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ABSTRACT

Variable Annuities with embedded guarantees are very popular in the US mar-
ket. There exists a great variety of products with both, guaranteed minimum
death benefits (GMDB) and guaranteed minimum living benefits (GMLB).
Although several approaches for pricing some of the corresponding guaran-
tees have been proposed in the academic literature, there is no general frame-
work in which the existing variety of such guarantees can be priced consistently.
The present paper fills this gap by introducing a model, which permits a con-
sistent and extensive analysis of all types of guarantees currently offered within
Variable Annuity contracts. Besides a valuation assuming that the policyholder
follows a given strategy with respect to surrender and withdrawals, we are able
to price the contract under optimal policyholder behavior. Using both, Monte-
Carlo methods and a generalization of a finite mesh discretization approach,
we find that some guarantees are overpriced, whereas others, e.g. guaranteed
annuities within guaranteed minimum income benefits (GMIB), are offered
significantly below their risk-neutral value.
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1. INTRODUCTION

Variable Annuities, i.e. deferred annuities that are fund-linked during the defer-
ment period, were introduced in the 1970s in the United States (see Sloane (1970)).
Starting in the 1990s, insurers included certain guarantees in such policies,
namely guaranteed minimum death benefits (GMDB) as well as guaranteed
minimum living benefits (GMLB). The GMLB options can be categorized
in three main groups: Guaranteed minimum accumulation benefits (GMAB)
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provide a guaranteed minimum survival benefit at some specified point in the
future to protect policyholders against decreasing stock markets. Products with
guaranteed minimum income benefits (GMIB) come with a similar guaranteed
value G at some point in time T. However, the guarantee only applies if this
guaranteed value is converted into an annuity using given annuitization rates.
Thus, besides the standard possibilities to take the market value of the fund
units (without guarantee) or convert the market value of the fund units into
a lifelong annuity using the current annuity conversion rates at time T, the
GMIB option gives the policyholder a third choice, namely converting some
guaranteed amount G into an annuity using annuitization rates that are fixed
at inception of the contract (t = 0). The third kind of guaranteed minimum
living benefits are so-called guaranteed minimum withdrawal benefits (GMWB).
Here, a specified amount is guaranteed for withdrawals during the life of the
contract as long as both the amount that is withdrawn within each policy year
and the total amount that is withdrawn over the term of the policy stay within
certain limits. Commonly, guaranteed annual withdrawals of up to 7% of the
(single up-front) premium are guaranteed under the condition that the sum of
the withdrawals does not exceed the single premium. Thus, it may happen that
the insured can withdraw money from the policy, even if the value of the
account is zero. Such guarantees are rather complex since the insured has a
broad variety of choices.

Variable annuities including such guaranteed minimum benefits have not
only been very successful in the United States, but they were also successfully
introduced in several Asian markets; in Japan, for instance, the assets under
management of such contracts have grown to more than USD 100 bn within
less than 10 years after the first product was introduced, cf. e.g. Ledlie et al.
(2008). Currently, these products also gain increasing popularity in Europe.
After several product introductions in the U.K., mainly driven by subsidiaries
of US insurers, the first Variable Annuity in continental Europe was introduced
in 2006. As of recently, all forms of living benefit guarantees are being offered
in Europe: GMAB are present e.g. in the UK, Germany, Switzerland, GMIB
are available in the UK and Germany, and GMWB can be found in the UK, Ger-
many, Italy, Belgium and France. Nevertheless, many European insurers strug-
gle with the complexity of such contracts, particularly regarding their valuation
and hedging, and, as a consequence, still hesitate to offer Variable Annuities.

Most earlier literature on Variable Annuities, e.g., Rentz Jr. (1972) or Greene
(1973), is empirical work dealing with product comparisons rather than pricing
issues. It was not until recently that the special types of guarantees were
discussed by practitioners (cf. JPMorgan (2004), Lehman Brothers (2005)) or
analyzed in the academic literature.

Milevsky and Posner (2001) price various types of guaranteed minimum
death benefits. They present closed form solutions for this “Titanic Option”3
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in case of an exponential mortality law and numerical results for the more
realistic Gompertz-Makeham law. They find that in general these guarantees
are overpriced in the market.

In Milevsky and Salisbury (2002), a model for the valuation of certain
GMLB and GMDB options is presented in a framework where the insured
has the possibility to partially surrender the policy. The authors call this a
“Real Option to Lapse”4. They present closed form solutions in the case of an
exponential mortality law, constant surrender fees and no maturity benefits.
It is shown that both, the value and the optimal surrender strategy, are highly
dependent on the amount of the guarantee and of the surrender fee. Ulm
(2006) additionally considers the “real” option to transfer funds between fixed
and variable accounts and analyzes the impact of this option on the GMDB
rider and the contract as a whole, respectively.

In Milevsky and Salisbury (2006), GMWB options are priced. Besides a
static approach, where deterministic withdrawal strategies are assumed, they
calculate the value of the option in a dynamic approach. Here, the option is
valuated under optimal policyholder behavior. They show that under realistic
parameter assumptions optimally at least the annually guaranteed withdrawal
amount should be withdrawn. Furthermore, they find that such options are usu-
ally underpriced in the market.

In spite of these approaches for the pricing of several options offered in
Variable Annuities, there is no general framework in which the existing vari-
ety of such options can be priced consistently and simultaneously. The present
paper fills this gap. In particular, we present a general framework in which any
design of options and guarantees currently offered within Variable Annuities
can be modeled. Asides from the valuation of a contract assuming that the pol-
icyholder follows a given strategy with respect to surrender and withdrawals,
we are also able to determine an optimal withdrawal and surrender strategy,
and price contracts under this rational strategy.

The remainder of the paper is organized as follows: In Section 2, we give
a brief overview of the existing forms of guarantees in Variable Annuities.
Section 3 introduces the general pricing framework for such guarantees.
We show how any particular contract can be modeled within this framework.
Furthermore, we explain how a given contract can be priced assuming both,
deterministic withdrawal strategies and “optimal” strategies. The latter is
referred to as the case of rational policyholders. Due to the complexity of the
products, in general there are no closed form solutions for the valuation problem.
Therefore, we have to rely on numerical methods. In Section 4, we present a
Monte Carlo algorithm as well as a discretization approach based on gener-
alizations of the ideas of Tanskanen and Lukkarinen (2004). The latter enables
us to price the contracts under the assumption of rational policyholders.
Our results are presented in Section 5. We present the values for a variety of
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contracts, analyze the influence of several parameters and give economic inter-
pretations. Section 6 closes with a summary of the main results and an outlook
for future research.

2. GUARANTEED MINIMUM BENEFITS

This Section introduces and categorizes predominant guarantees offered within
Variable Annuity contracts. After a brief introduction of Variable Annuities
in general in Section 2.1, we dwell on the offered Guaranteed Minimum Death
Benefits (Section 2.2) and Guaranteed Minimum Living Benefits (Section 2.3).
We explain the guarantees from the customer’s point of view and give an overview
over fees that are usually charged.

2.1. Variable Annuities 

Variable Annuities are deferred, fund-linked annuity contracts, usually with a sin-
gle premium payment up-front. Therefore, in what follows we restrict ourselves
to single premium policies. When concluding the contract, the insured are fre-
quently offered optional guarantees, which are paid for by additional fees.

The single premium P is invested in one or several mutual funds. We call
the value At of the insured’s individual portfolio the insured’s account value.
Customers can usually influence the risk-return profile of their investment by
choosing from a selection of different mutual funds. All fees are taken out of
the account by cancellation of fund units. Furthermore, the insured has the pos-
sibility to surrender the contract, to withdraw a portion of the account value
(partial surrender), or to annuitize the account value after a minimum term.

The fees for the guarantee usually are charged as a fixed percentage rate p.a.
of the account value. Therefore, if the underlying fund value increases, the
insurer will receive a rather high fee but will not need to fund the guarantee
in this case, whereas in a scenario of decreasing fund values, the fees will
become smaller but the guarantee will become more valuable. This may lead
to highly unfavorable effects on the insurer’s profit and loss situation if the
guarantees are not hedged appropriately.

