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Abstract 

We analyze different types of guaranteed withdrawal benefits for life, the latest guarantee 
feature within Variable Annuities. Besides an analysis of the impact of different product 
features on the clients’ payoff profile, we focus on pricing and hedging of the guarantees. In 
particular, we investigate the impact of stochastic (implied) equity volatilities on pricing and 
hedging. We consider different dynamic hedging strategies for delta and vega risks and 
compare their performance. We also examine the effects if the hedging model (with 
deterministic volatilities) differs from the data-generating model (with stochastic volatilities). 
This is an indication for the risk an insurer takes by assuming constant volatilities in the 
hedging model whilst in the real world, volatilities are stochastic. 
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1 Introduction  
Variable Annuities are fund-linked annuities. Such products were introduced in the 1970es in 
the United States. In the 1990es, insurers started to include certain guarantees in such policies, 
so-called guaranteed minimum death benefits (GMDB) as well as guaranteed minimum 
survival benefits that can be categorized in three main groups: guaranteed minimum 
accumulation benefits (GMAB), guaranteed minimum income benefits (GMIB) and 
guaranteed minimum withdrawal benefits (GMWB). GMAB and GMIB type guarantees 
provide the policyholder some guaranteed maturity value or some guaranteed annuity benefit, 
respectively.  

The third and currently most popular type of guaranteed minimum living benefits are GMWB. 
Under certain conditions, the insured can withdraw money from their account, even if the 
value of the account is zero. Such withdrawals are guaranteed as long as both, the amount that 
is withdrawn within each policy year and the total amount that is withdrawn over the term of 
the policy stay within certain limits. Recently, insurers started to include additional features in 
GMWB products. The most prominent is called “GMWB for life”: guaranteed lifelong annual 
withdrawals. The total amount of such withdrawals is not limited as long as each annual 
withdrawal amount does not exceed some maximum value and the insured is still alive. For 
these lifelong withdrawal guarantees, annual withdrawals of about 5% of the (single initial) 
premium are commonly guaranteed for insured aged 60+. At the same time, the insured can at 
any time access the remaining value of the underlying funds (if positive) by surrendering the 
contract. Also, in case of death any remaining fund value is paid to the insured’s dependants. 
Usually, the policyholder can choose from a variety of different mutual funds. Therefore, 
from an insurer’s point of view, these products contain an interesting combination of financial 
risk and longevity risk that is difficult to hedge. As a compensation for the guarantee, the 
insurer usually charges a guarantee fee that is deducted from the policy’s fund value. 

Due to the significant financial risk that is inherent within the insurance contracts sold, risk 
management strategies such as dynamic hedging are commonly applied. During the recent 
financial crisis, insurers have suffered from inefficient hedge portfolios within their books.1 
Among other effects, volatilities have significantly increased leading to a tremendous increase 
in option values. In particular for insurers with no or no sufficient vega hedge (i.e. a hedge 
against the risk of changing volatility), the hedge portfolio did not increase accordingly 
leading to a loss for existing business (and less attractive conditions, i.e. higher guarantee 
fees, for new contracts).  

There already exists some literature on the pricing of different guaranteed minimum benefits 
and in particular GMWB: Valuation methods have been proposed by e.g., Milevsky and 
Posner (2001) for the GMDB-Option, Milevsky and Salisbury (2006) for the GMWB-Option, 
and Holz et al. (2007) for a GMWB for life. Bauer et al. (2008) have presented a general 
model framework that allows for the simultaneous and consistent pricing and analysis of 
different variable annuity guarantees. They also give a comprehensive analysis over non-
pricing related literature on variable annuities. To our knowledge, there exists little literature 
on the performance of different strategies for hedging the market risk of variable annuity 

                                                 
1 Cf. e.g. different articles and papers in “Life and Pensions”: “A challenging environment“ (June 2008), 
“Variable Annuities – Flawed product design costs Old Mutual £150m” (September 2008), “Variable annuities – 
Milliman denies culpability for clients' hedging losses“ (October 2008), “Variable Annuities – Axa injects $3bn 
into US arm” (January 2009). 
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guarantees. Coleman et al. (2005 and 2007) provide such analyses for death benefit 
guarantees under different hedging and data-generating models. However, to our knowledge, 
the performance of different hedging strategies for GMWB for Life contracts under stochastic 
equity volatility has not yet been analyzed. The present paper fills this gap. 

The remainder of this paper is organized as follows. In Section 2, we describe different 
designs of GMWB for Life contracts that will be analyzed in the numerical section and 
describe the model framework for insurance liabilities used for our analyses. The liability 
model we describe is akin to the one presented by Bauer et al. (2008).  

In Section 3, we provide the framework for the numerical analyses, starting with a description 
of the asset models used for pricing and hedging of insurance liabilities. For the sake of 
comparison, we use the classic Black-Scholes model (with deterministic volatility) as a 
reference and the Heston model for the evolution of an underlying under stochastic volatility. 
We also describe the financial instruments involved in the hedging strategies described below, 
and how we determine their fair prices and sensitivities under both models. 

The numerical results of our contract analyses are provided in Section 4, starting with the 
determination of the fair guaranteed withdrawal rate in Section 4.1 for different GMWB for 
Life products under different model assumptions, first under the Black-Scholes model with 
deterministic interest rates and volatility, and, secondly, under the Heston model with 
stochastic volatility. We proceed with an analysis of the distribution of withdrawal amounts in 
Section 4.2 and trigger times, i.e. the point of time when guaranteed benefits are paid for the 
first time, in Section 4.3 and finally analyze the so called Greeks in Section 4.4. 

In Section 5, we first give an overview over different dynamic and semi-static hedging 
strategies that can be used to manage the risks emerging from the financial market and 
analyze and compare the hedging performance of the strategies mentioned above under both 
asset models. We also examine the effects if the hedging model differs from the data-
generating model.  

2 Model framework 

In Bauer et al. (2008), a general framework for modeling and a valuation of variable annuity 
contracts was introduced. Within this framework, any contract with one or several living 
benefit guarantees and/or a guaranteed minimum death benefit can be represented. In their 
numerical analysis however, only contracts with a rather short finite time horizon were 
considered. Within the same model framework, Holz et al. (2008) describe how GMWB for 
Life products can be included in this model. In what follows, we introduce this model 
framework focusing on the peculiarities of the contracts considered within our numerical 
analyses. We refer to Bauer et al. (2008) as well as Holz et al. (2008) for the explanation of 
other living benefit guarantees and more details on the model. 

2.1 High-level description of the considered insurance contracts 

Variable Annuities are fund linked products. The single premium P is invested in one or 
several mutual funds. We call the value of the insured’s individual portfolio the account value 
and denote it by AVt. All fees are taken from the account value by cancellation of fund units. 
Furthermore, the insured has the possibility to surrender the contract or, of course, to 
withdraw a portion of the account value.  
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Products with a GMWB option give the policyholder the possibility of guaranteed 
withdrawals. In this paper, we focus on the case where such withdrawals are guaranteed 
lifelong (GMWB for life or Guaranteed Lifetime Withdrawal Benefits, GLWB). The 
guaranteed withdrawal amount is usually a certain percentage xWL of the single premium P. 
Any remaining account value at the time of death is paid to the beneficiary as death benefit. 
If, however, the account value of the policy drops to zero while the insured is still alive, the 
insured can still continue to withdraw the guaranteed amount annually until death. The insurer 
charges a fee for this guarantee which is usually a pre-specified annual percentage of the 
account value. 

Often, GLWB products contain certain features that lead to an increase of the guaranteed 
withdrawal amount if the underlying funds perform well. Usually, on every policy 
anniversary, the current account value of the client is compared to a certain withdrawal 
benefit base. Whenever the account value exceeds that withdrawal benefit base either the 
guaranteed annual withdrawal amount is increased (withdrawal step-up) or (a part of) the 
difference is paid out to the client (surplus distribution). In our numerical analyses in Sections 
4 and 5, we have a closer look on four different product designs that can be observed in the 
market: 

• No Ratchet: The first and simplest alternative is one where no ratchets or surplus exist 
at all. In this case, the guaranteed annual withdrawal is constant and does not depend 
on market movements.  

