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ABSTRACT

We consider variation of observed claim frequencies in non-life insurance,
modeled by Poisson regression with overdispersion. In order to quantify how
much variation between insurance policies that is captured by the rating factors,
one may use the coefficient of determination, R2, the estimated proportion of
total variation explained by the model. We introduce a novel coefficient of indi-
vidual determination (CID), which excludes noise variance and is defined
as the estimated fraction of total individual variation explained by the model.
We argue that CID is a more relevant measure of explained variation than R2

for data with Poisson variation. We also generalize previously used estimates
and tests of overdispersion and introduce new coefficients of individual explained
and unexplained variance.

Application to a Swedish three year motor TPL data set reveals that only
0.5% of the total variation and 11% of the total individual variation is explained
by a model with seven rating factors, including interaction between sex and age.
Even though the amount of overdispersion is small (4.4% of the noise variance)
it is still highly significant. The coefficient of variation of explained and unex-
plained individual variation is 29% and 81% respectively.
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1. INTRODUCTION

The idea behind modern non-life insurance rating is that each customer should
pay a premium as close as possible to the expected value of the cost that he
or she causes the company. Consequently, the pure premium (the premium
without loading for expenses and cost of capital), should be close to the expected
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value of the claim cost for each insurance policy. In practice, the actuary tries
to fulfill this goal by finding rating factors that describe the variation in the
expected cost between the policies. These factors are chosen so that the actu-
arial model will capture as much as possible of the variation in expectation
between customers. On the other hand, the risk, i.e. the deviation of the claim
cost from its expectation, is of course transferred to the company – in partic-
ular, it is not the goal to reduce the variance of the claim cost to zero.

A tariff analysis is most often carried out with the aid of Generalized Linear
Models (GLMs), the theory of which is well summarized in McCullagh and
Nelder (1989). Application of GLMs to non-life insurance has been considered,
among others, by Brockman and Wright (1992). The tariff analysis is usually
made separately for claim frequency and average claim severity, using multi-
plicative models (Jung, 1968). For GLMs, this corresponds to using a log-link
function.

In this paper we focus on claim frequency under a multiplicative model.
Let Yi be the observed claim frequency for policy i and let gj

i denote the price
relativity for rating factor number j for this policy compared to a reference
policy, j = 1, 2, …, q. The claim frequency of the multiplicative model can then
be written 

li 0 E (Yi ) = l0 g1
i g2

i ··· gq
i , (1)

where l0 is li for the reference policy. The price relativities are connected to
the GLM regression parameters b = (b1, …, bp) through the log-link,

li = exp( bTxi ),

where xi = (xi1, …, xip) is a vector of 0-1 dummy variables (covariates) indi-
cating which particular parameters that apply to policy i.

In practice, there is always some variation left above the multiplicative
model: two policies in the same tariff cell, i.e. with the same values on the rating
factors, still have some residual difference in their expectation, unexplained by
the multiplicative model. Our aim here is to present measures of explained
and unexplained variation. This serves two purposes: (i) it is an aid in choos-
ing rating factors for the model, cf. the use of R2 in linear regression; (ii) it gives
an indication of whether there is a need for experience rating (bonus/malus
systems) at the individual level or not.

Several authors have suggested the use of credibility models for so called
optimal bonus/malus rating, see Lemaire (1995) for an overview. As explained
in Ohlsson and Johansson (2006) and Ohlsson (2008), credibility models can be
viewed as random effect models, in particular this is convenient in a GLM
context. The multiplicative model above then becomes, if Ui denotes the random
effect for contract i,

E (Yi |Ui ) = l0 g1
i g2

i ··· gq
iUi = liUi . (2)
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Here E (Ui ) = 1 and Var(Ui ) can be used as the basis for a measure of the
amount of unexplained individual variation, as explained below. Without ref-
erence to GLMs, Bühlmann and Gisler (2005, Chapter 4.13) discuss similar
models under the name credibility models with “a priori differences”. In their
Chapter 9, Bühlman and Gisler (2005) also discuss evolutionary credibility
models, which allow the Ui for different observational years to have less than
the 100% correlation implicitly assumed above.

While the total number of claims is what drives the cost of the insurance
company, its variation is not an appropriate starting point for measuring the
performance of the chosen rating factors. The rating factors determine how the
total premium is distributed among the policy holders, but does not affect the
number of claims, the cost or premium income of the company directly in a
given portfolio of policies. The goal of a tariff analysis is not to reduce the cost
of the company, other things equal, but to get the right price on a competi-
tive market. The latter will, of course, in the end increase the revenue of the
company, while the wrong price will result in adverse selection of customers.

To this end we suggest taking an individual perspective when measuring the
performance of the chosen tariff, defining the total variation of a portfolio of
insurance policies as the average mean square error of prediction, where “aver-
age” refers to choosing a policy at random, see Section 2.2.

We use a decomposition of this total variation in the portfolio into three
parts: explained individual variation, unexplained individual variation and
noise. This is similar to a decomposition defined by Johnson and Hey (1971)
and Brockman and Wright (1992, Appendix D), who refer to explained and
unexplained individual variation as between cell variance and within cell vari-
ance respectively. The coefficient of determination, R2, is defined as the estimated
fraction of total variance explained by the model. However, the noise part of
the total variance, which is the Poisson variance in a model where there is
nothing more to explain (Var(Ui) = 0) can never be explained. This suggests
that a more relevant index is the coefficient of individual determination (CID),
defined as the estimated proportion of the total individual variance explained
by the model. It excludes noise variance and is (close to) one if we manage to
explain (almost) all variation between policy means.

