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Abstract
Advantages provided by �large� portfolio sizes in respect of random �uctuations

risk justify, to some extent, the traditional deterministic approach to mortality in
life insurance calculations. However, the presence of other mortality risk compo-
nents should be recognized. In particular, risks due to uncertainty in level as well
as in trend of future mortality may heavily a�ect portfolio results. Special atten-
tion should be placed when addressing long-term insurance products, for example
life annuities.

Enterprise Risk Management can provide sound guidelines when dealing with
mortality and longevity risks. Various steps constitute the risk management pro-
cess, ranging from risk identi�cation and risk assessment to portfolio strategies,
such as product design, appropriate pricing, natural hedging, risk transfers and
capital allocation.
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1 Introduction
The foundation of life insurance mathematics can be traced back to the second half
of the 17th century: Jan de Witt and Edmond Halley proposed the �rst formulae for
calculating what we now call the expected present value (or the �actuarial value�) of life
annuities. Seminal contributions followed in the 18th century, in particular the procedure
proposed by James Dodson for calculating annual level premiums for insurance policies
providing death bene�ts. See, for example, Haberman and Sibbett [14], Hald [15] and
Pitacco [28], and references therein.

The calculation procedures proposed by these Authors rely, in a modern perspective,
on �deterministic� actuarial models, as only expected values are addressed. Progression
towards a �stochastic� approach to life insurance mathematics started at the end of the
18th century. In 1786 Johannes Tetens �rst addressed the analysis of mortality risk
inherent in an insurance portfolio. The evidence of the role of √n in determining the
riskiness of a portfolio, where n denotes the number of policies in the portfolio itself, can
be traced back to Tetens' contribution. In particular, as pointed out by Haberman [13],
Tetens showed that the risk in absolute terms increases as the portfolio size n increases,
whereas the risk in respect of each insured decreases in proportion to √n. In a modern
perspective, Tetens' ideas constitute a pioneering contribution to individual risk theory.

The stochastic approach to life insurance problems was progressed further, thanks
to seminal contributions throughout the following centuries. Important examples were
provided, in the second half of the 19th century, by Carl Bremiker and Karl Hattendor�
(see Haberman [13]). Both Bremiker and Hattendor� also focussed in particular on
the problem of facing adverse �uctuations in mortality. The need for an appropriate
fund and, respectively, for a convenient safety loading of premiums emerged in their
contributions.

Early contributions to stochastic modeling in life insurance did not allow for sources
of risk other than mortality. In particular, the idea of a random �nancial result will
be achieved after the seminal contribution of Louis Bachelier in 1900, concerning the
stochastic modeling of investment problems. It is worth noting that stochastic �nance
enters much later the life insurance actuarial context, in particular thanks to the work
of F.M. Redington, dated 1952, addressing the principles of life o�ce valuation.

Despite the way towards stochastic modeling paved by a number of signi�cant con-
tributions, a deterministic approach to mortality is still frequently adopted in actuarial
practice, in particular for calculating premiums according to the well known equivalence
principle. It is worthwhile to stress that adopting a deterministic approach to actuarial
calculations is, to some extent, underpinned by the nature of the insurance process,
which consists in �transforming� individual risks through aggregation, so lowering the
relevant impact, as proved by Tetens.

However, this justi�cation can be accepted under the assumption that only the risk
of random �uctuations in the mortality of insured lives is allowed for. In this paper
we will focus on mortality and longevity issues; so, other source of randomness, such as
investment yields, are not addressed. In such a context, the existence of risk components
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other than random �uctuations must be recognized, and a special attention should be
devoted to the risk of systematic deviations arising from the uncertainty in representing
future mortality patterns.

The need for a sound assessment of the insurer's risk pro�le (as, in particular, emerges
from new solvency standards) suggests a comprehensive approach to the formal repre-
sentation of the life insurance business, more general than that provided by traditional
actuarial mathematics. A comprehensive approach should in particular provide a uni-
fying point of view, including risk identi�cation, risk assessment and risk management.

Enterprise Risk Management (ERM) o�ers a sound framework for dealing with life
insurance business, and in particular with the related technical issues. In this framework,
risk identi�cation and risk assessment constitute preliminary steps towards the choice
of appropriate tools for managing the risk themselves. Besides the �traditional� tools
given by reinsurance and capital allocation, a risk management perspective suggests as
e�ective tools, for example, a careful product design, an appropriate hedging involving
opposite exposures to mortality/longevity risks, etc.

The paper is organized as follows. Section 2 has still an introductory purpose,
even though a speci�c actuarial problem, namely the portfolio evaluation, is dealt with.
Looking at methodologies of portfolio valuation frequently adopted in actuarial practice,
the need for a stochastic approach clearly emerges. In Section 3 the risk management
process is brie�y sketched. Risk identi�cation and risk assessment are then dealt with in
Section 4, referring to both death bene�ts and life annuities. A wide range of problems
emerge, ranging from the use of approximations in representing the portfolio payout
to the need for mortality projections and the quanti�cation of the impact of longevity
risk on portfolio results. Some strategies of �risk mitigation� are addressed in Section 5.
Finally, some remarks in Section 6 conclude the paper.

The present paper is mostly based on research work recently performed by the author
jointly with Annamaria Olivieri (University of Parma). Important suggestions also arose
while preparing material for the Groupe Consultatif Actuariel Européen Summer School
on �Modeling Mortality Dynamics for Pensions and Annuity Business� (Trieste, 2005 and
Parma, 2006; lecturers: M. Denuit, S. Haberman, A. Olivieri, E. Pitacco), as well as
from discussion following lectures.

2 Valuations in life insurance
Various results are commonly referred to for assessing the performance of a life insurance
portfolio. The traditional approach to portfolio valuation is based on the so-called �Value
of the In-Force business� (VIF), de�ned as the present value of future distributable
earnings calculated with a given Risk Discount Rate (RDR), net of the amount of
shareholders' capital currently within portfolio assets. The distributable earning related
to a given period, say a year, is de�ned as the �ow from the portfolio assets to the residual
assets of the insurance company (or vice versa) such that portfolio assets amount to a
given level, viz the technical provision (or mathematical reserve) plus the target capital.
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Figure 1: From cash �ows to distributable earnings

Shareholders' capital within portfolio assets originates, year by year, from undis-
tributable earnings, as well as from returns on pertaining assets. The former may be
meant as the share of industrial pro�t to be maintained within portfolio assets (of course,
in case of either an industrial loss or in case of an industrial pro�t below the amount
to be maintained within portfolio assets, it turns out that undistributable earnings are
negative, so that some residual assets must be allocated to the portfolio).