• Lookback Ratchet: The second alternative is a ratchet mechanism where a withdrawal 
benefit base at outset is given by the single premium paid. During the contract term, 
on each policy anniversary date the withdrawal benefit base is increased to the account 
value if the account value exceeds the previous withdrawal benefit base. The 
guaranteed annual withdrawal is increased accordingly to xWL multiplied by the new 
withdrawal benefit base. This effectively means that the fund performance needs to 
compensate for policy charges and annual withdrawals in order to increase the 
guaranteed annual withdrawals.  

• Remaining WBB Ratchet: With the third ratchet mechanism, the withdrawal benefit 
base at outset is also given by the single premium paid. The withdrawal benefit base is 
however reduced by every guaranteed withdrawal. On each policy anniversary where 
the current account value exceeds the current withdrawal benefit base, the withdrawal 
benefit base is increased to the account value. The guaranteed annual withdrawal is 
increased by xWL multiplied by the difference between the account value and the 
previous withdrawal benefit base. This effectively means that the fund performance 
needs to compensate for policy charges only but not for annual withdrawals in order to 
increase guaranteed annual withdrawals. This ratchet mechanism is therefore c.p. 
somewhat “richer” than the Lookback Ratchet.  

• Performance Bonus: For this alternative the withdrawal benefit base is defined exactly 
as in the Remaining WBB ratchet. However, on each policy anniversary where the 
current account value is greater than the current withdrawal benefit base, 50% of the 
difference is paid out immediately as a so called performance bonus. The guaranteed 
annual withdrawals remain constant over time. For the calculation of the withdrawal 
benefit base, only guaranteed annual withdrawals are subtracted from the benefit base 
and not the performance bonus payments.  



2.2 Model of the liabilities 

Throughout the paper, we assume that administration charges and guarantee charges are 
deducted at the end of each policy year as a percentage φadmin  and φguarantee of the account 
value. Additionally, we allow for upfront acquisition charges φacquisition that are charges as a 
percentage of the single premium P. This leads to ( )acquisition

guaranteed

.  ϕ= ⋅ −0 1AV P

We denote the guaranteed withdrawal amount at time t by  and the withdrawal 
benefit base by WBB

tW
t. At inception, for each of the considered products, the initial guaranteed 

withdrawal amount is given by = ⋅ =0 0WL WLW x WBB x ⋅guaranteed P

(

. The amount actually 
withdrawn by the client is denoted by W 2 Thus, the state vector .t

)= , , ,t t t t ty AV WBB W W guaranteed  at time t contains all information about the contract at that 
point in time. 

Since we restrict our analyses to single premium contracts, policyholder actions during the 
life of the contract are limited to withdrawals, (partial) surrender and death.  

During the year, all processes are subject to capital market movements. For the sake of 
simplicity, we allow for withdrawals at policy anniversaries only. Also, we assume that death 
benefits are paid out at policy anniversaries if the insured person has died during the previous 
year. Thus, at each policy anniversary = 1,2,...,t T

− +

, we have to distinguish between the value 
of a variable in the state vector  immediately before and the value  after withdrawals 
and death benefit payments. 

⋅ t)( ⋅ t)(

In what follows, we describe the development between two policy anniversaries and the 
transition at policy anniversaries for different contract designs. From these, we are finally able 
to determine all benefits for any given policy holder strategy and any capital market path. 
This allows for an analysis of such contracts in a Monte-Carlo framework. 

2.2.1 Development between two Policy Anniversaries  
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We assume that the annual fees φadmin  and φguarantee are deducted from the policyholder’s 
account value at the end of each policy year. Thus, the development of the account value 
between two policy anniversaries is given by the development of the underlying fund St after 
deduction of the guarantee fee, i.e. 

min1
1

ad guaranteet
t t

t

AV AV e
S

ϕ ϕ− + − −+
+ = ⋅ ⋅  S

guaranteed

                                                

.        (1) 

At the end of each year, the different ratchet mechanism or the performance bonus are applied 
after charges are deducted and before any other actions are taken. Thus  develops 
as follows: 

tW

 
2 Note that the client can chose to withdraw less than the guaranteed amount, thereby increasing the probability 
of future ratchets. If the client wants to withdraw more than the guaranteed amount, any exceeding withdrawal 
would be considered a partial surrender. 
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- +• No Ratchet:  and + = =1t tWBB WBB P + = = ⋅1t tW W xguaranteed - guaranteed +
WL P .   

{ }−
+

- +
1t+ =1 max ;t tWBB WBB AV• Lookback Ratchet:  and  

{ }− −
+

guaranteed - guaranteed +
1tV+ += ⋅ = ⋅1 1 max ;t WL t t WLW x WBB W x A .  

• Remaining WBB Ratchet: Since withdrawals are only possible on policy anniversaries, 
the withdrawal benefit base during the year develops like in the Lookback Ratchet 
case. Thus, we have { }−- +

t+ +=1 1max ;t tWBB WBB AV  and  

{ }− −
+

guaranteed - guaranteed +
1tV

+−

⋅guaranteed - guaranteed +
WL P

+ += ⋅ = ⋅1 1 max ;t WL t t WLW x WBB W x A .  

• Performance Bonus: For this alternative a withdrawal benefit base is defined similarly 
to the one in the Remaining WBB Ratchet:  and 

. Additionally, 50% of the difference between the 
account value and the withdrawal benefit base is paid out as a performance bonus. 
Thus, we have  

+ = tt WBBWBB 1

+ = =1t tW W x

{ }guaranteed - - +
tB1 10.5 max 0;t WL tW x P AV WB+ += ⋅ + ⋅ − .  

2.2.2 Transition at a Policy Anniversary t 

At the policy anniversaries, we have to distinguish the following four cases: 

a) The insured has died within the previous year (t-1,t]  

If the insured has died within the previous policy year, the account value is paid out as death 
benefit. With the payment of the death benefit, the insurance contract matures. Thus, 

, WBB , W , and + = 0AV + = 0 + = 0 + =guaranteed 0t t t tW . 

b) The insured has survived the previous policy year and does not withdraw any money from 
the account at time t 

If no death benefit is paid out to the policyholder and no withdrawals are made from the 
contract, i.e. , we get , + = + −= +0tW t tAV AV −= + =guaranteed guaranteed -

guaranteed -

+ = ⋅guaranteed 
L P

t tWBB WBB , and . In the 
Performance Bonus product, the guaranteed annual withdrawal amount is reset to its original 
level since W  might have contained performance bonus payments. Thus, for this 
alternative we have W x . 

t tW W

t

t W

c) The insured has survived the previous policy year and at the policy anniversary withdraws 
an amount within the limits of the withdrawal guarantee 

If the insured has survived the past year, no death benefits are paid. Any withdrawal Wt below 
the guaranteed annual withdrawal amount reduces the account value by the 
withdrawn amount. Of course, we do not allow for negative policyholder account values and 
thus get 

guaranteed -

{

tW

}+ −
t= −max 0;t tAV AV W

+ −= tWBB

.  