In non-life actuarial applications, the likelihood based deviance is often
employed for model selection. In the same spirit, coefficients of determination
may be defined using likelihood methods and deviance rather than variance
decompositions, see for instance Maddala (1983), Cox and Snell (1989, pp. 208-
209), Maggee (1990) and Nagelkerke (1991). However, we believe that a variance
decomposition of the response variable (in our case claim frequency) is of par-
ticular interest to the experimenter, providing an intuitive explanation of the
fraction of total variation that can be explained.

It is also of interest to test whether there is more variation left to explain
or not. We present tests that generalize those of Venezian (1981, 1990) who only
considers the special case with no covariates and constant duration. The tests
might be used as an indication of the need for bonus/malus systems and/or a

ASSESSING INDIVIDUAL UNEXPLAINED VARIATION IN NON-LIFE INSURANCE 251



search for additional rating factors. We also present an estimate of the rela-
tive amount of overdispersion, f, that differs slightly from the traditional one,
based on Pearson’s x2-statistic in that policies are weighted based on time dura-
tion, not estimated claim frequency. We also define coefficients of variation for
the exlained and unexplained individual variation, as well as for the noise.

The paper is organized as follows. In Section 2 we define the model and vari-
ance decomposition in more detail. Parameter estimation is considered in Sub-
section 3.1, including definitions of R2 and CID. Tests of excess variance are
discussed in Subsection 3.2 and our findings are applied to Motor TPL (Third
Party Liability) insurance in Section 4. We demonstrate, for a tariff with three
year durations, that only 0.5% of the total variation (=R2) and 11% of the total
individual variation (= CID) in claim frequencies is explained. The explained
and unexplained individual variation have coefficients of variation 29% and
81% respectively. Further discussion of the results is provided in Section 5 and
more technical details are gathered in the appendix.

2. VARIANCE DECOMPOSITION AND UNEXPLAINED INDIVIDUAL VARIATION

2.1. A Mixed Poisson Model

Consider a portfolio of n insurance policies. For i = 1, …, n, let Ni be the
observed number of claims during a period of time, ti, so that Yi = Ni /ti . It is
assumed that conditional on Ui, Ni follows a Poisson distribution with expec-
tation ti liUi, and so the unconditional distribution is a mixed Poisson distri-
bution, i.e.

Ni ! Po(ti Li ), (3)

where Li = liUi and li is given by (2). The Poisson model is frequently used in
non-life insurance, see for instance Chapter 2 of Beard et al. (1984).

The unexplained individual variation is captured by the random variable
Li – in Motor TPL insurance this variable can be said to capture the accident
proneness of the driver – with mean 

E (Li) = li . (4)

We assume a variance function

Var(Li) = zli
a, (5)

for the accident proneness for some a > 0 and z $ 0. When z = 0, (2)-(4) define
a generalized linear model with log link function.

For non-life insurance, a = 2 is most well known, since then Var(Ui) = z
is independent of the covariate xi and z becomes the squared coefficient of
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variation of Li |xi , a parameter independent of the chosen unit of time. The
extension to time varying random effects (see the appendix) is also most natural
for a = 2. When a = 1, z = Var(Li) /E(Li) is the relative increase of variance
caused by the overdispersion. We regard a as a constant and z as an unknown
parameter. However, to keep the variance function more flexible, we will not
restrict a in advance. See Pocock et al. (1981), Hinde (1982), Breslow (1984)
and Lawless (1987) for more details on parameter estimation and choice of
variance functions for overdispersed Poisson regression.

2.2. Variance Decomposition

For our purpose of measuring explained and unexplained variation, we first
need a measure of the total variability in the portfolio. As explained above, the
relevant measure here is not the variance of the total cost for the company, but
rather an average of the variance for the individuals. For relevance, the average
should be weighted with the time duration ti, so that a one-year policy has
the same impact as two half-year policies. Conceptually, this may be viewed as
if we drew a policy at random from the portfolio, giving each policy i a prob-
ability proportional to its ti. The mean claim frequency (of a randomly drawn
policy) is then 

/ ,t tl li i
i

i
i

= ! ! (6) 

where !i is short for !n
i =1.

The benchmark for measuring the effect of choosing a tariff should be a tariff
where all policies are assigned the average l. (Note that l differs from l0 in (1),
which is the claim frequency of a reference policy, chosen to have a price rel-
ativity of one for all rating factors.)

The average mean squared error of prediction (AMSEP) for all {Yi} is 

2
/ .t E ts li i

i
i

i

2
= -Y! !^` h j (7) 

Now, since E(Yi |Li) = Li and E(Li) = li we have the simple decomposition
E((Yi – l)2) = (li – l)2 + E((Li – li)2) + E((Yi – Li)

2). Hence, since E((Yi – Li)
2) =

E(Var(Yi |Li)) = li /ti, we can write s2 as a sum of three terms 

2

2 3

i/ / / .t t t t t

s s s s

l l z l li i i i
a

i ii iiiiii

2
1
2 2 2

= + +

= - + + ! !!!!! ^ h

(8)
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The first term of (8), s1
2, quantifies explained individual variation, the second

term s2
2 unexplained individual variation and the third term s3

2 represents noise,
i.e. the variance in a Poisson model without overdispersion. We will refer to 

2
expun 2 3 /t E ts s s li

i
i i i

i

2 2 2
= + = -Y! !^` h j (9)

as the total unexplained variance. Following Venezian (1990), we also use the
word excess variance for s2

2, since it quantifies the total excess of variance for
all Yi compared to what is expected under a pure Poisson model.

