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ABSTRACT 

In the recent actuarial literature, several proofs have been given for the fact 
that if a random vector (XI, X2, ..., X~) with given marginals has a comonoto- 
nic joint distribution, the sum XI + )(2 + "" + ,t'n is the largest possible in con- 
vex order. In this note we give a lucid proof of this fact, based on a geomet- 
ric interpretation of the support of the comonotonic distribution. 

1. INTRODUCTION 

Up to a few years ago, when dealing with stochastic orderings, actuarial risk 
theory has focused on single risks or sums of  independent risks. Here risks 
denote non-negative random variables such as they occur in the individual and 
the collective model, see, e.g., Kaas et al. (1994, 2001). Lately, with an eye on 
financial actuarial applications, the attention has shifted to sums X1 + X2 + ' "  
+ Xn of random variables that may also have negative values. Moreover, their 
independence is no longer required. Only the marginal distributions are assumed 
to be fixed. A central result is that in this situation, the sum of the components 
X~ + X2 +'" + X~ is the riskiest if the joint distribution of the random variables 

is comonotonic. This means that the support of (X1,)(2, ..., Xn) has the prop- 
erty that each two points in this support have ordered components. 

Perhaps due to the fact that so far no standard actuarial textbook has dealt 
with this topic, independent proofs of this result have appeared in several papers 
lately. Since Schmeidler (1986), Yaari (1987) and Ro~ll (1987), the concept of 
comonotonicity has played an important role in the economic theories of 
decision under risk and uncertainty. Hoeffding (1940) and Frrchet (1951) 
studied the comonotonic distribution without actually proving the sum of the 
components to be riskier. As far as we know, this result was first mentioned 
in the actuarial literature in Heilmann (1986), who attributes it to Meilijson 
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and Nadas (1979). Proofs of it involving the more general concept of  super- 
modularity are contained in Miiller (1997) (see also B/iuede and Mfiller, 1998), 
Goovaerts and Dhaene (1999) and Goovaerts and Redant (1999). In Goovaerts 
and Kaas (2002) a proof is given involving limits for random variables with 
finitely many values. Proofs for the special case n = 2 and for the individual 
life model (two-point distributions) are to be found in Dhaene & Goovaerts 
(1996) and Dhaene & Goovaerts (1997) respectively. Goovaerts et al. (2000) 
considers only continuous random variables. In Kaas et al. (2000), a general 
proof is given using an extension of the notion inverse distribution function. 
Dhaene et al. (2000) prove a slightly more general result. See also Dhaene 
and Denuit (1999), Wang and Dhaene (1998) and Wang and Young (1998). 

A drawback of all these proofs is that none of them contributes a lot to 
the intuitive understanding of the concepts involved. In this short note, we 
give a transparent proof which is based on the geometric properties of the 
comonotonic support, and which we think is more suitable for classroom 
use. Also, it might inspire others to work on applications of comonotonic 
risks. 

In Section 2, we define the order concepts used, convex order and stop- 
loss order. In Section 3, we describe the support and the joint cdf of the como- 
notonic distribution. Section 4 provides simple continuous and discrete examples. 
Section 5 finally gives the proof that comonotonicity implies a convex-largest 
sum of the components of a random vector. 

2. C O N V E X  O R D E R  A N D  STOP-LOSS O R D E R  

The natural ordering concept in actuarial science is the stop-loss order. A ran- 
dom variable X is less than Y in stop-loss order, written X< sL Y, if their net 
stop-loss premiums satisfy 

E[ (X-  d)+] _< E[ (Y-  d)+] for all real d. 

This order has many useful invariance properties. For instance, stop-loss order 
survives the operations of  convolution and compounding on non-negative 
random variables (risks), and stop-loss larger claims lead to increased ruin 
probability and higher zero-utility premiums for risk averse decision makers. 
Risk X is preferred over Y either because it represents a smaller loss, or because 
it is less spread. See for instance Kaas et al. (1994, 2001) in the framework of 
actuarial sciences. 

The quantity E[(X-d)÷] represents the expected loss over d. With stabil- 
ity in mind, not only excessively large positive values of a random variable 
are unattractive, but also negative ones. Hence E[(-X-t)+] should be small 
too. So in that case, random variable X is preferred over Y if for all real d = 
-t ,  both 

E [ ( X -  d)+] < E[ (Y-  at)+], and 
E[(d-X)+I < E[(d- IO+]. 
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If this holds, we say that X is less than Y in convex order, written as X <cx Y. 
Note that adding d to the first set of inequalities and letting d ---) -oo leads to 
E[X] _< E[Y]. Subtracting d in the second set of inequalities and letting d ~ +oo 
produces E[X] ___ E[ Y], hence E[X] = E[ Y] must hold for two random variables 
to be comparable in convex order. On the other hand, the first set of inequal- 
ities together with equal means can be shown to imply the second set. 