For the alternatives “No Ratchet” and “Lookback Ratchet”, the withdrawal benefit base and 
the guaranteed annual withdrawal amount remain unchanged, i.e. WBB , and t
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+ =guaranteed guaranteed -
t tW W . For the alternative “Remaining WBB Ratchet”, the withdrawal 

benefit base is reduced by the withdrawal taken, i.e. { }+ − −t t

+ =guaranteed guaranteed -

=max 0;tWBB WBB W  and the 

guaranteed annual withdrawal amount remains unchanged, i.e. . For 
the alternative “Performance Bonus”, the withdrawal benefit base is at a maximum reduced 
by the initially guaranteed withdrawal amount (without performance bonus), i.e. 

t tW W

{ { }}+ − ⋅WL

+

= −max 0; min ;t t tWBB WBB W x P  and the guaranteed annual withdrawal amount is 

set back to its original level, i.e. = ⋅guaranteed 
L Pt WW x . 

d) The insured has survived the previous policy year and at the policy anniversary withdraws 
an amount exceeding the limits of the withdrawal guarantee 

In this case again, no death benefits are paid. For the sake of brevity, we only give the 
formulae for the case of full surrender, since partial surrender is not analyzed in what follows. 
In case of full surrender, the complete account value is withdrawn, we then set + = 0tAV , 

, , and + = 0 t
+ −= +

tWBB tW AV =guaranteed 0

q )tx

 and the contract terminates.  tW

2.3 Contract valuation 

We denote by  the insured’s age at the start of the contract,  the probability for a -
year old to survive the next t years,   the probability for a (

0xt p0x 0x

+0tx +0
-year old to die within 

the next year, and let ω be the limiting age of the mortality table, i.e. the age beyond which 
survival is impossible. The probability that an insured aged x0 at inception passes away in the 
year (t,t+1] is thus given by 

0 0t x x tp q +⋅

x

{ }

. The limiting age ω allows for a finite time horizon T =  
ω - . In our numerical analyses below, we assume that mortality within the population of 
insured happens exactly according to these probabilities. 

0

Assuming independence between financial markets and mortality and risk-neutrality of the 
insurer with respect to mortality risk, we are able to use the product measure of the risk-
neutral measure of the financial market and the mortality measure. In what follows, we denote 
this product measure by Q. In this setting, contracts can be priced as follows: 

We already mentioned that for the contracts considered within our analysis, policyholder 
actions during the life of the policyholder are limited to withdrawals and (partial) surrender. 
In our numerical analyses in Sections 4 and 5, we do not consider partial surrender. To keep 
notation simple, we therefore here only give formulae for the considered cases (cf. Bauer et 
al. for formulae for the other cases). We denote by s the point of time at which the 
policyholder surrenders if the insured is still alive and let s=T for a policyholder that does not 
surrender. For any given value of s, and under the assumption that the insured dies in year 

( );iY t s, all contractual cash flows and thus all guarantee payments 0,...,2,1 xt −∈ ω  at 

times { } ( ) { }1,2,...,i∈ t ;iZ t s 1, 2,...,i∈and all guarantee fees  at times t

( )
( )

are specified for each 

capital market path. By , we denote the so called time τ option value, i.e. the value of 

all future guarantee payments  minus guarantee fees 

;t sτΦ

( );iY t s ;iZ t s  in this case:  

( ) ( ) ( ) ( ) ( )

1 1
; ; ;r i r i

Q i Q i
i i

V t s E Y t s e F E Z t s e Fτ τ
t t

τ τ τ
τ τ

− − − −

= + = +

⎡ ⎤ ⎡
= −⎢ ⎥ ⎢

⎣ ⎦ ⎣
∑ ∑ ⎤

⎥
⎦

   (2)  
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e τ value of the option assuming the mortality rates defined above (still for a
iven time of surrender) is 

We finally assume that policyholders surrender their contracts with certain surrender 
robabilities per year and denote the probabilit th  a pol yhold e s s. 

Then, the time τ value of the option is given by 

 Framework for the Numerical Analysi

3.1 Models 

e fund's underlying, whose spot 
 note by S(·), and the money-market account, denoted by B(·). We assume the 

o be zero and the money-market account to evolve at a constant risk-free rate 

w  
volatility to be deterministic and constant over time, and hence use the Black-Scholes model 
for our simulations. To allow for a more realistic equity volatility model, we will use the 

k-Scholes (1973) model, the underlying’s spot price S(·) follows a geometric 
mics under the real-world measure (also called physical 
wing stochastic differential equation (SDE) 

Thus, the tim  
g

 ( ) ( )
0 01 1

1
; .

T

t x x t
t

V s p q V t sτ τ τ
τ

− + + −
= +

= ⋅ ⋅∑                                (3) 

p y at ic er surrenders at tim  by p

 ( )
1

T

s
s

V p V sτ τ
=

=∑ .                      (4) 

3 s 

For our analyses we assume two primary tradable assets: th
price we will de
interest spread t
of interest r: 

                                                                                                  (5) 

 )exp()0()(
)()(

rtBtB
dttrBtdB

=⇒
=

e will use two different models: first we will assume the equityFor the dynamics of S(·), 

Heston model, in which both, the underlying itself and its volatility, are modeled by stochastic 
processes. 

3.1.1 Black-Scholes Model 

In the Blac
Brownian motion whose dyna
measure) P are given by the follo

0)0(),()()()( ≥+= StdWtSdttStdS BSσμ  ,                                                                    (6) 

where µ is the (constant) drift of the underlying, σBS its constant volatility and W(·) denotes a 
P-Brownian motion. By Itō's lemma, S(·) has the solution 

0)0(,)(
2

exp)0()(
2

≥⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= StWtStS BS

BS σσμ  .                                                        (7) 

3.1.2 Heston Model 

There are various extensions to the Black-Scholes model that allow for a more realistic 
modeling of the underlying's volatility. We use the Heston (1993) model in our analyses 
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l) volatility of the asset is stochastic. Under the Heston 
model, the market is assumed to be driven by two stochastic processes: the underlying’s price 
where the instantaneous (or loca

S(·), and its instantaneous variance V(·), which is assumed to follow a one-factor square-root 
process identical to the one used in the Cox-Ingersoll-Ross (1985) interest rate model. The 
dynamics of the two processes under the real-world measure P are given by the following 
system of stochastic differential equations 

( )
( ) ,0)0(1 ≥Vv

 
                        (9) 

where µ again is the drift of the underlying, V(t) is the local variance at time t, κ is the speed 
of mean reversion, θ is the long-term average variance, σv is the so-called “vol of vol”, or 
(more precisely) the volatility of the variance, ρ denotes the correlation between the 
underlying and the volatility, and W  are P-Wiener processes. The condition 2σκθ ≥  

3.2 Valuation 

-Neutral Valuation 

 values (i.e. the risk-neutral expectations) of the assets in our model, 
we first have to transform the real-world measure P into its risk-neutral counterpart Q, i.e. 

cess of the discounted underlying’s spot price is a (local) 
martingale. While the transformation to such a measure is unique under the Black-Scholes 

iesel (2004)): 

iener process under the risk-neutral 
measure Q. 

In the Heston model, as there are two sources of risk, there are also two market-price-of-risk 

),()()()(

0)0(,)(1)()()()()( 2
2

1

+−=

≥−++=

tdWtVdttVtdV

StdWtdWtStVdttStdS

σθκ

ρρμ                         (8) 

21/2 v

ensures that the variance process will remain strictly positive almost surely (see Cox, 
Ingersoll, Ross (1985)). 

There is no analytical solution for S(·) available, thus numerical methods will be used in the 
simulation. 

3.2.1 Risk

In order to determine the

into a measure under which the pro

model, it is not under the Heston model.  

