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ABSTRACT

In nonlife insurance, actuaries usually resort to random effects to take unex-
plained heterogeneity into account (in the spirit of the Bühlmann-Straub
model). This paper aims to study the kind of dependence induced by the intro-
duction of correlated latent variables in the annual numbers of claims reported
by policyholders. The effect of reporting claims on the a posteriori distribution
of the random effects will be made precise. This will be done by establishing
some stochastic monotonicity property of the a posteriori distribution with
respect to the claims history.
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1. INTRODUCTION AND MOTIVATION

One of the main tasks of the actuary is to design a tariff structure that will
fairly distribute the burden of claims among policyholders. If the risks in the
portfolio are not all equal to each other (which means that the associated ran-
dom financial losses have different distribution functions), it is fair to parti-
tion all policies into homogeneous classes with all policyholders belonging to
the same class paying the same premium. In automobile third party liability
insurance, examples of classification variables encountered in practice include
the age, gender and occupation of the policyholders, the type and use of their
car, the place where they reside and sometimes even the number of cars in the
household, marital status, smoking behavior or the color of the vehicle. It is
convenient to achieve a priori classification with the help of generalized linear
models; see e.g. RENSHAW (1994).

However, many important factors cannot be taken into account at this stage;
think for instance of swiftness of reflexes or aggressiveness behind the wheel in
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automobile insurance. Consequently, tariff cells are still quite heterogeneous.
This residual heterogeneity can be represented by a random effect in a statis-
tical model. The amount of premium charged to all policyholders in a risk
class is thus itself an average, so that some policyholders pay too much and
subsidize the others. The claims histories can be used to restore fairness in
the risk classes, increasing the premium for policyholders reporting claims
and decreasing those of good drivers. The allowance for the history of the
policyholder in a rating model thus derives from interpretation of serial cor-
relation for longitudinal data resulting from hidden features in the risk distri-
bution.

In a seminal paper, DIONNE and VANASSE (1989) proposed a credibility model
which integrates a priori and a posteriori information on an individual basis.
These authors introduced a regression component in the Poisson counting
model in order to use all available information in the estimation of accident
frequency. The unexplained heterogeneity was then modeled by the introduction
of a latent variable representing the influence of hidden policy characteristics.
Taking this random effect Gamma distributed yields the Negative Binomial
model for the claim number. Of course, there is no particular reason to restrict
ourselves to Gamma distributed random effects (except perhaps mathematical
convenience).

The vast majority of the papers appeared in the actuarial literature consid-
ered time-independent (or static) heterogeneous models. Noticeable exceptions
include the pioneering papers by GERBER & JONES (1975), SUNDT (1988) and
PINQUET, GUILLÉN & BOLANCÉ (2001). The allowance for an unknown under-
lying random parameter that develops over time is justified since unobservable
factors influencing the driving abilities are not constant. One might consider
either shocks (induced by events like divorces or nervous breakdown, for instance)
or continuous modifications (e.g. due to learning effect).

Another reason to allow for random effects that vary with time relates to
moral hazard. Indeed, individual efforts to prevent accidents are unobserved
and feature temporal dependence. The policyholders may adjust their efforts
for loss prevention according to their experience with past claims, the amount
of premium and awareness of future consequences of an accident (due to expe-
rience rating schemes).

The main technical interest of letting the random effects evolve over time
is to take into account the date of claims. This reflects the fact that the pre-
dictive ability of a claim depends on its age: a recent claim is a worse sign to
the insurer than a very old one. Contrarily to the static case, the total number
of claims reported in the past is no more an exhaustive summary of policy-
holders’ history. Rather, the sequence of annual claim numbers has now to be
memorized to determine future premiums.

In this context, the present paper aims to examine the kind of dependence
induced among annual claim numbers by the introduction of random effects
taking unexplained heterogeneity into account. We will see that this dependence
is often very strong, because of the total positivity of the Poisson kernel. We will
also make precise the effect of reporting claims on the a posteriori distrib-
ution of the random effect. This will be done by establishing some stochastic
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monotonicity property of the a posteriori distribution with respect to the claims
history.

