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OPTIMAL REINSURANCE UNDER VAR AND CVAR RISK MEASURES:
A SIMPLIFIED APPROACH

BY

YICHUN CHI AND KEN SENG TAN

ABSTRACT

In this paper, we study two classes of  optimal reinsurance models by mini-
mizing the total risk exposure of an insurer under the criteria of value at risk 
(VaR) and conditional value at risk (CVaR). We assume that the reinsurance 
premium is calculated according to the expected value principle. Explicit solu-
tions for the optimal reinsurance policies are derived over ceded loss functions 
with increasing degrees of generality. More precisely, we establish formally that 
under the VaR minimization model, (i) the stop-loss reinsurance is optimal 
among the class of increasing convex ceded loss functions; (ii) when the con-
straints on both ceded and retained loss functions are relaxed to increasing 
functions, the stop-loss reinsurance with an upper limit is shown to be optimal; 
(iii) and fi nally under the set of general increasing and left-continuous retained loss 
functions, the truncated stop-loss reinsurance is shown to be optimal. In contrast, 
under CVaR risk measure, the stop-loss reinsurance is shown to be always optimal. 
These results suggest that the VaR-based reinsurance  models are sensitive with 
respect to the constraints imposed on both ceded and retained loss functions 
while the corresponding CVaR-based reinsurance models are quite robust.
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1. INTRODUCTION

The study of optimal reinsurance is a classical problem in actuarial science. 
From a practical point of view, an appropriate use of reinsurance can be an 
effective risk management tool for managing and mitigating an insurer’s risk 
exposure. From a theoretical point of view, the quest for optimal reinsurance 
is typically formulated as an optimization problem. Both arguments spark a 
tremendous surge of interest among practising actuaries and researchers in 
constantly seeking better and more effective reinsurance strategies.
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More explicitly, suppose X denotes the loss initially assumed by an insurer 
(i.e. in the absence of reinsurance). We assume X is a non-negative random 
variable on the probability space (W, F,  P) with cumulative distribution function 
(c.d.f.) FX (x)  =  P(X  #  x) and E[X ]  <  3. The problem of optimal reinsurance 
is concerned with the optimal partitioning of X into f (X ) and Rf (X ) where 
X  = f(X )  +  Rf  (X ). Here f(X ), satisfying 0  #  f(X )  #  X, captures the portion of 
loss that is ceded to a reinsurer while Rf  (X ) is the residual loss retained by the 
insurer (cedent). Consequently, f (x) is known as the ceded loss function while 
Rf (x) is denoted as the retained loss function.

The fi rst formal analysis of  optimal reinsurance is attributed to Borch 
(1960) who shows that the stop-loss reinsurance of  the form

 f (x) = (x  –  d )+,

where d  $  0 is the retention level and (x)+  =  max{x, 0}, is optimal in the sense 
that it minimizes the variance of the retained loss of an insurer if  reinsurance 
premium is calculated by the expected value principle. Under the maximiza-
tion of  the expected utility of  the terminal wealth of  a risk-averse insurer, 
Arrow (1963) obtains a similar result in favor of the stop-loss contract. These 
classical results have been generalized in a number of important directions by 
using more sophisticated optimality criteria and/or more realistic premium 
principles. Just to name a few, Kaluszka (2001) extends Borch (1960)’s result 
by considering mean-variance premium principles including the standard 
 deviation principle and the variance principle. Young (1999) maximizes the 
expected utility of the terminal wealth of an insurer under the Wang’s premium 
principle. Motivated by the prevalent use of risk measures such as the value 
at risk (VaR) and the conditional value at risk (CVaR) among banks, insur-
ance companies and other fi nancial institutions for quantifying risk, Cai and 
Tan (2007), Cai et al. (2008) and Tan et al. (2011) propose a series of  risk 
measure based optimal reinsurance models. More specifi cally, by minimizing 
VaR or CVaR of the insurer’s total risk exposure and under the assumption
of the expected value premium principle, Cai and Tan (2007) derive analytically 
the optimal retention for a stop-loss reinsurance. Cai et al. (2008) generalize 
these results by exploring the optimal reinsurance designs among the class of 
increasing convex reinsurance treaties1. Cheung (2010) revisits these optimal 
reinsurance models with the help of a geometric approach, and generalizes the 
results in Cai et al. (2008) by showing that under the VaR-minimization prob-
lem, the stop-loss reinsurance is also optimal when the reinsurance premium 
is calculated by Wang’s principle. By incorporating a constraint which refl ects 
either the profi tability guarantee or the reinsurance premium budget of  the 

1 Throughout this paper, the terms ‘‘increasing” and ‘‘decreasing” mean ‘‘non-decreasing” and ‘‘non-
increasing”, respectively.
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insurer, Tan et al. (2011) consider a general CVaR-based optimal reinsurance 
model and verify that the stop-loss reinsurance is optimal. See also Balbás et 
al. (2009) who investigate optimal reinsurance with general risk measures.

While many studies have supported that the standard stop-loss reinsurance 
is often optimal, there are some recent fi ndings which deviate from this result. 
In fact, the optimal reinsurance treaties can be more elaborate and more com-
plex. For example, Cummins and Mahul (2004) demonstrate that the limited 
stop-loss treaty with the following structure

 f (x) = min{(x  –  a)+, b}

for some a  $  0, b  >  0, is optimal. Note that the limited stop-loss treaty is sim-
ilar to the standard stop-loss reinsurance except that it imposes an upper limit 
on the loss for that a reinsurer is responsible. Under the criterion of  maxi-
mizing either the expected utility or the stability of  the cedent, Kaluszka and 
Okolewski (2008) similarly establish that the limited stop-loss treaty is optimal 
for a fi xed reinsurance premium calculated according to the maximal possible 
claims principle. Gajek and Zagrodny (2004a) consider more general symmetric 
and even asymmetric risk measures and show that the limited stop-loss treaty 
is optimal. In contrast, some other recent studies (see e.g. Gajek and Zagrodny 
(2004b), Kaluszka (2005), Kaluszka and Okolewski (2008), and Bernard and 
Tian (2009)) have identifi ed that the following reinsurance treaty 

 f (x)   =   (x  –  d )+  I(x  #  m) (1.1)

where 0  #  d  #  m and I(D) denotes the indicator function of an event D, can 
be optimal. The above ceded loss function, that is left-continuous (l.c.), is com-
monly known as the truncated stop-loss, and it has the peculiar property that 
once the loss amount exceeds m, the reinsurer will have zero obligation to the 
insurer. In other words, there is no reimbursement from the reinsurer to the 
insurer for any loss exceeding m.