The following technical terms are needed to describe the considered guar-
antees: The ratchet benefit base at a certain point in time t is the maximum
of the insured’s account value at certain previous points in time. Usually, it
denotes the maximum value of the account on all past policy anniversary dates.
This special case is also referred to as annual ratchet benefit base. In order to
simplify notation, in what follows, we only consider products with annual
ratchet guarantees.

Furthermore, the roll-up benefit base is the theoretical value that results from
compounding the single premium P with a constant interest rate of i% p.a.
We call this interest rate the roll-up rate.
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2.2. Guaranteed Minimum Death Benefits 

If the insured dies during the deferment period, the dependants obtain a death
benefit. When Variable Annuities were introduced, a very simple form of death
benefit was predominant in the market. However, since the mid 1990s, insurers
started to offer a broad variety of death benefit designs (cf. Lehmann Brothers
(2005)).

The basic form of a death benefit is the so-called Return of Premium Death
Benefit. Here, the maximum of the current account value at time of death and
the single premium is paid. The price for this kind of benefit usually is already
included in the charges of the contract, i.e. this option is available without
additional charges.

Another variant is the Annual Roll-Up Death Benefit. Here, the death benefit
is the maximum of the roll-up benefit base (often with a roll-up rate of 5% or 6%)
and the account value. A typical fee for that death benefit with a roll-up rate of
6% is approximately 0.25% p.a. of the account value (see, e.g., JPMorgan (2004)).

If the contract contains an Annual Ratchet Death Benefit, the death benefit
consists of the greater of the annual ratchet benefit base and the current
account value. The charges for this type of death benefit are similar.

Furthermore, the variant Greater of Annual Ratchet or Annual Roll-Up Death
Benefit is offered. With this kind of option, the greater of the roll-up benefit
base and the annual ratchet benefit base, but at least the current account value
is paid out as the death benefit. With a roll-up rate of i = 6%, insurers typically
charge about 0.6% p.a. for this guarantee (see, e.g., JPMorgan (2004)).

2.3. Guaranteed Minimum Living Benefits

It was not until the late 1990s that Guaranteed Minimum Living Benefits have
been offered in the market. Today, GMLB are very popular.

The two earliest forms, Guaranteed Minimum Accumulation Benefits (GMAB)
and Guaranteed Minimum Income Benefits (GMIB) originated almost at the
same time. Both guarantees offer the insured a guaranteed maturity benefit, i.e.
a minimum benefit at the maturity T of the contract. However, with the GMIB,
this guarantee only applies if the account value is annuitized. Since 2002, a new
form of GMLB is offered, the so-called Guaranteed Minimum Withdrawal Benefit
(GMWB). Here, the insured is entitled to withdraw a pre-specified amount annu-
ally, even if the account value has fallen below this amount. These guarantees
are extremely popular. In 2004, 69% of all Variable Annuity contracts sold
included a GMWB option. Each of the 15 largest Variable Annuity providers
offered this kind of guarantee at this time (cf. Lehmann Brothers (2005)).

2.3.1. Guaranteed Minimum Accumulation Benefits (GMAB)

Guaranteed Minimum Accumulation Benefits are the simplest form of guar-
anteed living benefits. Here, the customer is entitled to a minimal account value
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GA
T at maturity T of the contract. Usually, GA

T is the single premium P, some-
times a roll-up benefit base. The corresponding fees vary between 0.25% and
0.75% p.a. of the account value (cf. Mueller (2006)).

2.3.2. Guaranteed Minimum Income Benefits (GMIB)

At maturity of a Variable Annuity with a GMIB, the policyholder can as usual
choose to obtain the account value (without guarantee) or annuitize the account
value at current market conditions (also without any guarantee). However,
the GMIB option offers an additional choice: The policyholder may annuitize
some guaranteed amount G I

T at annuitization rates that have been specified up-
front. Therefore, this option can also be interpreted as a guaranteed annuity, start-
ing at t = T, where the annuity payments have already been specified at t = 0.

Note that if the account value at maturity is below the guaranteed value
G I

T , the customer cannot take out the guaranteed capital G I
T as a lump sum

but only in the form of an annuity at the pre-specified annuitization rates.
Thus, the option is “in the money” at time T if the resulting annuity payments
exceed the annuity payments resulting from converting the actual account value
at current annuity rates.

The guaranteed amount G I
T usually is a roll-up benefit base with, e.g.,

i = 5% or 6%, or a ratchet benefit base. Sometimes there is not one specified
maturity, but the policyholder can annuitize within a certain (often rather long)
time period. The offered roll-up rates frequently exceed the risk-free rate of
interest, whereas the pre-specified annuitization factors are usually rather con-
servative. Thus, at maturity the option might not be in the money, even if the
guaranteed amount exceeds the account value. Furthermore, the pricing of
these guarantees is often based on certain assumptions about the customers’
behavior rather than assuming that everybody exercises the option when it is
in the money. Such assumptions reduce the option value.5 Depending on the
specific form of the guarantee, the current fees for GMIB contracts typically
vary between 0.5% and 0.75% p.a. of the account value.

2.3.3. Guaranteed Minimum Withdrawal Benefits (GMWB)

Products with a GMWB option give the policyholder the possibility to withdraw
a specified amount G0

W (usually the single premium) in small portions. Typically,
the insured is entitled to annually withdraw a certain proportion xW of this
amount G0

W, even if the account value has fallen to zero. At maturity, the pol-
icyholder can take out or annuitize any remaining funds if the account value
did not vanish due to such withdrawals.

Recently, several forms of so-called Step-up GMWB options have been
introduced: With one popular version, the total guaranteed amount which can
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be withdrawn is increased by a predefined ratio at certain points in time, if no
withdrawals have been made so far. In what follows, we will only analyze this
form of Step-up GMWB. Alternatively, there are products in the market, where
at certain points in time, the remaining total guaranteed amount which can be
withdrawn is increased to the maximum of the old remaining guaranteed
amount and the current account value.

The latest development in this area are so-called “GMWB for life” options,
where only some maximum amount to be withdrawn each year is specified but
no total withdrawal amount. This feature can be analyzed within our model
by letting G0

W = � and T = �. For more details, see Holz et al. (2008).
From a financial point of view, GMWB options are highly complex, since

the insured can decide at any point in time whether and, if so, how much to
withdraw. They are currently offered for between 0.4% and 0.65% p.a. of the
account value. However, Milevsky and Salisbury (2006) find that these guaran-
tees are substantially underpriced. They conclude that insurers either assume a
suboptimal customer behavior or use charges from other (overpriced) guaran-
tees to cross-subsidize these guarantees.

While this summary of GMDB and GMLB options covers all the basic
designs, a complete description of all possible variants would be beyond the
scope of this paper. Thus, some products offered in the market may have
features that differ from the descriptions above. For current information regard-
ing Variable Annuity products, types of guarantees, and current fees, we refer,
e.g., to www.annuityfyi.com.

Our model and notation presented in the following Section is designed to
cover all the guarantees described in this Section as special cases. Of course,
the underlying general framework allows for any specific variations of the guar-
antees that might deviate from the products described above.

3. A GENERAL VALUATION FRAMEWORK FOR GUARANTEED

MINIMUM BENEFITS

3.1. The Financial Market

As usual in this context, we assume that there exists a probability space (W, F, Q)
equipped with a filtration F = (Jt )t! [0,T ] , where Q is a risk-neutral measure
under which, according to the risk-neutral valuation formula (cf. Bingham
and Kiesel (2004)), payment streams can be valuated as expected discounted
values. Existence of this measure also implies that the financial market is arbi-
trage-free. We use a bank account (Bt)t! [0,T ] as the numéraire process, which
evolves according to 

d
t

t
B
B

= rtdt, B0 > 0. (1)

Here, rt denotes the short rate of interest at time t.
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We further assume that the underlying mutual fund St of the Variable Annuity
is modeled as a right-continuous F-adapted stochastic process with finite left 
limits (RCLL).6 In particular, the discounted asset process 

,
B
S

t T0t

t

!
a k 5 ? is a Q-

martingale. For convenience, we assume  S0 = B0 = 1.

3.2. A Model for the Insurance Contract

In what follows, we present a model suitable for the description and valuation
of variable annuity contracts. Within this framework, any combination of guar-
antees introduced in Section 2 can be represented. In our numerical analysis
however, we restrict ourselves to contracts with at most one GMDB and one
GMLB option.