The main interest of this paper is to formalize intuitive ideas with the help
of stochastic orderings. Every actuary intuitively feels that the a posteriori
claim frequency distribution must become more dangerous as claims are
reported. We make here precise the meaning of “more dangerous” and we prove
that the a posteriori premium must increase with the total claim number in the
mixed Poisson model. The result is known to be true in the linear credibility
approach pioneered by BÜHLMANN (1967, 1970), which can also cope with regres-
sion components: the predictor is an increasing function of the number of claims
regardless of the mixing distribution. This paper establishes an analogous result
for the expected value principle.

To end with this introduction, let us say a few words about the notation used
throughout this paper. As usual, the abbreviations iid, rv, cdf stand for indepen-
dent and identically distributed, random variable and cumulative distribution
function, respectively. Henceforth, bold symbols are used for multivariate quan-
tities. Further, �(m, s2) denotes the Normal law with mean m and variance s2,
�(m, S) denotes the multivariate Normal law with mean vector m and covariance
matrix S, ��(m, s2) stands for the LogNormal distribution with parameters m
and s2. All the operations involving vectors have to be interpreted compo-
nentwise. Henceforth, given a rv (or random vector) X and an event A, we
denote as [X |A] a rv (or vector) with cdf x 7 Pr[X ≤ x |A]. The symbol “=d” is
used to indicate that two rv’s (or two random vectors) have the same distribu-
tion, whereas the symbol “~” means “is distributed according to”.

2. POISSON CREDIBILITY MODELS INCORPORATING

A PRIORI RISK CLASSIFICATION

During the observation period, n policies were in portfolio, each one observed
during ni periods. Let Nit be the number of claims reported by policyholder i
during the period t, i = 1, 2,…, n, t = 1, 2, …,ni . Let dit be the length of this
period (the risk exposure). Usually, dit = 1, but there are a variety of situations
where this is not the case. Indeed, a new period of observation starts as soon
as some policy characteristics are modified (think for instance to a moving of
the policyholder for a company using postcode as rating factor, policyholder’s
wedding for a company using marital status, etc.).

At the beginning of each insurance period, the actuary has at his disposal
some information about each policyholder, summarized in a vector x. Resort-
ing to standard Poisson regression machinery, this information is integrated
into the prediction of the annual claim frequency l. A random effect is super-
posed to the prediction l to recognize the residual heterogeneity of the port-
folio.

In this paper, we will assume that the unknown characteristics relating to
policyholder i during year t are represented by a rv Qit. The annual numbers
of claims Ni1, Ni2, Ni3,… are assumed to be independent given the sequence
Qi = (Qi1, Qi2, Qi3, …) of random effects. The latent unobservable process Qi
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characterizes the correlation structure of the Nit’s. Specifically, the model is based
on the following assumptions:

A1 given Qi = qi, the rv’s Nit, t = 1, 2 ,…, ni, are independent and conform to
the Poisson distribution with mean litqit, i.e.
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A2 at the portfolio level, the sequences (Qi, Ni), i = 1, 2, …, n, are assumed to
be independent. Moreover, the Qit’s are non-negative rv’s with unit mean
(�[Qit] = 1 for all i, t, which means that the a priori ratemaking is correct
on average). Defining nmax = maxi ni, Qi has the same distribution as the
first ni components of some random vector (Q1, …, Qnmax

).

We denote by G (·) (resp. g (·)) the common cumulative distribution function
(resp. probability density function) of the Qit’s, for t =1, …, ni. We suppose also
that the squared random effects are integrable.

Assuming that lit = lit+h, for some integer h, the stationarity of the random
effects specified in the condition A2 implies that

Pr [Nit + h +1 = lt + 1 |Nih + 1 = l1, …, Nit + h = lt] = Pr [Nit +1 = lt +1 |Ni1 = l1, …, Nit = lt] 

whatever l1, …, lt+1. Therefore the predictive ability of claims will depend solely
on the lag between the date of prediction and the date of occurrence, that is,
the age of the claim.