To summarize, the aforementioned studies have suggested that the optimal 
reinsurance designs can be categorized as either stop-loss, limited stop-loss or 
truncated stop-loss, depending on the chosen reinsurance model. Very few 
papers, however, have been devoted to studying the connection between these 
three types of reinsurance designs. It is the objective of this paper to shed some 
light on this topic. In particular, we consider the VaR and CVaR risk measure 
based optimal reinsurance models recently proposed by Cai and Tan (2007). 
Under the additional assumption that the reinsurance premium is calculated 
by the expected value principle, it is illuminating to analyzing the optimal 
reinsurance policies over different classes of ceded loss functions with increas-
ing degrees of generality. The contributions of the present paper are threefold:

First, the aggregate indemnity X is usually assumed to have a continuous 
(strictly) increasing cumulative distribution function on (0, 3) with a possible 
jump at 0 as in Cai et al. (2008) and Cheung (2010). This assumption excludes 
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many loss types such as losses with a cap. In this paper, we relax the con-
straints on indemnity distribution.

Second, our results offer some interesting insights on the optimal design 
of reinsurance policies. These results highlight the importance of risk meas-
ures as well as the constraints on the ceded loss functions. We explicitly derive 
the optimal reinsurance solutions over ceded loss functions with increasing 
degrees of generality. Specifi cally, we consider three feasible classes depending 
on the constraints imposed on the ceded and retained loss functions, namely 
(1) the class of increasing convex ceded loss functions; (2) both the ceded and 
retained loss functions are increasing; and fi nally (3) retained loss functions 
are l.c. and increasing. Using VaR criterion, it is revealing to learn that the 
optimal reinsurance policies under these three classes are stop-loss reinsurance, 
limited stop-loss reinsurance, and truncated stop-loss reinsurance, respectively. 
On the other hand, the corresponding optimal reinsurance for the CVaR-based 
reinsurance model is very robust and the stop-loss reinsurance is always optimal.

It is reassuring that the limited stop-loss reinsurance is the optimal treaty 
under the VaR criterion with the constraints that both the ceded and the 
retained loss functions are increasing. One of the reasons is that these conditions 
ensure that the higher the incurred loss, the greater the loss to both the insurer 
and reinsurer. Hence it potentially reduces moral hazard. Another reason is 
that our fi nding is consistent with practice since the limited stop-loss reinsur-
ance is a very common reinsurance treaty in the marketplace. What is even 
more striking is that under the VaR criterion, the optimal reinsurance design is 
the truncated stop-loss reinsurance when the retained loss function is restricted 
to be l.c. and increasing. This suggests that the insurer is only interested in 
reinsuring moderate losses but not large losses. This seems counter-intuitive 
since an insurer should be more concerned with large losses. This phenomenon, 
however, is consistent with the clinical studies examined by Froot (2001) in the 
market for catastrophe risk.

Third, we note that some of our results have appeared in the literature.
In particular, Cai et al. (2008) and Cheung (2010) study the VaR and CVaR 
based optimal reinsurance problems under the assumption of increasing con-
vex ceded loss functions by using approximation and convergence arguments 
and a geometric approach, respectively; Balbás et al. (2009) and Tan et al. (2011) 
resort to the Lagrangian approach in order to solve the CVaR-based optimal 
reinsurance problem for a general set of ceded loss functions. In contrast, it 
should be emphasized that the approach we use to derive these optimal rein-
surance solutions is new and relatively straightforward. Furthermore, it is new 
to study the VaR-based reinsurance models under the constraints that both 
ceded and retained loss functions are increasing (see Subsection 3.2) and that 
the retained loss functions are l.c. and increasing (see Subsection 3.3). While 
Section 4 is devoted to analyzing the optimal solutions under CVaR-based 
reinsurance model, it should be emphasized that the result is quite general in 
the sense that it can easily be generalized to other optimality criteria that 
preserve the convex order (see Remark 4.1). In fact, the theory of stochastic 
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orders we use has been shown to be a powerful tool for analyzing the optimal 
reinsurance problems (see Van Heerwaarden et al. (1989)).

The rest of this paper is organized as follows. Section 2 introduces the risk 
measure based optimal reinsurance models. Section 3 studies the VaR-based 
reinsurance problem and derives the optimal reinsurance policies over the 
ceded loss functions with different constraints. In Section 4, the optimization 
problem under the CVaR criterion is solved. Finally, we provide some con-
cluding remarks in Section 5.

2. RISK MEASURE BASED OPTIMAL REINSURANCE MODELS

Recall that when an insurer cedes part of its risk to a reinsurer under a typical 
reinsurance arrangement, the insurer incurs an additional cost in the form
of reinsurance premium which is payable to the reinsurer. We use Pf (X ) to 
denote the reinsurance premium which explicitly depends on the ceded loss 
function f. While there exist various premium principles in determining the 
reinsurance premium, we consider the most common one in this paper, i.e. we 
adopt the expected value premium principle so that the reinsurance premium 
is calculated by 

 Erf ( ) ( ) ( )X f X= +1 ,P 6 @  (2.1)

where r  >  0 is the safety loading factor.
Under the reinsurance arrangement, the risk exposure of the insurer is no 

longer captured by X. In fact, the total risk exposure of the insurer is the sum 
of the retained loss and the incurred reinsurance premium. Using Tf (X ) to 
denote the total risk exposure of the insurer in the presence of reinsurance, 
we have 

 ( ) ( ) .X X+ f( )f X fR PT =  (2.2)

Consequently, a reasonable criterion in determining an optimal ceded loss 
function can be formulated as one that minimizes an appropriately chosen risk 
measure on Tf (X ). This corresponds to the optimal reinsurance models pro-
posed in Cai and Tan (2007). In Cai and Tan (2007), they consider VaR and 
CVaR risk measures. Their studies are prompted by the popularity of  these 
risk measures among banks and insurance companies for risk management 
and for setting regulatory capital.

