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ABSTRACT

The use of generalized linear models (GLM) to estimate claims reserves has
become a standard method in insurance. Most frequently, the exponential dis-
persion family (EDF) is used; see e.g. England, Verrall [2]. We study the so-called
Tweedie EDF and test the sensitivity of the claims reserves and their mean
square error of predictions (MSEP) over this family. Furthermore, we develop
second order Taylor approximations for the claims reserves and the MSEPs
for members of the Tweedie family that are difficult to obtain in practice, but
are close enough to models for which claims reserves and MSEP estimations
are easy to determine. As a result of multiple case studies, we find that claims
reserves estimation is relatively insensitive to which distribution is chosen
amongst the Tweedie family, in contrast to the MSEP, which varies widely.
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1. INTRODUCTION

The use of generalized linear models (GLM) in actuarial science is well devel-
oped and broadly accepted. Not only does the framework of GLM allow for
flexibility in parameter and model selection, in some cases, such as with the
chain ladder method, GLM recovers traditional methods for claims reserves
estimation. For a comprehensive reference of GLM, see e.g. McCullagh, Nelder
[10]. In this paper, we study the exponential dispersion family (EDF) and its
role in modelling claims reserves; see e.g. Jørgensen [5], [6] for more on the
EDF and Renshaw [15], Haberman, Renshaw [4], England, Verrall [2] and
Wüthrich, Merz [20] for applications to insurance. We focus on a special mem-
ber of the EDF, the so-called Tweedie exponential dispersion model. Besides
containing many standard models, such as the Gaussian, Poisson and gamma,
we are particularly interested in the compound Poisson models; Millenhall [11]
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provides an excellent review of these models. For specific applications of the
Tweedie compound Poisson model, see e.g. Jørgensen, De Souza [7], Smyth,
Jørgensen [16], and Wüthrich [19].

The family of Tweedie exponential dispersion models is controlled by a
model parameter p. For example, p = 1 corresponds to the overdispersed Pois-
son model. In this paper, we calculate the sensitivity of the claims reserves
with respect to this model parameter. Peters et al. [14] and Gigante, Sigalotti
[3] have also tackled this issue of model uncertainty, the former opting for a
Bayesian Markov chain Monte Carlo simulation approach averaging over p,
and the latter addressing the issue within a GLM framework, using an iterative
procedure to solve for p using quasi-likelihood functions as introduced by Wed-
derburn [18] and Nelder, Pregibon [12]. In our approach, we directly work with
the likelihood function and rather than solve for p, we find the claims reserves
in terms of p, i.e. for a fixed distributional model. Besides claims reserves sen-
sitivity, we also investigate the sensitivity of the mean square error of prediction
(MSEP) with respect to p. Furthermore, we develop second order Taylor approxi-
mations for the claims reserves and MSEPs with respect to p.

We conclude that, based on multiple case studies and as shown in Peters et
al. [14], the claims reserves are rather insensitive to the choice of p and hence
find that there is only moderate model uncertainty when modelling within the
Tweedie exponential dispersion family. In contrast however, we find that the
MSEP is highly sensitive to the model parameter p. This has important con-
sequences for solvency considerations and the required risk bearing capital.

Organisation of the paper. In Section 2 we describe the data and the model
assumptions. Maximum likelihood estimation (MLE) of the underlying model
parameters is discussed in Section 3. In Sections 4 and 5 we study the sensi-
tivity as well as derive Taylor approximations of the claims reserves and the
MSEP, respectively, with respect to the model parameter p. In Section 6, we
provide one of the earlier mentioned case studies to highlight the performance
of the Taylor approximations.

2. DATA AND MODEL

2.1. Setup

Let Xi, j denote the incremental payments of accident year i ! {0, 1, …, I} and
development year j ! {0, 1, …, J}. We assume that the data is given by a claims
development triangle, i.e. I = J. This means that our data are given by an upper
triangle, DI = {Xi, j, i + j # I}, and that we are interested in predicting the incre-
mental payments for the corresponding lower triangle {Xi, j, i + j > I} at time I.
See Figure 1 for a graphic representation of the data. The outstanding loss
liabitilies are given by 
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FIGURE 1: Claims development triangle.

realizations of r.v. Xi, j, i + j # I

predicted r.v. Xi, j, i + j > I

These are the future cashflows at time I. We are going to predict these out-
standing loss liabilities, R, with a predictor R, the so-called claims reserves,
that is based on the information DI available at time I.