In the model A1-A2, we intuitively feel that the following statements should
be valid: provided that the Qit’s are “positively dependent”,

S1 the Nit’s are “positively dependent”

S2 Qi “increases” in the claims Ni

S3 Qi,ni+1 “increases” in the past claims Ni

S4 Ni,ni+1 “increases” in the past claims Ni

The purpose of the remainder of this paper will be to formalize these ideas and
to make precise the concepts of positive dependence and increasingness
involved in statements S1-S4.

3. MODELLING HETEROGENEITY

Let us now complete the assumptions A1-A2 by various structures matching
the constraints enumerated in A2. Model A3 is the classical static credibility
model. Models A4-A6 come from PINQUET ET AL. (2001) and PINQUET (2000).
Model A7 extends the specifications A3-A6 using copulas.
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3.1. Model A3

As it is often the case in actuarial science, we could opt for static heterogene-
ity, i.e. Qt ≡ Q. In this first case, statements S1-S4 should be true since the Qi’s
have perfectly dependent components (these random vectors are comonotonic).
This model was studied in details in PURCARU & DENUIT (2002).

3.2. Model A4

Let W ~ �(0, S) where sst = sW
2 rW(|s– t|) with | rW(h) | ≤ 1, rW(0) = 1. The corre-

lation function rW plays a central role in the analysis of the predictive ability
of past claims, as shown in PINQUET ET AL. (2001). Now, define
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Hence, all the Qi’s conform to multivariate LogNormal distributions.
Note that if the autocorrelation function rW(h) = 1 for all h, we have in fact

Qi = (Qi , …, Qi), with each Qi conforming to the LogNormal distribution; we
thus find a special case of model A3.

3.3. Model A5

We could further specify model A4 by assuming in addition that W has an
autoregressive structure of order one, that is,

Wt = uWt – 1 + et , t ≥ 2,

where the errors et ~ �(0, s2(1 –u2)) are independent, |u | < 1, and W1 ~ �(0, s2).
In this case, rW ( |s – t | ) = u |s– t| so that the autocorrelation function decreases
exponentially with the lag between observations. This specification is particu-
larly interesting for ratemaking purposes.

3.4. Model A6

This model postulates that there is a static baseline heterogeneity which is per-
turbated by iid annual effects, so that the vector Qi is exchangeable. Specifically,

Qt = RSt where the St’s are iid and independent from R, St ~ ��( , sS
s
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3.5. Model A7

Models A4-A6 are based on LogNormal random effects. Now, we would also
like to be able to specify other distributions for the random effects, like the
Gamma law, for instance (which facilitates the Bayesian analysis of the data).
In that respect, the copula construction is of prime interest.

Let us recall that a bivariate copula C is the joint distribution for a bivariate
random couple with uniform marginals. By virtue of Sklar’s theorem, the joint
distribution function of (Qt – 1, Qt) can be represented as

, ,Pr C G Gq q q qQ Qt t t t t t1 1 1# # =- - -^ ^_ h hi7 A

for some copula C (.,.). Provided G is continuous then C (.,.) is unique. For
more details about copulas, we refer the interested reader e.g. to FREES and
VALDEZ (1998). In a constructive approach, inserting any cdf G (.) (gamma for
instance) into some copula C(.,.) (e.g Clayton, Frank or Gumbel) yields a cor-
related structure for Qt’s.

Let us denote the conditional distribution of the copula by C2|1(n | u) =
u2
2 C(u,n). Then,

PrH C G Gq q q q q qQ Qt t t t t t t t1 1 1 21 1#= = =- - - -^ ^ ^_h h hi7 A

and, if we denote by c the density of the copula C,

, .h H c G G gq q q q q q q qt t
t

t t t t t1 1 12
2
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Bivariate copulas offer a powerful tool to build autoregressive models for non-
gaussian data (see e.g. JOE (1997)). Specifically, selecting some copula C and
marginal cdf G, we compute H and the joint cdf of Q is then given by

... .Pr G H Hq q q q qQ q n n1 2 1 1# = -^ ^ ^h h h6 @

Note that taking C(u,u) = min{u,u} (i.e. the Fréchet upper bound copula) yields
comonotonic random effects, which leads to the static credibility model A3.

4. STATEMENT S1

4.1. Stochastic order relations

This section gives the definitions of the stochastic orderings we will use, as well
as some intuitive interpretations. For more details about stochastic orderings,
we refer the reader e.g. to KAAS, VAN HEERWAARDEN and GOOVAERTS (1994).