If no dividends are paid on the underlying, the dynamics of the underlying’s price with 
respect to the risk-neutral measure under the Black-Scholes model is given by the following 
equation (see for instance Bingham and K

0)0(),()()()( ≥+= StdWtSdttrStdS Q
BSσ ,                                                                 (10) 

where r denotes the risk-free rate of return and WQ is a W

processes, denoted by 1γ  and 2γ  (corresponding to W  and W1 2). Heston (1993) proposed the 
following restriction o e m price of volatility risk process, assuming it to be linear in n th arket 
volatility,  

)()(1 tVt λγ =   .                                                                                                                            (11) 

Provided b

       

oth measures, P and Q, exist, the Q-dynamics of S(t) and V(t), again under the 
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assumption that no dividends are paid, are given by 

( )
( ) 0)0(),()()()(

0)0(,)(

1 ≥+−=

≥
∗∗ VtdWtVdttVtdV

St
Q

vσθκ
 

                             (13) 

where W1
Q(·) and W2

Q(·) are two independent Q-Wiener processes a d

1)()()()()( 2
2

1 −++= dWtdWtStVdttrStdS QQ ρρ                             (12) 

n  where  

( ) ( )
κθ

v
v λσκ

θλσκκ =+= ∗∗ ,                                                                                     (14) 

are the risk-neutral counterparts to 

Wong and Heyde (2006) also show that the equivalent local martingale measure that 

+

κ and θ (see, for instance, Wong and Heyde (2006)). 

)(tVλ , exists if the ineqcorresponds to the market price of volatility risk, uality 
∞<≤− κ σ λv

Q exists and 

/  is fulfilled. They further show that, if an equivalent local martingale measure 

ρσλσκ vv ≥+ , the discounted stock price 
)(
)(

B
tS Q-martingale. 

3.2.2 Valuation of the GMWB for Life Products 

t
 is a 

For both equity models, we use Monte Carlo Simulations to compute the value of the GMWB 
 between expected future guarantee 
guarantee fees deducted from the 

uropean "plain vanilla" options 
odel, closed form solutions exist for the price of 
 price K and maturity T, the call option price at time t 

option value V defined in Section 2.3, i.e. the difference
payments made by the insurer and expected future 
policyholders’ fund assets. We call the contract fair, if V0=0.  

3.2.3 Standard Option Valuation 

In some of the hedging strategies considered in Section 5, E
are used. Under the Black-Scholes m
European call and put options. For strike
is given by the Black (1976) formula 

( ) [ ])()(),(),( 21 dKNdFNTtPttSCall BS −= ,                                                                 (15) 

where 

( )( )

,:),(
)(:

:

2/)/ln(
:

)(

))((
12

2

tTr

tTqr
BS

BS

eTtP
etSF

tTdd
tT

tTKF

−−

−−

=

=

−−=

−

−+
=

σ
σ

σ

                                                                            (16) 

and N(·) denotes the cumulative distribution function of the standard normal distribution. 

The price of a European put option is given by  

1d



( ) [ ])()(),(),( 12 dFNdKNTtPttSPut BS −−−=                                                               (17) 

For the Heston stochastic volatility model, Heston (1993) found a semi-analytical solution for 
pricing European call and put options using Four  
the form 

)

ier inversion techniques. The formulas have

( ) [ ]
( ) ( ) ([ ]

[ ])(:)(

)(Re:)(

)(Re:)(

)(1
2
1:

11),(),(),(
),(),(),( 21

Put
PKPFTtPttVtSCall

Heston

Heston ⋅−⋅=           (18) 

)(ln

ln

2

ln

1

0
2/12/1

21

tSeEu

iu
ueuf

iuF
iueuf

duufP

PKPFTtPttVtS

TSiu
Q

Kiu

Kiu

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

+=

−⋅−−⋅=

−

−

∞

∫

ϕ

ϕ

ϕ

π

 

          (19) 

        (23) 

This means φ(·) is the log-characteristic function of the underlying’s price under the risk-
neutral measure Q. As Kahl and Jäckel (2006) point out, the computation P1/2 
includes the evaluation of the logarithm with complex arguments which may lead to 

 

utions for the sensitivity of the option’s or guarantee’s value to 
Hull (2008)) exist, we use Monte 

es numerically. We use finite differences 
as approximations of the partial derivatives, where the direction of the shift is chosen 

          (20) 

          (21) 

 

          (22) 

  

of the terms 

numerical instabilities for certain sets of parameters and/or long-dated options. Therefore, we
use the scheme proposed in their paper, which should allow for a robust computation of the 
fair values of European call and put options for (practically) arbitrary parameters. As in the 
proposed scheme, we use the adaptive Gauss-Lobatto quadrature method for the numerical 
integration of P1 and P2. 

3.3 Computation of Sensitivities (Greeks) 

Where no analytical sol
changes in model parameters (the so-called Greeks, cf. e.g. 
Carlo methods to compute the respective sensitiviti

accordingly to the direction of the risk, i.e. for the delta we shift the stock downwards in order 
to compute the backward finite difference, and shift the volatility upwards for the vega, this 
time to compute a forward finite difference. 
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4 Contract Analysis  

4.1 Determination of the Fair Guaranteed Withdrawal Rate 

In this section, we first calculate the guaranteed withdrawal rate xWL that makes a contract fair, 
all other parameters given. In order to calculate xWL, we perform a root search with xWL as 
argument and the value of the option V0 as function value. For all of the analyses we use the 
fee structure given in Table 1. 

Acquisition fee 4.00 % of lump sum 
Management fees 1.50 % p.a. of NAV 
Guarantee fees 1.50 % p.a. of NAV 
Withdrawal fees 0.00 % of withdrawal amount 

Table 1: Assumed fee structure for all regarded contracts. 

We further assume the policy holder to be a 65 years old male. For pricing purposes, we use 
best-estimate mortality probabilities given in the DAV 2004R table published by the German 
Actuarial Society (DAV). 

4.1.1 Results for the Black-Scholes model 

All results for the Black-Scholes model have been calculated assuming a risk-free rate of 
interest of r = 4%. 

Table 3 displays the fair guaranteed withdrawal rates for different ratchet mechanisms, 
different volatilities and different policyholder behavior assumptions: We assume that – as 
long as their contracts are still in force – policy holders every year withdraw exactly the 
maximum guaranteed annual withdrawal amount. Further, we look at the scenarios no 
surrender (no surr), surrender according to Table 2 (surr 1) and surrender with twice the 
probabilities given in Table 2 (surr 2). 

Year Surrender rate 
1 6 % 
2 5 % 
3 4 % 
4 3 % 
5 2 % 
≥ 6 1 % 

Table 2: Assumed deterministic surrender rates. 
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Ratchet Mechanism

Volatility 

I 
(No Ratchet) 

II 
(Lookback 
Ratchet) 

III 
(Remaining 
WBB Ratchet) 

IV 
(Performance 
Bonus) 

No surr 5.26 % 4.80 % 4.43 % 4.37 % 
Surr 1 5.45 % 5.00 % 4.62 % 4.57 % 

 
σBS=15 % 

Surr 2 5.66 % 5.22 % 4.83 % 4.79 % 
No surr 4.98 % 4.32 % 4.01 % 4.00 % 
Surr 1 5.16 % 4.50 % 4.18 % 4.19 % 

 
σBS=20 % 

Surr 2 5.35 % 4.71 % 4.38 % 4.40 % 
No surr 4.87 % 4.13 % 3.85 % 3.85 % 
Surr 1 5.04 % 4.30 % 4.01 % 4.03 % 

 
σBS=22 % 

Surr 2 5.23 % 4.50 % 4.20 % 4.24 % 
No surr 4.70 % 3.85 % 3.61 % 3.62 % 
Surr 1 4.86 % 4.01 % 3.76 % 3.81 % 

 
σBS=25 % 

Surr 2 5.04 % 4.20 % 3.94 % 4.01 % 

Table 3: Fair guaranteed withdrawal rates for different ratchet mechanisms, different policyholder 
behavior assumptions and under different volatilities. 

A comparison of the different product designs shows that, obviously, the highest annual 
guarantee can be provided if no ratchet or performance bonus is provided at all. If no 
surrender is assumed and a volatility of 20% is assumed, the guarantee is similar to a “5 for 
life” product (4.98%). Including a Lookback Ratchet would need a reduction of the initial 
annual guarantee by 66 basis points to 4.32%. If a richer ratchet mechanism is provided such 
as the Remaining WBB Ratchet, the guarantee needs to be reduced to 3.61%. About the same 
annual guarantee (3.62%) can be provided if no ratchet is provided but a Performance Bonus 
is paid out annually. 