We now formally provide the defi nitions of VaR and CVaR risk measures:

Defi nition 2.1. The VaR of a non-negative random variable X at a confi dence 
level 1  –  a where 0  <  a  <  1 is defi ned as

 ( )X x>a a( ) { : .infaR X P_ #0x $V }  (2.3)
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Based upon the defi nition of VaR, the CVaR of X at a confi dence level 1  –  a is 
defi ned as 

 ( )aR X dV
a

sa( ) .aR s1
a 0

=XVC #  (2.4)

Note that CVaR is also known as the “average value at risk”, “expected short-
fall”, or the “conditional tail expectation (CTE)”. VaR is more appropriately 
referred to as the quantile risk measure since VaRa(X ) is exactly a (1  –  a)-
quantile of  the random variable X. It follows from the defi nition of VaRa(X )
that 

 ( a( )aR x xa # #X XV ,)+ F  (2.5)

where FX(x)  =  1  –  FX(x). Therefore, VaRa(X )  =  0 for a  $  FX(0). For this rea-
son, we assume in this paper that the parameter a satisfi es 0  <  a  <  FX(0) to 
avoid the discussion of trivial cases. Another important property associated 
with VaRa(X ) is that for any l.c. and increasing function g, we have (see Theo-
rem 1 in Dhaene et al. (2002))

 ( )aR XV( ( )) ( ) .aR g X ga a=V  (2.6)

A key advantage of CVaRa(X ) over VaRa(X ) is that CVaR is a coherent risk 
measure while VaR fails to satisfy subadditivity property. More detailed dis-
cussions on these properties can be found in Artzer et al. (1999) and Föllmer 
and Schied (2004).

Based upon these two risk measures, the risk measure based optimal rein-
surance models proposed in Cai and Tan (2007) and Cai et al. (2008) can be 
summarized succinctly as follows:

          VaR-optimization :   f f( ( )) ( ))minaRa af C
* =

!

X XV T T(aRV  (2.7)

and

          CVaR-optimization :   f f( ( )) ( ))minaRV a af C
* =

!

,X XC T T(CVaR  (2.8)

where C is the set of admissible ceded loss functions and f * !  C is the resulting 
optimal ceded loss function. In Cai and Tan (2007), the admissible set C is 
confi ned to the class of stop-loss functions so that the optimal reinsurance 
models simplify to one-parameter minimization problems of determining the 
optimal retention level. Cai et al. (2008) generalize these results by extending 
the admissible ceded loss functions to be a class of increasing convex functions. 
More recently, Tan et al. (2011)  solve the CVaR based optimal reinsurance model 
for the general ceded loss functions.
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In this paper, we provide further analysis on the risk measure based opti-
mal reinsurance models (2.7) and (2.8). More specifi cally, we are interested in 
seeking an optimal reinsurance policy over the following three admissible sets 
of ceded loss functions:

Defi nition 2.2. Defi ne the sets of ceded loss functions by 

 f_ 0 ( : ( )f x x x is functionC
1

# #) an increasing convex" , (2.9)

and 

    :_ ( (ff0 ( ) ) increasingf x both x and x are functionsC
2

# #)x R$ . (2.10)

and 

 ( f ( ) . . .increasingf x x is an l c function0C
3
_ # #)x : R$ .  (2.11)

We recall that the risk measure based optimal reinsurance models with 
admissible set C1 are analyzed extensively in Cai et al. (2008). We revisit these 
models in this paper by providing simpler derivations of the results.

We conclude the section by stating some additional relationships on the 
admissible sets {C j; j  =  1, 2, 3}. First, as pointed out earlier, the increasing 
 condition on both ceded and retained loss functions is important since this 
condition reduces moral hazard. Second, Lemma A.1 in Cai et al. (2008) shows 
that for any f  !  C1, Rf (x) is increasing and concave in x so that f  !  C2. Third, 
for any f  !  C2, we have Rf (x1)  #  Rf (x2) for any 0  #  x1  #  x2. Then together 
with the increasing property of f (x) results in 

 f ( 2x -) .x x1 2 1#-# ( )f x0  (2.12)

Consequently, f is Lipschitz continuous and hence f  !  C3. Finally, since the 
truncated ceded loss function defi ned in (1.1) is included in C3 but not in C2, 
then we have 

 C C C .1 2 3
W W

3. OPTIMAL REINSURANCE UNDER VAR RISK MEASURE

In this section, we derive the optimal solutions corresponding to the reinsur-
ance model (2.7) under the admissible ceded loss function sets {C j; 1  #  j  #  3}. 
We discuss these results in the following three subsections.

3.1. VaR minimization model with C1 constraint

We begin this subsection by presenting the following lemma. This lemma gives 
a new and simplifi ed representation of f  !  C1 and this in turn facilitates the 
derivation of the main result of this subsection.
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Lemma 3.1. We have

 
(d )tn)t- :( +=

3
{

0 1 [0, ] .

x

c and is a probability measure defined on

C
1

3# # n

0-
c

}

#

Proof. Denote the right derivative of f  by f+
� for any f  !  C1, then f+

� is increas-
ing and right-continuous. Note that f (0)  =  0 and 0  #  f+

�(t)  #  1 according to 
(2.12), then Corollary 24.2.1 of Rockafellar (1970) implies

 
+ + +

+ +

( (

+d

s td

( ( (+

)

t

+

3x

sxx
( ) d ) (0) d

(0) ) (d ),

f x f s f f s

f x x t f c x t t

0 0

0 0

= =

= + - = -
-

n

0

))

� � �

� �

` j# ##

# #

where c  =  f+
�(3)  #  1 and n is a probability measure generated by { f+

�(t)  /  c;  t  $  0}.
Conversely, it is easy to verify that (

3
(d )c x t t- + n)

0-
#  is an increasing con-

vex function and less than x according to the constraints of c and n. Hence 
the proof is complete. ¡

To proceed, it is useful to introduce the following two parameters d * and b:

 ( )VaR_ Xd
1

1
r+

;*  (3.1)

 +r( ) .d E_ + +b d( )-1* *X8 B  (3.2)

Then by virtue of Lemma 3.1, we obtain the following theorem, which is the 
main result of this subsection.

Theorem 3.1. The optimal f *1 that solves the VaR-based reinsurance model (2.7) 
over the class of ceded loss functions C1 is given by 

 [+( )

, ( )

, 0,1] ( )

, .

f x

x d aR

c x d c aR

otherwise0

>a

a_ !