Most positive dependence concepts aim to formalize the idea that large
values of some component of a random vector tend to be associated with large
values of the others. Therefore, we need to be able to decide whether a random
vector is indeed “larger” than another one. To this end, we resort to stochastic
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orderings. These probabilistic tools will also be used to formalize the increas-
ingness mentioned in statements S2-S4. In this paper, we use two classical order
relations, namely stochastic dominance and likelihood ratio order. Recall that a
set U ⊆ �n is called upper if y ∈U whenever y ≥ x and x ∈U.

Definition 4.1. Let X and Y be two n-dimensional random vectors. Then X is
said to be smaller than Y in the stochastic dominance, written as X )st Y, if

Pr[X ∈U ] ≤ Pr[Y ∈U], for all upper sets U in �n

Intuitively )st means that it is more likely that Y takes on “large” values (i.e.
any value in an upper set U, for any upper set) than X. An univariate upper set
is an interval of the form (t, +∞) so that Definition 4.1 gives for rv’s X and Y

X )st Y ⇔ Pr[X > t] ≤ Pr[Y > t]  for all t ∈�.

Despite the intuitive nature of )st, we will also need a stronger order concept
in the remainder of the paper, namely likelihood ratio order. This stochastic
ordering is particularly useful in parametric models.

Definition 4.2. Let X and Y be two n-dimensional random vectors with con-
tinuous (or discrete) cdf’s and let fX and fY denote their (continuous or discrete)
pdf’s, respectively. Then X is said to be smaller than Y in the multivariate like-
lihood ratio order, written as X )lr Y, if:

fX(x ! y) fY(x “ y) ≥ fX(x) fY(y), for every x and y in �n

where the lattice operators / and 0 are defined as

x 0 y = (max{x1, y1}, …, max{xn , yn})

and
x / y = (min{x1, y1}, …, min{xn , yn}).

If X and Y are rv’s then Definition 4.2 gives

X )lr Y ⇔ fX(x) fY(y) ≥ fX(y) fY(x), whenever x ≤ y.

It can be shown that )lr is stronger than )st , that is if X and Y are two n-dimen-
sional random vectors, X )lr Y ⇒ X )st Y (the implication is strict). For a proof
of the latter implication, see e.g. SHAKED and SHANTHIKUMAR (1994).

4.2. Dependence concepts

In order to formalize the positive dependence involved in statement S1, we
will present several concepts of dependence for random vectors. For more
details about these concepts we refer the reader e.g. to JOE (1997).
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Definition 4.3. Let X be a n-dimensional random vector.

(i) X is Associated (A, in short) if

�ov[h1 (X), h2 (X)] ≥ 0

for all componentwise non-decreasing functions h1, h2 : �n → �;

(ii) X is Multivariate Positive Likelihood Ratio Dependent (MPLRD, in short)
if its multivariate probability density function fX is MTP2 (Multivariate
Totally Positive of Order 2), that is if

fX(x 0 y) fX(x ! y) ≥ fX(x) fX(y)

holds true for all x, y ∈�n (note that this amounts to X )lr X).

(iii) X is Conditionally Increasing in Sequence (CIS, in short) if

[Xi | X1 = x1, …, Xi –1 = xi –1] )st [Xi | X1 = x�1, …, Xi –1 = x�i –1 ],

holds whenever xj ≤ x�j , j ∈{1, …, i – 1}, for i = 2, …, n ;

(iv) X is Comonotonic (C, in short) if there exists a rv Z and non-decreasing
functions f1, …, fn such that X =d (f1(Z), …, fn(Z)).

The dependence concepts defined before are linked by the following chain of
implications:

X C ⇒ X MPLRD ⇒ X CIS ⇒ X A. (4.1)

The second implication follows from Property 4.4 and from Theorem 4.14 in
BARLOW and PROSCHAN (1975); the third implication follows from Theorem 2.4
in JOE (1997).

Moreover, they enjoy some functional invariance property, i.e. for all increas-
ing functions f1, …, fn , we have that:

X C (resp. MPLRD, CIS, A) ⇒ (f1(X1), …, fn(Xn))  C  (resp. MPLRD, CIS, A).