In turn, industrial pro�ts originate from industrial cash �ows, net of allocation to
mathematical reserves which are determined accounting for future expected obligations.
Figure 1 illustrates the basic steps of the valuation process which leads from industrial
cash �ows (premiums, bene�ts, expenses, etc.) to industrial pro�ts, and �nally to
distributable earnings.

In order to better understand the nature of the valuation process, as commonly
implemented in practice, it is interesting to analyse how riskiness enters the various steps
of the process itself. Industrial cash �ows include a number of random items: investment
yield, mortality, lapses, expenses, etc. These random quantities are usually replaced by
estimates (e.g. the estimated yield), in particular by expected values (e.g. the expected
out�ow for bene�ts, based on the number of insureds expected to dye/survive according
to a given life table). A similar approach underpins the calculation of mathematical
reserves and, hence, industrial pro�ts.

The weakness of this procedure clearly emerges as soon as a critical importance is
recognized to risks, and to the related impact on portfolio results. Actually, risks are
only accounted for via some rules of thumb. For example, mathematical reserves are
traditionally calculated adopting safe-side (or �conservative�) technical bases. To calcu-
late single-�gure indicators. e.g. the VIF, present values of cash �ows are prudentially
discounted at a RDR, as mentioned above.

When shifting to distributable earnings, a capital allocation policy has to be stated.
Trivially, capital allocation can just comply with regulation requirements, and possibly
no speci�c risk assessment is needed. Conversely, if shareholders' capital has to cope
with the speci�c risk pro�le of the insurer and the regulatory capital is not felt to provide
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a proper risk measure, a sound assessment of the impact of risks is required.
From these remarks, the need for risk-oriented valuation procedures emerges. It

is clear that the traditional valuation approach can be weak in this respect: risk-
adjustments are involved in many steps (reserve, target capital, RDR), possibly not
consistent one with the other. As an alternative, in recent years market-consistent tech-
niques have been addressed. Typically, a risk-neutral valuation principle is adopted,
according to which annual �ows must be adjusted with a risk margin assessed con-
sistently with the price of securities suitable to transfer to the market the risk itself;
risk-adjusted �ows are then discounted with a risk-free rate. It is worth stressing that,
according to this setting, only undiversi�able risks (in particular systematic risks com-
mon to any agent) are rewarded. In practical terms, the value of risks with a market
evidence can be assessed by applying marked-to-market arguments. The value of the
portfolio (in particular if one looks for the value to shareholders) is anyhow a�ected by:

1. systematic risks with poor or no market evidence;

2. ine�ciencies in managing the portfolio (for example, diversi�able risks not fully
diversi�ed);

3. agency costs.

As regards the assessment of the speci�c risk pro�le of an insurer, a deeper analysis
is then required, in order to adopt appropriate risk management actions, e.g. reinsur-
ance and capital allocation. The Enterprise Risk Management framework provides the
basic ideas which should underpin �rst risks recognition, then risk assessment (possibly
via appropriate �internal models�), �nally the choice of strategies aiming at risk mitiga-
tion. For a detailed discussion about the Risk Management framework, see for example
Tapiero [32] and references therein.

3 The risk management process
As sketched in Figure 2, the Risk Management (RM) process consists of three basic
steps, namely the identi�cation of risks, the assessment (or measurement) of the relevant
consequences, and the choice of RM techniques. In what follows we obviously refer to
the RM process applied to life insurance and annuity portfolios.

The identi�cation of risks a�ecting an insurance company can follow, for example,
the guidelines provided by IAA [17], or those provided by the Solvency 2 project (see
CEIOPS [9]). Mortality/longevity risks belong to underwriting risks. Components of
these risks will be dealt with in Section 4.2. Obviously, the importance of the longevity
risk is strictly related to the relative weight of the life annuity portfolio with respect to
the overall life business 1.

1Terminology problems should not be underestimated when identifying risks. A typical example of
possible misunderstanding arises in the �eld of mortality/longevity risks. We will deal with this aspect
in Section 4.2.
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Figure 2: The Risk Management process

A rigorous assessment of mortality/longevity risks requires the use of stochastic
models. Nonetheless, deterministic models are often used in actuarial practice and can
provide useful, although rough, insights on the impact of these risks on portfolio results.
In particular, as we will see in Section 4.3, deterministic models allow us to calculate the
range of values that some results (cash �ows, pro�ts, etc.) may assume as one �variable�,
viz. the age pattern of mortality, varies (sensitivity testing), or the variables of a given
set describing the scenario vary (scenario testing).

Risk management techniques to face mortality/longevity risks include a wide set
of tools, which can be interpreted, under an insurance perspective, as portfolio strategies,
aiming at risk mitigation. These strategies are dealt with in Section 5.

4 Allowing for mortality/longevity risks
Sections 4 and 5 constitute the core of the paper. First, in Section 4.1 we focus on some
topics concerning the representation of the age pattern of mortality. Special attention
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is placed on the need for mortality projections when long-term products (e.g. life annu-
ities) are concerned. Then, in Section 4.2 �components� of mortality/longevity risks are
illustrated. Approaches to the assessment of mortality/longevity risks are discussed in
Section 4.3. Finally, two examples are presented in Sections 4.4 and 4.5

4.1 The age pattern of mortality. Projected tables
Usual tools for representing the age pattern of mortality are the life table, i.e. the
sequence of expected numbers lx of survivors at age x (x = 0, 1, . . . , ω) out of a notional
cohort of l0 individuals, and the survival function S(x), de�ned as the probability for
a newborn of being alive at age x (x > 0). The life table is commonly used in a time-
discrete context, whereas the survival function is adopted in a time-continuous context
and is usually represented via mathematical laws.

Both the life table and the survival function are the ultimate result of a statistical
process starting from mortality observations and producing, as the �rst result, the one-
year probability of death qx or the force of mortality µx. The life table and the survival
function are then derived as follows:

lx+1 = lx (1− qx) for x = 0, 1, . . . (4.1)

S(x) = e−
R x
0 µt dt for x > 0 (4.2)

Both the probabilities of death qx and the force of mortality µx are usually produced
on the basis of �period� observations, i.e. on frequencies of death at the various ages
observed throughout a given period, say one year. Hence, calculation of the lx's and
S(x) according to (4.1) and (4.2) relies on the assumption that the mortality pattern
does not change in the future.