We consider a Variable Annuity contract with a finite integer maturity T,
which is taken out at time t = 0 for a single premium P. Although the model
generally allows for flexible expiration options, in order to simplify the nota-
tion, we only consider a fixed maturity T. We denote the account value by At

and ignore any up-front charges. Therefore, we have A0 = P. During the term
of the contract, we only consider the charges which are relevant for the guar-
antees, i.e. continuously deducted charges for the guarantees and a surrender
fee. The surrender fee is charged for any withdrawal of funds from the con-
tract except for guaranteed withdrawals within a GMWB option. The contin-
uously deducted guarantee fee f is proportional to the account value and the
surrender fee s is proportional to the respective amount withdrawn.

In order to valuate the benefits of the contract, we start by defining two vir-
tual accounts: Wt denotes the value of the cumulative withdrawals up to time t.
We will refer to it as the withdrawal account. Every withdrawal is credited
to this account and compounded with the risk-free rate of interest up to matu-
rity T. At time zero, we have W0 = 0.

Similarly, by Dt we denote the value of the death benefits paid up to time t.
Analogously to the withdrawals, we credit death benefit payments to this death
benefit account and compound the value of this account with the risk-free rate
until time T. Since we assume the insured to be alive at time zero, we obviously
have D0 = 0.

In order to describe the evolution of the contract and the embedded guar-
antees, we also need the following processes:

The guaranteed minimum death benefit at time t is denoted by Gt
D. Thus, the

death benefit at time t is given by max{At; Gt
D}. We let G0

D = A0 if the contract
contains one of the described GMDB options (cf. Section 2.2), otherwise we
let G0

D = 0. The evolution of Gt
D over time depends on the type of the GMDB

option included in the contract. It will be described in detail in Section 3.3.
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The guaranteed maturity benefit of the GMAB option is denoted by G A
T .

In order to account for possible changes of the guarantee over the term of the
contract, we let (GA

t )t! [0,T ] represent the evolution of this guarantee (see Sec-
tion 2.3.1 for details). We have G0

A = A0 for contracts with one of the described
GMAB options and G0

A = 0 for contracts without a GMAB option.
Analogously, we let G I

T denote the guaranteed maturity benefit that can
be annuitized in the case of a GMIB option and model its development by
(GI

t )t! [0,T ]. Also, we have G0
I = A0 and G0

I = 0 for contracts with and without
a GMIB option, respectively.

Finally, to be able to represent GMWB options, we introduce the processes
(Gt

W )t! [0,T ] and (Gt
E)t! [0,T ]. Gt

W denotes the remaining total amount that can
be withdrawn after time t, and Gt

E is the maximum amount that can be with-
drawn annually due to the GMWB option. If the contract contains a GMWB,
we let G0

W = A0 and G0
E = xW A0, where xW is the portion of the premium that

can be withdrawn annually. For contracts without GMWB, we let G0
W = G0

E = 0.
The evolution over time of these processes is also explained in detail in Sec-
tion 3.3.

Due to the Markov-property7 of the underlying processes, all information
available at time t is completely contained in the so-called state variables At,
Wt, Dt, GA

t , GI
t , Gt

D, Gt
W and Gt

E . To simplify notation, we introduce the fol-
lowing state vector yt = (At, Wt, Dt, GA

t , GI
t , Gt

D, Gt
W, Gt

E ).

3.3. Evolution of the Insurance Contract

During the term of the contract there are four possible types of events: the
insured can 

• withdraw funds as a guaranteed withdrawal of a GMWB option,
• perform a partial surrender, i.e. withdraw more than the guaranteed with-

drawal amount,
• completely surrender the contract, or 
• pass away.

For the sake of simplicity, we assume that all these events can only occur at a
policy anniversary date. Therefore, at integer time points t = 1, 2, …,T, for all
state variables we distinguish between (·)t

– and (·)t
+, i.e. the value immediately

before and after the occurrence of such events, respectively.
The starting values at t = 0 of all accounts and processes describing the

contract were given in Section 3.2. Now, we will describe their evolution in
two steps: First, for t = 0,1, 2, …,T – 1, the development within a policy year,
i.e. from t+ to (t + 1)– is specified. Subsequently, we will describe the transition

GUARANTEED MINIMUM BENEFITS IN VARIABLE ANNUITIES 629

7 See Section 5.3.2 in Bingham and Kiesel (2004).



from (t + 1)– to (t + 1)+, which depends on the type of guarantees included in
the contract and the occurrence of the described events. Finally, we describe
the maturity benefits of the contract.

3.3.1. Development between t+ and (t + 1)–

As indicated in Section 3.1, the price of the underlying mutual fund evolves
stochastically over time. Thus, taking into account continuous guarantee fees
f, for the account value we have

t t1+ .A A S
S

e
t

t f1 $=
- + + - (2)

The accounts Wt and Dt are compounded with the risk-free rate of interest, i.e.

t t1+W W e r dsst

t 1

=
- +

+# and tt 1+ .D D e r dsst

t 1

=
- +

+#

The development of the processes Gt
D, GA

t and GI
T depends on the speci-

fication of the corresponding GMDB, GMAB and GMIB option: if the cor-
responding guaranteed benefit is the single premium or if the option is not
included, we let Gt + 1

D /A /I – = Gt
D /A /I +. If the guaranteed benefit is a roll-up base

with roll-up rate i, we set Gt + 1
D /A /I – = Gt

D /A /I +(1 + i ). For ratchet guarantees, we
have Gt + 1

D /A /I – = Gt
D /A /I +, since the ratchet base is adjusted after possible with-

drawals, and therefore considered in the transition from (t + 1)– to (t + 1)+ (cf.
Section 3.3.2).

The processes Gt
W and Gt

E do not change during the year, i.e. Gt + 1
W /E– =

Gt
W /E+.

3.3.2. Transition from (t + 1)– to (t + 1)+

At the policy anniversary date, we distinguish four cases:

a) The insured dies within the period (t, t + 1] 

Since our model only allows for death at the end of the year, dying within
the period (t, t + 1] is equivalent to a death at time t + 1. The death benefit is
credited to the death benefit account and will then be compounded with the
risk-free rate until maturity T : D+

t + 1 = D –
t + 1 + max{GD–

t + 1 ; A–
t + 1}. Since after

death, no future benefits are possible, we let A+
t + 1 = 0 as well as Gt + 1

A /I /W/D/E+ = 0.
The withdrawal account, where possible prior withdrawals have been collected,
will not be changed, i.e. W +

t + 1 = W –
t + 1. This account will be compounded until

maturity.

b) The insured survives the year (t, t + 1] and does not take any action (with-
drawal, surrender) at time t + 1 

Here, neither the account D nor W is changed. Thus, we have A+
t + 1 = A–

t + 1,
D+

t + 1 = D –
t + 1 and W+

t + 1 = W –
t + 1. For the GMAB, GMIB, and GMDB, without
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a ratchet type guarantee, we also have Gt + 1
A /I /D+ = Gt + 1

A /I /D –. If, however, one or
more of these guarantees are of ratchet type, we adjust the corresponding
guarantee account by Gt + 1

A /I /D+ = max{Gt + 1
A /I /D –; A+

t + 1}.
If the contract includes a GMWB option with step-up and t + 1 is a step-up

point, the GMWB processes are adjusted according to the step-up feature, but
only if there were no past withdrawals: If iwt +1

denotes the factor, by which the
total amount to be withdrawn is increased (cf. Section 2.3.3), we get GW+

t + 1 = GW–

t + 1

(1 + I{W –
t+1 = 0} · iwt +1

) and GE+
t + 1 = xw · GW+

t + 1. In any other case, we have Gt + 1
W /E+ =

Gt + 1
W /E–.

c) The insured survives the year (t, t + 1] and withdraws an amount within the
limits of the GMWB option