4.3. MTP2 functions

These functions will be often used in the remainder of the paper. Therefore,
we recall hereafter some basic features of such functions. In the bivariate case,
the MTP2 concept for functions involved in the definition of MPLRD reduces
to the classical TP2. Let us recall that a function f : �2 → � is said to be TP2 if
the inequality

f (s1, t1) f (s2, t2) ≥ f (s1, t2) f (s2, t1) (4.2)

holds true for any s1 ≤ s2 and t1 ≤ t2.
The bivariate TP2 is of great interest for studying MTP2 as shown in the

next result (taken from KEMPERMAN (1977)).
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Property 4.4. A function f is MTP2 if, and only if, it is TP2 in pairs, that is for
all i ≠ j

(xi, xj) 7 f (x) is TP2 for fixed xk, k ≠ i, j.

The following fundamental property of MTP2 known as the basic composition
formula will play a central role in the proofs of the results stated in the next
sections.

Property 4.5. Given some functions h1 : S ≈ T → � and h2 : T ≈ U → �, let us
define the function h3 as

( , ) ( , ) ( , ) ( ).h h h ds u s t t u ts
t T3 1 2=
!

#

If h1 is MTP2 on S ≈ T and h2 is MTP2 on T ≈ U then h3 is MTP2 on S ≈ U.

4.4. Proof of statement S1

Before formalizing statement S1, we need to establish the following technical
poperty.

Property 4.6. In the model A1-A2, given q ≤ q� ∈�+, [Nit | Qit = q] )lr [Nit | Qit = q�].

Proof. For k ≤ k� ∈� and q ≤ q� ∈�+ we have that
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so that

Pr[Nit = k | Qit = q]Pr[Nit = k� | Qit = q�] ≥ Pr[Nit = k | Qit = q�]Pr[Nit = k� | Qit = q],
from which follows the conclusion. ¡

We are now ready to state the main result of this section, namely that positive
dependence for Qi is transmitted to Ni. This result is closely related to previous
studies by WHITT (1979), FAHMY ET AL. (1982) and SHAKED & SPIZZICHINO

(1998).

Proposition 4.7. In the model A1-A2,

(i) Qi MPLRD ⇒ Ni MPLRD.
(ii) Qi A ⇒ Ni A.

Proof. (i) The joint probability function of Ni can be expressed as

i it ( ) ,Pr Pr N k f dN k qQ q qt it it
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where fQi
stands for the joint pdf of Qi. Denote as

,..., , , ...,f k k q qi in n1 1i i
` j ≡ it .Pr N k qQt it it
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From Property 4.6 it follows that f“ is a product of TP2 functions and is hence
MTP2 in (k, q) by virtue of Property 4.4. Now, invoking the basic composi-
tion formula of Property 4.5 (with h1 = f“ and h2 = fQi

, the latter function being
MTP2 since Qi has been assumed MPLRD) we obtain that Ni is MPLRD.
(ii) By reformulating the covariance we obtain the expression:

�ov[h1(Ni), h2(Ni)] = �9�ov[h1(Ni), h2(Ni) |Qi]C+ �ov9�[h1(Ni) |Qi], �[h2(Ni)|Qi]C.

Given Qi , the components of Ni are independent by virtue of A2. From BAR-
LOW & PROSCHAN (1975, Theorem 2.2, p31) independent rv’s are associated and
hence the conditional covariance in the first term is almost surely positive and
so is the whole first term. Let us denote by h“ 1 (qi) ≡ �[h1(Ni) |Qi = qi] and by
h“ 2(qi) ≡ �[h2(Ni) | Qi = qi]. Since h1 and h2 are increasing functions, Property 4.6
ensures that h“ 1 (·) and h“ 2 (·) are both increasing functions. In the hypothesis
Qi was supposed to be associated, thus the second term in the right is also
positive, and hence the conclusion follows. ¡

4.5. Statement S1 in the models A3-A7

Since the type of dependence existing between the Nit’s is induced by the type
of dependence existing between the Qit’s, as presented in Proposition 4.7, it
remains to study the dependence structure of the random effects Qit in the
models mentionned at the begining of the article, i.e. A3-A7.