In many countries, however, statistical evidence shows that human mortality declined
over the 20th century, and in particular over its last decades. So, the hypothesis of
�static� mortality cannot be assumed in principle, at least when long periods of time
are referred to. Figures 3 and 4 illustrate the mortality dynamics in terms of lx and
respectively dx = lx − lx+1 as it emerges from Italian population tables. Figure 5
illustrates the mortality dynamics in terms of qx; in particular, the age patterns of
mortality corresponding to various period observations and the behavior of qx, for some
�xed ages x, as a function of the observation calendar year (i.e. the so called mortality
pro�les) are represented.

When we recognize that time a�ects the age pattern of mortality, functions like qx(t)
must be introduced, the symbol qx(t) denoting the probability of dying within one year
for an individual age x in calendar year t (and thus born in year t− x).

Experienced dynamics makes mortality forecasts one of the most important topics in
demography and life insurance technique as well. Because of a huge range of problems,
methods and controversial issues, mortality forecasting constitutes a stimulating �eld
for research work. For a comprehensive insight on these aspects the reader can refer, for
example, to Benjamin and Soliman [1], Delwarde and Denuit [12], Pitacco [27], Tabeau
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et al. [31], Wong-Fupuy and Haberman [34], and references therein. In this paper we
just address a feature of special interest when dealing with stochastic mortality.

A number of projection methods used in actuarial practice simply consists in inter-
polation of past mortality trends (as these result from period observations) and then
extrapolation of the trends themselves. Clearly these methods rely on the assumption
that the experienced trend will continue in the future. Moreover, it should be stressed
that these methods do not allow for the stochastic nature of mortality, as they are simply
based on observed numbers.

A more rigorous approach to mortality forecasts should take into account stochastic
features of mortality. In particular, the following points should underpin a stochastic
projection model:

� observed mortality rates are outcomes of random variables representing past mor-
tality;

� forecasted mortality rates are estimates of random variables representing future
mortality.
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Hence, stochastic assumptions about mortality are required, as well as a statistical
structure linking forecasts to observations (see Figure 6).
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Figure 6: From past to future: a statistical approach

In a stochastic framework, results of projection procedures consist in both point
estimates and interval estimates of future mortality rates (see Figure 7) and other life
table functions. Clearly, traditional interpolation-extrapolation procedures, not explic-
itly allowing for randomness in mortality, produce just one numerical value for each
future mortality rate (or some other age-speci�c quantity). Moreover, such values can
be hardly interpreted as point estimates, because of the lack of an appropriate statistical
structure.

The stochastic nature of mortality and the related role in mortality projections can
be expressed in several ways. The method proposed by R.D. Lee and L.R. Carter (see
Lee and Carter [19], Lee [18] and references therein) constitutes a milestone in stochastic
projection methods. The Lee-Carter model has been improved and generalized in many
papers, in particular aiming at removing some simplifying hypotheses which are not
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satisfactory in actuarial applications; see for example Renshaw and Haberman [29], [30].
Brouhns et al. [5], [6] investigate possible improvements of the Lee-Carter method,
describing the number of deaths as Poisson-distributed random variables. For a deep
discussion of stochastic projection methods the reader can refer for example to Delwarde
and Denuit [12]. For applications to experience data, see Cairns et al. [8].

Figure 7: Mortality forecasts: point estimation vs interval estimation

4.2 Risk components
Figures 8(a), 8(b) and 8(c) show projected mortality rates at a given age x (the solid
line) and three sets of possible future mortality experience (the dots).

Deviations from the projected mortality rates in Figure 8(a) can be reasonably ex-
plained in terms of random �uctuations of the outcomes (the observed mortality rates)
around the relevant expected values (the projected mortality rates).

Random �uctuations constitute a well-known component of risk in the insurance
business, in both the life and the non-life area, often named �process risk�. Early fun-
damental results in risk theory (see Section 1) state that the severity of the process risk
decreases, in relative terms, as the portfolio size increases.

The experienced pro�le depicted in Figure 8(b) can hardly be attributed to random
�uctuations only. Much more likely, this pro�le can be explained as the result of an
actual mortality trend other than the forecasted one. So, systematic deviations arise.
The risk of systematic deviations can be thought of as a �model risk� or a �parameter
risk� referring to the model used for projecting mortality and the relevant parameters (or
even a �table risk�, clearly referring to the projected life table adopted). The expression
�uncertainty risk� is often used to refer to model and parameter (and table) risk jointly,
meaning uncertainty in the representation of a phenomenon (viz. the future mortality).

The risk of systematic deviations cannot be hedged by increasing the portfolio size.
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Figure 8: E�ects of mortality/longevity risks

Actually, in relative terms its �nancial impact does not reduce as the portfolio size
increases, since deviations concern all the insureds or annuitants in the same direction.

The experienced mortality pro�le depicted in Figure 8(c) likely represents the e�ect
of the �catastrophe risk�, namely the risk of a sudden and short-term rise in the mortality
frequency, because, for example, of an epidemic or a natural disaster.

Process risk, uncertainty risk and catastrophe risk constitute the three risk �compo-
nents�. The same terminology is usually adopted in relation to other risk causes, e.g.
the market risk (and in particular the interest rate risk, the equity risk, etc).

Still referring to mortality/longevity risk, it is interesting to note what follows. Pe-
riod observations suggest that the general trend consists in a decline in time of mortality
rates. However, due to speci�c events (such as an epidemic, or critical weather condi-
tions), it may happen that in some years the trend is reversed, especially in relation to
some ages. Further, going deeper into the analysis of data, it may turn out that some
cohorts are experiencing a speci�c improvement (higher or lower than the average one).
From such considerations, the notions of �cohort� e�ect and �period� e�ect follow. See
for example Willets et al. [33]. Hence, the idea is that each cohort has its own mortality
trend; nonetheless, some changes (usually, temporary) are common to more than one
cohort (possibly, even to the overall population).