2.2. The Exponential Dispersion Family

Nelder, Wedderburn [13] established the framework of GLM and the so-called
analysis of deviance. These concepts were originally developed for exponential
families of distributions, yet extended to a wider class of distributions, termed
dispersion models. Here, we work within the framework of this broader family
of distributions but focus on an important sub-class called the Tweedie expo-
nential dispersion models, introduced in Tweedie [17].

Model Assumptions 2.1 (Exponential Dispersion Model)

A random variable Xi, j follows an exponential dispersion model if it has gen-
eralized density
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where wi, j > 0 denotes a known weight, qi, j is the canonical parameter, fi, j > 0
the dispersion parameter. The function b is a twice differentiable general func-
tion that determines the more specific family the distribution falls into and c
is a suitable normalizing constant. This generalized density is, e.g., either defined
with respect to Lebesgue measure or the counting measure. Moreover, the
domain of x depends on the choice of b.

As noted above, the function b determines to which specific family the expo-
nential dispersion distribution belongs. Likewise, one can specify the structure
of the underlying unit variance function, V (·), defined as,

V (m) = b�((b�)–1(m));



see e.g. Jørgensen [6], Theorem 2.11. We focus on unit variance functions of the
power variety, namely V(m) = mp for p ! (–3,0] , [1,3); see e.g. Jørgensen [6],
Proposition 4.2, regarding the possible values of p. The family so defined is
known as the Tweedie EDF. Specific values of p correspond to specific distribu-
tions, for example when p = 0,1,2,3, we recover the Gaussian, overdispersed
Poisson, gamma, and inverse Gaussian distributions, respectively. As such,
the parameter p plays a central role of model uncertainty for distributions
within the Tweedie class.

Model Assumptions 2.2 (Tweedie Exponential Dispersion Model) 

A random variable Xi, j follows a Tweedie exponential dispersion model if it is an
exponential dispersion model with parameter qi, j ! Qp and function b defined as 
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The specification on b is made so that the unit variance function, V, has a
power structure with power p, that is, bp(·) implies that

V(m) = mp.

Under these assumptions, Xi, j has expectation and variance given by 
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see e.g. Bühlmann, Gisler [1], Theorem 2.2.

In the remainder of this paper we assume that 
f

j

j
w ,

,

i

i is constant and define f =
f

j

j
w ,

,

i

i . This assumption implies that f cancels in the MLE of qi, j , which substan-
tially simplifies the analysis.
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3. MAXIMUM LIKELIHOOD ESTIMATORS

3.1. Claims Reserves

We assume the Xi, j are independent Tweedie distributed (see Model Assump-
tions 2.2) with ƒ =

f
j

j
w ,

,

i

i , we estimate the model parameters using MLE. The
log-likelihood function for DI is given by 
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We have (I + 1)2 unknown parameters qi, j and only (I + 1)(I + 2)/2 observations.
Therefore we introduce additional model structure to obtain a more parsimo-
nious model. As is standard in claims reserving modelling, we choose a mul-
tiplicative model mi, j = mi gj , where mi > 0 is the exposure of accident year i and
gj > 0 describes the claims development pattern. This implies that the canoni-
cal parameter, qi, j = (bp�)

–1(mi, j), is given by 
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The MLEs of the parameters mi and gj can now be obtained by setting the fol-
lowing system of equations equal to zero:
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We need to introduce a constraint to obtain a unique solution to these equa-
tions. Using m0 = 1, we obtain the MLEs
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see e.g. Wüthrich, Merz [20], formulas (5.49) and (5.50).
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Note that for p = 1, the above system corresponds to the overdispersed Pois-
son model, which yields the chain ladder claims reserves; see e.g. Mack [9] or
Lemma 2.16 in Wüthrich, Merz [20]. From the equations given in (1), it is
clear that mi and gj are functions of p and consequently, model uncertainty
within the Tweedie family may be expressed in terms of their derivatives with
respect to p.

Note that in (1), f cancels and consequently has no influence on the para-
meter estimation of mi and gj. However, an estimate of f is required to esti-
mate the prediction uncertainty. We could estimate f with MLE but this
involves an infinite summation that is often difficult to evaluate; see e.g. Peters
et al. [14]. Therefore, we prefer using Pearson residuals for the estimation of
f. Furthermore, Pearson residuals are standard outputs in all GLM software
tools and are widely accepted in practice. We obtain the following estimate:
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1 2+ + – 2I – 1 is the degrees of freedom of the model and mi, j =
mi gj .