Stop-loss order can be shown to be the same as having ordered expected 
values E[f(X)] for all non-decreasing convex functions f( ') ,  see e.g. Goovaerts 
et al. (1990). Hence it represents the common preferences of  all risk-averse 
decision makers. On the other hand, convex order is the same as ordered expec- 
tations for all convex functions, see e.g. the standard work on stochastic orders 
in a more general framework, Shaked and Shanthikumar (1994). This is of 
course where the name convex order comes from. In a utility context, it repre- 
sents the common preferences of all risk-averse decision makers between random 
variables with equal mean. The proof that convex order implies ordered 
expectations of  convex functions generally relies on the classical argument 
that any convex function can be obtained as the uniform limit of a sequence 
of  piecewise linear functions, each of  them being expressible as a linear com- 
bination of  functions (x- t )+  and ( t-x)+.  A somewhat simpler proof, relying 
on partial integration, is given below, not because it is new, but just to keep 
the paper self-contained. 

Lemma 1. If  X<c~ Y and f(-) is convex, then ELf(X)] < ELf(Y)]. 

Proof. Consider the function g(x) = f ( x ) - f ( a ) -  (x-a) f ' (a) ,  with a some point 
where f(.)  is differentiable. Since E[X] = E[ Y], the inequality Elf(X)] < Elf(Y)] 
is equivalent to E[g(X)] < E[g(Y)]. Write F(x)= Pr[X<_ x] and F(x)= I -F(x) .  
Since g(a) = g'(a) = 0, the integrated terms below vanish, so by four partial inte- 
grations we get 

E [g (X)] = f a g(x)dF(x) - f + ~  g(x)dF(x) 

: -  f_~ g'(x)F(x)dx + f+~g'(x) f f (x)dx 

: f a  E[(x_X)+]dg,(x)+ fa+OOE[(x_X)+]dg,(x) 

from which the result immediately follows, because by the convexity o f f ( ' )  and 
also g(-), we have dg'(x) > 0 for all x. • 

3. THE SUPPORT OF THE COMONOTONIC DISTRIBUTION 

We start by defining comonotonicity of  a set of  real n-vectors in R n. When 
the support of a random vector is a comonotonic set, also the random vector 
itself as well as its distribution are called comonotonic. 

Definition 1. The set S in R n is said to be comonotonic, if, for all (Yl, Y2 . . . . .  Y,) 
and (z 1, z2 ..... Zn) in this set, yi < zi for some i implies yj < zj for all j. 
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Notice that a comonotonic set is a "thin" set. Since the upper left and lower 
right comers of  a rectangle may not both be in it, it must be (a subset of) a 
curve that is monotonically non-decreasing in each component. It cannot con- 
tain any subset of  dimension larger than 1. 

Proposition 2. The connected closure S o f  the comonotonic set S is a continuous 
curve which is comonotonic. 

Proof. The set S consists of  a series of  connected closed curves, possibly con- 
taining just one point. Now, connect the endpoints of consecutive curves by 
straight lines. Note that this has to be done only countably many times. We 
are left with S, which is a continuously increasing curve in R n. • 

The set S, having no more missing pieces, can be parametrized by non-decreas- 
ing continuous functions such that 

= {(fl(z),  . . . , L ( z ) )  I < z < oo}. 

Hence, it may be traversed in an upward direction (with increasing z). 

Proposition 3. Let the support o f  random vector (Y1, Y2 . . . . .  Yn) be contained 
in the connected closed curve S. Then the joint cdf  o f  (Y1, Y2 . . . . .  Yn) must have 
the following form." 

Pr[YI-< Yl,..., I1, < Yn] =min  Pr[Y < Yl]. 
- -  j = l , . . . ,  n [ J - -  

Proof. We are looking for the total probability of the region R = R l n R 2 n  ... 
n R,,  where Rj, j = 1, 2 . . . .  , n is defined as the region {t ~ Rnltj< yj}. Excluding 
the trivial cases S' c R and S' n R = ~ ,  as vector s traverses S in the upward 
direction, it must reach one of  the boundary planes { t ~ R n [ tj = yj}, j = 1,2, 
.... n of this region first. Let k be the index corresponding to this boundary 
plane. Then, Pr[ Yk < Y~] = mini Pr[ Yj < yj] and S c~ R = S n Rk are obvious from 
the geometric properties of  S. Hence the event Y1 <Yl ..... Y, <Yn has the same 
probability as Yk < Y~, and the proof is completed. • 

For instance in Figure 2 below, S is the dotted line. To compute the joint 
cdf at 1 3 (~, ~), observe that going along S' upwards, border x = ½ is crossed at (½, 
1), while the other border y = 3 is crossed only at (3, 3). The set of  points with 
positive probability to the left of  and below (½, 3) coincides with the corre- 
sponding set to the left of x = ½. 