A withdrawal within the limits of the GMWB is a withdrawal of an amount
Et +1 # min{GE–

t + 1; GW–

t + 1}, since the withdrawn amount may neither exceed the
maximal annual withdrawal amount GE–

t + 1 nor the remaining total withdrawal
amount GW–

t + 1.
The account value is reduced by the withdrawn amount. In case the with-

drawn amount exceeds the account value, the account value is reduced to 0.
Thus, we have A+

t + 1 = max{0; A–
t + 1 – Et + 1}. Also, the remaining total with-

drawal amount is reduced by the withdrawn amount, i.e. GW+
t + 1 = GW–

t + 1 – Et +1.
Furthermore, the withdrawn amount is credited to the withdrawal account:
W+

t + 1 = W –
t + 1 + Et +1. The maximal annual withdrawal amount as well as the

death benefit account remain unchanged: GE+
t + 1 = GE–

t + 1 and D+
t + 1 = D–

t + 1.
Usually, living benefit guarantees (GMAB and GMIB) and, in order to

avoid adverse selection effects, also the guaranteed death benefits are reduced
in case of a withdrawal. We will restrict our considerations to a so-called pro
rata adjustment. Here, guarantees which are not of ratchet type are reduced

at the same rate as the account value, i.e. Gt + 1
A /I /D+ = A

A

t

t

1

1

+

+
-

+e o Gt + 1
A /I /D –. If one or

more of the guarantees are of ratchet type, for the respective guarantees, we

let Gt + 1
A /I /D+ = A

A
t t1 1+ +

t

t

1

1

+

+;max A G / /A I D+ -
-

+e o) 3.

d) The insured survives the year (t, t + 1] and withdraws an amount exceeding
the limits of the GMWB option

At first, note that this case includes the following cases as special cases:

d1) The contract does not comprise a GMWB option and an amount 0 <
Et +1 < A–

t + 1 is withdrawn.

d2) A GMWB option is included in the contract, but the insured withdraws
an amount 0 < Et +1 < A–

t + 1 with Et +1 > min{GE–

t + 1; GW–

t + 1}.
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d3) The insured surrenders by withdrawing the amount Et +1 = A–
t + 1

8.

We let Et +1 = E 1
t +1 + E 2

t +1, where E 1
t +1 = min{GE–

t + 1; GW–

t + 1}. Consequently, E 1
t +1

is the portion of the withdrawal within the limits of the GMWB option. If the
contract does not include a GMWB option, we obviously have E 1

t +1 = 0.
As in case c), the account value is reduced by the amount withdrawn, i.e.

A+
t + 1 = A–

t + 1 – Et +1, and the withdrawn amount is credited to the withdrawal
account. However, the insured has to pay a surrender fee for the second com-
ponent which leads to W +

t + 1 = W –
t + 1 + E 1

t +1 + E 2
t +1 · (1 – s). The death benefit

account remains unchanged, i.e. D+
t + 1 = D –

t + 1.

Again, the future guarantees are modified by the withdrawal: For the guaran-

tees which are not of ratchet type, we have Gt + 1
A /I /D+ = A

A

t

t

1

1

+

+
-

+e o Gt + 1
A /I /D –, whereas

for the ratchet type guarantees, we let Gt + 1
A /I /D+ = A

A
t t1 1+ +

t

t

1

1

+

+;max A G / /A I D+ -
-

+e o) 3.

For contracts with a GMWB, withdrawing an amount Et +1 > min{GE–

t + 1; GW–

t + 1}
also changes future guaranteed withdrawals. We consider a common kind of
GMWB option, where the guaranteed future withdrawals are reduced accord-

ing to A

A
t t t1 1 1+ + +

t

t

1

1

+

+;minG G E GW W
t

W
1 $= - + -

+
- -+ ) 3, i.e. the withdrawal amount is

reduced by the higher of a pro rata reduction and a reduction according to
the dollar method. For future annual guaranteed amounts, we use t 1+G E

=
+

A

A
t 1+

t

t

1

1

+

+G E
$ -

+
-

.

3.3.3. Maturity Benefits at T

If the contract neither comprises a GMIB nor a GMAB option, the maturity
benefit LT is simply the account value, i.e. LT = A+

T . In contracts with a GMAB
option, the survival benefit at maturity is at least the GMAB, thus LA

T =
max{A+

T ; GT
A+}.

Insured holding a GMIB option can decide whether they want a lump sum
payment of the account value A+

T or annuitize this amount at current annuiti-
zation rates. Alternatively, they can annuitize the guaranteed annuitization
amount at pre-specified conditions. If we denote by äcurrent and äguar the annu-
ity factors9 when annuitizing at the current and the guaranteed, pre-specified
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t + 1 < GW–
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then a withdrawal of Et + 1 = A–
t + 1 is within the limits of the GMWB and does not lead to a surren-

der of the contract. However, this case is covered by case c).
9 Here, an annuity factor is the price of an annuity paying one dollar each year.



conditions, respectively, the value of the guaranteed benefit at maturity is given

by G a
a

T
I

guar

current$
+ . Thus, a financially rational acting customer will chose the

annuity, whenever we have >G Aa
a

T
I

guar

current
T$ ++ . Therefore, the value of the benefit

at time T is given by ;maxL A G a
a

T
I

T T
I

guar

current$= + +( 2.
If the contract contains both, a GMAB and a GMIB option, the maturity

value of the contract is LT = max{LA
T ; LI

T}.

3.4. Contract Valuation

We make the common assumption that financial markets and biometric events
are independent. Furthermore, we assume risk-neutrality of the insurer with
respect to biometric risks (cf. Aase and Persson (1994)). Thus, the risk-neutral
measure for the combined market (insurance and financial market) is the prod-
uct measure of Q and the usual measure for biometric risks. In order to keep
the notation simple, in what follows, we will also denote this product measure
by Q. Even if risk-neutrality of the insurer with respect to biometric risk is not
assumed, there are still reasons to employ this measure for valuation purposes
as it is the so-called variance optimal martingale measure (see Møller (2001)
for the case without systematic mortality risk and Dahl and Møller (2006) in
the presence of systematic mortality risk).

Let x0 be the insured’s age at the start of the contract and t px0
denote the

probability for a x0-year old to survive t years. By qx0 + t, we denote the prob-
ability for a (x0 + t)-year old to die within the next year. The probability that
the insured passes away in the year (t, t + 1] is thus given by t px0

· qx0 + t. The
limiting age is denoted by w, i.e. survival beyond age w is not possible.

3.4.1. Valuation under Deterministic Policyholder Behavior

At first, we assume that the policyholder’s decisions (withdrawal/surrender)
are deterministic, i.e. we assume there exists a deterministic strategy which can
be described by a withdrawal vector z = (z1; …; zT) ! (IR+

�)T.10 Here, zt denotes
the amount to be withdrawn at the end of year t, if the insured is still alive
and if this amount is admissible. If the amount zt is not admissible, the largest
admissible amount Et < zt is withdrawn. In particular, if the contract does not
contain a GMWB option, the largest admissible amount is Et = min{zt ; A–

t }.
A full surrender at time t is represented by zt = �.

By C = C1 ≈ … ≈ CT 1 (IR+
�)T we denote the set of all possible determin-

istic strategies. In particular, every deterministic strategy is F0 -measurable.
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If a particular contract and a deterministic strategy are given, then, under the
assumption that the insured dies in year t ! {1,2, …, w – x0}, the maturity-
values LT (t;z ), WT (t;z ) and DT (t;z ) are specified for each path of the stock
price S. Thus, the time zero value including all options is given by:
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E
E

E
(3)

3.4.2. Valuation under Probabilistic Policyholder Behavior 

By probabilistic policyholder behavior, we denote the case when the policy-
holders follow certain deterministic strategies with certain probabilities. If these
deterministic strategies z ( j) = (z1

( j); …; zT
( j) ) ! (IR+

�)T, j =1, 2,…, n, and the respec-

tive probabilities pz
( j) are known j 1= p 1n

z =( )j!a k, the value of the contract under

probabilistic policyholder behavior is given by

.zp
j

n

z0 0
1

=
=

( ) ( )j jV V! ` j (4)

This value also admits another interpretation: If the insurer has derived cer-
tain forecasts for the policyholders’ future behavior with respect to withdrawals
and surrenders, and assigns the respective relative frequencies as probabilities
to each contract, then the sum of the probabilistic contract values constitutes
exactly the value of the insurer’s whole portfolio given that the forecast is
correct. Thus, this cumulative value equals the costs for a perfect hedge of all
liabilities, if policyholders behave as forecasted. However, in this case the risk
that the actual client behavior deviates from the forecast is not hedged.