We have argued that the insurance company does not aim at predicting the
customers’ Yi , but rather Li. Hence, it would be more relevant to consider the
AMSEP for {Li} rather than {Yi}, i.e.

2
ind / ,t E ts lLi

i
i i

i

2
= -! !^` h j (10)

which could also be called the total individual variation; note that s2
ind = s1

2 + s2
2.

A variance decomposition similar to (8) is defined by Johnson and Hey
(1971) and Brockman and Wright (1992) when a = 2. The difference is mainly
that they sum over tariff cells rather than policies and use a discrete approx-
imation of accident proneness within each cell. With our approach we can
handle continuous as well as discrete covariates.

Traditionally, the total variance is decomposed into explained and unex-
plained variance components, and the explained variance is further divided
into various sources of variation. The special feature of (8) is that the unex-
plained variance is split into two terms representing individual variation and
noise. It is a special case of a more general variance decomposition introduced
by Hössjer (2008) for a large class of mixed regression models, including Pois-
son, logistic and linear regression.

2.3. Coefficients of Determination

To quantify the proportion of variance explained by the covariates, a traditional
R2-type quantity would be the fraction of the total variation,

1 ,r
s

s 2

= 2

while we have argued that it would be more relevant to use the fraction of the
total individual variance,

ind

r 1 ,
s

s
ind

2

= 2
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which excludes the noise variance. Recall here that s2
ind = s1

2 + s2
2.

The upper bound of rind is 1, corresponding to all relevant covariates being
used in the model. The upper bound 1 of r requires, in addition, that the noise
variance has been eliminated, which can only be achieved for very long time
durations, ti . Indeed, it is easy to see that rind is unaffected if all time durations
are, for instance, doubled, whereas r is increased.

2.4. Measures of Overdispersion and Coefficients of Variation

To assess the amount of unexplained variance several possible quantities could
be used, such as z or s2

2. A more intuitive choice is perhaps 1 – rind = s2
2 /s2

ind,
which gives the proportion of total individual variance not explained by the
covariates. Alternatively,

expun

3 3

2f
s

s

s

s
12

2

2

2

= = + (11)

quantifies, in relative terms, the amount of excess of the total unexplained
variance over the noise variance. A value larger than one indicates unexplained
individual variation. However, f shares the drawback of r in not being invari-
ant with respect to magnified time durations. Alternatively we may use the
coefficient of unexplained individual variation 

CUIV = 32 tf f
l l

s
l

1 1
2

2
i

=
-

=
-1/s ^ h

(12)

as a measure of overdispersion. It quantifies the individual unexplained stan-
dard deviation in relation to the mean and is invariant with respect to magnified
time durations. We argue that CUIV it is a more intuitive and relevant mea-
sure of overdispersion than f for actuarial applications.

The coefficient of explained individual variation 

CEIV = l
s1 (13)

and the coefficient of noise variation 

CNV = 3 t
,l l

1i
=

1/s
(14)

are two other quantities of interest. In fact, the variance decomposition (8) may
be restated by decomposing the squared coefficient of variation 
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CV2 = 2l

2s
= CEIV2 + CUIV2 + CNV2

into three sources of variation.

3. STATISTICAL INFERENCE

3.1. Parameter Estimation

The unknown parameters, a, b and z, can be estimated using full maximum
likelihood. This requires specification of the distribution of all Li and yields
quite complicated parameter estimates.

We will use a simpler approach, where first b is estimated separately by
maximum likelihood from a generalized linear model without overdispersion
(z = 0). This facilitates use of standard software and moreover, it can be shown
that b is a consistent and asymptotically normal estimator of b even when z > 0,
see e.g. White (1982).

The next step is to estimate a, as explained in the appendix for the car acci-
dents data set. Given b and a, we then estimate z by 

2

,z
l

l l

t

t

i i
a

i i i ii
=

- -

i

Y

!

! `b j l

(15)

where li = exp(xi bT) and a is regarded as known (for instance the estimated
a, but not necessarily so). It is shown in Hössjer (2008) that asymptotically, in
the limit of large samples n, z has a normal distribution with mean z when a
is regarded as a known constant. An explicit formula for the standard error is
also provided there.

The empirical version of the AMSEP for predicting claim frequency with
the constant l in (7) is, using (8),

1 2 3

2

,s s s s
l l l l l

t

t

t

t

ti

i i

i

i i i ii

i

ii2 2 2 3

2

= + + =
-

+
- -

+
i

i

i i

Y

!
!

!

!

!
!` `bj j l

(16)

where l = !i ti li / !i ti. It gives rise to the coefficient of determination 

R2 = r = 1 ,
s
s

2

2

(17)

Note that R2 can be interpreted as the relative decrease in AMSEP we obtain
for {Yi} by going from a constant claim frequency l to a tariff of li’s, since its
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denominator is an estimate s2 of the AMSEP with l and the nominator is s2

minus an estimate of the AMSEP with the li, i.e. of s2
unexp in (9).

The empirical version of the more relevant AMSEP for prediction of Li in
(10) is 

s 2
ind = s1

2 + s2
2. (18)

leading to an alternative to R2 which we call the coefficient of individual deter-
mination

CID = rind =
ind

1 ,
s
s

2

2

(19) 

respectively.