4.5.1. Model A3

Since Qi is C, it is a fortiori MPLRD, so by virtue of Proposition 4.7(i) Ni is
MPLRD. Note that Ni is obviously not C.

4.5.2. Model A4

This model is rather general. Not surprisingly, the type of dependence between
the Qit’s is induced by the form of the covariance matrix S of W.

Property 4.8. In the model A1-A2-A4, the following properties hold:

(i) If the inverse of the covariance matrix S of W has all the off-diagonal com-
ponents nonpositive then Ni is MPLRD.

(ii) If all the components of the covariance matrix S of W are nonnegative then
Ni is A.

32 OANA PURCARU AND MICHEL DENUIT



Proof. (i) From TONG (1990, Theorem 4.3.2.), we know that W is MPLRD if,
and only if, all the off-diagonal components of the inverse of its covari-
ance matrix are non-positive. Since MPLRD is closed under increasing
transformation, each Qi is then MPLRD. The announced result then fol-
lows from Proposition 4.7(i).

(ii) The reasoning is similar to the one in (i), since we know from PITT (1982)
that W is A if, and only if, all the elements of its covariance matrix are
non-negative. ¡

4.5.3. Model A5

In this third model, the covariance structure of W is expressed in terms of the
autoregressive parameter u. Provided u is non-negative, we get strong positive
dependence for the components of Ni, as shown in the following result.

Property 4.9. In the model A1-A2-A5, u ≥ 0 ⇒ Ni MPLRD.

Proof. In the model A5, the elements of S are given by:

stt = s 2
W, sst = sts = u |s– t | s 2

W for |s – t | ≥ 1.

As it can be seen from JOE (1997, Example 8.1 on page 253), the off-diagonal
elements of the matrix R = S –1 are as follows:

rt, t+1 = rt+1, t =
u

u

s 1W
2 2

-
-` j

for t = 1, …, nmax – 1 and rst = 0 for |s – t | ≥ 2

and are all non positive when u ≥ 0. Hence W is MPLRD. Since the MPLRD
property is functionally invariant, Qi is also MPLRD and hence Ni by Propo-
sition 4.7(i). ¡

4.5.4. Model A6

Let us now turn to the exchangeable random effects. When the LogNormal
specification is retained for Ri and the Sit’s, no further conditions are needed
for MPLRD, as shown in the following result.

Property 4.10. In the model A1-A2-A6, Ni is MPLRD.

Proof. The joint density of Qi is given by

R, ..., ( ) .f f r f r drq q
q

i i S
it

trn

n

Q 1
10i i it i

=
$ =

i
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Let us show that ( )fS r
q

it

it is TP2 in (qit, r), i.e. that for all q1 < q2 and all r1 < r2
the inequality
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which reduces to

ln ln ln lnr r
s

q q1
0

S
2 2 1 2 1 $- -^ ^h h .

The latter relation is obviously true. Thus ( )fS r
q

it

it is TP2 in (qit, r). The integrand
of (4.3) is then MTP2 in (qi, r) whence it follows that fQi

is MTP2. ¡

4.5.5. Model A7

In the general autoregressive model induced by bivariate copulas C, the depen-
dence structure of Ni is induced by the properties of C, as expected.

Property 4.11. In the model A1-A2-A7, Ni is MPLRD provided C is TP2, that is

c(u,u)c(u�,u�) ≥ c(u�,u)c(u,u�) whenever u ≤ u�, u ≤ u�.

Proof. Let us write the joint pdf of Ni as

i it ( )Pr Pr N k f dN k qQ q qt it it
t

i i

n

Qq 10i
i

= = = =
$ =

i

# %7 7A A* 4 .

Now, exploiting the autoregressive of order 1 structure yields 
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If (u,u) 7 c(u,u) is TP2 then (qit, qit+1) 7 c(G(qit),G(qit+1)) is also TP2 so that fQi
is MTP2 by Property 4.4. Then, invoking Property 4.5 shows that k 7 Pr[Ni = k]
is MTP2, which ends the proof. ¡

Let us give now some prominent examples of copulas, which enjoy the TP2 prop-
erty (at least for some values of their parameters), resulting in MPLRD claim
numbers Ni :

(i) Frank copula:

� ( , ) ,/ln�C u e eu j j1
1 1� �u u= - - - -- -
_ _` i i j8 B where  j = 1 – e –�

is TP2 for � ≥ 0.