Consider some cumulative univariate distribution function F. It is well- 
known that if U-Uniform(0,1) ,  the random variable F-I(U) is distributed 
according to F (probability integral transform). Note that it is irrelevant how 
we define y = F -1 (u) for arguments u where there is an ambiguity, i.e., where 
F(y) = u holds for an interval of  y-values. For the same reason that the cdf of 
a random variable can have only countably many jumps, it can be shown that 
there can only be countably many such horizontal segments. [To see this, 
observe that, in the interval [ -2  n, 2n], there are only finitely many intervals 
with a length over 2 -n where F(y) is constant, and let n ~ oo.] Hence, if g(.) 
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and h(-) are two different choices for the inverse cdf, g(U) and h(U) will be 
equal with probability one. The customary choice is taking F-l(u) to be the left- 
hand endpoint of  the interval of  y-values (generally containing one point only) 
with F(y) = u. Then, F-l(.) is non-decreasing and continuous from the left. 

Now consider any random vector (X1,)(2 . . . .  , X,). We have: 

Proposition 4. The following random vector has a comonotonic support, and 
moreover, it has the same marginal distributions as (X1, X> .... X,):  

[ F-ltfr~ F-l t f l~  F - I ( u ) ) .  (]I1' r2,'--, rn ) = \ x, ,~ , ,  ;~2,~,, "'', x, 

Proof. If  (Yl, Y2, .-., Yn) and (zl, z2, ..., z,) are in the support  of  (I11, Y2, ..., Y,) 
with Fx~ (u) = Yi < zi = Fx I (v), then u < v must hold, and hence yj < zj for all j = 1, 
2, ..., n. 
For the marginals, we have Pr [Fxl(U) < x]= Pr[U < Fxi (x)]= Fx, (x) for all x .  

The support  of  (Y1, Y5 .... Y,) as in Proposition 4 is the closure of  the set 

{(Fxi(u),Fxl2(u) .... ,Fxi(U))lO < u  < 1}. 

Note that, by Proposition 3, any other comonotonic random vector with the same 
F-1 F-1 marginals as (YI, Y2 ... .  , I1,) has the same cdf. In this sense, ( x~ (U), x~ (U), ..., 

Fxl (U)) is the unique comonotonic  random vector with the same margmals as 

(x, ,  x2 . . . . .  x.) .  
The following result can be found in Hoeffding (1940) and Fr6chet (1951). 

See also B~iuerle and Miiller (1998). In our setup, it can be deduced directly 
from Propositions 3 and 4. 

Corollary 5. The joint cdf  o f  the comonotonic random vector (Yx, Y2, .... Yn) with 
the same marginal distributions as (X1, X2 . . . . .  Xn) satisfies: 

Pr[Y1 < Y, .... , Y,-< Yn] = rain P r [ X  < yj ]. 
- -  j = l  ..... n [ J - -  

Note that this proposition implies that the comonotonic cdf is as large as it can 
possibly be while still having the required marginal distributions. It is equal to 
an upper bound for all joint cdfs with these marginal distributions. By the same 
token, the joint probability of  all Yj having large values is also maximized. The 
probability of  having some Yj large, some small, is minimized, thus eliminating 
hedging possibilities. In this light, it is easy to see why the sum Y1 + Y2 + ' "  + Y, 
is as variable as possible when the Yj are comonotonic,  see Section 5. 

4. Two SIMPLE EXAMPLES 

First, we give a continuous example with n = 3. Let X - Uniform on the set 
(0, ½)u (1, 3), y _  Beta(2,2) and Z -  Normal(0,1). The support  of  the como- 
notonic distribution is the set 
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o 

FIGURE 3: A continuous example with n = 3. 

{(f~vl(u),Fyl(U),Fzl(U))lO •U < 1} .  

See Figure 1. Actually, not all of  the support is depicted. The part left out 
corresponds to u ~ (tI)(-2), tI)(2)) and extends along the asymptotes, the verti- 
cal lines (0, 0, z) and (~, 1, z). The thick continuous line is S, while the dotted 
line is the straight line needed to make S into the connected curve S. Note 
that Fx has a horizontal segment between ½ and 1. The projection of S along 
the z-axis can also be seen to constitute an increasing curve, as do projections 
along the other axes. 

For a discrete example, take X -  Uniform{0, 1, 2, 3} and Y -  Binomial(3,½). 
It is easy to verify that 

(Ffl(u ,F;I(u ) = (0, 0) for 0 < u < ~, 

= (0,1) for~ < u < ~, 

= ( 1 , 1 )  for  < u < 

= (2, 2) for ~ < u < ~, 

= (3, 2) for ~ < u < ~, 

= (3 ,3 )  f o r ~ < u < l .  