3.4.3. Valuation under Stochastic Policyholder Behavior

Assuming a deterministic or probabilistic customer behavior implies that the
withdrawal and surrender behavior of the policyholders does not depend
on the evolution of the capital market or, equivalently, on the evolution of
the contract over time. A stochastic strategy on the other hand, is a strategy
where the decision whether and how much money should be withdrawn
is based upon the information available at time t. Thus, an admissible sto-
chastic strategy is a discrete Ft -measurable process (X ), which determines
the amount to be withdrawn depending on the state vector yt

–. Thus, we get:
X (t, yt

–) = Et, t = 1, 2, …, T.
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For each stochastic strategy (X ) and under the hypothesis that the insured
deceases in year t ! {1, 2,…, w –x}, the values LT(t; (X )), WT(t; (X )) and DT(t;
(X )) are specified for any given path of the process S. Therefore, the value of
the contract is given by:

Txx , , , .

V

q e L t W t D t

X

X X Xt
t

x

t Q
r ds

T T

w

0

1
0

1
s

T

0

0

0
0$ $

=

+ +-
=

-

+ -

-p E #!

]^
]^ ]^ ]^^

gh
gh gh ghh; E (5)

We let Z denote the set of all possible stochastic strategies. Then the value V0

of a contract assuming a rational policyholder is given by

.sup X
( )X Z

0 0=
!

V V ]^ gh (6)

4. NUMERICAL VALUATION OF GUARANTEED MINIMUM BENEFITS

For our numerical evaluations, we assume that the underlying mutual fund
evolves according to a geometric Brownian motion with constant coefficients
under Q, i.e.

d
t

t

S
S

= rdt + sdZt, S0 = 1, (7)

where r denotes the (constant) short rate of interest. Thus, for the bank account
we have Bt = ert.

Since the considered guarantees are path-dependent and rather complex, it
is not possible to find closed-form solutions for their risk-neutral value. There-
fore, we have to rely on numerical methods. We present two different valuation
approaches: In Section 4.1, we present a simple Monte Carlo algorithm. This
algorithm quickly produces accurate results for a deterministic, probabilistic or
a given Ft -measurable strategy. However, Monte Carlo methods are not prefer-
able to determine the price for a rational policyholder. Thus, in Section 4.2, we
introduce a discretization approach, which additionally enables us to determine
prices under optimal policyholder behavior.

4.1. Monte-Carlo Simulation

Let (X) : IR ≈ IR+
8
" IR a Ft -measurable withdrawal strategy. By Itô’s formula

(see, e.g. Bingham and Kiesel (2004)), we obtain the iteration

t 1+ ; , ,expA A e A r z z N iidf
s

s2 0 1
t

t
t t

f1
2

1 1$ $ += = - - +
- + + - +

+ +t tS
S J

L
K
K ]N

P
O
O g* 4
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which can be conveniently used to produce realizations of sample paths a( j) of
the underlying mutual fund using Monte Carlo Simulation.11 For any contract
containing Guaranteed Minimum Benefits, for any sample path, and for any
time of death, we obtain the evolution of all accounts and processes, employ-
ing the rules of Section 3. Hence, realizations of the benefits lT

( j )(t, (X )) +
wT

( j )(t, (X )) + dT
( j )(t, (X )) at time T, given that the insured dies at time t, are

uniquely defined in this sample path. Thus, the time zero value of these benefits
in this sample path is given by

Txx , , , .v e q l t w t d tX X X X( ) ( ) ( ) ( )j rT
t

t

x

t
j

T
j

T
j

w

0 1
1

10

0

0
$= + +

-

-
=

-

+ -p!]^ ]^ ]^ ]^gh gh gh gh9 C

Hence, J vX X1 ( )i
j
J

0 01=
=

V !]^ ]^gh gh is a Monte-Carlo estimate for the value of

the contract, where J denotes the number of simulations.
However, for the evaluation of a contract under the assumption of rational

policyholders following an optimal withdrawal strategy, Monte-Carlo simula-
tions are not preferable.

4.2. A Multidimensional Discretization Approach

Tanskanen and Lukkarinen (2004) present a valuation approach for partici-
pating life insurance contracts including a surrender option, which is based
on discretization via a finite mesh.

We extend and generalize their approach in several regards: we have a multi-
dimensional state space, and, thus, need a multidimensional interpolation
scheme. In addition, their model does not include fees. Therefore, we modify
the model, such that the guarantee fee f and the surrender fee s can be included.
Finally, within our approach a strategy does not only consist of the decision
whether or not to surrender. We rather have an infinite number of possible
withdrawal amounts in every period. Even though we are not able to include
all possible strategies in a finite algorithm, we still need to consider numerous
possible withdrawal strategies.

We start this Section by presenting a quasi-analytic integral solution to the
valuation problem of Variable Annuities containing Guaranteed Minimum
Benefits. Subsequently, we show how in each step the integrals can be approx-
imated by a discretization scheme which leads to an algorithm for the numer-
ical evaluation of the contract value. We restrict the presentation to the case
of a rational policyholder, i.e. we assume an optimal withdrawal strategy.
However, for deterministic, probabilistic or stochastic withdrawal strategies
the approach works analogously after a slight modification of the function F
in Section 4.2.3.
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4.2.1. A quasi-analytic solution

The time t value Vt of a contract depends solely on the state variables at time t
yt = (At,Wt, Dt, GA

t , GI
t , Gt

D, Gt
W, Gt

E ). Since besides At, the state variables change
deterministically between two policy anniversaries, the value process Vt is
a function of t, At and the state vector at the last policy anniversary t +6 @ , i.e.
Vt = V(t, At ; y t

+5 ? ).
At the discrete points in time t = 1, 2, …, T, we distinguish the value right

before death benefit payments and withdrawals Vt
– = V (t, At

–; y+
t – 1), and the

value right after these events Vt
+ = V (t, At

+; y+
t ).

If the insured does not die in the period (t, t + 1], the knowledge of the
withdrawal amount Et + 1 and the account value A–

t + 1 determine the develop-
ment of the state variables from t+ to (t + 1)+. We denote the corresponding
transition function by fEt +1

(A–
t +1, y+

t ) = (A+
t + 1, y+

t +1). Similarly, by f
– 1

(A–
t +1, y+

t ) =
(A+

t + 1, y+
t + 1) we denote the transition function in case of death within (t, t + 1].

By simple arbitrage arguments (cf. Tanskanen and Lukkarinen (2004)), we
can conclude that Vt is a continuous process. Furthermore, with Itô’s formula
(see, e.g. Bingham and Kiesel (2004)) one can show that the value function Vt

for all t ! [t, t + 1) satisfies a Black-Scholes partial differential equation (PDE),
which is slightly modified due to the existence of the fees f. Hence, there exists
a function v : IR+ ≈ IR+ " IR with V (t, a, y+

t ) = v(t, a) 6 t ! [t, t + 1), a! IR+

and v satisfies the PDE

2d
dv a

da
d v r a da

dv rvt s f 02 2
2

2
1+ + - - =^ h (8)

with the boundary condition

v (t + 1, a) = (1 – qx0 + t) V(t + 1, fEt + 1
(a, yt

+)) + qx0 + t V(t + 1, f–1(a, yt
+)), a ! IR+,

which, in particular, is dependent on the insured’s survival. For a derivation and
interpretation of the PDE (8) and the boundary condition, see Ulm (2006).

Thus, we can determine the time-zero value of the contract V0 by the fol-
lowing backward iteration:

t = T :

At maturity, we have V (T, A+
T , y+

T ) = LT + WT + DT.

t = T – k:

Let V(T – k + 1, A+
T – k + 1, y+

T – k + 1) at time (T – k + 1) be known for all possible
values of the state vector. Then, the time (T – k) value of the contract is given
by the solution v (T – k, a ) of the PDE (8) with boundary condition
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v (T – k + 1, a) = (1 – qx0 + T – k) sup
E IRT k 1!

3
- + +

V(T – k + 1, fET – k + 1
(a, y+

T – k))

+ qx0 + T – k V(T – k + 1, f–1(a, y+
T – k)).