With these parameter estimates, we can predict the outstanding loss liabili-
ties, R, with the claims reserves, R, given by 
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The claims reserves R = R( p) depend on p, our aim is a sensitivity analysis in p.

3.2. Asymptotic Properties of the MLE

The proposition below yields the asymptotic behaviour of MLEs; see e.g. Leh-
mann [8], Theorem 6.2.3.

Proposition 3.1. Assume X1, …, Xn are i.i.d. with density fh (·) from the exponential
dispersion family with parameters h = (h1, …, hm)T. Furthermore, h 1 = (h1, …, hm)T

is the MLE of h, then,
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In our case we use of the notation h = (h0, …, h2I + 1)
T = ( m0, …, mI, g0, …, gI)

T.
Before deriving the Fisher information matrix, H, we provide the following
necessary partial derivates:
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From these, and the derivatives of the log-likelihood function with respect to
the underlying parameters, we obtain 
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(2) 

The remaining entries of the (2I + 1) ≈ (2I + 1) matrix H are zero. Note that
we omit m0 in our construction of H because its inclusion would imply H to
be singular.

We estimate the MSEP using the above result. Note that H depends on f
and h. By replacing these parameters by their estimates we obtain the esti-
mated Fisher information matrix H = H (h 1, g), which is a function of p. Of
specific importance are the estimates of the covariances of the MLEs, h 1. Propo-
sition 3.1 provides the following estimator,

Cov% (hr, hs) = H (h 1, g)–1
r,s , r, s ! {1, …, 2I + 1}. (3)

Before studying the effect of the model parameter p on the MSEP, we first
study the sensitivity of the claims reserves with respect to the choice of p.

4. SENSITIVITY OF THE CLAIMS RESERVES WITH RESPECT TO p

As stated in previous sections, assuming a distribution from the Tweedie EDF,
we can estimate the parameters mi and gj, from which we can predict the
outstanding loss liabilities R with the claims reserves R = R( p). We analyze the
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sensitivity of R with respect to p by a Taylor expansion. The second order Taylor
expansion around p is given by

R*( p + e) = R( p) + R�( p)e + ,
R p e

2

2�^ h
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The first and second derivatives are provided in Lemmas 4.1 and 4.2 below.

4.1. Reserves Approximation using First Order Taylor Expansion

We begin by studying the first order Taylor expansion, given by omitting the
last term in (4). To approximate the claims reserves using a first order Taylor
expansion, we need to calculate the first derivative with respect to p of the
MLE h 1. Differentiating the equations given in (1) with respect to p provides:
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(5)

To solve the above system of equations we define a (2I + 2) ≈ (2I + 2) matrix A,
whose components are the following:

ai, i = j ,g p

j

I i
2

0=

-
-! i ! {1, …, I},

ai,I + j + 1 =
jg
1

p ((2 – p) mi gj – (1 – p) xi, j), i ! {0, …, I}, j ! {0, …, I – i},
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aI + j + 1, i =
im

1
p ((2 – p) mi gj – (1 – p) xi, j), j ! {0, …, I}, i ! {0, …, I – j},

aI + j + 1, I + j + 1 = i ,m p

i

I j
2

0=

-
-! j ! {0, …, I},

a0,0 = 1.

The remaining entries of the matrix are zero. In addition to the matrix A, we
define column vectors h 1� = (m�0, …, m�I , g�0, …, g�I )T and A = (0, a1, …, aI, b0, …, bI)

T,
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Using matrix notation, we rewrite equations given in (5) as 

Ah 1� = A.

Lemma 4.1. The first derivate of the MLE h 1 is given by 

h 1� = A–1A,

where A and A are defined as given above.

In the following subsection, we study the second order approximation.

4.2. Reserves Approximation using Second Order Taylor Expansion

What remains to be provided in order to use the second order Taylor approx-
imation is the second derivative of the MLE h 1 with respect to p. Rather than
differentiating equations given in (5), we first rewrite them using simplifying
notation already introduced above for matrix A. We have 

mi�ai, i + jg
j

I i
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�! ai, I + j + 1 = ai, i ! {1, …, I },

gj�aI + j + 1, I + j + 1 + im
i

I j

0=
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�! aI + j + 1, i = bj, j ! {0, …, I },

m0� = 0.
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Taking derivates we obtain:
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Hence, we need to find the derivates of ai, i, ai, I + j + 1, aI + j + 1, i, aI + j + 1, I + j + 1, ai, and
bj with respect to p. They are given in Appendix A. We define column vec-
tors, h 1� = (m�0, …, m�I , g�0 , …, g�I )T and k = (0, k1, …, kI, l0, …, lI)

T, so that we can
formulate the equations given in (6) as 

Ah 1� = k,

where A is as previously defined.