This idea can be placed in the framework of risk component classi�cation. From a
speci�c cohort trend, di�erent from the forecasted trend, systematic deviations follow,
whence the uncertainty risk is involved. Conversely, a temporary period e�ect can be
interpreted as an outcome of the catastrophe risk, though not necessarily with a huge
severity.
Remark It is worthwhile to note that, according to a rather established terminology, the expression
�mortality risk� denotes any risk arising from the randomness of individual lifetimes; conversely the
expression �longevity risk� only refers to the risk of systematic deviations of experienced mortality
from projected mortality (of particular interest in relation to pensions and life annuity products),
and hence constitutes a particular mortality risk. On the contrary, the language adopted in Solvency
2 documentation denotes with the expression �longevity risk� the risk of experiencing a mortality
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lower than expected, whatever the reason may be (i.e. random �uctuations or systematic deviations);
conversely, the expression �mortality risk� refers to a mortality higher than expected (because of random
�uctuations or systematic deviations).

4.3 Stochastic modeling: an introduction
In order to deal with mortality/longevity risks, we have

(a) to choose an appropriate representation of some quantities directly related with
mortality/survivorship, e.g. the number of insureds dying in the various years;

(b) to focus on portfolio results (e.g. cash �ows, pro�ts, etc.) which can signi�cantly
witness the �nancial impact of mortality/longevity risks.

While point (b) simply consists in an appropriate choice of one or more results and
in expressing the relation between these and the quantities describing mortality, point
(a) is a non-trivial issue of stochastic modeling. More precisely, a number of choices are
actually available, ranging from a purely deterministic approach to very complex models
allowing for uncertainty risk.

Clearly stochastic mortality modeling can be placed in the (more general) framework
of stochastic modeling for life insurance. In what follows we refer to this framework.

Assume that a result of interest, Y (e.g. a one-year cash�ow), depends on some
input variables, say X1, X2, X3 (e.g. number of insureds alive, expenses, etc.)

Y = Φ(X1, X2, X3) (4.3)

Figure 9 presents various approaches to investigations about the result Y . Approach
1 is purely deterministic. Assigning speci�c values, x1, x2, x3, to the three random
variables, the corresponding outcome y of the result variable is simply calculated as
y = Φ(x1, x2, x3).

First, it is interesting to note that classical actuarial calculations follow this approach,
replacing random variables with their expected values, or anyhow with appropriate
estimates. Secondly, in a more modern perspective this approach is adopted for example
when performing stress testing (assigning to some variables �extreme� values), or in
general scenario testing.

Randomness in input variables is, to some extent, accounted for when approach 2
is adopted. Reasonable ranges for the outcomes of the input variables are chosen, and
consequently a range (ymin, ymax) for the result Y is derived.

Approach 3 provides a basic example of stochastic modeling, typically adopted for
assessing the impact of process risk. A probabilistic structure is assigned to the input
variables, in term of the joint probability distribution, or via marginal distributions (see
Figure 9) and appropriate assumptions about correlations. The probability distribu-
tion of Y can be found using just analytical tools only in very simple (or simpli�ed)
circumstances. Numerical methods or stochastic simulation procedures help in most
cases.
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Dealing with uncertainty risk, in order to assess the impact of systematic deviations,
is a crucial issue in particular in life insurance mathematics. Approach 4 simply consists
in iterating the procedure implied by approach 3, each iteration corresponding to a spe-
ci�c assumption about the probability distribution of some input variables (the variable
X1 in Figure 9), e.g. a speci�c set of values for the relevant parameters. Hence, a set of
conditional distributions of the result Y is determined.

Finally, approach 5 aims at �nding the unconditional probability distribution of the
output variable Y , hence allowing for both process risk and uncertainty risk. A more
complex probabilistic structure is then required, for example including a probability
distribution over the set of assumptions.

Some examples of stochastic models for representing mortality/longevity risks are
provided in the following Sections.

4.4 Modeling stochastic mortality: example 1
In this Section we refer to a portfolio of one-year insurance covers only providing a
death bene�t. In practice, such a portfolio can represent a group insurance, or a one-
year section of a more general portfolio consisting of policies with a positive sum at risk
due to the presence of some death bene�t.

Let n denote the number of insureds, Cj the sum assured for the j-th contract,
xj the insured's age at the beginning of the year, and Txj

her/his remaining lifetime
(j = 1, . . . , n). The individual random payout, Yj, is given by

Yj =

{
Cj if Txj

< 1

0 otherwise
(4.4)

Hence, the portfolio random payout, Y , is de�ned as follows:

Y =
n∑

j=1

Yj (4.5)

Assume that the individual lifetimes Txj
are independent, whence the random vari-

ables Yj are also independent. Further, if we assume Cj = C for j = 1, . . . , n, and
the same probability of dying q for all the insureds, Y has 0, C, . . . , nC as the possible
outcomes, with the binomial probability distribution:

P[Y = h C] =

(
n

h

)
qh(1− q)n−h (4.6)

In more general situations the (exact) distribution can be calculated via recursion
formulae (see for example Panjer and Willmot [25]). Using the binomial distribution or
exact distributions derived via recursion formulae constitute an example of approach 3a
(see Figure 9).
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In actuarial practice, various approximations to the exact distribution of the random
payout are frequently used (thus, adopting approach 3b). In particular (see Panjer and
Willmot [25]):

- if Cj = C for j = 1, . . . , n, the use of the Poisson distribution relies on the Poisson
assumption for the annual number of deaths;

- for more general portfolios, the compound Poisson model is adopted;

- in general, the normal approximation is frequently used.

Whatever the approximating distribution may be, the goodness of the approximation
must be carefully assessed, especially with regard to the right tail of the distribution
itself, as this tail quanti�es the probability of large losses.

Assume the following data:

- sum assured Cj = 1 for j = 1, . . . , n;

- probability of death q = 0.005;

- portfolio sizes: n = 100, n = 500, n = 5 000.
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Figure 10: Probability distribution of the random payout (n = 500).
Binomial (exact) distribution and Normal approximation

The (exact) binomial distribution and the normal approximation have been adopted
for n = 500 and n = 5 000; the (exact) binomial distribution and the Poisson approxi-
mation have been used for n = 100. Tables 1 to 3 and Figures 10 and 11 show numerical
results.