Throughout our analyses, the Remaining WBB Ratchet and the Performance Bonus allow for 
about the same annual guarantee. However, for lower volatilities, the Remaining WBB 
Ratchet seems to be less valuable than the Performance Bonus and therefore allows for higher 
guarantees while for higher volatilities the Performance Bonus allows for higher guarantees. 
Thus, the relative impact of volatility on the price of a GLWB depends on the chosen product 
design and appears to be particularly high for ratchet type products (II and III). This can also 
observed comparing the No Ratchet case with the Lookback Ratchet. While – when volatility 
is increased from 15% to 25% – for the No Ratchet case, the fair guaranteed withdrawal 
decreases by just over half a percentage point from 5.26% to 4.7%, it decreases by almost a 
full percentage point from 4.8% to 3.85% in the Lookback Ratchet case (if no surrender is 
assumed). The reason for this is that for the products with ratchet, high volatility leads to a 
possible lock in of high positive returns in some years and thus is a rather valuable feature if 
volatilities are high. 

If the insurance company assumes some deterministic surrender probability when pricing 
GLWBs, the guarantees increase for all model points observed. The increase of the annual 
guarantee is rather similar over all product types and volatilities. The annual guarantee 
increases by around 15-20 basis points if the surrender assumption from Table 2 is made and 
increases by another 20 basis points if this surrender assumption is doubled.  
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4.1.2 Results for the Heston model 

We use the calibration given in Table 4, where the Heston parameters are those derived by 
Eraker (2004), and stated in annualized form for instance by Poulsen (2007). 

Parameter Numerical value
r 0.04 
θ 0.220 2

κ 4.75 
σv 0.55 
ρ -0.569 
V(0) θ 

Table 4: Benchmark parameters for the Heston model. 

One of the key parameters in the Heston model is the market price of volatility risk λ. Since 
absolute λ-values are hard to be interpreted, in the following table we show long-run local 
variance and speed of mean reversion for different parameter values of λ.  

Market price of 
volatility risk 

Speed of mean 
reversion κ 

Long-run local 
variance θ 

λ = 3 6.40 0.190 2

λ = 2 5.85 0.198 2

λ = 1 5.30 0.208 2

λ = 0 4.75 0.220 2

λ = -1 4.20 0.234 2

λ = -2 3.65 0.251 2

λ = -3 3.10 0.272 2

Table 5: Q-parameters for different choices of the market price of volatility risk factor. 

Higher values of λ correspond to a lower volatility and a higher mean reversion speed while 
lower (e.g. negative) values of λ correspond to high volatilities and lower speed of mean 
reversion. λ = 2 implies a long-term volatility of 19.8% and λ = -2 implies a long-term 
volatility of 25.1%. 

In the following table, we show the fair annual withdrawal guarantee under the Heston model 
for all different product designs and values of λ between -2 and 2.  
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Ratchet Mechanism

Market 
price of 
volatility risk 

I (No Ratchet) II (Lookback 
Ratchet) 

III (Remaining 
WBB Ratchet) 

IV (Performance 
Bonus) 

λ = 2 4.99 % 4.36 % 4.03 % 4.00 % 
λ = 1 4.93 % 4.27 % 3.95 % 3.93 % 
λ = 0 4.87 % 4.17 % 3.86 % 3.84 % 
λ = -1 4.79 % 4.05 % 3.75 % 3.74 % 
λ = -2 4.70 % 3.90 % 3.62 % 3.62 % 

Table 6: Fair guaranteed withdrawal rates for different ratchet mechanisms and volatilities when no 
surrender is assumed. 

Under the Heston model, the fair annual guaranteed withdrawal appears to be the same as 
under the Black-Scholes model with a comparable constant volatility. E.g. for λ = 0, which 
corresponds with a long-term volatility of 22%, the fair annual guaranteed withdrawal rate for 
a contract without ratchet is given by 4.87%, exactly the same number as under the Black-
Scholes model. In the Lookback Ratchet case, the Heston model leads to a fair guaranteed 
withdrawal rate of 4.17%, the Black-Scholes model of 4.13%. For the other two product 
designs, again, both asset models almost exactly lead to the same withdrawal rates. 

Thus, for the pricing (as opposed to hedging, see Section 5) of GLWB benefits, the long-term 
volatility assumption is much more crucial than the question whether stochastic volatility 
should be modeled or not. 

4.2 Distribution of Withdrawals 

In this section, we compare the distributions of the guaranteed withdrawal benefits (given the 
policyholder is still alive) for each policy year and for all four different ratchet mechanisms 
that were presented in Section 2. 

We use the Black-Scholes model for all simulations in this chapter and assume a risk-free rate 
of interest r = 4%, an underlying’s drift μ = 7% and a constant volatility of σBS = 22 %. For all 
four ratchet types, we use the guaranteed withdrawal rates derived in section 4.1.1 (without 
surrender). 

In the following figure, for each product design we show the development of arithmetic 
average (red line), median (yellow points), 10th - 90th percentile (light blue area), and 25th - 
75th percentile (dark blue area) of the guaranteed annual withdrawal amount over time. 
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Figure 1: Development of percentiles, median and mean of the guaranteed withdrawal amount over policy 
years 0 to 30 for each ratchet type. 

Obviously, the different considered product designs lead to significantly different risk/return-
profiles for the policyholder. While the No Ratchet case provides deterministic cash flows 
over time, the other product designs differ quite considerably. Both ratchet products have 
potentially increasing benefits. For the Lookback Ratchet, however, the 25th percentile 
remains constant at the level of the first withdrawal amount. Thus, the probability that a 
ratchet never happens is higher than 25%. The median increases for the first 10 years and then 
reaches some constant level implying that with a probability of more than 50% no withdrawal 
increments will take place thereafter. 

Product III (Remaining WBB Ratchet) provides more potential for increasing withdrawals: 
For this product, the 25th percentile increases over the first few years and the median is 
increasing for around 20 years. In the 90th percentile, the guaranteed annual withdrawal 
amount reaches 1,500 after slightly more than 25 years while the Lookback Ratchet hardly 
reaches 1,200. On average, the annual guaranteed withdrawal amount more than doubles over 
time while the Lookback Ratchet doesn’t, of course this is only possible since the guaranteed 
withdrawal at t=0 is lower.  

A completely different profile is achieved by the fourth product design, the product with 
Performance Bonus. Here, annual withdrawal amounts are rather high in the first years and 
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are falling later. After 15 years, with a 75% probability no more performance bonus is paid, 
after 25 years, with a probability of 90% no more performance bonus is paid. 

For all three product designs with some kind of bonus, the probability distribution of the 
annual withdrawal amount is rather skewed: the arithmetic average is significantly above the 
median. For the product with Performance Bonus, the median exceeds the guarantee only in 
the first year. Thus, the probability of receiving a performance bonus in later years is less than 
50%. The expected value, however, is more than twice as high. 

4.3 Distribution of Trigger Times 

In the following figure, for each of the products, we show the probability distribution of 
trigger times, i.e. of the point in time where the account value drops to zero and the guarantee 
is triggered, (if the insured is still alive). Any probability mass at t=56 (i.e. age 121 which is 
the limiting age of the mortality table used), refers to scenarios where the guarantee is not 
triggered. 
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Figure 2: Distribution of trigger times for each of the product designs. 

For the No Ratchet product, trigger times vary from 7 to over 55 years. With a probability of 
17%, there is still some account value available at age 121. For this product, on the one hand, 
the insurance company’s uncertainty with respect to if and when guarantee payments have to 
be paid is very high; on the other hand, there is a significant chance that the guarantee is not 
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triggered at all, which reduces longevity (tail) risk3 from the insurer’s perspective. 