Lemma 4.2. The second derivate of the MLE h 1 is given by

h 1� = A–1k,

where A and k are defined as given above.

Remark 4.3. Of course this can inductively be expanded to any other derivatives
mi

(k) and gj
(k), k $ 3, where the right-hand sides in equations given in (6) become

appropriate functions depending on mi
(l ) and gj

(l ), l < k.

5. SENSITIVITY OF THE MSEP WITH RESPECT TO p

Before studying the derivate of the MSEP with respect to p, we need to esti-
mate the MSEP. The (conditional) MSEP for predictor R of the outstanding
loss liabilities R is defined as follows:

jI i II
.mR RE R Emsep ,

>>
R i j

i j Ii j I
D

2
2

= - = -
++

D DXg !!
J

L

K
K` `

N

P

O
Oj j

R

T

S
S
S

:

V

X

W
W
W

D

462 D.H. ALAI AND M.V. WUTHRICH



Since the predictor j>i j I+
m i g! is DI measurable, we decompose it into terms

referred to as (conditional) process variance and (conditional) estimation error;
see e.g. Wüthrich, Merz [20], Section 3.1. We get the following decomposition:
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Staying within the framework of Tweedie’s EDF, we see that as with the claims
reserves, the estimate of the MSEP depends on the model parameter p. Most
often in presenting results, the square root of the MSEP is given, we also fol-
low this convention. Denoting the estimators for the process variance by pv3 (p)
and for the estimation error as ee 3(p), we decompose the estimated (condi-
tional) MSEP as follows:

�( )p
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2
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%
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h

h

(pv3 (p)� + ee3 (p)�),

where 

pmsep2
1%
^ h = (pv3 (p) + ee3 (p)) 2

1

.

The first order Taylor expansion of pmsep2
1%
^ h around p is given by 
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The derivates of the estimators of the process variance and the estimation
error are provided below in Lemma 5.1 and 5.2. Note that we can also find the
second order Taylor expansion,
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2
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2
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this requires the calculation of pv3 (p)� and ee 3 (p)�, which is rather involved.
Some formulas required for the second order approximation are given in
Appendix C. We highlight the performance of the second order approximation
in the case study of Section 6.
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5.1. Process Variance

Determining an estimate of the process variance is relatively easy. Indeed,
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To estimate this quantity we replace the parameters by their estimates, which
gives 

pv3 (p) = i ji .mgVar ,
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Note that mi, gj, as well as g are functions of p. To obtain the derivative of
pv3 (p), we start by obtaining the derivate of g with respect to p:
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where yi, j = ( mi gj)
–p, and y�i, j = –yi, j log( mi gj) – p iy , j

p
p 1+

(m�i gj + mi g�j ). Using the
above we obtain the following lemma.

Lemma 5.1. The derivate of pv3 (p) with respect to p is given by 
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where yi, j is defined as given above.

5.2. Estimation Error

It is standard to estimate the estimation error by its expected value; see e.g. Eng-
land, Verrall [2]. Hence, we estimate 
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Note that the predictor mi gj is not necessarily unbiased for E [Xi, j ] = mi gj. This
bias is for typical claims reserving data of negligible order. One uses the approxi-
mation 
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see e.g. Wüthrich, Merz [20], Section 6.4.3. Note that this method of approxi-
mation corresponds to using the unconditional MSEP. As an estimator of the
above covariances we use 
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see Appendix B for details. Note that the above approximation requires small
relative errors of the parameter estimates. The estimated covariance terms on
the right-hand side of the above equality are provided in (3). We hence obtain 
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which has as its derivative 
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To obtain the above we need only provide the derivatives with respect to p of
the covariances of the MLEs. This involves the estimated Fisher information
matrix H = H (h 1, g). Denote with H 1 the matrix containing the derivatives of
the estimated covariances:

H 1 = p2
2 H –1 = – H –1 H

p2
2

H –1.
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The derivatives of the entries of H with respect to p are given as follows, see (2),
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for r ! {1, …, 2I + 1}. Using the above, we obtain the following lemma.