Mortality and Longevity: a Risk Management Perspective 16

n = 500 n = 5 000
y P[Y > y] y P[Y > y]

Binomial Normal Binomial Normal
5 0.04160282 0.056471062 30 0.136121887 0.158048811
6 0.013944069 0.013238288 35 0.022173757 0.022480517
7 0.004135437 0.002164124 40 0.001983179 0.001316908
8 0.001097966 0.000244022 45 0.000101743 3.03545E-05
9 0.000263551 1.88389E-05 50 3.13201E-06 2.68571E-07
10 5.76731E-05 9.90663E-07 55 6.02879E-08 8.9912E-10
. . . . . . . . . . . . . . . . . .

Table 1: Right tails of Binomial (exact) distribution and Normal approximation

y P[Y = y]
Binomial Poisson

0 0.605770436 0.60653066
1 0.304407255 0.30326533
2 0.075719392 0.075816332
3 0.012429649 0.012636055
4 0.001514668 0.001579507
5 0.000146139 0.000157951
6 1.16275E-05 1.31626E-05
7 7.84624E-07 9.40183E-07
8 4.58355E-08 5.87614E-08
9 2.35447E-09 3.26452E-09
10 1.07667E-10 1.63226E-10
. . . . . . . . .

Table 2: Binomial (exact) distribution and Poisson approximation (n = 100)

y P[Y > y]
Binomial Poisson

3 0.001673268 0.001752
4 0.000158599 0.000172
5 1.24604E-05 1.42E-05
6 8.32926E-07 1E-06
7 4.83022E-08 6.22E-08
. . . . . . . . .

Table 3: Right tails of Binomial (exact) distribution and Poisson approximation
(n = 100)
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Figure 11: Probability distribution of the random payout (n = 5000).
Binomial (exact) distribution and Normal approximation

The following aspects should be stressed. In relation to portfolio sizes n = 500
and n = 5 000, the normal approximation tends to underestimate the right tail of the
payout distribution (see Table 1). Conversely, the Poisson distribution provides a good
approximation to the exact distribution, also for n = 100 (see Tables 2 and 3); unlike the
normal approximation, the Poisson model tends to overestimate the right tail, whence
a safe-side assessment of liabilities follows.

4.5 Modeling stochastic mortality: example 2
Because of uncertainty in future mortality trend, the stochastic model used for represent-
ing mortality, in particular when dealing with life annuities (or other long-term products
within the area of insurances of the person; see for example Pitacco [26] and references
therein), should allow for the assessment of longevity risk. This can be obtained in
various ways. Several proposals focus on the extension of credit risk and interest rate
models; see, among the others, Bi�s [2], Bi�s and Millossovich [3], Cairns et al. [7]. A
more naive approach consists in designing a �nite set of alternative mortality scenarios.
This suggests simple and practicable procedures which could be useful for stress tests or
for solvency investigations; see CMI [10], [11], and Olivieri and Pitacco [22]. Within the
Solvency 2 project, a scenario-based approach should be also addressed for the capital
requirement; see CEIOPS [9].

In what follows, we adopt a naive approach, basically consisting of two steps (for
details see Olivieri [20], Olivieri and Pitacco [22]).

(1) Choose a set of projected mortality tables (or survival functions, or forces of mor-
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tality, etc.) in order to express several alternative hypotheses about future mortal-
ity evolution. So, it is possible to perform a scenario testing, assessing the range
of variation of quantities such as cash �ows, pro�ts, portfolio reserves, etc. This
way, the sensitivities of these quantities to future mortality trend is investigated
An example of approach 4 (see Figure 9) is thus provided.

(2) Assign a non-negative weight to each mortality hypothesis; the set of weights can
be meant as a probability distribution on the space of hypotheses. Hence uncondi-
tional (i.e. non conditional on a particular hypothesis) variances, percentiles, etc.,
of the value of future cash �ows, pro�ts, etc. can be calculated; see approach 5.

To assess the impact of longevity risk in a portfolio of life annuities, various �metrics�
can be adopted, namely we can focus on several types of results (number of annuitants
alive at various times, annual cash �ows, discounted cash �ows, level of the portfolio
fund, etc.), and a number of single-�gure indexes. Here we will focus on the random
level of the portfolio fund and the shareholders' capital allocated to the portfolio, within
a solvency framework. For further information on these issues, the reader can refer to
Olivieri [20], and Olivieri and Pitacco [22], [23].

As regards annuitants' mortality, we assume
qx

1− qx

= GHx (4.7)

The right-hand side of (4.7) is the third term in the well-known Heligman-Pollard law,
i.e. the term describing the old-age pattern of mortality (see Heligman and Pollard [16]).
The parameter G expresses the level of senescent mortality and H the rate of increase
of senescent mortality itself. The related survival function S(x) can be easily derived.
A logistic shape of mortality rates qx plotted against age x follows.

Note that in a dynamic context probabilities qx(t) should be addressed. However,
in what follows we will address one cohort only, whence the variable t can actually be
omitted. Clearly, parameters G and H should be cohort speci�c.

In order to represent mortality trends, we use projected survival functions. More pre-
cisely, we de�ne three projected survival functions, denoted by S[min](x),
S[med](x) and S[max](x), expressing respectively a little, a medium and a high reduc-
tion in mortality with respect to period experience. Probabilities ρ[min], ρ[med] and ρ[max]

are respectively assigned to the three survival functions.
We refer to a portfolio consisting in one cohort of immediate single-premium life

annuity contracts, issued at time 0. We assume that all annuitants are aged x0 at time
t = 0. Their lifetimes are assumed to be independent of each other (conditional on any
given survival function), and identically distributed. All annuities have a (constant)
annual amount R. Expenses and related expense loadings are disregarded. N0 denotes
the (given) number of annuities at time t = 0.

First, consider the random present value at time 0 of the portfolio future payouts,
Y

(Π)
0 . The riskiness of the payout can be summarized by its variance or its standard
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A1 [min] A2 [med] A3 [max]
G 0.000042 0.000002 0.0000001
H 1.09803 1.13451 1.17215

Table 4: Parameters of Heligman-Pollard law

deviation. A relative measure of riskiness is provided by the coe�cient of variation,
de�ned as the ratio of the standard deviation to the expected value. This relative
measure of riskiness is often denoted, in actuarial mathematics, as the risk index.