(ii) Normal copula:

� ( , )
( )

exp
�

�

�
C u u d d

p

z z z z
z z

2

1
2 1

2

1

( )( ) uu FF

zz1 2 2 2

1
2

1 2 2
2

1 2
2

1
2

1

1
1

=
-

- - +

- 33 = -= -

--

##
` j

* 4

where F is the cdf of the �(0,1) distribution, is TP2 for � ≥ 0.

(iii) Gumbel copula:

( , ) expC u u uu
/

�
� � �1

= - +
-u_ i& 0

where u = – ln u and û = – ln u, is TP2 for � ≥ 1.

(iv) Clayton copula:

( , )C u u vu 1
/

�
� � �1

= + -- - -
_ i

is TP2 for � > 0.

5. STATEMENT S2

Let us now establish the following result inspired from Theorems 3-4 in FAHMY

ET AL. (1982). We purpose to prove that policyholders reporting more claims
in the past become more dangerous on unobservable characteristics.

Proposition 5.1. In the model A1-A2, [Qi | Ni = k] )lr [Qi | Ni = k�] whenever
k ≤ k� provided Qi is MPLRD.

Proof. The conditional pdf of Qi given [Ni = k] can be expressed as

fQi
(q | k) = c(k)Pr[Ni = k | Qi = q] fQi

(q)
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where c(k) is a normalizing constant given by

( ) ( ) .Pr Prc f dk N k N k Q l l li i i Ql

1

0 i
= = = = =

$

- #6 7 7@ A A

Let us now consider two claim histories k ≤ k� as well as two possible values
for the random effects q and q �. Starting from
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we get from the MPLRD nature of Qi together with Property 4.6 that
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whence the announced result follows. ¡

The conditions under which Qi is MPLRD have been studied in Section 4.4 for
the models A3-A6. It is interesting to contrast Proposition 5.1 to the corres-
ponding result for the static credibility model (Proposition 3.4 in PURCARU &
DENUIT (2002)); see Section 7.

6. STATEMENTS S3 AND S4 IN MODELS A5-A7

The whole credibility theory aims to predict as accurately as possible the future
claims given the past observed. This section focusses on predictive distribution,
that is the distribution of the future number of claims Nini+1 given past claims
Ni. Model A4 is hardly used to perform prediction on longitudinal basis. This
is due to the fact that the correlation function rW has to be continued beyond
the observation period before evaluating experience premiums (see PINQUET
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ET AL. (2001) for a complete treatment of this subject). In this section, we con-
centrate on models A5-A7 and assume that the conditions of Properties 4.9,
4.10 and 4.11 are fulfilled. This ensures that the vector (Qi1, …, Qini

, Qini+1) is
also MPLRD.

Property 6.1. In the model A1-A2 completed by either A5, A6 or A7, [Qini +1 | Ni

= k] )lr [Qini+1 | Ni = k�] for all k ≤ k� under the conditions of Property 4.9, 4.10
or 4.11.

Proof. The aim is to prove that the inequality

f f f fk k k kq q q q� �i i i in n n n1 1 1 1i i i i
$+ + + +

� �` a a `j k k j (6.1)

holds true for all k ≤ k� and qini+1 ≤ q�ini+1, where f (· |k) denotes the conditional
density of Qini+1 given Ni = k. Bayes formula gives 
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and thus showing (6.1) is equivalent to verify that the inequality

Pr[Ni = k | Qini+1 = qini+1] Pr[Ni = k� | Qini+1 = q�ini+1]

≥ Pr[Ni = k� | Qini+1 = qini+1] Pr[Ni = k | Qini+1 = q�ini+1],

holds for all k ≤ k� and qini+1 ≤ q�ini+1. Let us denote as h (k,q) the joint density
of (Ni, Qini+1) evaluated at (k,q). It then remains to prove that

h(k, qini+1)h(k�, q�ini+1) ≥ h(k�, qini+1)h(k, q�ini+1).