Lemma 5.2. The derivate of ee3 (p) with respect to p is given by,

ee3 (p)� =

>
>

k l I
i j I

+
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! ((gj�gl + gj gl�) Hi,k
–1 + gj gl H 1i,k + (mk� gj + mk gj�) H –1
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where H and H 1 are defined above, i, k !{1, …, I} and j, l !{0, …, I}.

Note: The second order Taylor expansion (8) is provided in Appendix C.

6. CASE STUDY

We analyze the standard dataset from Wüthrich, Merz [20], see Table 1 below.
We center our examples around p = 1 and p = 2, corresponding to the overdis-
persed Poisson and the gamma distributions. The claims reserves and the MSEP
for these models are attainable with relative ease using most standard statisti-
cal software packages. For the reserves and the MSEP for values other than p
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= 1, 2, statistical software R was used, but this ability is not standard. Addi-
tional non-trivial programming was done to allow us this functionality.

6.1. Estimating with p = 1, the Overdispersed Poisson Distribution

6.1.1. Claims Reserves

Using the statistical software R we obtain the MLEs of the underlying para-
meters mi and gj. They, as well as the first and second derivatives are found in
Table 2. Note that for p = 1, the estimates of the underlying parameters could also
have been obtained using the classical chain ladder method; see e.g. Corollary 2.18
in Wüthrich, Merz [20]. Recall the admissible values of p, p ! (–3,0] , [1,3),
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TABLE 1

OBSERVED INCREMENTAL PAYMENTS Xi, j.

i / j 0 1 2 3 4 5 6 7 8 9

0 5,946,975 3,721,237 895,717 207,760 206,704 62,124 65,813 14,850 11,130 15,813
1 6,346,756 3,246,406 723,222 151,797 67,824 36,603 52,752 11,186 11,646
2 6,269,090 2,976,233 847,053 262,768 152,703 65,444 53,545 8,924 
3 5,863,015 2,683,224 722,532 190,653 132,976 88,340 43,329
4 5,778,885 2,745,229 653,894 273,395 230,288 105,224
5 6,184,793 2,828,338 572,765 244,899 104,957
6 5,600,184 2,893,207 563,114 225,517
7 5,288,066 2,440,103 528,043
8 5,290,793 2,357,936
9 5,675,568

TABLE 2

ESTIMATES OF PARAMETERS m AND g AND THEIR DERIVATIVES FOR THE CASE p = 1.

i / j mi mi� mi� gj gj� gj�

0 1.000 0.000 0.000 6,572,762 418,447 282,213 
1 0.957 –0.118 –0.203 3,237,323 188,273 124,863 
2 0.956 –0.039 –0.001 762,835 41,156 24,929 
3 0.875 –0.056 –0.011 241,836 14,891 6,839 
4 0.886 –0.004 0.138 160,501 9,168 44 
5 0.905 –0.091 –0.067 76,540 4,699 330 
6 0.858 –0.058 –0.036 56,870 2,931 3,305 
7 0.781 –0.068 –0.040 12,002 603 828 
8 0.780 –0.060 –0.027 11,641 711 1,388 
9 0.863 –0.055 –0.030 15,813 0 0 



FIGURE 2: True and approximated claims reserves.
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TABLE 3

TRUE AND APPROXIMATED CLAIMS RESERVES AND MSEP
/1 2%

.

p
Exact 1st Order 2nd Order Exact 1st Order 2nd Order 

Reserve Approx. Approx. msep
/1 2% Approx. Approx.