-

- =

+ b

b

X

X

V

V6 , ;

*

*

;
1*

^

^

h

h

Z

[

\

]]

]]

 (3.3)

Moreover,

 f( ( )) ( )) ( )minaR aRa a a
f

f
C

1
1

= =
!

bX X XV V ,* /T (aRV T  (3.4)

where x  /  y  =  min{x, y}.
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Proof. For any f  !  C1, recall that Rf (x) is increasing and Lipschitz-continuous, 
then it follows from (2.1), (2.2), (2.6) and Lemma 3.1 that 

        
( ( ))aR Xf V +

+

r

r

( )X

-
3

( )) ( ))

( ) [ ( )]

( ) ( ( )) ( ) [ ( )]

( ) (

aR aR

R f

aR f aR f

aR c g t

E

E

a a

a

a a

a

f f= +

= +

= +

= +

X X

X

X X X

X )

V V

V V

V

f

(d )t

1

1

n

(

0-

(T R P

#

 
 (3.5)

 (3.6)

  
for some 0  #  c  #  1 and probability measure n, where 

 
+ tt .-( ) ( ) [ ) ] ( ) )g t aRE a_ + - - +r X1 V( (X

It follows from the above results that to analyze the minimization of 
VaRa(Tf (X )), it is suffi cient to focus on the minimum value of  g. For any 
t  $  VaRa(X ), we have 

 (g 3( (1 ) [ ] ) 0,g tE= + =+rt ( ) $-) X  (3.7)

so the minimum value of g(t) on [VaRa(X ),  3] is 0. On the other hand, when 
0  #  t  #  VaRa(X ), we have 

( ) .aR XV(( )aR X -V+ )ds s= F3
( ) ( ) [ ) ] ( )g t t t t1 1E a aXt

= + + + +r r- -(X #

This leads to g�(t)  =  1  –  (1  +  r) FX (t), and hence g(t) is convex on [0,VaRa(X )].
If  d *  > VaRa(X ), then (2.5) implies FX (t)  > 1

1
r+

 for any 0  #  t  #  VaRa(X ). 
Furthermore, g�(t)  #  0 for t  $  0 so that g attains its minimum at 3. In this 
case, we set n ({3})  =  1, then the corresponding optimal ceded loss function 
becomes f *1  =  0 and (3.6) leads to

 f 1 ( )) ( )) ( ) .minaR aRa a a
f

f
C

*
1

= =
!

X X XV V( aR (T V T  (3.8)

On the other hand, if d *  #  VaRa(X ), then (2.5) implies that the minimum value 
of g on [0,VaRa(X )] is attained at d*. Combining (3.7) yields 

 ( { ( ), ( )} { ( ),0}.min min minx d g aRax R
3= =

! +

Xg V) g * -b

We now complete the analysis for ( ))min C af f1
!

XaR (V T  by considering the 
following three cases:
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496 Y. CHI AND K.S. TAN

(i) If  VaRa(X )  >  b, then g(d*)  <  0. Furthermore, by setting n ({d*})  =  1 and 
c  =  1, the corresponding optimal ceded loss function becomes f *1(x)  = 
(x  –  d*)+ and (3.6) implies 

 f 1 ( )) ( ))minaRa a
f

f
C

*
1

b= =
!

X XV ( .aR (T V T

(ii) If VaRa(X )  =  b, then the minimum value of g occurs at both 3 and d* with 
value 0. In this case, we need only to set n with support on {d*, 3}, then 
the corresponding optimal ceded loss function becomes f1

*(x)  =  c(x  –  d*)+ 

for some c  !  [0, 1] and it is easy to verify that f *1 satisfi es (3.8).

(iii) If  VaRa(X )  <  b, then g(d*)  >  0. In this case, the minimum of g(t) attains 
at 3 with value 0 and hence(3.8) holds for f *1  =  0.

Collecting all the above results yields the theorem and hence the proof  is 
complete. ¡

Remark 3.1. If 1 / (1  +  r)  $  FX (0), then d*  =  0. In this case, f *1 simplifi es to quota-
share ceded loss function, i.e.

 

r

[

( ) [ ]XE+

r( )

, ( ) 1

, 0,1] ( ) ( ) [ ]

, .

f x

x aR

cx c aR X

otherwise0

>

E

a

a_ ! +=

X

X

V

V6

;

, 1 ;1*

Z

[

\

]]

]]
 (3.9)

Therefore, when VaRa(X )  >  (1  +  r) E[X ], that is equivalent to saying that the safety 
loading r or the parameter a is small, the optimal reinsurance strategy for the insurer 
is to transfer the entire risk to the reinsurer among the choice of increasing convex 
ceded loss functions.

Remark 3.2. Although the results in the above theorem have already been derived 
by Cai et al. (2008), here we emphasize two important distinctions. First, the 
results in Cai et al. (2008) are derived under the assumption that X has a strictly 
increasing continuous distribution function with a possible jump at 0. Second, 
their proof relies on approximation and convergence arguments. In contrast, we 
relax the constraints on the distribution of X and provide a different but a much 
simpler proof.

3.2. VaR minimization model with C2 constraint

In this subsection, we are interested in the solutions to the following optimal 
reinsurance model:

 .f ( ))min a
f C

2
!

X(aR TV  (3.10)
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Recall that C2 denotes the class of ceded loss functions such that both Rf (x) 
and f (x) are increasing and that 0  #  f (x)  #  x. To derive an optimal solution 
to (3.10), we resort to the following two-step approach. First, we address the 
solution to the following modifi ed optimal reinsurance model with a fi xed 
reinsurance premium P  =  (1  +  r) m:

 
m

f ( ))min a
f C!

X ,
2

(aR TV  (3.11)

where C
2
m   =  { f  !  C2  :  E[ f (X )]  =  m} and 0  <  m  < E[X ]. Second, we obtain the 

desired solution by analyzing the effect of m on the optimal reinsurance.

Proposition 3.1. The optimal ceded loss function fm
* that solves (3.11) is given by 

  
,( ))aR XV

d
m

,
x

-
( )

( ( ) ) [ ( )]

( ) ( ,
f

x aR X aR

x aR otherwise

Ea a

a a

/

/
_

+ -

+

+q

X X

X

V V

V x

/ $ m;
* )  (3.12)

where 0  #  d  < VaRa(X ) and 0  <  q  <  1 are determined by E[ fm
*(X )]  =  m. Moreover,

m

)r
f )rfm

( )) ( ))
( , [ ( )]

, .
min

aR

otherwise

E
a a

a

f C

$ m
= =

+

+!

m

m
X X

X ;V1

(2

d X+ /
( (

1
aR T aR T*V V )

 (3.13)

Proof. Recall that f  !  C2 is increasing and Lipschitz continuous, then it follows 
from (2.1) and (3.5) that 

      m( )aR Xf ( )) ( ) (1 ) ), .aR f V f Ca a a 6= + + -rX XV m !
2((aR TV  (3.14)

The above representation implies if  the ceded loss function is a solution to 

 
mf

( ))max a
C!