The risk index can be calculated conditional on a particular survival function S, i.e.
an assumption about future mortality scenario expressed by parameters G,H:

CV[Y
(Π)
0 |S] =

√
V[Y

(Π)
0 |S]

E[Y
(Π)
0 |S]

(4.8)

in this case, only random �uctuations are accounted for.
Conversely, the risk index can be calculated allowing for uncertainty in future mor-

tality, weighting the scenarios with the relevant probabilities. In this case we have

CV[Y
(Π)
0 ] =

√
V[Y

(Π)
0 ]

E[Y
(Π)
0 ]

(4.9)

and both random �uctuations and systematic deviations are allowed for.
Turning to solvency issues, let Zt denote the random portfolio fund (i.e. assets facing

portfolio liabilities) at (future) time t, and V
(Π)
t the random portfolio reserve set up at

time t. The quantity Mt, de�ned as follows

Mt = Zt − V
(Π)
t (4.10)

represents the shareholders' capital at time t.
Solvency requirements are usually expressed in terms of Mt. For example, given a

time horizon of T years, we say that the insurer has a solvency degree 1− ε if and only
if

P

[
T∧

t=1

Mt ≥ 0

]
= 1− ε (4.11)

The capital required at time t = 0 is the amount M
(R)
0 such that condition (4.11) is

ful�lled.
Choices for the parameters of the three Heligman-Pollard survival functions are

shown in Table 4.
Table 5 provides a comparison between the coe�cient of variation (or risk index),

as a function of the (initial) portfolio size N0, allowing for random �uctuations only
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(i.e. the process risk) and, respectively, for both random �uctuations and systematic
deviations (process risk and uncertainty risk). Allowing for random �uctuations only,
the pooling e�ect clearly emerges: actually the coe�cient of variation tends to 0 as N0

tends to ∞. Conversely, when accounting for systematic deviations also, the coe�cient
of variation decreases as N0 increases, but its limiting value is positive, showing the
non-diversi�able part of the risk. It is worth noting that the results above mentioned
can be proved in analytical terms; to this purpose the reader can refer to Olivieri [20],
Olivieri and Pitacco [23].

We now turn to the investigation of solvency issues. We address a portfolio of iden-
tical annuities, paid to annuitants of initial age x0 = 65, with annual amount R = 100.
As regards mortality assumptions, we adopt the Heligman-Pollard law, with parameters
as described in Table 4.

The single premium (to be paid at entry) is calculated, for each policy, according
to the survival function S[med](x) and with a constant annual interest rate i = 0.03.
Further, we assume that for each policy in force at time t, t = 0, 1, . . . , a reserve must
be set up, which is calculated according to such hypotheses.

N0 CV[Y
(Π)
0 |A2 [med]] CV[Y

(Π)
0 ]

1 31.98% 33.01%
10 10.11% 13.22%
100 3.20% 9.13%
1,000 1.01% 8.61%
10,000 0.32% 8.56%
100,000 0.10% 8.56%
. . . . . .
∞ 0.00% 8.56%

Table 5: The risk index

Disregarding uncertainty risk and hence allowing for process risk only, the probability
distribution of the future lifetime of each insured is stated, the only cause of uncertainty
consisting in the time of death. The assessment of the solvency requirement is performed
through simulation. In order to obtain results easier to interpret, we disregard pro�t;
the actual life duration of the annuitants is thus simulated with the survival function
S[med](x). Further, we assume that the yield from investments is equal to i = 0.03.

Allowing also for uncertainty risk, the assessment of the solvency requirement is
obtained considering explicitly uncertainty in future mortality trends. To this aim, we
consider the three survival functions S[min](x), S[med](x) and S[max](x), weighted with the
probabilities ρ[min], ρ[med] and ρ[max] representing the �degree of belief� in such functions.

The single premium for each policy and the individual reserve are still calculated
with the survival function S[med](x) and the interest rate i = 0.03. We still assume
ρ[min] = 0.2, ρ[med] = 0.6, ρ[max] = 0.2 (re�ecting the fact that S[med](x), which is used for
pricing and reserving, is supposed to provide the most reliable mortality description).
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Figure 12: Solvency requirements for mortality/longevity risks

Obviously, the investigation is carried out via simulation. We now deal with two
causes of uncertainty: the actual distribution of the future lifetimes and the time of
death of each insured.

To illustrate the results, we consider the quantity

QM [.](N0) =
M

(R)
0

V
(Π)
0

(4.12)

In Figure 12 solvency requirements are shown in terms of the ratios (4.12), calculated
respectively allowing for process risk only (QM [P](N0)), and for both process and un-
certainty risk (QM [PU](N0)), and plotted against the (initial) portfolio size N0. A ruin
probability ε = 0.025 and a time horizon of T = 110 − 65 = 45 years (assuming 110
as the maximum attainable age) have been chosen. When only random �uctuations
are accounted for, the solvency requirement tends to 0 as the (initial) portfolio size N0

diverges, thanks to the pooling e�ect. Conversely, allowing for systematic deviations
also, the solvency requirement keeps high even for large portfolio sizes.

An approach to solvency requirements explicitly allowing only for process risk could
be used (and actually is sometime used) taking into account, at least to some extent,
uncertainty in future mortality trends (i.e. longevity risk) also. Let V

(Π)[W]
0 denote the

(initial) reserve calculated according to a �worst case� basis, i.e. assuming a very strong
mortality improvement, and V

(Π)[B]
0 the (initial) reserve according to a �bad case� basis,

i.e. a strong mortality improvement. Clearly

V
(Π)
0 < V

(Π)[B]
0 < V

(Π)[W]
0 (4.13)

Let QV [.] denote the ratio de�ned as follows

QV [.] =
V

(Π)[.]
0

V
(Π)
0

− 1 (4.14)
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Figure 13: Reserving and solvency requirements

Obviously ratios QV [.] are independent of both the portfolio size N0 and the probability
ε. From (4.13) it follows that

0 < QV [B] < QV [W] (4.15)

Conversely, we �nd
QM [P](N0) < QM [PU](N0) (4.16)

(see, for example, Figure 12). Comparing ratios QV [.] and QM [.] does not lead to general
conclusions. However a likely situation is represented by Figure 13. The following
aspects should be noted.

(1) Allocating shareholders' capital in the measure suggested by the �worst case� re-
serve leads to a huge and likely useless capital allocation, whatever the portfolio
size N0 may be; see the value of QV [W] compared to QM [PU](N0).

