component 3 remains approximately unadjusted. 
 We then select the E columns of X* corresponding to the E greatest values of iw , 
where E is chosen so as to optimise convergence: too large a value will tend to  place 
excessive emphasis on more distant points, which will result in errors due to non-
linearity, while too small a value will ignore the available details. We define the matrix: 
 ( )* *

1j E=X x x% % %L . (B12) 

where the set { }* *
1 , , Ex x% %K  comprises those columns. Let  

 
1

j

E

p

p

 
 =  
 
 

p
%

% M

%

 (B13) 

denote the prices selected from the corresponding components (i.e. the corresponding 
primary simulation nodes) of *p  and let  

 
1

j

E

w

w

 
 =  
 
 

w
%

% M

%

 (B14) 

denote the weightings selected from the corresponding components of wj. Then we 
estimate pj as the weighted mean of the selected components of jp% , viz.: 

 j j
j

j

p
′

=
′1

w p

w

% %

%
; (B15) 

where 1 is the unit vector of length E. 
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APPENDIX C 
MARKET EQUILIBRIUM MODEL TGESA2 

 
 C.1  As stated above, the parameters required for the equilibrium model are as 
follows: 
 
for all required values of s : 
   0 ( ) ( )I IY s sy s=  and 0 ( ) ( )C CY s sy s= ; 
    where ( )Iy s  and ( )Cy s  are the yields to redemption on s-year zero-  

   coupon index-linked and conventional bonds respectively, at the valuation 
   date; and 

   ( )Ijb s  and ( )Cjb s  for j = 1, 2; 
− bγ ; and 
− 1Eb ; 
 
for i = 1,…, N and j = 1,…, 6: 
− ija ; 
 
and: 
− φ. 
 
 C.2  The parameters required for the equilibrium model are as follows: 
− Mσ ; and 
− g. 
 
 C.3  From the above values we have: 
 1 0(0) (1)I IYδ = ; (C1) 
 { }1 2( ) ( ) ( )IM M I Is b s b sσ σ= − + ; (C2) 

 { }1 2( ) ( ) ( )CM M C Cs b b s b sγσ σ= − + + ; and (C3) 

 1EM E Mbσ σ= . (C4) 
 
 C.4  For t = 1 we then determine: 

 
(0) if (0) 0;

(0) otherwise.
Mt It It

It

gµ δ δ
δ

= >
=

. (C5) 

 
 C.5  Using Monte Carlo methods we then select Sobol quasi-random standard 
normal variables: 
 itε  for i = 1,…, N. (C6) 
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 C.6  From the above values we calculate: 

 2

(0)Mt It
t

M

k
µ δ

σ
−

= ; (C7) 

 
1

N

jt ij it
i

aη ε
=

= ∑ ; (C8) 

 , 1 , 1(1) (1)t C t I tY Yγµ φ− −= − − ; (C9) 
 3t t tbγ γγ µ η= + ; (C10) 
 ( ) (0) ( )It It t IMs k sµ δ σ= + ; (C11) 
 ( ) (0) ( )Ct It t CMs k sµ δ σ= + ; (C12) 
 (0)Et It t EMkµ δ σ= + ; (C13) 
 1 1 2 2( ) ( ) ( ) ( )It It I t I ts s b s b sδ µ η η= − − ; (C14) 
 3 1 4 2 5( ) ( ) ( ) ( )Ct Ct t C t C ts s b b s b sγδ µ η η η= − − − ; (C15) 
 1 6Et Et E tbδ µ η= + ; (C16) 
 ( ) , 1 , 12 ( ) ( 1) ( )It I t I t ItY Y Yτ τ τ δ τ− −= − − − ; (C17) 
 , 1( ) ( 1) ( )It I t ItY s Y s sδ−= + − ; (C18) 

 ( ) , 1 , 12 ( ) ( 1) ( )Ct C t C t t CtY Y Yτ τ τ γ δ τ− −= − − − − ; and (C19) 
 , 1 ,( ) ( 1) ( )Ct C t t C tY s Y s sγ δ−= + − − . (C20) 
 