Like R2, CID can be interpreted as the relative decrease in AMSEP for {Li}
resulting from introducing varying li’s. The denominator is an estimate s 2

ind of
the AMSEP with l, see (10), while the numerator the difference of s 2

ind and an
estimator of the AMSEP with li, i.e. of

s2
2 = tii! E ((Li – li )

2) / tii! . (20)

When all time durations are equal, the R2 here is an analogue of the classical
R2 used for (univariate) linear regression models, whereas CID has no such
analogue. The reason is that that rind cannot be estimated for linear models,
since the two components of the unexplained variance, s2

2 and s3
2, cannot be

identified. On the contrary, CID is computable for both mixed Poisson and logis-
tic regression models, as well as for multivariate linear regression models, see
Hössjer (2008), where also standard errors of both R2 and CID are provided.

In order to estimate f from data, we use 

f5 =
i

2

.
lt

i

i i-

i

i

Y

Y

!
! ` j

(21)

A slightly different version of f5 has !i li in the denominator instead. When
all time durations are equal, it follows from the GLM likelihood estimating
equations that the two versions are identical (see e.g. McCullagh and Nelder,
1989). A formula for the standard error of f5 is provided in the appendix.
In the special case of constant time duration and no covariates (li / l), f5 is
essentially the index of dispersion, i.e. the ratio of the sample variance and
sample mean. In Section 5, we show that (21) is closely related to the Pearson
estimate f5 used in GLM theory.
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The coefficients of variations (12)-(14) are estimated in the natural way, replacing
si

2 by si
2 and l by l = !i ti li / !i ti.

3.2. Testing Excess Variance

In order to test for excess variance, we formulate the null hypothesis H0 of no
excess variance against the alternative H1 of a positive excess variance, i.e.

H0 : z = 0,
(22)

H1 : z > 0,

which is equivalent to testing s2
2 = 0 against s2

2 > 0 or f = 1 against f > 1.
When the distribution of all Li is specified, one may employ a likelihood ratio
test to carry out (22). We will use a simpler approach based on excess variance,
which only involves the first two moments of Yi.

Our starting point is the excess variance statistic !i ti (Yi – li)
2 – !iYi , which

agrees with the numerator of (15), except that !i li is replaced by !iYi . (Again,
the latter two sums are identical when all time durations are equal.) It is shown
in the appendix that the standardized excess variance statistic 

i

2

,
l

l
T

t

2 i

i i i
=

- -

2
i

ii
Y Y

!

!! ` j
(23)

has an approximate standard normal distribution for large samples. Hence, a
test with an approximate significance level 1 – a rejects H0 when T $ la, where
la is the (1 – a)-quantile of a standard normal distribution. Since T = c(f5 – 1),
with c = / ,l2i i

2

i iY! ! we may also regard T as standardized version of f5.
For constant time duration and no covariates, (23) amounts to testing over-

dispersion of stationary count data. Then the denominator of (23) simplifies
to n2 l. This test has been used by Venezian (1981, 1990) for car accident
data. An asymptotically equivalent approach, based on a x2-approximation of
!i(Yi – l)2, has been considered by Fisher (1950) and Rao and Chakravarti (1956).

4. CAR-ACCIDENT DATA

We will analyze Swedish car accident data from If P&C Insurance Company.
A detailed description of the data set can be found in Järnmalm (2006). Car
accidents are registered for customers having a uninterrupted 3 year period in
between January 1, 2002 and December 31, 2005. Shorter durations, in total
approximately 30% of the total portfolio are thus excluded. The rating factors
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are defined at the beginning of the risk period. The age depending factors, e.g.
Age of car, are for this reason not as accurate as possible, the advantage on
the other hand is that each individual’s characteristics are kept in one data
record. Hence, although our methodology in principle handles varying duration,
the present data set has ti / 1, measuring time in three year intervals. The size
of the data set is n = 439283, and customers report a total of 29405 accidents
during the three year period.

The seven rating factors of the model are presented in Table 1. Although
our variance decomposition handles continuous covariates, we have followed
the current practice at If P&C and discretized the continuous covariates. This
implies that rating factor j is divided into kj classes. For j = 1, …, 5, each class
within the given rating factor has a distinct regression coefficient br, except for
the class of the reference policy, which is chosen to have a fixed regression
coefficient, 0, not included in b. We model interaction between sex and age
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TABLE 1

THE RATING FACTORS USED FOR THE CAR ACCIDENTS DATA SET.

Rating factor j Class Variable kj Class Description 

1: Customer years 1 0-2 4 No. of years a customer has been insured in
2 3-5 the company.
3 6-10
4 11-

2: Geographic zone 0-18 19 A division of Sweden into 19 geographical 
zones.

3: Age of car 1 0-2 6
2 3-5
3 6-8
4 9-12
5 13-16
6 17-

4: Premium class 0-9 10 Premium class is determined by type of car.

5: Driving distance 1-5 5 Five intervals of reported driving distances.
A larger class index corresponds to a longer
distance.

6: Sex 2 The sex of the customer.

7: Age 1 0-24 13 The age of the customer.
2 25-26 The classes 4-12 have five year intervals, 30-
3 27-29 34, ..., 70-74.
� �

13 75-



(rating factors 6 and 7), giving k6k7 combined classes, of which one is chosen
as reference. The covariates are chosen as xi1 = 1 (the intercept) and, for r > 1,
xir = 1 if individual i belongs to the given (combined) class and 0 otherwise.
The total number of regression coefficients is 

p = 1 + j 1
j 1

5

-
=

k! _ i + (k6 k7 – 1) = 65.