X ,f aR(
2

V  (3.15)

then it is also a solution to (3.11). We now show that fm
* is a solution to the 

above maximization problem by dividing our analysis into the following two 
cases:

(i) E[X  /  VaRa(X )]  $  m case: If  there exists f  !  C2
m such that 

  m( ( )) ( )),f aR f aR>a aX XV V(*  (3.16)

 then for any d  #  x  #  VaRa(X ), we have 

  
m m m

( )aR XV

-

( )

( )) ( )) ( ) ( ),

f x x

f aR f aR f x f x>

a a

a a

$ + -

= +X XV V

( ))f aR

( (

XV(
* * *

 (3.17)
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where the fi rst inequality is derived by (2.12). Further, the increasing prop-
erty of f  !  C2

m , together with (3.16), yields 

 m m( ) ( )) ( )) ( ) .f x f aR aR aR>a a a$ =X X XV V V( (f x6 $( ),f x* *

Moreover, f(x)  $  0   =  fm
*(x) for any 0  #  x  #  d according to the defi nition of 

fm*(x) in (3.12). Then combining (3.17) yields f (x)  $  fm
*(x) for any x  !  R+ 

and the inequality is strict for x  $  d. This leads to the contradiction:

 m ))[ ( ] [ ( ] .f >E E= =m mX Xf *

Therefore,  fm
*(x) is a solution to (3.15) so that (3.14) leads to (3.13).

(ii) E[X  /  VaRa(X)]  <  m case: In this situation, we have  fm
*(VaRa(X ))  =  VaRa(X )  $ 

f (VaRa(X )) since 0  #  f (x)  #  x. Consequently, fm
*(x) is optimal among C2

m 
so that (3.13) holds and hence this completes the proof.

 ¡

Given a reinsurance premium P satisfying P  #  (1  +  r) E[X  /  VaRa(X )], the 
above proposition shows that the limited stop-loss reinsurance is optimal under 
the VaR-based reinsurance model when both the insurer and reinsurer are 
obligated to pay more for larger loss. Since the optimal ceded loss function 
fm

*(x) depends on the choice of  m, we now study the effect of  m on fm
* and 

obtain the main result of this subsection.

Theorem 3.2. The optimal ceded loss function f *2 that solves (3.10) is given by 

 
,

( )
( ) , ( )

0, ,

min
f x

d aR d d aR

otherwise

<a a
_

-+ X XV V2 ( ) ;- * * *
* x$

)
.

 (3.18)

where d* is defi ned in (3.1). Moreover,

 

)r d(1 +

f

,

f

( ))

( ))

( ) ( ) ( ) ) .

min

mind aR X d aRE

a

a

a a

f C

/

=

= + - -

!

+ +

X

X

X X

2

V V

2

(

*

* * *

(

(

aR T

aR T

V

V

8 B$ .

Proof. Let k  =  E[X  / VaRa(X )]. If  m  >  k, Proposition 3.1 asserts 

 )r
mf kf

+( )) ( (1 ) ( ))>a a= +m r kX X ,1 =* *( (aR T aR TV V

then the optimal reinsurance appears on m  #  k.
We now consider the case m  #  k. Since 

 m m( ) ( ) s s>X X
3 a

[ ] ( )d ( )d ,f f s X s>E P P
(VaR

0
m = = =

X

d

)
* *# #
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then taking the derivatives of the above equation with respect to d results in 

 .( )dXF
d2
2m

-=

The above equation, together with (3.13), implies 

 m
.

f
(

( ))
( ) ( ) )

d
d1 1 1 1

a

2

2

2

2
= + + = - +r r X

X

d
m*(aR TV

F

Since d*  #  d   +   FX (d )  #  1 / (1  +  r) according to (2.5), then we have 

 mf ( ))
0 for d d

a

2
W V

X

d
.*

*(aR T2V

Recall that 0  #  d  <  VaRa(X ). If  d*  $  VaRa(X ), then the above equation implies 
that 

mf ( ))a X*(aR TV  attains its minimum at d  =  VaRa(X ). In this case, mf 0=*  
and hence m  =  0, so that 

mf ( )) ( )aRa a=X XV*(aR TV  according to (3.13).
On the other hand, if  f( ), ( ))d aR< a aX XV* (aR TV  attains its minimum at 

d  =  d*, then

 d-
mf ( )) (1 ) ( { , ( )} ) .min mind X aREa a= + + +r

#m k
X XV* **(aR TV 8 B

Collecting all the results above yields the theorem and hence the proof is 
complete. ¡

Remark 3.3. Note that both d* and VaRa(X ) are fi xed for given confi dence level 
1  –  a, safety loading factor r and loss random variable X. Consequently, when 
d *  <  VaRa(X ), the optimal ceded loss function f *2 in (3.18) corresponds to a 
limited stop-loss treaty with a fi xed deductible d* and a constant cap VaRa(X )  –  d*. 
As pointed out earlier, this type of reinsurance policy is commonly found in the 
reinsurance marketplace. Moreover, this optimal ceded loss function is equiva-
lently represented as

 ,-2 ( )aR X+ V( ) ( ) ( ) .f d aRa a
* = - - +( XV)x x <x* *d

3.3. VaR minimization model with C3 constraint

In this subsection, we analyze the VaR-based optimal reinsurance model (2.7) 
by only requiring that the retained loss function Rf (x) is increasing and l.c. 
with 0  #  Rf (x)  #  x (i.e. C3 constraint). As in the last subsection, our approach 
involves a two-step procedure which entails fi rst seeking the solution to the 
following constrained optimization problem:
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l

f ( )),min a
f C!

X
3

(aR TV  (3.19)

where C3
l  =  { f  !  C3  :  E[Rf (X )]  =  l} and 0  <  l  <  E[X ]. We then obtain the 

desired solution by analyzing the effect of l on the optimal reinsurance.