Finally, for t < T, we set: 
 , 1(0) (1)I t ItYδ + = . (C21) 
 
 C.7  The calculations in ¶¶C.4–6 are repeated for t = 2,…, T. 
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APPENDIX D 
DETERMINATION OF THE PRICE OF LIABILITIES 

AT THE START OF A YEAR 
 
 D.1 In this appendix, which (except as explained in ¶D.3 below) follows Thomson 
(2005), the derivation of the price at the start of year t is set out. As explained in that 
paper, this method is based on mean–variance hedging and the equilibrium assumptions 
of the CAPM. It is assumed that the following variables have been determined: 

− tjF , i.e. the price of the liabilities at the end of year t, including cash flows then 
due, for each secondary simulation j = 1,…,J; 

− { }exp (0)t Itf δ= ; and 

− 
1tj

tj

Ntj

V

V

 
 

=  
 
 

V M ; 

where ntjV  is the market value at time t of an investment in asset category 
n = 1,…, N per unit investment at time t – 1 for each secondary simulation 
j. 

 
 D.2 Then we calculate , 1L tP − , the price of the liabilities at the start of the year, as 
follows: 

 
1

1ˆ
J

Ft tj
j

F
J

µ
=

= ∑ ; (D1) 

 ∑
=

=
J

j
tjVt J 1

1ˆ Vµ ; (D2) 

 ( )22

1

1ˆ ˆ
1

J

Ft tj Ft
j

F
J

σ µ
=

= −
− ∑ ; (D3) 

 ( ) ( )
1

1ˆ ˆ ˆ
1

J

FVt tj Ft tj Lt
j

F
J

µ
=

= − −
− ∑σ V µ ; (D4) 

 ( ) ( )
1

1ˆ ˆ ˆ
1

J

Vt Vt Vt
jJ =

′
= − ⊗ −

− ∑ tj tjΣ V µ V µ ; (D5) 

 where ⊗  denotes the Kronecker product, i.e.: 

  [ ] [ ] [ ]jiii baba =′⊗ ; 

 2 2 1ˆˆ ˆ ˆ ˆt Ft FVt Vt FVtεσ σ Σσ σ−′= − ; (D6) 

 ( )1ˆ ˆt Vt tfΣ 1Vtz µ−= −  (D7) 

 1
t t=

′t
m z

z 1
; (D8) 

 VttMt µm ˆˆ ′=µ ; (D9) 

 tVttMt mΣm ˆˆ 2 ′=σ ; (D10) 
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 ˆ ˆHMt t FVtσ ′= m σ ; (D11) 

  *
2

ˆ ˆ ˆˆ
ˆ

HMt t Mt
Ft

Mt

εσ σ σ
β

σ
+

= ; and (D12) 

 ( ){ }*
, 1

1 ˆˆ ˆL t Ft Ft Mt t
t

P f
f

µ β µ− = − − . (D13) 

 
 D.3 If any of the components of tm  is negative, then the lowest component is 
eliminated and (D7) and (D8) are recalculated. This is repeated until all the components 
are non-negative. 
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APPENDIX E 
PRICING ALGORITHM 

 
The pricing algorithm is as follows: 
 
1. Preliminary specifications 
 1.1 Programmatic preliminaries 
 1.2 Specify the control variables (cf. ¶5.3): 

– an indication whether the price to be calculated is that of accrued pensions or 
accruing pensions; 

– an indication whether nominal pension increases are subject to a minimum of 
zero; 

− a specification of the cohorts to be priced, by age and sex; 
– the yield-curve points to be selected for the state-space vector (cf. ¶4.2); 
– I, the number of primary simulations; 
– J, the number of secondary simulations; 
– n, the power used in the estimation of the year-end price ((B5) and (B6)); and 
– E, the number of primary simulations used in the estimation of the year-end 