1.00 6,047,059 6,047,059 6,047,059 429,891 429,891 429,891 
1.05 6,043,385 6,043,459 6,043,386 430,943 429,187 431,047 
1.10 6,039,560 6,039,859 6,039,568 435,395 428,484 435,922 
1.15 6,035,577 6,036,259 6,035,603 443,108 427,781 444,516 
1.20 6,031,429 6,032,660 6,031,492 453,986 427,077 456,829 
1.25 6,027,113 6,029,060 6,027,236 467,967 426,374 472,861 
1.30 6,022,621 6,025,460 6,022,833 485,023 425,670 492,612 
1.35 6,017,951 6,021,860 6,018,285 505,158 424,967 516,082 
1.40 6,013,100 6,018,260 6,013,591 528,408 424,264 543,271 
1.45 6,008,070 6,014,660 6,008,751 554,836 423,560 574,179 
1.50 6,002,865 6,011,060 6,003,765 584,541 422,857 608,806 
1.55 5,997,497 6,007,460 5,998,633 617,652 422,154 647,152 
1.60 5,991,983 6,003,860 5,993,355 654,339 421,450 689,217 
1.65 5,986,347 6,000,260 5,987,931 694,818 420,747 735,001 
1.70 5,980,624 5,996,660 5,982,362 739,357 420,044 784,504 
1.75 5,974,856 5,993,060 5,976,646 788,294 419,340 837,726 
1.80 5,969,088 5,989,461 5,970,785 842,047 418,637 894,667 
1.85 5,963,380 5,985,861 5,964,777 901,131 417,934 955,327 
1.90 5,957,772 5,982,261 5,958,624 966,180 417,230 1,019,706 
1.95 5,952,316 5,978,661 5,952,325 1,037,959 416,527 1,087,804 



FIGURE 3: True and approximated MSEP
/1 2% .
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implying that we study positive e when using p = 1 as the focal point of our
approximation.

The claims reserves under the assumption that the Tweedie exponential dis-
persion model has p = 1, i.e. that it is overdispersed Poisson distributed, is
6,047,059. In Table 3 we highlight the performance of the approximation in
relation to the true values under the various levels p, notice the accuracy of the
second order approximation. Figure 2 presents these results graphically. More-
over, the claims reserves R(p) are rather insensitive to the choice of p.

6.1.2. Prediction Uncertainty

Table 3 highlights the results of the MSEP 1/2 approximation using p = 1. Figure 3
presents these results graphically. It is evident that the MSEP1/2 is not stable
in p, one cannot deviate too far from p = 1 (i.e. e cannot be too far from 0) when
using the first order approximation. Furthermore, it seems that the MSEP1/2

is near a local minimum at p = 1. Under the assumption of the overdispersed
Poisson distribution, the estimates of the dispersion parameter f(p) and its
derivates were found to be, g(1) = 14,714, g�(1) = –197,314 and g�(1) = 2,678,513,
where the estimation was done based upon the Pearson residuals. The second
order approximation far outperforms the first, but as previously stated is also
more strenuous to calculate.



6.2. Estimating with p = 2, the Gamma Distribution

6.2.1. Claims Reserves

The MLEs of the underlying parameters and their first and second order
derivates are presented in Table 4. The claims reserves under the assumption that
the Tweedie exponential dispersion model has p = 2 is 5,947,049. In Table 5
we highlight the performance of the approximation for the claims reserves in
relation to the true values under the various levels p. Figure 4 presents these
results graphically.
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TABLE 4

ESTIMATES OF PARAMETERS m AND g AND THEIR DERIVATIVES FOR THE CASE p = 2.

i / j mi mi� mi� gj gj� gj�

0 1.000 0.000 0.000 6,999,574 103,394 –1,316,401
1 0.760 –0.111 0.629 3,426,601 33,285 –636,971
2 0.900 –0.094 –0.109 800,954 259 –138,198
3 0.850 0.062 0.243 252,086 –7,201 –47,357
4 1.052 0.414 0.409 161,788 –15,077 –29,717
5 0.809 –0.037 0.240 77,394 –7,532 –16,475
6 0.811 0.019 0.241 61,418 3,227 –13,523
7 0.709 –0.041 0.127 13,159 1,090 –3,232
8 0.722 –0.021 0.137 13,226 1,409 –5,392
9 0.811 –0.012 0.153 15,813 0 0

6.2.2. Prediction Uncertainty

The approximations of the MSEP using the Gamma distribution are presented
in Table 5. Figure 5 presents these results graphically. Under the assumption
of the gamma distribution, the estimates of the dispersion parameter, f(p), and
its derivate were found to be, g(2) = 0.04497, g�(2) = – 0.54747 and
g�(2) = 6.72616, where again, the estimation was done based upon the Pearson
residuals.

Remark 6.1. Notice that in addition to the fact that due to our boundary con-
dition of m0 = 1, all derivates of m0 equal zero, also all derivatives of gI equal
zero. This is the case since gI = X0,I, which is DI measurable, i.e. gI is constant.
This fact shows up clearly in Tables 2 and 4.