Proposition 3.2. Let

 f (
l

a

a)

( )), ( )

, ( ) ( )

, ,

x

x aR l

x l and x aR

x d otherwise

< >

a a

a

( )l

/

$

=

l l

lR

X

X

( V

V

I ;

;

x >

*

Z

[

\

]]

]]
 (3.20)

where a( ) [ ( ))]l aRE a_ XX VI ( >X  and 0  #  d  <  VaRa(X ) is determined by 

lf
[ ( )]E = lX ,R *  then l lf

( ) ( )f x xR= x - *
*  is a solution to (3.19). Moreover,

lf r
l f( )) ( )) ) ( ) ( ) .min da a

f C

= = + +
!

l
l

X X ( [ ]X1 -<
3

ElI a( )T *( (aR aR TV V  (3.21)

Proof. The proof is similar to that of Proposition 3.1 with a slight modifi cation.
The translation invariance property of  VaR risk measure, together with 

(2.6), implies 

 
( )aR XV l( ) +

l

(1 )( [ ] )XE+ -rfR

f f( )) ( )) (1 )( [ ] )XEa a

a

= + + -

=

rX X( (aR T aRV V R
 

(3.22)

for any f  !  Cl
3. The following analysis is divided into two cases: l (a)  $  l and 

l (a)  <  l.
If  l (a)  $  l, 

lf
R *(VaRa(X ))  =  0, then (3.22) implies that the ceded loss func-

tion fl
* is optimal and (3.21) holds.

Now, we consider the case l (a)  <  l. If  there exists f  !  Cl
3 such that 

 
lff ( ( )) ( ))aR aR da a =X X(V V< ,RR *

then we have 

 
lf

)f ( ) ( ), 0 (x d x aRa/ 6# # #= Xx ,x VR R *  (3.23)

since Rf (x) is increasing with 0  #  Rf (x)  #  x. On the other hand, we have 

 .(
l

xf )f( ) ), (x x aRx a6$= XVR >* R
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Combining (3.23) yields the contradiction:

 )
l

( )fXf[ ] [ ( ] .<E E= =l lXRR *

Therefore, fl
* is a solution to (3.19) and that (3.22) leads to (3.21). The proof 

is complete. ¡

By virtue of the above proposition, we now study the effect of l on fl
* and 

obtain the main result of this subsection. To proceed, we introduce two useful 
parameters q and g:

 ( ( ))aR XV +X .( )aR XVFq
1

and1
a q_ _

+ r
g  (3.24)

Note that 0  #  g  #  VaRa(X ) according to (2.5).

Theorem 3.3. The optimal ceded loss function f *3 that solves (2.7) with constraint 
C3 is given by 

 g( ) ( ) ( ( )) .f aRI a
3

#= - + Xx Vxx*  (3.25)

Moreover,

 
3

r g

( )X f( ) ( ))

( ) ( ) ( ( )) .

minaR

aRE I

a a

a

f
f C

=

= + + -

!

+g

X

X

*V

V

3

1

T

X X #

(aR TV

6 @

 (3.26)

Proof. For l(a)  $  l, Proposition 3.2 shows 

 
( )X ),f

lf r

l

l
a( ( )) (1 ) ( [ ] ) ( ) ( [ ] ( ))

(

aR X X l

aR

E Ea

a (a

$= + - + -

=

rX 1V

V
)

T *

T *

then the optimal reinsurance appears on l  $  l (a).
Now, we consider the case l  $  l(a). In this situation, 0  #  d  #  VaRa(X ) is 

determined by E[Rfl
*(X )]  =  l, i.e.

 
d

( ( )aRX X

+

XV

[ ] ( ) ( ( ))

( ) ) d .

X aR

y y

IE E a

a

(

d

VaR Xa

#- = -

= -

l XX VX

F F
)
_ i

7 A

#
 

(3.27)

Taking derivatives of the above equation with respect to d yields 
2
2l
d   =   FX (d )  – 

FX (VaRa(X )), then we have 

 
( )

(
X

X

)
dlf r r q( ) ( )1

a

2 2
2= - + = + -l(aR T

d
1

2V
1 )

d
F

*

_ i
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according to (3.21). Thus, VaRa(Tfl
*(X )) attains its minimum at d  =  g and 

(3.26) follows from (3.21) and (3.27). This completes the proof. ¡

In C3, the retained loss functions are assumed to be l.c. and increasing. How-
ever, the l.c. constraint excludes many types of reinsurance policies such as 

 d(( ) ( ), 0f x m d m< <I #= - + .x x)

Under some additional assumption of loss distribution FX (x), the following 
theorem generalizes the results of Theorem 3.3 by relaxing such a constraint. 
Now, the set of admissible ceded loss functions is given by 

 (_ x�
f{0 ( ) is an increasing function}f x xC V# #) : 33 .CR  (3.28)

Theorem 3.4. Provided that FX (x) is strictly increasing and continuous at a 
neighborhood of VaRa(X ), the ceded loss function f *3 defi ned in (3.25) is also 
optimal under the reinsurance model (2.7) with constraint C3�.

Proof. Since FX (x) is assumed to be strictly increasing and continuous at a 
neighborhood of VaRa(X ), then VaRp(X ), that is a function of p  !  [0,1], is 
continuous and strictly decreasing at a neighborhood of a. Following, a two-
step procedure is applied to analyze the optimal reinsurance problem (2.7) 
with constraint C3�.

First, we show that fl
* defi ned in Proposition 3.2 is also a solution to the 

following modifi ed optimal reinsurance problem 

 
�

l
f ( )),min a

f C
3

!

X(aR TV  (3.29)

where Cl
3� =  { f  !  C3� :  E[Rf (X )]  =  l} with 0  <  l  <  E[X ]. The proof is similar 

to that of Proposition 3.2 with a slight modifi cation. Specifi cally, the transla-
tion invariance property of VaR risk measure implies 

 (x l) r lff ( )) ( ) ( ) ( [ ] ) .aR X fEa a
36= + + -X 1 ,V R �!(aR TV C  (3.30)

The following analysis is divided into two cases: l(a)  $  l and l(a)  <  l, where 
l(a) is given in Proposition 3.2.

If  l(a)  $  l, then we have 

 
lf

a( ( ) 0) ( ( ))aR>P P a= =X XX V ,R >*

where Rfl
* (x) is defi ned in (3.20). Thus, the defi nition of VaR in (2.3) implies 

VaRa(Rfl
*(X ))  =  0, then it follows from (3.30) that fl

*(x) is a solution to (3.29).
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Next, we focus on the case l(a)  <  l. Since Rfl
* (x) is increasing and l.c., then 

(2.6) implies 

 
l l

)
)

)
f f (

(

(
p p

p

p

a

a
( ( )) ( )

, 1;

, 0
X

X d p

X p

<

< <

/ #

= =VaR X VaR
VaR

VaR
R R

,
* * *

because VaRp(X) is continuous and strictly decreasing at a neighborhood of a. 
Further, we have 

 
l

( ( )f X( ) ) 0VaR d >P U =R *  (3.31)

because of 0  #  d  <  VaRa(X ), where U is uniformly distributed on [0,1].
Compared to VaRa(Rfl

*(X )), if  there exists f   !  Cl
3� such that 

 
lff( ( )) ( ( ))aR aR d<a a =X XV V R ,*R  (3.32)

then we have 

 
lfpf( ( ) ( ( ))) , (0,1) .p p>P 6# !X VaR XR *R

The above inequality can be justifi ed by considering the following two cases:

(i) a  #  p  <  1 case: If  VaRp(X )  #  d, then 

 
)( )X p#VaR ,

)(( ) )

(

X>

>P#

X VaR

X

( ) ( ( ))) (> PX VaR X RR
lfp p

p

f f(RP =*

 where the last inequality is derived by (2.5); otherwise, if VaRp(X)  >  d, then 

 (Xl f
(fpf f a( ( ) ( ( ))) ( ( ) ) ) ,d d p>P P )R # #=X VaR X XR => *R R F

where the fi rst inequality follows from (2.5) and (3.32).