price (B12). 
 1.3 Specify the liabilities data: 
 – the valuation year; 
 – for each model-point cohort: 
  for each sex: 
 – the number of members; 
 – the accrued annual pension; and 
 – for ages below the retirement age, the annual pension accruing per  
  year. 
 1.4 Specify the benefits: 
  For the purposes of this paper the only item requiring specification was the   
  retirement age. 
 1.5 Specify the liabilities valuation assumptions: 
 1.5.1 Salaries model: 
 parameters per section 2.2 
 1.5.2 Mortality model: 
 – parameters per section 2.4  
 – base year of the mortality table 
 – mortality table per Table A.3 
 1.6 Specify the model of assets & inflation: 
  1.6.1 Equilibrium model: 
 the parameters required per section C.1 of Appendix C. 
 1.6.2 Market-portfolio model: 
 the parameters required per section C.2 of Appendix C. 
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2. Preliminary calculations 
 2.1 Preliminary calculations: liabilities: 
 This involves the determination of the dimensions of the model-point data, the 
 mortality table and hence the time T to the final liability cash-flow, relative to the 
 retirement age and the control variables specified in 1.2, as well as the following 
 variables for the ages required: 
 – xςµ  per (12); 
 – xςσ  per (13);and 

 – { }
SAP
xν  per (23). 

 2.2 Preliminary calculations: assets: 
  This involves the determination of the dimensions of the yield curves and the 
selected yield-curve points, as well as the following variables: 
 – ( )IM sσ  per (C2); 
 – ( )CM sσ  per (C3); and 
 – EMσ  per (C4). 
 2.3 Define dimensions of Sobol numbers and generate those required for the primary 
  simulations 
 See section 4.5. 
 
3. Primary simulations of state space 
 For i  = 1,…, I: 
  3.1 Initialise 
  3.1.1 Initialise: assets: 
 The values of the following variables are reset to their values for t = 0: 
 – ( )ItY s ; 
 – ( )CtY s ; and 
 – , 1(0)I tδ + . 
 3.1.2 Initialise: liabilties: 
 This involves resetting the age cohorts and the cumulative imrpovements in 
 mortality to their original specifications 
 3.2 Proceed with simulation as follows: 
 For t = 1,…, T – 1: 
  3.2.1 Select Sobol numbers 
  3.2.2 Assets: 
  Calculate variables required per ¶¶C.4–C.6 
 Capture the resulting values of the following variables for use in the  
 secondary simulations: 
 – ( )ItY s ; and 
 – ( )CtY s . 
  3.2.3 Liabilities: 
  3.2.3.1 Liabilities: Initialise 

  This involves redetermining the dimensions of the model- 
  Point data at the start of year t according to the attained 
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  ages of the cohorts. 
 3.2.3.2 Liabilities: salary increases: 
  Calculate the following variables: 
 – tξ  per (7); and 
 – xtζ  (separately for each cohort) per (17); 
 and hence the increased pensions for active members: 
  ( )1, , 1 expx t x t t xtP P ξ ζ+ −= + . 
 As noted in section 2.2, the salary increase in the year of  
 age (R – 1; R] is nil. 
 3.2.3.3 Liabilities: mortality: 
 For each sex and pensioner cohort age: 
 – Recalculate { }

SAP
x tν +  allowing for the cumulative mortality 

  change to the start of the year per (22); 
 – Calculate the increased pension as: 
  ( )1, , 1 exp SAP

x t x t xtP P ν+ −= − . 
 3.2.3.4 Liabilities: pension increases: 
 Calculate the force of pension increase and hence the 
 increased pensions for pensioners per (19) as: 
  ( ){ }1, 1, exp max 0,x t x t tP P γ+ +′ = − ; or 
  1, 1,x t x tP P+ +′ = ; 
  depending on whether nominal pension increases are   
  subject to a minimum of zero 
 3.2.3.5 Liabilities: Determine cumulative mortality change to 
  year-end: 
 tνχ  per (24). 
 3.2.3.6 Liabilities: record output: 
 – 1,x tP +′  
 – tνχ . 
 