For the products with ratchet features, very late or even no triggers appear to be less likely. 
The more valuable a ratchet mechanism is for the client, the earlier the guarantee tends to 
trigger. While for the Lookback Ratchet still 2% of the contracts do not trigger at all, the 
Remaining WBB Ratchet almost certainly triggers within the first 40 years. However, on 
average the guarantee is triggered rather late, after around 20 years. 

The least uncertainty in the trigger time appears to be in the product with Performance Bonus. 
While the probability distribution looks very similar to that of the Remaining WBB Ratchet 
for the first 15 years, trigger probabilities then increase rapidly and reach a maximum at t=25 
and 26 years. Later triggers did not occur at all within our simulation. The reason for this is 
quite obvious: The Performance Bonus is given by 50% of the difference between the current 
account value and the Remaining WBB. However, the Remaining WBB is annually reduced 
by the initially guaranteed withdrawal amount and therefore reaches 0 after 26 years (1 / 
3.85%). Thus, after 20 years, almost half of the account value is paid out as bonus every year. 
This, of course, leads to a tremendously decreasing account value in later years. Therefore, 
there is not much uncertainty with respect to the trigger time on the insurance company’s side. 
On the other hand, the complete longevity tail risk remains with the insurer.  

Whenever the guarantee is triggered, the insurance company needs to pay an annual lifelong 
annuity equal to the last guaranteed annual withdrawal amount. This is the guarantee that 
needs to be hedged by the insurer. Thus, in the following section, we have a closer look on the 
Greeks of the guarantees of the different product designs. 

4.4 Greeks 

Within our Monte Carlo simulation, for each scenario we can calculate different sensitivities 
of the option value as defined in Section 2.3, the so called Greeks. All Greeks are calculated 
for a pool of identical policies with a total single premium volume of US$100m under 
assumptions of future mortality and future surrender. All the results shown in this section are 
calculated under standard mortality and no surrender assumptions.  

In the following figure, we chose to show different percentiles as well as median and 
arithmetic average of the so called delta, i.e. the sensitivity of the option value as defined in 
with respect to changes in the price of the underlying: 

 
3 This risk is not modelled in our framework. 



‐40

‐35

‐30

‐25

‐20

‐15

‐10

‐5

0

va
lu

e 
(in

 m
ill

io
ns

)

year
‐40

‐35

‐30

‐25

‐20

‐15

‐10

‐5

0

va
lu

e 
(in

 m
ill

io
ns

)

year  

I (No Ratchet) II (Lookback Ratchet) 

‐40

‐35

‐30

‐25

‐20

‐15

‐10

‐5

0

va
lu

e 
(in

 m
ill

io
ns

)

year
‐40

‐35

‐30

‐25

‐20

‐15

‐10

‐5

0

va
lu

e 
(in

 m
ill

io
ns

)

year
 

IV (Performance Bonus) III (Remaining WBB Ratchet) 

Figure 3: Development over time of the percentiles of the delta for a pool of policies multiplied by the 
current spot value. 

First of all, it is rather clear that all products throughout do have negative deltas since the 
value of the guarantee increases with falling stock markets and vice versa. Once the guarantee 
is triggered, no more account value is available and thus, from this point on, the delta is zero. 
Thus, in what follows, we call delta to be “high” whenever its absolute amount is big. 

At outset, the product without any ratchet or bonus does have the biggest delta and thus the 
highest sensitivity with respect to changes in the underlying’s price. The reason for this 
mainly is that the guarantee is not adjusted when fund prices rise. In this case, the value of the 
guarantee decreases much stronger than with any product where either ratchet lead to an 
increasing guarantee or a performance bonus leads to a reduction of the account value. On the 
other hand, if fund prices decrease, the first product is deeper in the money since it does have 
the highest guarantee at outset. Over time, all percentiles of the delta in the No Ratchet case 
are decreasing. 

For products II and III, the guarantee can never be far out of the money due to the ratchet 
feature. Thus delta increases in the first few years. All percentiles reach a maximum after ten 
years and tend to be decreasing from then on. 

For the product with Performance Bonus, delta exposure is by far the lowest. This is 
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consistent with our results of the previous section where we concluded that the uncertainty for 
the insurance company is the highest in the No Ratchet case and the lowest in the 
Performance Bonus case.  

5 Analysis of Hedge Efficiency 

In this Section, we analyze the performance of different (dynamic) hedging strategies, which 
can be applied by the insurer in order to reduce the financial risk of the guarantees (and 
thereby the required economic risk capital). We first describe the analyzed hedging strategies, 
before we define the risk measures that we use to compare the simulation results of the 
hedging strategies, which are presented in the last part of this Section. 

5.1 Hedge Portfolio 

We assume that the insurer has sold a pool of policies with GLWB guarantees. We denote by 
Ψ(·) the option value for that pool, i.e. the sum of the option values V defined in Section 2.3 of 
all policies. We assume that the insurer cannot influence the value of the guarantee Ψ(·) by 
changing the underlying fund (i.e. changing the fund's exposure to risky assets or forcing the 
insured to switch to a different, e.g. less volatile, fund). We further assume that the insurer 
invests the guarantee fees in some hedge portfolio ΠHedge(·) and performs some hedging 
strategy within this hedging portfolio. In case a guarantee is triggered, guaranteed payments 
are made from that portfolio. Thus,    
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is the insurer’s cumulative profit/loss (in what follows sometimes just denoted as insurer’s 
profit) stemming from the guarantee and the corresponding hedging strategy.  

The following hedging strategies aim at reducing the insurer's risk by implementing certain 
investment strategies within the hedge portfolio ΠHedge(·). Note that the value Ψ(·) of the pool 
of policies at time t does not only depend on the number and size of contracts and the 
underlying fund's current level, but also on several retrospective factors, such as the historical 
prices of the fund at previous withdrawal dates, and on model and parameter assumptions. 

The insurer’s choice of model and parameters can also have a significant impact on the 
hedging strategies. Therefore, we will differentiate in the following between the hedging 
model that is chosen and used by the insurer, and the data-generating model that we use to 
simulate the development of the underlying and the market prices of European call and put 
options. This allows us, e.g., to analyze the impact on the insurer’s risk situation if the insurer 
bases pricing and hedging on a simple Black-Scholes model (hedging model) with 
deterministic volatility whereas in reality (data-generating model) volatility is stochastic. We 
assume the value of the guarantee to be marked-to-model, where the same model is used for 
valuation as the insurer uses for hedging. All other assets in the insurer's portfolio are marked-
to-market, i.e. their prices are determined by the (external) data-generating model.  

We assume that, additional to the underlying S(·) and the money-market account B(·), a 
market for European “plain vanilla” options on the underlying exists. However, we assume 
that only options with limited time to maturity are liquidly traded. As well as the underlying 
and the money-market account, we assume the option prices (i.e. the implied volatilities) to be 
driven by the data-generating model, and presume risk-neutrality with respect to volatility 
risk, i.e. the market price of volatility is set to zero in case the Heston model is used as data-



generating model. Additionally, we assume the spread between bid and ask prices/volatilities 
to be zero. 

For all considered hedging strategies we assume the hedging portfolio to consist of three 
assets, whose quantities are rebalanced at the beginning of each hedging period: a position of 
quantity Δ (·) in the underlying, a position of quantity ΔS B(·) in the money-market account and 
a position of Δ

B

Hedge

X(·) in a 1-year ATMF straddle (i.e. an option consisting of one call and one 
put, both with one year maturity and at the money with respect to the maturity’s forward, 
ATMF). We assume the insurer to hold the position in the straddle for one hedging period, 
then sell the options at then-current prices, and set up a new position in a then 1-year ATMF 
straddle. For each hedging period, the new straddle is denoted by X(·). We assume that the 
portion of the hedge portfolio that was not invested in either S(·) or X(·) is invested in (or 
borrowed from) the money market. Thus, the hedge portfolio at time t has the form 

  ,                                                                 (25) )()()()()()()( tXttBttStt XBS Δ+Δ+Δ=Π
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5.2 Dynamic Hedging Strategies 

For both considered hedging models, Black-Scholes and Heston, we analyze three different 
types of (dynamic) hedging strategies.  