To establish the latter inequality, we use an interesting property of the MTP2
concept, which stipulates that if the joint distribution of a random vector is
MTP2, then the same property still holds for any of the marginals. Since the
joint density of (Ni1, …, Nini+1, Qi1, …, Qini+1) given by

,..., , ,...,h k k q qi in n1 1 1 1i i+ +` j ≡ it Q ,...,Pr N k fq q qQt it it
t

i i

n

n
1

1

1 1i i
= =

=

+

+

i

% ` j7 A* 4

is obviously MTP2 when Qi is MPLRD, we get the announced result. ¡

Now that we have shown that a policyholder having reported more claims in
the past will be more dangerous on the unobservable characteristics relating
to the year ni + 1, we would like to establish the same result for the future num-
ber of claims. This is precisely done next.
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Property 6.2. Under the assumptions of Property 6.1, [Nini+1 | Ni = k] )lr [Nini+1 |
Ni = k�], for all k ≤ k�.

Proof. We have to show that for all n ≤ n� and k ≤ k� the following inequality

Pr[Nini+1 = n | Ni = k]Pr[Nini+1 = n� | Ni = k�]

≥ Pr[Nini+1 = n | Ni = k�]Pr[Nini+1 = n� | Ni = k]

holds true. The conditional probability could also be expressed in the form:

Pr[Nini+1 = n | Ni = k] =
q 0$
# Pr[Nini+1 = n | Qini+1 = q] f (q |k) dq

where f (· | k) denotes the conditional density of Qini+1 given Ni = k. The first
factor of the integrand is TP2 in (n, q), based on Property 4.6. Moreover, we
have seen in Property 6.1 that f (q | k) is MTP2 in (k1, …, kni

, q). By applying the
basic composition formula for

h1 (n, q) ≡ Pr[Nini +1 = n | Qini +1 = q] and h2 (q, k) ≡ f (q | k)

it follows that (n, k) 7 Pr[Nini+1 = n | Ni = k] is MTP2, which ends our proof. ¡

7. SOME PARTICULARITIES OF THE STATIC MODEL A3

In the static credibility models, which are investigated in details in PURCARU &
DENUIT (2002), conditions over the Ni in the dynamic case, reduce to conditions
over

it ,N Ni
t

n

1

i

=:
=

!

where Ni• is the total claim number reported by policyholder i during the ni
observation periods. The statistic Ni• is a convenient summary of past claims
history but it neglects the age of the claims. Therefore we have the following
result, which formalizes statements S2 and S3; see PURCARU & DENUIT (2002)
for formal proofs.

Proposition 7.1. In the model A3, the following statements are true:

(i) [Qi | Ni• = n] )lr [Qi | Ni• = n�] for n ≤ n�;

(ii) [Ni,ni+1 | Ni• = n] )lr [Ni,ni+1 | Ni• = n�] for n ≤ n�.

In the static case (model A3), the condition thus involves Ni• (and not the
whole vector Ni), the total number of claims reported by policyholder i in the
past: increasing the value of Ni• makes the unique random effect Qi larger in
the univariate )lr-sense. In that framework, the distribution of the claims dur-
ing the driving career of the policyholder does not matter.

38 OANA PURCARU AND MICHEL DENUIT



8. CONCLUSION

The present paper aimed to investigate the kind of dependence generated by
actuarial credibility models with time-dependent random effects. To the best
of the authors’ knowledge, this aspect of actuarial modelling has never been
investigated in the literature so far. As expected, the structure of dependence
between the observable claim numbers is inherited from the type of correlation
existing between the unobservable random effects modelling residual hetero-
geneity. It turns out that the kind of dependence induced by these models is
often very strong, namely MPLRD.

It is worth mentioning that most of the reasonings only use the fact that
the Poisson distribution is monotone in its mean in the )lr-sense (as shown in
Property 4.6). So the results are readily extended to any other claim frequency
distribution possessing this property. See also SHAKED and SPIZZICHINO (1998)
for similar results involving absolutely continuous conditional distributions.
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