(2) A �bad case� reserve based capital allocation can result in a poor capability of
facing the mortality risks when small portfolios are concerned; see the portfolio
sizes such that QV [B] < QM [PU](N0). Conversely, a too high capital allocation
may occur for larger portfolios; see the interval where QV [B] > QM [PU](N0).

Thus, setting aside a target capital simply based on the comparison of reserves
calculated with di�erent survival functions (as some practice suggests) on the one hand
disregards the risk of random �uctuations (which obviously can be considered separately)
and on the other disregards a valuation of the probability of ruin, possibly leading to
not sound capital allocation.

As regards the process risk, i.e. random �uctuation in mortality, an important aspect
of mortality dynamics should be stressed. Looking at mortality trends throughout a long
period of time (see for example Figures 3 and 4) the so-called �rectangularization� of the
survival curve clearly emerges, meaning an increasing concentration of deaths around
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Figure 14: Curves of deaths referred to people alive at age 65

the modal age (the Lexis point). Together with the rectangularization, the �expansion�
occurs, leading in particular to an increase in the modal value.

 SIM 1881 SIM 1901 SIM 1931 SIM 1951 SIM 1961 SIM 1971 SIM 1981 SIM 1992 SIM 2002 

Me[T65] 74.45827  75.09749  76.55215  77.42349  78.21735  77.94686  78.27527  80.23987  82.20066  

x25[T65] 69.80944  70.45377  71.45070  72.16008  72.43802  72.32797  72.65518  73.89806  75.73235  

x75[T65] 79.95515  80.14873  81.80892  82.63073  83.86049  83.84586  83.96275  86.02055  87.83705  

IQR[T65] 10.14570  9.694965  10.35822  10.47065  11.42247  11.51789  11.30757  12.12249  12.10470  

 

Table 6: Probability distribution of the remaining lifetime at age 65. Some markers

Clearly, the rectangularization implies a decreasing importance of random �uctua-
tions in mortality, when the whole range of ages is addressed. However, this feature of
mortality trends does not impact on riskiness of (immediate) life annuities. Actually, if
we consider the probability distribution of the remaining lifetime, say at age 65, i.e. in
terms of dx

l65
(x ≥ 65), we �nd a rather stable or even increasing variability in the age of

death. This fact clearly emerges from Figure 14, which illustrates the probability distri-
butions of the random lifetime T65, corresponding to various period observations. Table
6 shows the behavior throughout time of the median Me[T65], the 25th and 75th per-
centiles, x25[T65] and x75[T65], and the interquartile range IQR[T65] = x75[T65]−x25[T65].

From these arguments, it follows that the process risk should not be disregarded when
portfolios of life annuities are concerned. In particular, small portfolios (and pension
funds) still require a sound assessment of the impact of mortality random �uctuations.

5 Risk mitigation
Let now return to RM techniques and, in particular, to portfolio strategies aiming at
risk mitigation. Because of the complexity of the problem, we just refer to a portfolio
of immediate annuities, consisting in one cohort of annuitants.
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A number of portfolio results can be taken as �metrics� to assess the e�ectiveness of
portfolio strategies. In what follows, we focus on cash �ows, which anyhow constitute
the starting point from which other quantities are derived (e.g. pro�ts), as it clearly
appears in Figure 1. As we refer to single-premium annuities, cash �ows are actually
out�ows; disregarding expenses, out�ows are originated only by the payment of bene�ts.

In Figure 15 a sequence of out�ows is represented, together with a barrier (the
�threshold�) which represents a maintainable level of bene�t payment. The threshold
amount is �nanced �rst by (single) premiums via the portfolio mathematical reserve,
and by shareholders' capital as the result of the allocation policy (consisting in speci�c
capital allocations as well as accumulation of undistributed pro�ts). 
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Figure 15: Annual cash �ows in an annuity portfolio (one cohort)

The situation occurring in Figure 15, namely some annual cash �ows above the
threshold level, should be clearly avoided. To lower the probability of such critical
situations, the insurer can resort to various portfolio strategies, in the framework of the
RM process (see Figure 2).

Figure 16 illustrates a wide range of portfolio strategies aiming at risk mitigation,
meant as lowering the probability and the severity of events like the situation depicted
in Figure 15. In practical terms, a portfolio strategy can have as targets

(a) an uplift of the maintainable annual cash �ow, thus a higher threshold level;

(b) lower (and smoother) annual cash �ows in the case of unanticipated improvements
in portfolio mortality.

Both loss control and loss �nancing techniques (according to the RM language)
can be adopted to achieve targets (a) and (b). Loss control techniques are mainly
performed via product design, i.e. via an appropriate choice of the various items con-
stituting an insurance product. In particular, loss prevention is usually meant as the
RM technique aiming at mitigating the loss frequency, whereas loss reduction aims at
lowering the severity of the possible losses.
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Figure 16: Portfolio strategies for risk mitigation

The pricing of insurance products provides a tool for loss prevention. This portfolio
strategy is represented by path (1) → (a) in Figure 16. Referring to a life annuity
product, the following issues in particular should be taken into account.

- Mortality improvements require the use of a projected life table for pricing life
annuities, as the hypothesis of �static� mortality should be rejected (see Section
4.1).

- Because of uncertainty in future mortality trend, a premium principle other than
the traditional equivalence principle should be adopted. It should be noted that,
adopting the equivalence principle, the longevity risk can be accounted for only
via a (rough) safety loading, constructed by increasing the survival probabilities
resulting from the projected table. Actually, this approach is often adopted in
actuarial practice.

- The presence, in an accumulation product such as an endowment, of an option to
annuitize at a �xed annuitization rate (the so-called Guaranteed Annuity Option)
requires an accurate pricing model accounting for the value of the option itself.

In order to pursue loss reduction, it is necessary to control the amounts of bene�ts
paid. Hence, some �exibility must be added to the annuity product. One action could
be the reduction of the annuity amount as a consequence of an unanticipated mortality
improvement (path (5) → (b) in Figure 16); however, in this case the product would
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be a non-guaranteed annuity (though with a reasonable minimum amount guaranteed).
A more practicable tool, consistent with the features of a guaranteed annuity, consists
in reducing the level of investment pro�t participation while a poor mortality is expe-
rienced (path (4) → (b)); it is worth stressing that undistributed pro�ts also increase
the shareholders' capital within the portfolio, hence uplifting the maintainable threshold
(see (3) → (a)).