CONCLUSIONS

We have studied the sensitivity of the claims reserves and the estimate of the
MSEP within the Tweedie EDF. The ability to express these quantities in terms
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TABLE 5

TRUE AND APPROXIMATED CLAIMS RESERVES AND MSEP
/1 2%

.

p
Exact 1st Order 2nd Order Exact 1st Order 2nd Order 

Reserve Approx. Approx. msep
/1 2% Approx. Approx.

1.55 5,997,497 5,993,507 6,002,281 617,652 365,006 720,674
1.60 5,991,983 5,988,345 5,995,278 654,339 448,603 729,625
1.65 5,986,347 5,983,183 5,988,491 694,818 532,201 747,359
1.70 5,980,624 5,978,021 5,981,921 739,357 615,799 773,874
1.75 5,974,856 5,972,859 5,975,567 788,294 699,397 809,171
1.80 5,969,088 5,967,697 5,969,430 842,047 782,995 853,250
1.85 5,963,380 5,962,535 5,963,510 901,131 866,592 906,111
1.90 5,957,772 5,957,373 5,957,806 966,180 950,190 967,754
1.95 5,952,316 5,952,211 5,952,319 1,037,959 1,033,788 1,038,179
2.00 5,947,049 5,947,049 5,947,049 1,117,386 1,117,386 1,117,386
2.05 5,941,997 5,941,887 5,941,995 1,205,544 1,200,984 1,205,375
2.10 5,937,171 5,936,724 5,937,158 1,303,693 1,284,581 1,302,145
2.15 5,932,570 5,931,562 5,932,537 1,413,275 1,368,179 1,407,698
2.20 5,928,178 5,926,400 5,928,133 1,535,917 1,451,777 1,522,032
2.25 5,923,961 5,921,238 5,923,946 1,673,439 1,535,375 1,645,149
2.30 5,919,883 5,916,076 5,919,976 1,827,850 1,618,972 1,777,047
2.35 5,915,901 5,910,914 5,916,222 2,001,354 1,702,570 1,917,728
2.40 5,911,966 5,905,752 5,912,684 2,196,368 1,786,168 2,067,190
2.45 5,908,033 5,900,590 5,909,364 2,415,529 1,869,766 2,225,434
2.50 5,904,057 5,895,428 5,906,260 2,661,728 1,953,364 2,392,460

FIGURE 4: True and approximated claims reserves.



of the model parameter p, and then taking derivates, have allowed us to
develop Taylor approximations. In our case study we highlighted the perfor-
mance of these approximations and furthermore found that the reserves were
rather insensitive to model selection within the Tweedie EDF, in contrast to the
MSEP, which varied widely. These empirical findings confirm the results in
Peters et al. [14].
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APPENDIX

APPENDIX A: Derivatives of A, A and b

In this appendix, we provide the derivatives of the entries of the matrix A and
the derivates of the a and b, required in Section 4.2.
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APPENDIX B: Covariance Approximation

In this appendix, we aim to show that,

Cov(migj, mkgl) . gj gl Cov(mi, mk) + mkgj Cov(mi, gl)

+ mi gl Cov(mk, gj) + mi mk Cov(gj, gl).

We begin as follows,

Cov(migj, mkgl) = Cov(exp{log migj}, exp{log mkgl}) 

= migj mkgl Cov(exp{log mi gj – log mi gj}, exp{log mkgl – log mkgl})

. migj mkgl Cov(1 + log mi gj – log mi gj, 1+ log mkgl – log mkgl)

= migj mkgl Cov(log migj, log mkgl)

= migj mkgl Cov(log mi + log gj, log mk + log gl)

= migj mkgl (Cov(log mi, log mk) + Cov(log mi, log gl) 

+ Cov(log gj, log mk) + Cov(log gj, log gl)),

where we have used the linearization exp(z) . 1 + z for z . 0. We proceed with
the covariance terms remaining on the right-hand side. The calculations are anal-
ogous, hence we only provide the details for approximating Cov(log mi, log mk),

Cov(log mi, log mk) = Cov(1 + log mi – log mi, 1 + log mk – log mk)

. Cov(exp{log mi – log mi}, exp{log mk – log mk})

= m m
1
i k

Cov(mi, mk),

where we again have used the linearization exp(z) . 1 + z for z . 0. As a final
step of the approximation, we replace unknown variables and unknown covari-
ances with estimates thereof.
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APPENDIX C: MSEP Approximation using Second Order Taylor Expansion

In this section we provide the main formulas for the second order Taylor expan-
sion (8).
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