A solution of the PDE (8) can be obtained by defining
s

:
r

u
f

2
1

2=
-

- , r :=

2
1

s2u2 + r and g(t, x) = esxu – rt v(t, esx). Then, lim
tt 1" +

g(t, x) = esxu – r(t+1) v(t + 1,

esx) and g satisfies a one-dimensional heat equation,

,
dx
d g

dt
dg

2
1 02

2

+ = (9)

a solution of which is given by12
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Thus, we have
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By substituting expu u rl s f s2
1 2

$= + - -] g ' 1, we obtain 
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where F denotes the cumulative distribution function of the standard normal
distribution.
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4.2.2. Discretization via a Finite Mesh

In general, the integral (12) cannot be evaluated analytically. Therefore, we
have to rely on numerical methods to find an approximation of the value func-
tion on a finite mesh. Here, a finite mesh is defined as follows: Let Yt 3 (IR+

�)8

be the set of all possible state vector values. We denote a finite set of possible
values for any of the eight state variables as a set of mesh basis values. Let a
set of mesh basis values for each of the eight state variables be given. Pro-
vided that the Cartesian product of these eight sets is a subset of Yt, we denote
it by Gridt 3 Yt and call it a Yt -mesh or simply a mesh or a grid. An element
of Gridt is called a grid point. For a given grid Gridt, we iterate the evaluation
backwards starting at t = T. At maturity, the value function is given by:

V(T, AT, yT) = LT + WT + DT, 6yT ! Gridt.

We repeat the iteration step described above T times and thereby obtain the
value of the contract at every integer time point for every grid point. In par-
ticular, we obtain the time zero value of the contract V0. Within each time
period, we have to approximate the integral (11) with the help of numerical
methods. This will be described in the following Section.

4.2.3. Approximation of the Integral

Following Tanskanen and Lukkarinen (2004), for a ! IR+ and a given state vec-
tor y+

T – k, we define the function

x
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,
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, , .
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Thus, (12) is equivalent to

T k

T k T k

-

- -

, ,

, ,F

V T k A y

e u u A y du y GridforlF

T k

r
T k T k T k1 !

-

=

3

3

-
+

-
- + -

+

-

+
-#

a
] ]a

k
g g k

where expu u rl s f s2
1 2

$= + - -] g ' 1 as above. In order to evaluate the inte-

gral, we evaluate the function FT – k + 1(a, y+
T – k) for each y+

T – k ! GridT – k and for
a selection of possible values of the variables a. In between, we interpolate
linearly.
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Thus, let y+
T – k ! GridT – k and Amax > 0, a maximal value for a, be given. We split

the interval [0, Amax] in M subintervals via am := M
Amax m, m ! {0,1,2,…, M}.

Let gm = FT – k + 1(am, y+
T – k). Then, for any a ! IR+, FT – k + 1(a, y+

T – k) can be
approximated by
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where, bm,0 = gm – m (gm + 1 – gm), m = 0, …, M – 1; bM,0 = bM – 1,0 and bm,1 =

A
M
max

(gm + 1 – gm), m = 0, …, M – 1; bM,1 = bM – 1,1 and I denotes the indicator

function.
Thus, we have
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3= - = - + +d n , and uM + 1 = �.

Defining b–1,1 = b–1,0 = 0, we obtain
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Hence, it suffices to determine the values gm = FT – k + 1(am, y+
T – k), m ! {0,1,

2,…, M}. When determining the gm, theoretically the function fET – k + 1
has to be

evaluated for any possible withdrawal amount ET – k + 1. For our implementa-
tion, we restrict the evaluation to a finite amount of relevant values ET – k + 1.
Furthermore, due to the definition of FT – k + 1 (see (13)), it is necessary to eval-
uate V after the transition of the state vector from (T – k)+ to (T – k + 1)+.
Since the state vector and, thus, the arguments of the function are not neces-
sarily elements of GridT – k + 1, V(T – k + 1, AT – k + 1, y+

T – k), has to be determined
by interpolation from the surrounding mesh points.
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We interpolate linearly in every dimension. Due to the high dimensionality
of the problem, the computation time highly depends on the interpolation
scheme. In order to reduce calculation time and the required memory capacity,
we reduced the dimensionality by only considering the relevant accounts for
the considered contracts. In particular, when the death benefit account Dt is
strictly positive, i.e. if the insured has died before time t, the account value At

will be zero. Conversely, as long as At is greater than zero, Dt remains zero, i.e.
the insured is still alive at time t. Thus, the dimensionality can always be reduced
by one. Furthermore, in our numerical analyses, we only consider contracts with
at most one GMDB-option and at most one GMLB-option. Therefore, by
only considering the relevant state variables, we can further reduce the dimen-
sionality to a maximum of 4.

However, for a contract with term to maturity of 25 years, using about
40,000 to 65,000 lattice points, 600 steps for the numerical calculation of the
integral, and a discretization of the optimal strategy to 52 points, the calcula-
tion of one contract value under optimal policyholder strategy on a single
CPU (Intel Pentium IV 2.80 GHz, 1.00 GB RAM) still takes between 15 and
40 hours.

5. RESULTS

We use the numerical methods presented in Section 4 to calculate the risk-
neutral value of Variable Annuities including Guaranteed Minimum Benefits
for a given guarantee fee f. We call a contract, and also the corresponding
guarantee fee, fair if the contract’s risk-neutral value equals the single pre-
mium paid, i.e. if the equilibrium condition P = V0 = V0(f) holds.

Unless stated otherwise, we fix the risk-free rate of interest r = 4%, the
volatility s = 15%, the contract term T = 25 years, the single premium amount
P = 10,000, the age of the insured x0 = 40, the sex of the insured male, the
surrender fee s = 5%, and use best estimate mortality tables of the German
society of actuaries (DAV 2004 R).

For contracts without GMWB, we analyze two possible policyholder strate-
gies: Strategy 1 assumes that clients neither surrender nor withdraw money
from their account. Strategy 2 assumes deterministic surrender probabilities
which are given by 5% in the first policy year, 3% in the second and third pol-
icy year, and 1% thereafter. In addition, we calculate the risk-neutral value of
some policies assuming rational policyholders.

For contracts with GMWB, we assume different strategies which are described
in Section 5.2.4.

5.1. Determining the Fair Guarantee Fee 

In a first step, we analyze the influence of the annual guarantee fee on the value
of contracts including three different kinds of GMAB options. For contract 1,
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FIGURE 1: Contract value as a function of the annual guarantee fee.

the guaranteed maturity value is the single premium (money-back guarantee),
contract 2 guarantees an annual ratchet base, whereas a roll-up base at a roll-
up rate of i = 6% is considered for contract 3. Figure 1 shows the corresponding
contract values as a function of the annual guarantee fee assuming neither
surrenders nor withdrawals.

For contract 1, a guarantee fee of f = 0.07% leads to a fair contract. The fair
guarantee fee increases to 0.76% in the ratchet case. The risk-neutral value of
contract 3 exceeds 10,000 for all values of f. Thus, under the given assumptions
there exists no fair guarantee fee for a contract including a 6% roll-up GMAB.
As a consequence, such guarantees can only be offered if the guarantee costs
are subsidized by other charges or if irrational policyholder behavior is assumed
in the pricing of the contract.

5.2. Fair Guarantee Fees for Different Contracts

5.2.1. Contracts with a GMDB Option

We analyze three different contracts with a minimum death benefit guarantee.
Contract 1 provides a money-back guarantee in case of death, contract 2 an annual
ratchet death benefit and contract 3 a 6% roll-up benefit.

Table 1 shows fair guarantee fees for these contracts under the two policy-
holder strategies described above.
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Assuming that customers neither surrender their contracts nor withdraw any
money before maturity, the fair guarantee fee for all these contracts is rather
low. However, the guaranteed death benefit included in contract 3 is significantly
more expensive than the other guarantees.

If policyholders surrender their contracts at the surrender rates assumed in
strategy 2, the fair guarantee fee strongly decreases for two reasons: Policy-
holders pay fees before surrendering but will not receive any benefits from the
corresponding options. Secondly, surrender fees can be used to subsidize the
guarantees of the clients who do not surrender. For contracts 1 and 2, surrender
fees exceed the value of the remaining clients’ options. Thus, the risk-neutral
value of the contract undercuts the single premium even if no fee is charged
for the option.