The support S of the comonotonic distribution is just these six points, and 
the curve S arises by simply connecting them consecutively with straight lines, 
the dotted lines in Figure 2. At the boundaries of the intervals for u, one may 
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FIGURE 2: A discrete example. 

take the limit from either the left or the right. The straight line connecting (1,1) 
and (2,2) is not along one of  the axes. This happens because at level u = ½, 
both Fx(y) and Fr(y) have horizontal segments. Note  that any_ non-decreasing 
curve connecting (1, 1) and (2,2) would have led to a feasible S. These last two 
points have probability ¼, the other points ~. 

5. COMONOTONICITY AND CONVEX O R D E R E D  SUMS 

After all this work, harvesting our main result is quite easy. 

Theorem 6. I f  the random vector (Yl, Y2, .... Y,) is comonotonic and has the same 
marginals as (X1, )(2 . . . . .  X , ) ,  then 

x ~ + x 2 + . . . + x . < _ ~ x r l +  r 2 + . . . +  rn. 

Proof. It suffices to prove --<SL, since it is obvious that the means of  these two 
random variables are equal. The following holds for all (xl, x2 . . . . .  x,)  when 
dl + d 2 + . . . + d n = d :  

(xl + x2 + "" + x.  -d)+ 

= {(x~ - d l )  + ( x 2 -  d2) + "'" + ( x . -  d . ) }  + 

< {(Xl-dl)+ + (x2 -  d2)+ + "'" + ( x , -  d,)+}÷ 

= (X 1 - d l )  + + (x2 -  d2)+ + ..- + (x , , -  d,,)+}+. 

Assume that d is such that 0 < Pr[YI + Ye + "'" + Yn --< d] < 1 holds; if not, the 
stop-loss premiums of  Yl + Yz +"" + Y. and )(1 + X2 +'" + X. can be seen to be 
equal. The connected curve S containing the support S of  the comonotonic  
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random vector (Y1, Y2 . . . . .  Y,) points upwards in all coordinates, so it is obvi- 
ous that S has exactly one point of  intersection with the hyperplane {(Xl, ..., 
x~)[Xl + ... + x,  = d}. Let's assume from now on that (dl, d2, ..., dn) is this 
point of  intersection. But then for all points (Yl, Yz, -.., Yn) in the support S of  
(Y1, Y2, ..., Yn), we have the following equality: 

(Yl +Y2 + "" + y n - d ) + -  (Yl-dl)+ + (y2- d2)+ + " ' "  + (Yn-- dn)+. 

This is because for this particular choice of  (all, d2 . . . .  , dn), by the comonoto-  
nicity we have that whenever yj- > dj. for any j ,  we also have Yk > dk for all k; 
when all yy < dj, obviously the left hand side is 0 as well. 

Now replacing constants by the corresponding random variables in the 
two relations above and taking expectations, we get, since Xj and Yj have the 
same marginal distribution for all j ,  

E[(r~ + Y2 + "'" + Y . -  d)+] 

= E[(YI -dl )+]+ E[(Y2 - d2)+] + ... + E[(Yn - d.)+] 

= E[(X  -dO+] + dg+] + - + E [ ( X n -  dn)+] 

g[(Xl -k X2-l- ... -b Xn-d)+]. • 

Note that having fixed S in a particular instance, in principle we can determine 
dl, d2 . . . . .  dn as in the proof  of  Theorem 4 for every d, and using these we 
can express the stop-loss premiums of  the comonotonic  sum in the marginal 
stop-loss premiums E[(Xi-di)+], see the last equality in the proof  just above. 
Also, we have proven the following theorem: 

Theorem 7. I f  the random vector ( Yl, Y2, .... Yn) is comonotonic, then the u-quan- 
tiles o f  the sum of  its components are equal to the sum o f  the u-quantiles o f  its 
components: 

F~l+...+ yn(U)-- F~l (u)=k "" "b F;~ (u). 

Proof. For any d, choose (dl, d2, ..., dn) as above. I f  the event I/1 + Y2 + " '  + Yn 
< d has probability u, the same holds for Y~ < d~ for all i. From this, the result 
immediately follows. • 

Hence, comonotonic  random variables are quantile-additive. Since quantiles 
are Values-at-Risk, quantile functions may be added to get the VaR for the 
total portfolio when the subportfolios are comonotonic.  I f  they are not, this 
procedure merely provides the VaR with a sum that constitutes a convex- 
order upper bound for the total on all portfolios. Note that this upper bound 
has the same mean, which means that the corresponding cdf's, as well as their 
inverses, must cross. Therefore there exist u-values for which the actual VaR is 
larger, but also for which it is lower, so there is no guarantee that the sum of  
the VaRs is always larger than the VaR for the sum. But since the upper 
bound has a larger variance, it will tend to have thicker tails, and hence for u 
close to 1, its VaR will generally be larger. 
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