Table 2 shows results of a standard GLM analysis, including parameter esti-
mates br and the associated confidence intervals of some selected regression
coefficients. The average estimated claim frequency is 

.l ln n 0 0669i
i

i
i

n
1

1
= = =-

=

1- Y! !

per three year intervals.

The next step is to test for overdispersion. For the data set analyzed by Venezian
(1990), the overdispersion is highly significant. Our conclusion is the same,
since the test statistic for excess variance is 
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TABLE 2

ESTIMATED RELATIVE INCREASE OF THE ACCIDENT RATE, exp(br) FOR SELECTED RATING FACTOR CLASSES AND

CORRESPONDING WALD CONFIDENCE INTERVALS (CIS) WITH (APPROXIMATE) COVERAGE PROBABILITY 95%.
FOR EACH (COMBINED) RATING FACTOR, WE HAVE ONLY INCLUDED THE TWO CLASSES WITH MINIMAL

AND MAXIMAL exp( br). THE CIS ARE CALCULATED WITH THE HELP OF THE STANDARD SOFTWARE

(PROC GENMOD IN SAS) FOR GLM LOGLINK POISSON REGRESSION ML-ESTIMATION. HENCE THE

OVERDISPERSION IS MODELED SLIGHTLY DIFFERENTLY THAN FOR THE MIXED POISSON DISTRIBUTION (3).
THIS DOES NOT CHANGE THE PARAMETER ESTIMATES br, BUT THE CIS ARE SLIGHTLY AFFECTED.
THE DIFFERENCE IS HOWEVER NEGLIGIBLE, SINCE THE AMOUNT OF OVERDISPERSION z IS SMALL.

Rating factor Class exp( b̂r) exp(Ib r
) 

Intercept 0.0590 (0.0470,0.0742)
Customer years 1 1.2364 (1.1922,1.2822)

4 1.0000 (1.0000,1.0000)
Geographic zone 2 0.5475 (0.5056,0.5925)

16 1.0021 (0.9468,1.0607)
Age of car 2 1.0641 (1.0242,1.1055)

6 0.7279 (0.6811,0.7779)
Premium class 1 0.3988 (0.2484,0.6371)

6 1.5873 (1.2815,1.9662)
Driving distance 1 0.8203 (0.7898,0.8520)

5 1.2545 (1.1739,1.3407)
Sex/age Female/13 1.4593 (1.3475,1.5471)

Female/10 0.8740 (0.8125,0.9400) 



T = 19.89, (24)

so that the null hypothesis of no excess variance is rejected at level 0.001.
As a comparison, T = 23.30 for a model with no covariates. Hence the rating
factors only decrease the significance of excess variance marginally.

To assess more explicitly the impact of the rating factors, we estimated the
three components of the empirical variance decomposition (16) as 

s1
2 = 0.0003732,

s2
2 = 0.0030,

s3
2 = l = 0.0669.

Inserting these values into (17) and (19), we get surprisingly low coefficients
of determination 

R2 = 0.0053,
(25)

CID = 0.1120.

Only about 0.5% of the total variation and 11% of the total individual vari-
ation is thus explained by the rating factors. In Figure 1 both R2 and CID are
plotted as functions of time, assuming all policies in the portfolio have the
same time duration t years. The two individual variances are constant, whereas
the noise variance s3

2 is inversely proportional to t. Hence R2 increases with
t whereas CID is constant. We notice that R2 = 0.18% if t = 1 and that t = 60.2
is required in order for R2 to reach 0.5CID. Of course, in practice, the time
duration t cannot be varied in this way. An insurance contract usually lasts
for one year. On the other hand, it is still of interest to consider claims over
several years, and then several policies may remain unchanged for at least, say,
five years. In any case, Figure 1 illustrates that noise is by far the dominating
source of variation for time durations used in practice and that unrealisti-
cally long durations would be required in order to reduce noise variance
significantly.

The relative excess variance is estimated as 

f5 = 1.0442. (26)

and the coefficients of variation as 

CEIV% = 0.289

CUIV% = 0.813

CNV% = 3.866

CV% = 3.962.
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FIGURE 1: Plot of R2 (solid line) and CID (dotted line) versus t for the car accident data set,
assuming all policies remain in the portfolio for t years, with s1

2(t) = s1
2, s2

2(t) = s2
2 and s3

2(t) = 3s3
2 /t.

Hence, the explained standard deviation is about 29% and the unexplained
individual standard deviation about 81% of the average claim frequency. The
noise coefficient of variation is much larger, 387%. As explained above, this is
due to the short time durations.

In order to give confidence intervals for (selected) parameter estimates, we
need to estimate the variance function, which requires estimation of a and z.
A regression method, explained in the appendix, yields 

(a,z0) = (1.3051, 0.0946). (27)

For the final estimate (15) of the dispersion parameter z we use two different
values of a, which is regarded as known, and obtain 

. , ,

. , . .
z

a

a

if

if

0 0442 1

0 0979 1 3
=

=

=
*

Here a = 1.3 is taken from the initial regression analysis (27) and a = 1 is cho-
sen to yield a simple overdispersion model.
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We report 95% Wald confidence intervals in Table 2 for selected regression
parameters and in Table 4 for r, rind, f and z. We notice that Ir, Irind

and If
are very insensitive to the choice of a (1 or 1.3). This is due to the small amount
of excess variance in the data, making the exact model of overdispersion less
crucial. Hence we recommend using the simpler model with a = 1. Two versions
of If are reported based on standard errors defined in the appendix. The para-
metric model assumes a gamma distributed accident proneness, wheres the
nonparametric model only includes the first four moments of Li|xi. They give
essentially the same confidence intervals.