Loss �nancing techniques require speci�c strategies involving the whole portfolio,
and in some cases even other portfolios of the insurance company. Risk transfer can
be realized via (traditional) reinsurance arrangements (see path (6) → (b)), swap-like
reinsurance ((7) → (b)) and securitization, i.e. Alternative Risk Transfers (ART). ART
require, when life annuities are concerned, the use of speci�c �nancial instruments, e.g.
longevity bonds ((8) → (b)) whose performance is linked to some measure of longevity
in a given population.

It is worth brie�y describing the swap-like reinsurance arrangement. Let R
(Π)
t denote

the portfolio annuity payment at time t. Assume that two barriers are stated in relation
with the cedant's annual out�ow: a lower barrier Λ′t and un upper barrier Λ′′t . The
upper barrier is stated in relation to the threshold level, and in particular can coincide
with it. Let

B
(R)
t =





R
(Π)
t − Λ′t if R

(Π)
t ≤ Λ′t

0 if Λ′t < R
(Π)
t ≤ Λ′′t

R
(Π)
t − Λ′′t if R

(Π)
t > Λ′′t

(5.1)

The swap-like arrangement is de�ned as follows. If B
(R)
t > 0 the cedant receives from

the reinsurer B
(R)
t , else, if B

(R)
t < 0, the cedant pays to the reinsurer B

(R)
t . Hence,

the net out�ow of the cedant is given by

Ft = R
(Π)
t −B

(R)
t =





Λ′t if R
(Π)
t ≤ Λ′t

R
(Π)
t if Λ′t < R

(Π)
t ≤ Λ′′t

Λ′′t if R
(Π)
t > Λ′′t

(5.2)

The interest of this reinsurance arrangement is mainly due to the possibility, for the
reinsurer, of hedging the risk taken from the cedant via transfer to the capital market,
namely via longevity bonds.

Some additional comments on risk transfers are worthwhile. Traditional reinsurance
arrangements (e.g. surplus reinsurance, XL reinsurance, etc.) can be applied also to
annuity portfolios, at least in principle (for example, see Olivieri [21]). Anyhow, it
should be stressed that risk transfer via traditional reinsurance mainly relies on the
improved diversi�cation of risks when these are taken by the reinsurer, thanks to a
stronger pooling e�ect.

However, such an improvement can be achieved in relation to process risk (viz. mor-
tality random �uctuations), whilst uncertainty risk (leading to systematic deviations)
cannot be diversi�ed �inside� the insurance-reinsurance process. Hence, to gain e�ec-
tiveness reinsurance transfer must be completed with a further transfer, i.e. a transfer
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to capital markets. Such a transfer can be realized via bonds, whose yield is linked to
some mortality/longevity index, so that the bonds themselves generate �ows hedging
the payment of bene�ts. While mortality bonds (hedging the risk of a mortality higher
than expected) already exist, longevity bonds (hedging the risk of a mortality lower
than expected, and hence of interest in relation to annuity portfolios) constitute a new
issue. For detailed information on this topic the reader can refer, for example, to Blake
et al. [4]. Under a �nancial perspective, interest in such bonds clearly relies on a likely
absence of correlation with other investment yields.

To the extent that mortality/longevity risks are retained by an insurance company,
the impact of a poor experience falls on the company itself. To meet an unexpected
amount of obligations, an appropriate advance funding may provide a substantial help.
To this purpose, shareholders' capital must be allocated to the annuity portfolio (see
(2) → (a), as well as (3) → (a)), and the relevant amount should be determined aiming
at insurer solvency. Conversely, the expression �no advance funding� (see Figure 2)
should be meant as no speci�c capital allocation facing the risks, whose impact will be
(at least partially) met thanks to the capital required by legislation.

Hedging strategies in general consist in assuming a risk o�setting another risk borne
by the insurer. In some cases, hedging strategies involve various portfolios or lines of
business (LOBs), or even the whole insurance company, whence they cannot be placed
in the portfolio framework as depicted by Figure 16.

In particular, a �natural� hedging (see Figure 2) consists in o�setting risks in dif-
ferent LOBs. For example, writing both life insurance providing death bene�ts and
life annuities for similar groups of policyholders may help to provide a hedge against
longevity risk. Such a hedge is usually named �across LOBs�.

A natural hedge can be realised even inside an annuity portfolio, with the proviso
that the product is no longer just a straight life annuity. Assume that the product
consists in a life annuity combined with a death bene�t with an amount decreasing as
the age at death increases. Clearly, in the case of a mortality improvement higher than
anticipated, death bene�ts lower than expected will be paid. Such a hedge is usually
named �across time�.

Clearly, mortality/longevity risks should be managed by the insurer via an appro-
priate mix of the tools described above. The choice of the RM tools is also driven by
various interrelationships among the tools themselves. For example, the possibility of
purchasing pro�table reinsurance is strictly related with the features of the insurance
products and, in particular, the life tables underlying the pricing as well as with the
availability of ART for the reinsurer.

6 Concluding remarks
Among the risks which a�ect life insurance and annuity portfolios, both investment
risks and mortality risks deserve careful analysis and require the adoption of proper
management solutions.
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Literature on investment risks is very rich. Several tools have been proposed in
this respect, and implemented in practice as well. Conversely, the analysis of mortality
risks still require investigations, especially as far as the risk of systematic deviations is
concerned.

When assessing the risk pro�le of a life insurer, riskiness arising from the behavior
of mortality should be analyzed via appropriate tools. In particular, the traditional
deterministic approach to mortality modeling should be rejected and replaced by a
stochastic approach allowing for both process risk and uncertainty risk.

In this paper, two examples of stochastic mortality modeling have been presented
and discussed, concerning death bene�ts and life annuities respectively. While the latter
focusses on the well known problem of longevity risk (meant as uncertainty risk), the
former deals with the risk of random �uctuations in a portfolio of insurance products
with a positive sum at risk.

Although in practice the importance of mortality risks is often underestimated when
dealing, for example, with endowments or term assurances, and a deterministic approach
to mortality is consequently adopted, it should be stressed that an appropriate assess-
ment of the insurer's risk pro�le should account for all types of risks, not disregarding, in
particular, the e�ectiveness of the pooling e�ect when small or heterogeneous portfolios
are addressed.
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