4. Secondary simulations of state space and estimation of prices 
 4.1  Secondary simulations: initialise: 
 4.1.1 Index general state-space vector 
  This involves the determination of the fixed components of the state-space  
  vector. (Variable components are dealt with in 4.2.1.1 below.) 
 4.1.2 Initialise variables 
  This involves the determination of the dimensions of the vectors and matrices 
  to be used in the secondary simulations. 
 4.1.3 Generate Sobol numbers for secondary simulations 
  See section 4.5. 
 4.2 Secondary simulations 
  For t = T,…, 1: 
 4.2.1 Initialise year: 
 if t < T: 
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 4.2.1.1 Define variable state-space dimensions at time t – 1 
 4.2.1.2 Determine state-space matrix at year-end 
 4.2.1.3 Calculate scaling factors 
  If  t > 1, calculate: 
 – *

dx  per(B11) 
 – ( )n

ds  per (B6); and 
 – ijw  per (B5). 
 4.2.1.4 Liabilities: initialise 
  This involves redetermining the dimensions of the model-point 
  data at time t according to the attained ages of the cohorts as in  
  3.2.3.1. 
 Also, the components of the Sobol-number matrix that are  
 required for the secondary simulations in year t are defined 
 with reference to the redetermined dimensions of the model- 
 point data. 
 4.2.2 Proceed with reference to primary simulations 
 If t = 1 then It = 1; otherwise It = I. 
 For i = 1,…, It: 
 4.2.2.1 Obtain information from primary simulations 
 If t = 1 then, for s = 1,…, τ and for each sex and each 
 cohort x: 
 – , 1 0( ) ( )I t IY s Y s− =  and , 1 0( ) ( )I t IY s Y s− =  per 1.6.2 
  above; 
 – , 1 0tνχ − =  per (24); and 
 – , 1 0x t xP P− = . 
 Otherwise , 1( )I tY s− , , 1( )I tY s− , , 1tνχ −  and , 1x tP −  are obtained 
 from 3.2.2 and 3.2.3.4. 
 4.2.2.2 Liabilities: cash flow at start of year 
 cf. Section 2.1 
 4.2.2.3 Reinitialise price vectors and Sobol argument 
 The values of pj (B15) are set to null. 
 The commencing argument for reading Sobol numbers is reset to 
 0, so that, during each set of secondary simulations, the same set 
 of Sobol numbers is read for each primary simulation i. 
 4.2.2.4 Proceed with secondary simulations 
 If t < T: 
 For j = 1,…, J: 
 4.2.2.4.1 Select Sobol numbers 
 4.2.2.4.2 Assets 
 Calculate variables required per ¶¶C.4–C.6. 
 Hence define the matrix Vtj (cf. Appendix D). 
 4.2.2.4.3 Liabilities 
 4.2.2.4.3.1 Liabilities: initialise pensions 
 Set pensions equal to those obtained in 4.2.2.1 above. 
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 4.2.2.4.3.2 Liabilities: salary increases 
 Follow the same procedure as in 3.2.3.2 above. 
 4.2.2.4.3.3 Liabilities: mortality 
 Follow the same procedure as in 3.2.3.4 above. 
 4.2.2.4.3.4 Liabilities: cash flow at year-end 
 cf. Section 2.1 
 4.2.2.4.3.5 Liabilities: pension increases 
 Follow the same procedure as in 3.2.3.3 above. 
 4.2.2.4.3.6 Liabilities: change in mortality 
 Record the cumulative mortality change to the end of  
 The year (i.e. tνχ ) for use in 4.2.2.4.3.7 below. 
 4.2.2.4.3.7 Liabilities: weighted average price at year-end 
 after cash flow 
 Determine tx  per (29). 
 cf. App. B 
 4.2.2.4.3.8 Liabilities: price at year-end before cash flow 
 Add cash flow per 4.2.2.4.3.6 to liabilities per 
 4.2.2.4.3.7 
 4.2.2.4.4 Determine market portfolio at start of year 
  Calculate mt per (D1) to (D8) subject to ¶D.3 
 4.2.2.4.5  Calculate price at start of year after cash flow 
 Calculate , 1L tP −  per (D9) to (D13). 
 4.2.2.5 Calculate price at start of year before cash flow 
 Add cash flow at the start of the year per 4.2.2.4.3.3. 
 4.2.3 Record price at start of year: 
 If t = 1 , 1L L tp P −=  
5. Print Lp . 
 