(ii) 0  <  p  <  a case: In this situation, we have 

 )X (
l

X) VaRf (p p pf( ( ) ( ( ))) ( ) ( ) .X p>P P# #=X VaR X VaRR X >*R F

As a result, the defi nition of VaR in (2.3) implies 

 
lfp pf( ( )) ( ( )) 0 1.p< <6#X VaR X ,RVaR *R

Moreover, it follows from (3.31) and (3.32) that the inequality in the above 
equation is strict over [a, a +  e] for some e  >  0. Consequently, this leads to a 
contradiction:
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l l

( )X f ff f U[ ( )] [ ( )] ( ( )) [ ( )]<E E EU= = = =l lX X X[ ]VaRE R RVaR R * *R

by using the fact that Rf (X ) and VaRU (Rf (X )) are equal in distribution. Thus, 
through (3.30), we know fl

* is a solution to the modifi ed optimal reinsurance 
problem (3.29).

Second, the study of the effect of l on the optimal reinsurance fl
* is the same 

as that of Theorem 3.3 and hence the remaining proof is omitted. ¡

Remark 3.4. We emphasize that the optimal ceded loss function f *3 given in 
(3.25) is a truncated stop-loss reinsurance. This implies that for the loss less than 
VaRa(X ), the reinsurer is responsible for the loss in excess of the deductible g. 
However, if the incurred loss X is greater than VaRa(X ), then the reinsured amount 
reduces drastically to zero from a maximum of VaRa(X )  –  g. It suggests that the 
insurer is only concerned with reinsuring moderate losses but not large losses. 
This seems counterintuitive since the insurer should care about tail risk. One pos-
sible explanation accounting for such phenomenon is that in an extreme event with 
loss exceeding VaR (i.e. a catastrophic event with a very small probability a of 
occurrence), the insurer will be in trouble, regardless of the reinsurance arrange-
ment. Consequently, it is prudent for the insurer not to reinsure any loss beyond its 
VaR to reduce the reinsurance premium. See also Froot (2001) for detailed dis-
cussion of such a reinsurance policy in the context of catastrophe risk market.

Remark 3.5. Interestingly, when ‡  $  FX(0), the deductible g reduces to 0 so that 
f *3 simplifi es to f *3(x)  =  xI(x  #  VaRa(X )). This implies that the insurer is fully 
insured for loss up to VaRa(X ). Once the incurred loss exceeds the threshold level 
VaRa(X ), the insurer is responsible for the entire loss amount and hence the 
insurer only suffers in such an extreme event.

Remark 3.6. By contrasting the three VaR-based reinsurance models analyzed 
in the preceding subsections, it clearly highlights the sensitivity of the optimal solu-
tions with respect to the constraints imposed on the reinsurance models. More 
specifi cally, the optimal reinsurance policy could be in the form of stop-loss, limited 
stop-loss, or truncated stop-loss depending on the conditions imposed on both 
ceded and retained loss functions. We also emphasize that while the reinsurance 
model in Subsection 3.1 has been analyzed in Cai et al. (2008), the latter two models 
are totally new.

4. OPTIMAL REINSURANCE UNDER CVAR RISK MEASURE

In this section, we focus on the CVaR-based optimal reinsurance model (2.8) 
with the admissible set of the ceded loss functions 

 { ( ) is a measurable function with 0 ( ) } .f f x xC
3

# #= : x �Vf C  (4.1)
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Similar to Subsection 3.2, we derive the optimal reinsurance solution by dividing 
our analysis into two steps. In the fi rst step, we study the following modifi ed 
optimization problem:

 h
m

( ))min ah
X ,T

C!

(aRVC  (4.2)

where Cm  =  {f  !  C  :  E[  f (X )]  =  m} with 0  #  m  #  E[X ]. The second step is then 
applied to analyze the effect of m on the optimal reinsurance.

To proceed, let us reproduce, without proof, the Ohlin’s Lemma (see Asmus-
sen (2000)):

Lemma 4.1. Let Y1 and Y2 be random variables such that 

Y Y Y Y1 2YY
2 21 1

[ ] [ ], ( ) ( ( ) ( ),x x x b x x x b<E E $= ), #and# FF FF  (4.3)

for some b, then Y1   #cx  Y2 , i.e.

 21[ ( )] [ ( )]Y YE E#w w

for any convex function w provided that the expectations exist.

By virtue of  the above lemma, the following proposition gives the solutions
to (4.2).

Proposition 4.1. The optimal ceded loss function hm
* that solves (4.2) is given by 

 dm +( ) ( ) ,h x _ -* x  (4.4)

where d  $  0 is determined by E[(X  –  d )+]  =  m. Moreover,

     
d

( )aR X ( )V
m

X

a

s +

m

a

( ) )

( ( ) )d ( ) [( ) ] .

minC

VaR d s1 1 E

a ah h h

0
/

=

= + + -rX

*T (T

X

C!

aRVC

#
 (4.5)

Proof. Theorem 2.58 in Föllmer and Schied (2004) demonstrates 

 
aR aR 2s s1 1 1- -

Y Y2
p p

1[ ) ] [ ) ],

( )d ( )d , ( , ] .

t

V Y s V Y s p 0 1

E E R

0 0

6

6

# !

!

+ +( (t t

$

- -

+ # #

Straightforward algebra implies that CVaR risk measure preserves the convex 
order, i.e.