No Hedge (NH) 

The first strategy simply invests all guarantee fees in the money-market account. The strategy 
is obviously identical for both models.  

Delta Hedge (D) 

The second type of hedging strategy uses a position in the underlying in order to immunize 
the portfolio against small changes in the underlying’s level. In the Black-Scholes framework 
without transaction costs, such a position is sufficient to perform a perfect hedge. In reality 
however, time-discrete trading and transaction costs cause imperfections. 

Using the Black-Scholes model as hedging model, in order to immunize the portfolio against 
small changes in the underlying's price (i.e. to attain delta-neutrality), ΔS is chosen as the delta 
of Ψ(·), i.e. the partial derivative of Ψ(·) with respect to the underlying . 

While delta hedging under the Black-Scholes model (given the typical assumptions), 
constitutes a theoretically perfect hedge, it does not under the Heston model. This leads to 
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(locally) risk minimizing strategies that aim to minimize the variance of the instantaneous 
change of the portfolio. Under the Heston model4, the problem 
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has the solution (see e.g. Ewald, Poulsen and Schenk-Hoppe, 2007)  
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To keep notation simple, this (locally) risk minimizing strategy under the Heston model is 
also referred to as delta hedge. 

Delta and Vega (DV) 

The third type of hedging strategies incorporates the use of the straddle X(·), exploiting its 
sensitivity to changes in volatility for the sake of neutralizing the portfolio’s exposure to 
changes in volatility. 

Under the Black-Scholes model, volatility is assumed to be constant; therefore using it to 
hedge against a changing volatility appears rather counterintuitive. Nevertheless, following 
Taleb (1997), we analyze some kind of ad-hoc vega hedge in our simulations, that aims at 
compensating the deficiencies of the Black-Scholes model: For performing the vega hedge, 
we do not compute the Black-Scholes vega of the guarantee Ψ(·) and compare it to the 
corresponding Black-Scholes vega of the option X(·), but, instead, we will be using the so-
called modified Vega  of Ψ(·) for comparison. Since all maturities cannot be expected to react 
the same way to changes in today’s volatility, the modified Vega applies a different weighting 
to the respective vega of each maturity. We use the inverse of square root of time as simple 
weighting method and use the maturity of the hedging instrument X(·), i.e. one year, as 
benchmark maturity. The modified vega of Ψ(·) at a policy calculation date τ then has the 
form  

∑
+= −

=
t

t t
ModVega

1

)(
τ τ
ντ

T 1           (29) 

where the tν  denote the respective Black-Scholes vega of each discounted future cash flow of 
the pool of policies. This determines the option position (i.e. the quantity of straddles) 
required to achieve vega neutrality. 

Under the Heston model, we compare the two derivatives of Ψ(·) and X(·) with respect to the 
current local variance V(·) and then analogously determine the option position required to 
achieve vega neutrality. 

Of course, under both hedging models, the position in the underlying must be adjusted for the 
delta of the option position ΔX X(·). 

                                                 
4 Note that a (time-continuously) Delta-hedged portfolio under the Black-Scholes model is already risk-free. 
Therefore for the Black-Scholes model, the Delta-hedging strategy coincides with the locally risk minimizing 
strategy. 



The hedge ratios for all three strategies used in our simulations are summarized in Table 7 for 
the Black-Scholes model, and in Table 8 for the Heston model. 
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Table 7: Hedge ratios for the different strategies if the Black-Scholes model is used as hedging model. 
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Table 8: Hedge ratios for the different strategies if the Heston model is used as hedging model. 

Additionally, for all dynamic hedging strategies (Delta and Delta-Vega), we assume that the 
hedger buys 1-year European put options at each policy anniversary such that the possible 
guarantee payments for the next policy anniversary are fully hedged by the put options 
(assuming surrender and mortality rates are deterministic and known). This strategy aims at 
avoiding having to hedge an option with short time to maturity and hence having to deal with 
a potentially rapidly alternating delta (high gamma) if the option is near the strike. This is 
possible for all four ratchet mechanisms, since the guaranteed withdrawal amount is known 
one year in advance. 

For all considered hedging strategies we assume that the hedge portfolio is rebalanced on a 
monthly basis. 

5.3 Simulation Results 

We use the following three ratios to compare the different hedging strategies, all of which will 
be normalized as a percentage of the sum of the premiums paid to the insurer at t=0: 

[ ]• TP eE rTΠ− , the discounted expectation of the final value of the insurer’s final profit 
under the real-world measure P, where T= ω-x0. This is a measure for the insurer’s 
expected profit and constitutes the “performance” ratio in our context. A value of 1 
means that, in expectation, for a single premium of 100 paid by the client, the 



insurance company’s expected profit is 1. 
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• [ )()(1 χχχχ αα VaRECTE P ≥−−=− ], the conditional tail expectation of the random 
variable χ, where χ is defined as the minimum of the discounted values of the insurer’s 
profit/loss at all policy calculation dates, i.e. { }Tte t ,...,0min =Π=χ rt− , and VaR 
denotes the Value at Risk. This is a measure for the insurer’s risk given a certain 
hedging strategy: It can be interpreted as the additional amount of money that would 
be necessary at outset such that the insurer’s profit/loss would never become negative 
over the life of the contract, even if the world develops according to the average of the 
α (e.g. 10%) worst scenarios in the stochastic model. Thus a value of 1 in the above 
table means that, in expectation over the 10% worst scenarios, for a single premium of 
100 paid by the client, the insurance company would need to hold 1 additional unit of 
capital upfront. 

1 ( ) ( )T P T T TCTE E VaRα− Π = ⎡−Π −Π ≥ Π ⎤⎣• α ⎦

( ) ( )

, the conditional tail expectation of the 
profit/loss’ final value. This is also a risk measure which, however, focuses on the 
value of the profit/loss at time T, i.e. after all liabilities have been met, and does not 
care about negative portfolio values over time. Thus a value of 1 in the above table 
means that, in expectation over the α (e.g. 10%) worst scenarios, for a premium of 100 
paid by the client, the insurance company’s expected loss is 1. By definition, of course 

1 1α αχ− − T≥ ΠCTE CTE .  

In the numerical analyses below, we set α=10% for both risk measures and assume a pool of 
identical policies with parameters as given in Section 4 assuming no surrender. Our analysis 
focuses on model risk rather than parameter risk. Therefore, we use the benchmark parameters 
for the capital market models presented in Section 4 for both, the hedging and the data-
generating model.  

The following Table gives the results for different hedging strategies and different data-
generating models as a percentage of the single premium paid by the client. 