5. DISCUSSION

In this paper, we have defined a general framework for quantifying explained
and unexplained variation of claim frequencies in non-life insurance, including
a new coefficient of determination, CID, generalizations of previously used
estimates of relative overdispersion (f5) and test statistics for overdispersion (T),
as well as new coefficients of explained and unexplained individual variation,
CEIV and CUIV respectively.

Our purpose is not to solve new actuarial problems, but rather to provide
new, intuitive quantities that hopefully give new insights as regards to the qual-
ity of the chosen model. Our hope is that CID, CEIV and CUIV all become
valuable and much used tools when the actuary selects rating factors and classes
within each rating factor.

An application to a Swedish car accident data set reveals that the amount of
overdispersion is highly significant, but yet small in relation to noise variance.
This manifests itself by CID being much larger than R2 and is explained by
the fact that time durations in Motor TPL are very short in relation to claim
frequencies. Similar analyses for other countries (see Järnmalm, 2006) show that
although the amount of overdispersion varies, it is persistently significant but
yet small in relation to noise variance.

Surprisingly, the proportion of explained variance is still very small after
removing noise variance. We obtained CID = 11.2%, whereas higher, but still
low values CID = 35.8% and CID = 31.2% can be deduced from the variance
decompositions of Johnson and Hey (1971) and Brockman and Wright (1992)
respectively. The low value of CID obtained for our data set and model may
have several reasons:

1) The multiplicative risk assumption is only approximately correct. In partic-
ular, our model only includes interaction between two of the seven rating
factors in Table 1.

2) The number of classes within some rating factor could be increased or
replaced by continuous covariates.

3) The true claim frequencies li may be time varying, not constant. See the
appendix for more discussion on this topic.
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TABLE 3

MEAN AND EXCESS VARIANCE FOR PREMIUM GROUPS (SEE APPENDIX).

Ij l̂j ŝ 2
excess, j | Ij | Accidents 

(0.000, 0.015) 0.0113 –0.00142 1513 13
(0.015, 0.025) 0.0200 0.00029 627 13
(0.025, 0.035) 0.0317 0.00091 7462 226
(0.035, 0.045) 0.0410 0.00144 35494 1448
(0.045, 0.055) 0.0505 0.00132 78455 3933
(0.055, 0.065) 0.0600 0.00323 100717 6092
(0.065, 0.075) 0.0697 0.00345 84785 5945
(0.075, 0.085) 0.0796 0.00350 57082 4518
(0.085, 0.095) 0.0896 0.00541 35490 3239
(0.095, 0.105) 0.0993 0.00196 20130 1962
(0.105, 0.115) 0.1093 0.00327 9942 1057
(0.115, 0.125) 0.1193 0.00483 4345 517
(0.125, 0.135) 0.1294 –0.00430 1818 220
(0.135, 0.145) 0.1394 0.00921 836 122
(0.145, 0.155) 0.1493 0.03867 391 61
(0.155, 0.165) 0.1590 0.14955 126 23
(0.165, 0.175) 0.1696 0.14359 42 9
(0.175, 0.185) 0.1806 0.06495 15 5
(0.185, 0.195) 0.1888 0.00247 8 2
(0.195, 0.205) 0.1988 –0.15927 3 0
(0.205, 0.215) 0.2097 –0.16571 2 0

TABLE 4

WALD CONFIDENCE INTERVALS Iq = (q – la /2 dq, q + la /2 dq) OF VARIOUS PARAMETERS q.
THE ASYMPTOTIC COVERAGE PROBABILITY IS 95% (a = 0.05) AND dq IS THE STANDARD ERROR OF q.
THE ASSUMED a IS EITHER 1 OR 1.3 AND If IS EITHER NONPARAMETRIC (NP) OR PARAMETRIC (P).

q a Iq

r 1 (0.0049, 0.0058)
r 1.3 (0.0049, 0.0058) 
rind 1 (0.0967, 0.1274) 
rind 1.3 (0.0967, 0.1274) 
f 1 (1.0383, 1.0500)NP

f 1.3 (1.0383, 1.0500)NP

f 1 (1.0384, 1.0500)P

z 1 (0.0383, 0.0500)
z 1.3 (0.0849, 0.1108)



4) A number of unknown individual characteristics are not included in the
model. For instance, the annual driving distance is self-reported and may
differ from the true one. Car drivers use different roads with varying risks,
and this variation is only to some extent captured by geographical zone.
The individual ability to drive safely is only to some extent explained by
sex/age. Other factors, such as psychological make-up and drinking habits,
cannot be included in the model.

5) Inclusion of customers with time duration less than three years in the port-
folio may increase CID. These drivers typically have higher claim frequencies
than average.

Since individual variation of claim frequencies is very complex, we don’t state
that 1-5) are enough to guarantee a CID of 100%, simply that they to some
extent explain the low CID found in our data set. For more discussion on this
theme we refer to Haight (2001), Lemaire (1995) and Brockman and Wright
(1992).

Our work can be extended in several ways. A first extension is to consider
time varying covariates (see item 4 above) and random effects, as described in
more detail in the appendix.