Thus, our results are consistent with Milevsky and Posner (2001), who find
that GMDB options are generally overpriced in the market.

Overall, the guarantee fees are rather low, since a benefit payment is only
triggered in the event of death. There is no possibility for rational consumer
behavior in terms of exercising the option when it is in the money. The only
way of rational policyholder behavior is surrendering a contract when the
option is far out of the money: It is optimal to surrender the contract if the
expected present value of future guarantee fees exceeds the value of the option
plus the surrender fee. However, for the considered surrender charge of 5%, sur-
rendering a contract is almost never optimal. Thus, the contract value for a
rational policyholder hardly differs from the value under strategy 1. However,
for lower surrender charges, policyholder behavior would be more important.

5.2.2. Contracts with a GMAB Option

We analyze three different contracts with a minimum accumulation benefit
guarantee. Again, contract 1 provides a money-back guarantee at the end of
the accumulation phase, contract 2 an annual ratchet guarantee and contract
3 a 6% roll-up benefit base. The value of these contracts under policyholder
strategy 1 has been displayed as a function of f in Figure 1 above.
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TABLE 1

FAIR GUARANTEE FEE FOR CONTRACTS WITH GMDB UNDER DIFFERENT CONSUMER BEHAVIOR

contract Money-back Ratchet  6% roll-up 
strategy guarantee benefit base benefit base

1: no withdrawals or
0.01% 0.04% 0.14%

surrenders

2: deterministic surrender
< 0% < 0% 0.05%

probability



Table 2 shows the fair guarantee fee for these three contracts under the two
given policyholder strategies. In addition, we show the fair guarantee fee if an
additional 6% roll-up death benefit is included (columns “with DB”).

The fair guarantee fees for the contracts differ significantly. For the money-
back guarantee, the fair guarantee fee is below 0.25%, even if the GMDB option
is included. The fee for the ratchet guarantee is significantly higher. Even under
strategy 2 and without additional death benefit it exceeds 0.5%. In any case,
the fair guarantee fee of the ratchet guarantee is at least four times as high as
the corresponding fair guarantee fee of the money-back guarantee. For a roll-
up rate of 6%, the value of the pure maturity guarantee without fund partic-
ipation (i.e. f = 100%) exceeds 10,000 under both surrender scenarios. Thus,
even under the assumed surrender pattern, a 6% roll-up GMAB cannot be
offered at all.

The additional fee for death benefit (difference between columns “with DB”
and “w/o DB”) always exceeds the fair guarantee fee of the pure death benefit
guarantee shown in Table 1, and is hardly reduced by the assumed surrenders.

Further analyses showed that rational policyholder behavior hardly influences
the risk-neutral value of the contracts: The values under optimal policyholder
behavior are very close to the values under strategy 1 (no surrender or with-
drawal). This is not surprising since for the money-back guarantee, surrender
is rarely optimal due to the rather high surrender charges. In the case of a ratchet
guarantee, the actual guarantee level is annually adjusted to a potentially
increasing fund value. Thus, the guarantee is always at or in the money at a
policy anniversary date. However, as explained above, surrendering is usually
only optimal if the option is out of the money.

5.2.3. Contracts with a GMIB Option

A GMIB option gives the policyholder the possibility to annuitize the mini-
mum benefit base at an annuity factor that is fixed at t = 0. Whether or not the
option is in the money depends on both, the fund value and the ratio of the
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TABLE 2

FAIR GUARANTEE FEE FOR CONTRACTS WITH GMAB UNDER DIFFERENT CONSUMER BEHAVIOR

contract
Money-back Ratchet 6% roll-up

guarantee benefit base benefit base
strategy

w/o DB with DB w/o DB with DB w/o DB with DB

1: no withdrawals or
0.07% 0.23% 0.76% 0.94% – –

surrenders

2: deterministic surrender
< 0% 0.12% 0.57% 0.74% – –

probability



guaranteed annuity factor and the current annuity factor at annuitization.
Usually, the guaranteed annuity factor is calculated based on conservative

assumptions which are supposed to lead to a ratio : <a a
a

1
guar

current= . However,

increasing longevity and decreasing interest rates may change this ratio dur-
ing the term of the contract and make the guarantee extremely valuable at
annuitization.

We analyze three different GMIB-contracts for different values of a. Again,
the minimum benefit base for contract 1 is the single premium, contract 2 includes
an annual ratchet guarantee whereas contract 3 comes with a 6% roll-up benefit
base. The three contracts are analyzed with and without the additional GMDB
option from the previous Section. The respective fair guarantee fees are shown
in Table 3.

Obviously, for a = 1, the fair guarantee fees are the same as for the corre-
sponding GMAB options. The value of the guarantee highly depends on the
value of a. Since best estimates about future mortality rates are subject to high
uncertainty, this assumption bears a significant risk for the insurer that can-
not be hedged with existing financial instruments.
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TABLE 3

FAIR GUARANTEE FEE FOR CONTRACTS WITH GMIB UNDER DIFFERENT CONSUMER BEHAVIOR

contract
Money-back Ratchet 6% roll-up

guarantee benefit base benefit base
strategy

w/o DB with DB w/o DB with DB w/o DB with DB

1: no withdrawals a = 1.2 0.14% 0.31% 1.55% 1.83% – –
or surrenders a = 1.0 0.07% 0.23% 0.76% 0.94% – –

a = 0.8 0.03% 0.18% 0.25% 0.40% – –
a = 0.6 0.01% 0.16% 0.05% 0.19% 2.32% 3.76%

2: deterministic a = 1.2 0.04% 0.18% 1.24% 1.40% – –
surrender a = 1.0 < 0% 0.12% 0.57% 0.74% – –
probability a = 0.8 < 0% 0.10% 0.15% 0.29% > 4% > 4%

a = 0.6 < 0% 0.08% < 0% 0.11% 1.45% 1.88%

The difference between the fair guarantee fee with or without surrender is
huge. Thus, basing the product calculation on estimates about future policy-
holder behavior bears a significant non-diversifiable risk for the insurer.

For any a, the values of the three contract types differ considerably. Under
strategy 1, there is no fair guarantee fee for a contract with 6% roll-up guar-
antee for a $ 0.8, i.e. the expected present value of the guaranteed annuities
exceeds the single premium. For a = 0.6, the fair guarantee fee equals 2.32%
and is much higher than typical charges for these options in the market. Even



under strategy 2, the fair guarantee fee is about twice as high as the option price
observed in the market. Thus, there is evidence that insurers base their calcu-
lations not only on the assumption of irrational surrender behavior. They may
also assume other irrationalities, e.g. that policyholders take the lump sum
payment (i.e. the account value without guarantee) even if the annuitization
option is in the money. In other words, a 6% roll-up rate can only be offered
if the pricing of the option is based on the assumption that a significant portion
of the clients pay the fees for the guarantee over many years but then prefer
to receive the account value over the guaranteed benefit, even if the latter is
of higher value.

For the reason described in Section 5.2.2, there is almost no difference
between rational policyholder behavior and strategy 1 for contracts with a
money-back or a ratchet guarantee. However, in the case of a 6% roll-up benefit
base, rational policyholder behavior increases the fair guarantee fee from 2.32%
to over 4%. Thus, there have to be many scenarios, where it is optimal to surrender
the contract, i.e. the expected present value of future guarantee fees exceeds the
value of the option plus the surrender fee.

5.2.4. Contracts with a GMWB Option

In this Section, we analyze a contract with a GMWB option where the initial
premium is guaranteed for withdrawals during the life of the contract. The
maximum guaranteed annual withdrawal amount is 7% of the initial premium.
We analyze this contract with and without a GMDB option (6% roll-up). The
third contract considered includes a GMWB with a step-up feature: The total
withdrawal amount is increased by 10% after year 5 and 10, respectively, if no
withdrawals have occurred until then.