 

Data-Generating model 
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Black-Scholes Heston 
 

Product Product 
I II III IV I II III IV

[ ]T
rT

P eE Π−  10.43 7.77 6.67 3.88 10.36 7.97 6.82 4.13
1 ( )α χ−CTE  25.29 20.07 17.54 15.12 25.76 20.97 18.54 15.97

No hedge 
(NH) 

1 ( )α− ΠTCTE  23.41 18.27 15.90 13.35 22.93 18.55 16.25 13.51
[ ]T

rT
P eE Π−  0.48 0.27 0.21 0.17 0.57 0.29 0.17 0.13

1 ( )α χ−CTE  1.71 3.25 3.12 2.02 2.77 4.76 4.51 3.35

Delta hedge 
Black-
Scholes 

1 ( )α− ΠTCTE  (D-BS) 1.44 2.74 2.71 1.78 2.44 4.14 3.99 3.02
[ ]T

rT
P eE Π−  0.52 0.42 0.34 0.21

1 ( )α χ−CTE  2.63 4.59 4.44 3.36
Delta hedge 

Heston 
(D-H) 

1 ( )α− ΠTCTE  2.28 4.03 3.98 2.95
[ ]T

rT
P eE Π−  0.82 0.81 0.75 0.47

1 ( )α χ−CTE  1.75 2.41 3.01 1.88

Delta-Vega 
hedge Black-

Scholes 
1 ( )α− ΠTCTE  (DV-BS) 1.35 1.80 2.40 1.53
[ ]T

rT
P eE Π−  0.49 0.41 0.33 0.19

1 ( )α χ−CTE  1.40 1.99 1.95 1.49
Delta-Vega 

hedge Heston 
(DV-H) 

1 ( )α− ΠTCTE  1.15 1.58 1.60 1.21

Table 9: Results for different hedging strategies and different data-generating models as 
a percentage of the single premium paid by the client  

If no hedging is in place, obviously, the insurance company has a long position in the 
underlying and thus faces a rather high expected return combined with high risk. No hedging 
effectively means that the insurance company, on average over the worst 10% scenarios, 
would need additional capital between 15% and 25% of the premium volume paid by the 
clients in order to avoid a loss over time. The 1 α−CTE ( )ΠT  are around 23 for product I (No 
Ratchet) and around 13 for product IV (Performance Bonus) in both data-generating models. 
The corresponding values for the products with ratchet are in between. The difference in risk 
and expected return between the two data-generating models is rather small. 

If the insurance company sets up a delta hedging strategy based on the Black-Scholes model, 
risk is significantly reduced for all products and both data-generating models. If the data-
generating model is also the Black-Scholes model, risk is reduced to less than 10% of its 
unhedged value for product I (No Ratchet). This of course goes hand in hand with a reduction 
of the expected profit of the insurer. While without hedging, the No Ratchet product appeared 
to be the riskiest, after delta hedging, the products with a ratchet (Lookback Ratchet and 
Remaining WBB Ratchet) now are the riskiest. The reason for this is that delta is rather 
“volatile” for the products with ratchet, cf. Figure 3 in Section 4.4. Since fast changes in the 
delta lead to potential losses, this increases the risk for the ratchet type products. This 
basically shows the effect of a high gamma (second order derivative of the option value with 
respect to the underlying price). The higher the gamma, the higher discretization errors and 



thus the higher the risk of a delta-only hedge.  

We now look how the results of the Black-Scholes delta hedge change, if the data-generating 
model is the Heston model. By solely introducing stochastic volatility into the capital market, 
the risk of the hedging strategy, throughout all product types, is increased by roughly 50%. 
This demonstrates the effect model risk can have on hedge efficiency. At the same time, the 
insurance company’s expected return hardly changes.  

If the calculation of the hedge position is also performed within the Heston model (D-H), risk 
is only reduced by a small amount. However, for both products with a ratchet mechanism and 
the Performance Bonus product, the insurer’s expected profit is significantly increased. Thus, 
by adopting the hedging model to the data-generating model, the insurance company’s profit 
increases while risk is slightly reduced. 

We now analyze the two hedging strategies where volatility risk is also tackled. The DV-BS 
hedge further reduces risk significantly compared to the two delta-only hedges, even though 
the hedge is set up under a model with deterministic volatility. Risk is further reduced by 
almost 50% and the results are even better than a D-BS hedge under the Black-Scholes model, 
which is not surprising, as the hedge instrument used for vega hedging (a straddle) also 
introduces a partial hedge against the gamma of the insurer's liability. If the vega hedge is set 
up within the Heston model, results improve even further. Market risk within our model now 
is below 2% of the initial single premium paid by the client and thus, e.g. below solvency 
capital requirements for traditional with-profits business within the European Union.   

We would like to close this section with some more comments about vega hedging: First, we 
would like to stress that - since on the one side there are different types of volatility (e.g. 
actual vs. implied) that can change with respect to their level, skew, slope, convexity, etc., and 
on the other side there is a great variety of hedging instruments in the market that exhibit 
some kind of sensitivity to changes in volatility - a unique vega hedging strategy does not 
exist. Second, we would like to point out the shortcomings of a somewhat intuitive and 
straightforward (but unfortunately ill-advised) way of setting up a vega hedge portfolio within 
the Black-Scholes model: One could simply calculate the 1st order derivate of the option value 
with respect to the unmodified volatility parameter and use this number to set up a vega hedge 
portfolio. This would, however, result in a rather bad hedge performance due to the following 
reasons: A change in current asset volatility under the Heston model would mean a change in 
short term volatility and a much smaller change in long term volatility. Since volatility in the 
Black-Scholes model is assumed to be constant over time, volatility risk would be 
significantly overestimated. Thus, the resulting hedge portfolio would lead to increasing risk, 
foiling the very idea of hedging. To illustrate this effect, we calculated above risk measures 
for this unmodified vega hedge using the Heston model for data generation: 

Product  
I II III IV

[ ]T
rT

P eE Π− 1.38 2.05 2.08 1.12
1 ( )α χ−CTE 7.8 16.36 18.01 9.66

1 ( )α− ΠTCTE 6.48 13.73 15.23 8.45

Table 10: Results of the unmodified Vega hedge  
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6 Summary 

In the present paper, we have analyzed different types of guaranteed withdrawal benefits for 
life, the latest guarantee feature within Variable Annuities, both, from a client’s perspective 
and from an insurer’s perspective. We found that different ratchet and bonus features can lead 
to significantly different cash-flows to the insured. Similarly, the probability that guaranteed 
payments become payable and their amount varies significantly for the different products, 
even if they all come at the same fair value. 

The development of the Greeks – i.e. the sensitivities of the value of the guarantees with 
respect to certain market parameters – over time is also significantly different, depending on 
the selected product features. Thus both, the constitution of a hedging portfolio (following a 
certain hedging strategy) and the insurer’s risk after hedging differ significantly for the 
different products. 

We analyzed different hedging strategies (no hedging, delta only, delta and vega) and 
analyzed the distribution of the insurer’s cumulative profit/loss and certain risk measures 
thereof. We found that the insurer’s risk can be reduced significantly by suitable hedging 
strategies. 

We then quantified the model risk by using different capital market models for data 
generation and calculation of the hedge positions. This is an indication for the model risk, i.e. 
the risk an insurer takes by assuming a certain model whilst in the real world, capital markets 
display different properties. In this paper, we focussed on the risk an insurer takes by 
assuming constant volatilities in the hedging model whilst in the real world volatilities are 
stochastic and showed that this risk can be substantial. 

We were also able to show that whereas a hedging strategy based on modified vega can lead 
to a significant reduction of volatility risk even if a model with deterministic volatilities is 
being used as a hedging model. On the other hand, a somewhat more intuitive and 
straightforward attempt to hedge volatilities based on an unmodified vega can lead to results 
inferior to the case with no vega hedging at all. 

Our results – in particular with respect to model risk – should be of interest to both, insurers 
and regulators. The latter appear to systematically neglect model risk if analyzing hedge 
efficiency in the same model that it used by the insurer as a hedging model. 

Further research could aim at extending our findings to other products or other capital market 
models (e.g. with equity jumps, stochastic interest rates and/or other approaches to the 
stochasticity of actual and implied equity volatility). Also, a systematic analysis of parameter 
risk and robustness of the hedging strategies against policyholder behaviour appears 
worthwhile. 

Finally, it would be interesting to analyze how the insurer can reduce risk by product design, 
e.g. by offering funds as an underlying that are managed to meet some volatility target or by 
reserving the right to switch the insured’s assets to less risky funds (e.g. bond or money 
market funds) if market volatilities increase. Such product features can already be observed in 
some insurance markets. 
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