A second extension is to use overdispersed Poisson distributions (ODP)
rather than mixed Poisson distributions. For ODPs, the parameter f is defined
directly in terms of the variance function;

vi = Var(Yi ) = fli /ti , (28)

for all policies i = 1, …, n, see McCullagh and Nelder (1989). In general, for
mixed Poisson distributions, (28) does not hold, and the definition of f in (11)
cannot be reformulated in terms of the variance function of individual poli-
cies. An exception is a = 1 and ti / t, in which case (28) is satisfied for mixed
Poisson distributions as well, with f = 1 + zt.

Formally, the variance decompositions (8) and (16) can be defined for ODPs,
provided we change the interpretation of vi to that of (28). This in turn provides
us with R2 and CID for ODPs. The interpretion of unexplained individual
variance and CID is less clear though, since ODP is not a mixed model, having
no random effects.

A third extension, when p/n is non-negligible, is to account for reduced degrees
of freedoms when defining R2 and CID (see Hössjer, 2008), as well as f5 and T.
For our data set, this adjustment has a minor effect, since p/n = 1.48 · 10–4.

A fourth extension is to replace ti by other weights wi when defining l, s2,
the variance decomposition (8), r, rind and f. Various weighting schemes are
discussed in Hössjer (2008). One possibility is inverse variance weighting wi =
ti / li . This choice of weights results in all policies having approximately the same
contribution to the unexplained part of s2, since 

wi Var(Yi ) . 1,
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where the approximation is exact in absence of overdispersion. Since these
weights involve unknown parameters, we use estimated weights 

wi = ti /li (29)

to compute l, s2, the empirical variance decomposition (16), R2, CID and f5.
We may also generalize the version of T with !i li instead of !iYi in the numer-
ator to 
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is the unscaled Pearson statistic (Pearson, 1900) for Poisson regression. The ver-
sion of f5 with !i li in the denominator is generalized to 
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which agrees with the Pearson definition of f5, except for using n instead of n – p
in the denominator. We notice that (30) and (31) only differ marginally from
(24) and (26). Hence, for our data set, it seems that the choice of weights is
not crucial. This is probably due to the fact that all time durations are equal
and the estimated claim frequencies li vary quite little for the majority of policies.
For other tariffs, this may not be the case and then it is of interest to compare
how various weighting schemes affect the coefficients of determination, test of
excess variance, estimated overdispersion and coefficients of variation in terms
of efficiency and power.

A fifth extension would be to include claim severity. Assuming Xij is the
j th claim severity of the ith policy we may variance decompose the observed cost
rates 

ij /Z ti
j

i
1

i

=
=

N

X!
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with weights wi = ti. An alternative approach is to treat claim severity separately
and condition on the observed Ni = ni. This leads to variance decomposition
of the average claim costs 

ij

n

/ ,Z ni
j

i
1

=
=

i

X!

for all policies with ni > 0, using weights wi = ni.

APPENDIX

Estimating the variance parameter a. We divide the estimated individual claim
frequencies li into 21 intervals (see Table 3), henceforth denoted as premium
groups. Let Ij be the j th premium group ( j = 1, …, 21) and 

lj = j
j

/ ,l ii I!
I!

s 2
excess, j = jj

j

2
/l li ii I

- -
!

Y I! ` j

the estimated average premium and excess variance within Ij. Assuming a
power relation E (s 2

excess, j) = zlj
a, a weighted linear regression of log(s 2

excess, j)
against log(lj) is employed, with weights proportional to | Ij |. Since s 2

excess, j is
unreliable (and sometimes negative) for small premium groups, we only include
I3, …, I12 in the regression analysis, resulting in (27), where z0 is different from
(15), which assumes a to be known. The estimate (27) is quite stable. Further
exclusion of i) I12 gives (a, z0) = (1.3234, 0.0997) and ii) I3 and I12 gives
(a, z0) = (1.2971, 0.0930). In Figure 2, the pairs (lj, s2

excess, j), j =3, …, 12 are plot-
ted together with fitted variance curves based on (27) and a second curve with
a = 1 and only z being estimated.

Asymptotic normality of z5 and the numerator of (23). Define

S = (S1, S2) = (!i li, !i tivi) ,

S = (S1, S2) = (!iYi , !i ti (Yi – li)
2) ,

where vi = Var(Yi ). We will prove that asymptotically, in the limit of large sam-
ples, S has a bivariate normal distribution with mean S and covariance matrix 

.
s
s

s
s

11

12

12

22
=! e o
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FIGURE 2: Plot of s 2
excess, j against lj for premium groups j = 3, …, 12, together with fitted variance

curves based on estimates (27) (dotted line), a = 1 and estimated z0 (solid line).