We assume the following policyholder behavior: Under strategy 1, the policy-
holder withdraws 7% of the initial premium for 14 years starting with year j
and surrenders the contract thereafter. For the contract without step-up, we let
j = 1 while we admit j = 1, j = 6 and j = 11 for the contract with step-up, i.e. the
policyholder starts withdrawing immediately after the start of the contract or
immediately after a step-up date. Of course, if withdrawals start in the first year,
there is no difference between the contracts with and without step-up.

In addition we consider the following stochastic customer strategy: The
policyholder withdraws 7% of the initial premium if and only if the fund value
is lower than the remaining total guaranteed amount of withdrawals, i.e. if
At < Gt

W. Once Gt
W = 0, the contract is surrendered. This might be a strategy

of a policyholder who tries to intuitively increase the value of the policy with-
out using financial mathematics.

The fair guarantee fees for these contracts are shown in Table 4.
The difference between the two strategies is rather small. Furthermore, the

results for j = 6 and j = 11 show that it is not a reasonable strategy to wait with
early redemptions until a step-up happens. Of course, this may be different if
the guaranteed amount is increased by more than 10% at a step-up date.
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The additional fee for including a GMDB option is significantly lower than for
the GMAB and GMIB contracts, because every withdrawal leads to a reduction
of the guaranteed death benefit. Since strategy 2 results in fewer withdrawals,
the additional GMDB fee is slightly higher in this case.

The fair guarantee fees shown are lower than the prices of these guaran-
tees in the market. However, for GMWB options, the fair guarantee fee under
rational consumer behavior increases significantly since there are a variety of
options for the customer over the term of the contract. Optimal strategies can-
not be easily described since they are path-dependent. Without step-ups, the
fair guarantee fee assuming rational consumer behavior is more than twice as
high as under the above strategies. Milevsky and Salisbury (2006) calculate
even higher guarantee fees using a surrender fee of s = 1% (compared to 5%
in our case). Further analyses showed that reducing the surrender fee in our
model significantly raises the fair guarantee fee. For a surrender fee of 0, the
fair guarantee fee even exceeds 1%.

Finally, we analyze the influence of the annual maximum guaranteed with-
drawal amount on the fair guarantee fee for the contract without step-up.
We allow for annual withdrawal amounts of xW = 5%, xW = 7%, and xW = 9%.
The fair guarantee fees are displayed in Table 5.

Although the guaranteed total withdrawal amount remains unchanged, the
annual maximum withdrawal amount notably influences the fair guarantee fee.
Rather low annual redemptions lead to a fair guarantee fee of only 0.05% while
a fee of 0.38% is necessary to back a GMWB option with 9% annual withdrawals.
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TABLE 4

FAIR GUARANTEE FEE FOR CONTRACTS WITH GMWB UNDER DIFFERENT CONSUMER BEHAVIOR

contract  without step-up with step-up without step-up,
strategy with DB

1: withdrawals of 700 p.a., j = 1: 0.19% j = 1: 0.19% 0.23%

starting in year j = 1, 6 j = 6: 0.15%

or 11 j = 11: 0.14%

2: withdrawals of 700
0.19% 0.2% 0.28%

if At < Gt
W.

TABLE 5

INFLUENCE OF THE ANNUAL MAXIMUM FREE WITHDRAWAL AMOUNT ON THE FAIR GUARANTEE FEE

FOR A CONTRACT WITH GMWB

contract strategy xW = 5% xW = 7% xW = 9%

1: withdrawals of 700 p.a.,
0.05% 0.19%% 0.38%

starting in year j = 1



5.3. Sensitivity Analyzes with respect to Capital Market Parameters

We consider a contract with an annual ratchet GMIB for a = 1 as described in
Section 5.2.3. Further, we assume a customer who neither surrenders nor with-
draws money from the account. We vary the risk-free rate of interest r as well
as the fund volatility s. Table 6 shows the fair guarantee fee for different com-
binations of the capital market parameter values.
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TABLE 6

INFLUENCE OF THE CAPITAL MARKET PARAMETERS r AND s ON THE FAIR GUARANTEE FEE

FOR A CONTRACT WITH GMIB

volatility risk-free rate r = 3% r = 4% r = 5%

s = 10% 0.46% 0.28% 0.20%
s = 15% 1.09% 0.76% 0.56%
s = 20% 1.94% 1.40% 1.05%

As expected, the fair guarantee fee is a decreasing function of the risk-free rate
of interest and an increasing function of the asset volatility since, on one hand,
the risk-neutral value of a guarantee decreases with increasing interest rates
and, on the other hand, options are more expensive when volatility increases.
Changes in the volatility have a tremendous impact on the option values and,
thus, on the fair guarantee fee.

At the inception of the contract and with some products also during the
term of the contract, the insured has the possibility to influence the volatility
by choosing the underlying fund from a predefined selection of mutual funds
(cf. Section 2.1). Since the charged fees usually do not depend on the fund
choice, this possibility presents another valuable option for the policyholder.
For any risk-free rate r, the fair guarantee fee for s = 20% is more than four
times as high as the one for s = 10%. Thus, one important risk management
tool for insurers offering variable annuity guarantees is the strict limitation
and control of the types of underlying funds offered within those products.

6. SUMMARY AND OUTLOOK

The present paper introduces a model, which permits a consistent and extensive
analysis of all kinds of guarantees currently offered within Variable Annuity
contracts in the US. We derived fair prices for numerous types of contracts and
several policyholder strategies. We found that some guarantees are noticeably
overpriced, whereas others, e.g. guaranteed annuities within GMIB options, are
clearly offered under their risk-neutral value.

The fact that some of these guarantees are underpriced implies that insur-
ers, on one hand, assume cross subsidizations from other fees and, on the other



hand, assume that their customers do not act rationally. The insurers’ assump-
tions, in particular the assumption that the policyholders will not exercise
annuitization options in GMIB contracts even when they are in the money,
seem risky. Especially when customers specifically choose a product with a
guaranteed annuitization option, one can expect that their decision will be
based on financial optimality.

Since the fee is a percentage of the account value, it is especially high if the
underlying fund price is high. However, then the corresponding options are out
of the money. When the customers are acting rationally, this could lead to
higher surrender rates if options are out of the money and lower surrender rates
if options are in the money. Furthermore, with the increasing discussion about
products with embedded guarantees, customers and financial advisors will get
more and more educated about their options and how to exercise them in the
most beneficial way. Also, it is quite possible that market participants special-
ize on finding arbitrage possibilities and speculating against insurers, maybe by
strategically buying such policies in the secondary market13 or by consulting
policyholders about an optimal behavior.

In our numerical analysis, we use the rather simple Black-Scholes model
with constant coefficients. Besides a different asset model, e.g. of Lévy type,
including stochastic interest rates for these long term contracts seems worth-
while. In general, including a more realistic asset model, i.e. with fatter tails and
a skewed distribution of the returns, and stochastic interest rates would rather
increase the values of the options. Furthermore, besides option and management
fees, we did not include any other charges. Since charges have a negative effect
on the development of the account value, this will further increase the option
values and therefore the fair guarantee fees necessary to back the options.
Thus, all in all, our model tends to underestimate option values. Therefore,
the fact that some options are already underpriced in our model is a clear sig-
nal that insurers should scrutinize their calculation schemes.

In the present paper, we focus on the pricing of such guarantees in Variable
Annuity contracts. In our future research, besides extending the asset model, we
plan to take a closer look at the ongoing risk-management of these guarantees.
In particular, we want to assess the implementation of efficient hedging strategies
to secure the insurer’s liquidity. In a recent survey amongst American insurers (cf.
Lehman Brothers (2005)), it turned out that often only the Delta-risk14 is hedged,
whereas a protection of Rho- and Vega-risks seems rather uncommon. Thus, it is
questionable whether these long-term guarantees are covered adequately.

Another proposal for future research is to further analyze optimal policyholder
strategies which can also be extracted from our algorithm. In particular, if a
contract contains multiple options, it is not clear how these options interact
and which effect these interactions have on optimal strategies.
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13 Coventry First, a company specializing in the secondary market for insurance policies, announced
in 2005 that they plan to buy Variable Annuities in the future, if their intrinsic value exceeds the
surrender value, cf. Footnote 5 in Milevsky und Salisbury (2006).

14 For a definition of the “Greeks” Delta, Gamma, Rho und Vega, see, e.g., Chapter 14.4 of Hull (1997).
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