 1 ( ) ( ) .Y Y aR Y aR Ya acx 2 1 2V V# & C C#
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Moreover, by verifying (4.3) in Lemma 4.1, we have 

 cx( ) ( ) ( )hX X Xr r
m m

( ) ( ) ( ) TRh h h= + + + +m mX* *T =1 1R#

for any h  !  Cm, then ( )X ( )
m

X( ) ( ) .aR aRa ah h#*V T V TC C  Consequently, hm
* is a 

solution to the optimization problem (4.2).
Furthermore, the translation invariance property of CVaR risk measure 

implies

 aR

( ) ( )X X mm m

a

a

s

s

a

a

( ) ( ) (1 ) [ ( )]

( )d (1 ) [ ) ]

( ) d (1 ) [ ) ],

aR aR h

V X d s d

VaR d s d

R

1

1 E

E

E

a ah h

0

0

/

/

= + +

= + +

= + +

+

+

r

r

r

X

X

* *
*V T V

(

(

C C

X

X

-

-_ i

#

#

where the last equality is derived by (2.6), then the proof is complete. ¡

Remark 4.1. In the proof of the above proposition, we only use the convex order 
preserving property of CVaR risk measure. Therefore, the results of the above 
proposition could be naturally generalized to the cases when the optimality criteria 
preserve the convex order. It is important to point out that the theory of stochastic 
orders has been shown to be powerful in analyzing the optimal reinsurance prob-
lems. For example, Van Heerwaarden et al. (1989) use it to study several optimal 
reinsurance problems under the constraint Cm

2.

Given a reinsurance premium, the above proposition shows that under the 
CVaR criterion, it is optimal to choose the stop-loss reinsurance among Cm. 
We next study the effect of the retention level d on the optimal reinsurance, 
and obtain the main result of this section.

Theorem 4.1. The optimal ceded loss function h*
C that solves (2.8) with constraint C 

in (4.1) is given by 

 C ( +d ra
)

( ) , 1/( )

0, ,
h x

otherwise

<
_

- +
*

;x 1*
*  (4.6)

where d* is defi ned in (3.1). Moreover,

 
1

( ) ( )
( ),aR

X X
XC V

ra
( ) )

, / ( )
minaR

C otherwise

<
a a

a
h

h
h= =

+b
*V aR (

1 ;
T T

C!
j

C VC *

for any j  =  1, 2, 3, where b is defi ned in (3.2).
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Proof. We fi rst consider the minimization problem on C. Proposition 4.1 
implies that solving the reinsurance model (2.8) is equivalent to fi nding
the optimal retention level d that minimizes ( )X

m
( )aRa h*V TC  in (4.5). Here, 

( )X
m

( )aRa h*V TC  can be rewritten as 

 
d

d

( )X d

d

s

sr

m

a

a( ) ( ) ( ( ) )

( ) ( ( ) ) ,

aR aR VaR

VaR

1
a ah s

s

0

0

1

= - -

+ + -

+

+

X X

X

*V T V

1

C C #

#
 (4.7)

since X equals to VaRU (X ) in distribution.
If a  $  1 / (1  +  r), the above equation implies that ( )X

m
( )aRa h*V TC  is decreas-

ing in d, then it attains its minimum at d  =  3 with value CVaRa(X ) and the 
corresponding optimal ceded loss function is 0.

Next, we focus on the case a  <  1 / (1  +  r). To proceed with our analysis, we 
consider the following two subcases: FX (d )  #  a and FX (d )  >  a.

1. If  FX (d )  #  a, which is equivalent to d   $  VaRa(X ) according to (2.5), then 
we have 

 d dd + - -+-
a

s s[ ) ] ( ( ) ) d ( ( ) ) d ,VaR s VaR sE
0

1

0
= = +X X(X # #

 and hence (4.7) simplifi es to 

 d( ) +X
m

a( ) ( ) ((1 ) 1/ ) [( ) ]aR aR Ea ah = + + - -rX* ,V T V XC C

which implies that ( )X
m

( )aRa h*V TC  increases in d. Therefore, on the interval 
[VaRa(X ), 3], ( )X

m
( )aRa h*V TC  attains its minimum at d  =  VaRa(X ).

2. If  FX (d )  >  a, then 0  #  d  <  VaRa(X ). In this case, (4.5) simplifi es to 

 d X+( )X r r
m

3
( ) ( ) [ ) ] ( ) ( )d .aR d d s sEa h d

= + + - = + +* 1 ( 1V T XC F#

Recall that a  <  1 / (1  +  r), then d*  #  VaRa(X ). Therefore, the above equation 
implies that ( )X

m
( )aRa h*V TC  attains its minimum at d  =  d* on the interval 

[0,VaRa(X )].

Collecting all the above results yields that h*
C is a solution to the reinsurance 

model (2.8) with the constraint C defi ned in (4.1). Further, h*
C   !  C 

j for j  =  1, 2, 3. 
Since the global optimal solution is also locally optimal, then h*

C is also a solu-
tion to the optimal reinsurance model (2.8) with the constraints {C 

j;  j  =  1, 2, 3}. 
Hence the proof is complete. ¡

Remark 4.2. It should be emphasized that Balbás et al. (2009) and  Tan et al. 
(2011) also obtain the above result by using the Lagrangian approach. In contrast, 
we provide a different but straightforward approach. As noted in Remark 4.1, 
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a key advantage of our method is that the above result can be easily extended to 
other optimality criteria that preserve convex order.

5. CONCLUDING REMARKS

In this paper, we analyze the solutions to the VaR- and CVaR-based optimal 
reinsurance models over different classes of ceded loss functions with increas-
ing generality. The impact of the assumed feasible set of ceded loss functions 
on the optimal reinsurance design is highlighted in the case of VaR criterion. 
More specifi cally, the optimal reinsurance policy can be in the form of stop-
loss, limited stop-loss, or truncated stop-loss, depending on the conditions 
imposed on the ceded and retained loss functions. This suggests a difference 
in risk management strategy depending on the adopted optimal reinsurance 
model. The different optimal reinsurance policies also suggest the differences 
in the insurer’s style toward risk management and its attitude towards risk.
In the case of limited stop-loss reinsurance, both the insurer and reinsurer are 
willing to pay more for larger loss so that there is a proportionate sharing of 
risk between the insurer and the reinsurer (though subjected to a limit for the 
reinsurer). In contrast, the truncated stop-loss reinsurance induces the insurer 
to reinsure against moderate loss but not large catastrophic loss. The CVaR-based 
optimal reinsurance model, on the other hand, is quite robust in the sense that 
the stop-loss reinsurance is always the optimal solution irrespective of  the 
conditions on the ceded and retained loss functions.
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