From this asymptotic normality of f5 follows. Indeed,

f5 = g(S ),

f = g(S )

where g(S1, S2) = S2/S1. Let G = g�(S) = (–f,1)/S1. Then, by Taylor expanding g
around S, it follows that f5 is asymptotically normal with mean f and variance 

s2
f5 = GSGT = (s22 – 2fs12 + f2s11) / S1

2. (A.1)

Similarly, let C be the numerator of (23) and write 

C = !i (ti(Yi – li)
2 – Yi) = k(S ),

C = !i (tivi – li) = k(S ),
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where k(S ) = S2 – S1. Putting K = k�(S ) = (–1,1) we find that C is an asymp-
totically normal estimator of C with asymptotic variance 

s2
C = K SKT = s22 – 2s12 + s11. (A.2)

Following the lines of proof in Hössjer (2008), one verifies that 

S = S + 
i

! (Yi – li, ti (Yi – li)
2 – tivi) + op(n1/2), (A.3)

where the the last term is small in probability compared to n1/2 and hence
asymptotically negligible. A consequence of (A.3) is that the impact of replac-
ing li by li in the definition of S has no effect on the asymptotic distribution.
It follows from (A.3) that 

s11 = ,ii
v!

s12 = ,ii
t! (A.4)

s22 = ,kii!

where ti = ti E ((Yi – li)
3) and ki = ti

2E (((Yi – li )
2 – vi )

2). Inserting (A.4) into
(A.1) and (A.2) we obtain 

s2
f5 = S1

–2
i! (ki – 2fti + f2vi ),

(A.5)
s2

C = i! (ki – 2ti + vi ).

To compute standard errors, we replace S1, f, vi, ti and ki by estimates and
obtain 

d 2
f5 = ( ii

Y! )–2
i! (ki – 2f5 ti + f5 2(Yi – li)

2),
(A.6)

d 2
C = i! (ki – 2ti + (Yi – li)

2),

One option is to proceed nonparametrically and put 

ti = ti ((Yi – li)
3 – vi (Yi – li)),

ki = ti
2((Yi – li)

2 – vi )2,

vi = li / ti + zli
a.

We added the second term –vi (Yi – li) in the definition of ti in order to guaran-
tee that S is positive (semi)definite and thus d 2

f5 and d 2
C are non-negative.
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Alternatively, a parametric approach is to assume a gamma distribution for all
Li. For instance, if a = 1, Li ! G(li /z, z), where G(a,b ) has density 

f (x) =
ab G

1
a

] g
xa – 1e–x/b, x > 0.

Hence ti Li ! G(li /z, tiz ), and Ni = tiYi has a negative binomial distribution
Nbin(li /z,1 / (1+ tiz )). From moments of negative binomial distributions we
obtain 

vi = ti
–1li (1 + zti ),

ti = ti
–1li (1 + 3zti + 2z2ti

2), (A.7)

ki = 2li
2(1 + zti )

2 + ti
–1li (1 + 7zti + 12z2ti

2 + 6z3ti
3),

and their estimated analogues by plugging in li and z. Since z is often very small
for non-life insurance data the higher order powers of z make little contribution
to the standard errors. When z = 0, we obtain the denominator of (23) from
(A.5) and (A.7). ¡

Extending the variance decomposition to time-varying covariates and random
effects. For simplicity, assume that time is counted in units of years and that
all ti are integer valued and extend (2) and (3) to 

lij = exp( bTxij),

Ni = i ,jj

t

1
i

=
Y! (A.8)

Yij ! Po(lijUij),

where lij, xij = (xij1, …, xijp) and Uij is the time varying price relativity, covari-
ate vector and random effect of policy i during year j respectively. We assume
that Yij and Ylk are conditionally independent given Uij and Ulk, that Uij and Ulk

are independent when i ! l and that 

E (Uij) = 1,
(A.9)

Cov(Uij ,Uik) = zlij
a /2–1lik

a /2–1rk– j

for some autocorrelation function r.

Let li = j 1=

ti! lij /ti and Li = j 1=

ti! lijUij /ti be the average price relativity and
accident proneness of contract i. Then (A.9) gives an extension 

Var(Li) = zli
a, (A.10)
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of the variance function (5), where 

li
a = ti

–2

,j k

t

1

i

=

! lij
a /2lik

a/2 rk – j .

We notice that li # li when a # 2, with equality if and only if rk / 1 and either
a = 2 or lij / li. Hence, the variance of the averaged accident proneness is
reduced when the random effects or price relativities are time-varying.

There are at least two ways to extend the variance decomposition of Sec-
tion 2. The first option is to retain (7) with Yi = Ni /ti, as before. This yields a
variance decomposition for which the explained variance s1

2 and the noise vari-
ance s3

2 agree with (8), whereas the unexplained individual variance 

s2
2 =

i i
/ .lt tz i i

a
i! !

is decreased as soon as li < li for at least one policy i . The conclusion is that
both R2 and CID are increased when random effects within each policy are time
varying.

The second option is to consider the variance of the annual claim frequen-
cies,

s2 =
2

ij / .E tl
j

t

i

n

i
i11

i

-
==

Y!! !_b i l

By similar calculations as in Section 2, this yields quite a different variance
decomposition with 

s1
2 = 2 / .t tl l l l

,ii i ij ii j ii

2
- + -! ! !^ _b h i l

s2
2 = ij / ,tz l

,
a

iii j
!!

s3
2 = / .t tli i iii

!!

The noise variance s3
2 is increased for a variance decomposition based on

annual claim frequencies (by a factor t if ti / t) in agreement with the discus-
sion in Section 4. The explained variance, s1

2, is enlarged as well, since we are
able to explain not only li but also the variation of lij around li. The unex-
plained individual variance, s2

2, also increases when a $ 1, since then !i, j la
ij $

!i ti li
a.

The conclusion is that in general, R2 decreases if annual claim frequencies
Yij are considered rather than the averaged ones Yi, due to the increased noise
variance. On the other hand, CID may increase or decrease, depending on how
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variable the price relativities and random effects are within each policy. If the
random effects are constant (rk / 1), then CID typically increases when annual
claim frequencies are considered.
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